spi-stm32-qspi.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
  4. * Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics.
  5. */
  6. #include <linux/bitfield.h>
  7. #include <linux/clk.h>
  8. #include <linux/errno.h>
  9. #include <linux/io.h>
  10. #include <linux/iopoll.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/module.h>
  13. #include <linux/mutex.h>
  14. #include <linux/of.h>
  15. #include <linux/of_device.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/reset.h>
  18. #include <linux/sizes.h>
  19. #include <linux/spi/spi-mem.h>
  20. #define QSPI_CR 0x00
  21. #define CR_EN BIT(0)
  22. #define CR_ABORT BIT(1)
  23. #define CR_DMAEN BIT(2)
  24. #define CR_TCEN BIT(3)
  25. #define CR_SSHIFT BIT(4)
  26. #define CR_DFM BIT(6)
  27. #define CR_FSEL BIT(7)
  28. #define CR_FTHRES_MASK GENMASK(12, 8)
  29. #define CR_TEIE BIT(16)
  30. #define CR_TCIE BIT(17)
  31. #define CR_FTIE BIT(18)
  32. #define CR_SMIE BIT(19)
  33. #define CR_TOIE BIT(20)
  34. #define CR_PRESC_MASK GENMASK(31, 24)
  35. #define QSPI_DCR 0x04
  36. #define DCR_FSIZE_MASK GENMASK(20, 16)
  37. #define QSPI_SR 0x08
  38. #define SR_TEF BIT(0)
  39. #define SR_TCF BIT(1)
  40. #define SR_FTF BIT(2)
  41. #define SR_SMF BIT(3)
  42. #define SR_TOF BIT(4)
  43. #define SR_BUSY BIT(5)
  44. #define SR_FLEVEL_MASK GENMASK(13, 8)
  45. #define QSPI_FCR 0x0c
  46. #define FCR_CTEF BIT(0)
  47. #define FCR_CTCF BIT(1)
  48. #define QSPI_DLR 0x10
  49. #define QSPI_CCR 0x14
  50. #define CCR_INST_MASK GENMASK(7, 0)
  51. #define CCR_IMODE_MASK GENMASK(9, 8)
  52. #define CCR_ADMODE_MASK GENMASK(11, 10)
  53. #define CCR_ADSIZE_MASK GENMASK(13, 12)
  54. #define CCR_DCYC_MASK GENMASK(22, 18)
  55. #define CCR_DMODE_MASK GENMASK(25, 24)
  56. #define CCR_FMODE_MASK GENMASK(27, 26)
  57. #define CCR_FMODE_INDW (0U << 26)
  58. #define CCR_FMODE_INDR (1U << 26)
  59. #define CCR_FMODE_APM (2U << 26)
  60. #define CCR_FMODE_MM (3U << 26)
  61. #define CCR_BUSWIDTH_0 0x0
  62. #define CCR_BUSWIDTH_1 0x1
  63. #define CCR_BUSWIDTH_2 0x2
  64. #define CCR_BUSWIDTH_4 0x3
  65. #define QSPI_AR 0x18
  66. #define QSPI_ABR 0x1c
  67. #define QSPI_DR 0x20
  68. #define QSPI_PSMKR 0x24
  69. #define QSPI_PSMAR 0x28
  70. #define QSPI_PIR 0x2c
  71. #define QSPI_LPTR 0x30
  72. #define LPTR_DFT_TIMEOUT 0x10
  73. #define STM32_QSPI_MAX_MMAP_SZ SZ_256M
  74. #define STM32_QSPI_MAX_NORCHIP 2
  75. #define STM32_FIFO_TIMEOUT_US 30000
  76. #define STM32_BUSY_TIMEOUT_US 100000
  77. #define STM32_ABT_TIMEOUT_US 100000
  78. struct stm32_qspi_flash {
  79. struct stm32_qspi *qspi;
  80. u32 cs;
  81. u32 presc;
  82. };
  83. struct stm32_qspi {
  84. struct device *dev;
  85. void __iomem *io_base;
  86. void __iomem *mm_base;
  87. resource_size_t mm_size;
  88. struct clk *clk;
  89. u32 clk_rate;
  90. struct stm32_qspi_flash flash[STM32_QSPI_MAX_NORCHIP];
  91. struct completion data_completion;
  92. u32 fmode;
  93. /*
  94. * to protect device configuration, could be different between
  95. * 2 flash access (bk1, bk2)
  96. */
  97. struct mutex lock;
  98. };
  99. static irqreturn_t stm32_qspi_irq(int irq, void *dev_id)
  100. {
  101. struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id;
  102. u32 cr, sr;
  103. sr = readl_relaxed(qspi->io_base + QSPI_SR);
  104. if (sr & (SR_TEF | SR_TCF)) {
  105. /* disable irq */
  106. cr = readl_relaxed(qspi->io_base + QSPI_CR);
  107. cr &= ~CR_TCIE & ~CR_TEIE;
  108. writel_relaxed(cr, qspi->io_base + QSPI_CR);
  109. complete(&qspi->data_completion);
  110. }
  111. return IRQ_HANDLED;
  112. }
  113. static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr)
  114. {
  115. *val = readb_relaxed(addr);
  116. }
  117. static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr)
  118. {
  119. writeb_relaxed(*val, addr);
  120. }
  121. static int stm32_qspi_tx_poll(struct stm32_qspi *qspi,
  122. const struct spi_mem_op *op)
  123. {
  124. void (*tx_fifo)(u8 *val, void __iomem *addr);
  125. u32 len = op->data.nbytes, sr;
  126. u8 *buf;
  127. int ret;
  128. if (op->data.dir == SPI_MEM_DATA_IN) {
  129. tx_fifo = stm32_qspi_read_fifo;
  130. buf = op->data.buf.in;
  131. } else {
  132. tx_fifo = stm32_qspi_write_fifo;
  133. buf = (u8 *)op->data.buf.out;
  134. }
  135. while (len--) {
  136. ret = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR,
  137. sr, (sr & SR_FTF), 1,
  138. STM32_FIFO_TIMEOUT_US);
  139. if (ret) {
  140. dev_err(qspi->dev, "fifo timeout (len:%d stat:%#x)\n",
  141. len, sr);
  142. return ret;
  143. }
  144. tx_fifo(buf++, qspi->io_base + QSPI_DR);
  145. }
  146. return 0;
  147. }
  148. static int stm32_qspi_tx_mm(struct stm32_qspi *qspi,
  149. const struct spi_mem_op *op)
  150. {
  151. memcpy_fromio(op->data.buf.in, qspi->mm_base + op->addr.val,
  152. op->data.nbytes);
  153. return 0;
  154. }
  155. static int stm32_qspi_tx(struct stm32_qspi *qspi, const struct spi_mem_op *op)
  156. {
  157. if (!op->data.nbytes)
  158. return 0;
  159. if (qspi->fmode == CCR_FMODE_MM)
  160. return stm32_qspi_tx_mm(qspi, op);
  161. return stm32_qspi_tx_poll(qspi, op);
  162. }
  163. static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi)
  164. {
  165. u32 sr;
  166. return readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, sr,
  167. !(sr & SR_BUSY), 1,
  168. STM32_BUSY_TIMEOUT_US);
  169. }
  170. static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi,
  171. const struct spi_mem_op *op)
  172. {
  173. u32 cr, sr;
  174. int err = 0;
  175. if (!op->data.nbytes)
  176. return stm32_qspi_wait_nobusy(qspi);
  177. if (readl_relaxed(qspi->io_base + QSPI_SR) & SR_TCF)
  178. goto out;
  179. reinit_completion(&qspi->data_completion);
  180. cr = readl_relaxed(qspi->io_base + QSPI_CR);
  181. writel_relaxed(cr | CR_TCIE | CR_TEIE, qspi->io_base + QSPI_CR);
  182. if (!wait_for_completion_interruptible_timeout(&qspi->data_completion,
  183. msecs_to_jiffies(1000))) {
  184. err = -ETIMEDOUT;
  185. } else {
  186. sr = readl_relaxed(qspi->io_base + QSPI_SR);
  187. if (sr & SR_TEF)
  188. err = -EIO;
  189. }
  190. out:
  191. /* clear flags */
  192. writel_relaxed(FCR_CTCF | FCR_CTEF, qspi->io_base + QSPI_FCR);
  193. return err;
  194. }
  195. static int stm32_qspi_get_mode(struct stm32_qspi *qspi, u8 buswidth)
  196. {
  197. if (buswidth == 4)
  198. return CCR_BUSWIDTH_4;
  199. return buswidth;
  200. }
  201. static int stm32_qspi_send(struct spi_mem *mem, const struct spi_mem_op *op)
  202. {
  203. struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master);
  204. struct stm32_qspi_flash *flash = &qspi->flash[mem->spi->chip_select];
  205. u32 ccr, cr, addr_max;
  206. int timeout, err = 0;
  207. dev_dbg(qspi->dev, "cmd:%#x mode:%d.%d.%d.%d addr:%#llx len:%#x\n",
  208. op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
  209. op->dummy.buswidth, op->data.buswidth,
  210. op->addr.val, op->data.nbytes);
  211. err = stm32_qspi_wait_nobusy(qspi);
  212. if (err)
  213. goto abort;
  214. addr_max = op->addr.val + op->data.nbytes + 1;
  215. if (op->data.dir == SPI_MEM_DATA_IN) {
  216. if (addr_max < qspi->mm_size &&
  217. op->addr.buswidth)
  218. qspi->fmode = CCR_FMODE_MM;
  219. else
  220. qspi->fmode = CCR_FMODE_INDR;
  221. } else {
  222. qspi->fmode = CCR_FMODE_INDW;
  223. }
  224. cr = readl_relaxed(qspi->io_base + QSPI_CR);
  225. cr &= ~CR_PRESC_MASK & ~CR_FSEL;
  226. cr |= FIELD_PREP(CR_PRESC_MASK, flash->presc);
  227. cr |= FIELD_PREP(CR_FSEL, flash->cs);
  228. writel_relaxed(cr, qspi->io_base + QSPI_CR);
  229. if (op->data.nbytes)
  230. writel_relaxed(op->data.nbytes - 1,
  231. qspi->io_base + QSPI_DLR);
  232. else
  233. qspi->fmode = CCR_FMODE_INDW;
  234. ccr = qspi->fmode;
  235. ccr |= FIELD_PREP(CCR_INST_MASK, op->cmd.opcode);
  236. ccr |= FIELD_PREP(CCR_IMODE_MASK,
  237. stm32_qspi_get_mode(qspi, op->cmd.buswidth));
  238. if (op->addr.nbytes) {
  239. ccr |= FIELD_PREP(CCR_ADMODE_MASK,
  240. stm32_qspi_get_mode(qspi, op->addr.buswidth));
  241. ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1);
  242. }
  243. if (op->dummy.buswidth && op->dummy.nbytes)
  244. ccr |= FIELD_PREP(CCR_DCYC_MASK,
  245. op->dummy.nbytes * 8 / op->dummy.buswidth);
  246. if (op->data.nbytes) {
  247. ccr |= FIELD_PREP(CCR_DMODE_MASK,
  248. stm32_qspi_get_mode(qspi, op->data.buswidth));
  249. }
  250. writel_relaxed(ccr, qspi->io_base + QSPI_CCR);
  251. if (op->addr.nbytes && qspi->fmode != CCR_FMODE_MM)
  252. writel_relaxed(op->addr.val, qspi->io_base + QSPI_AR);
  253. err = stm32_qspi_tx(qspi, op);
  254. /*
  255. * Abort in:
  256. * -error case
  257. * -read memory map: prefetching must be stopped if we read the last
  258. * byte of device (device size - fifo size). like device size is not
  259. * knows, the prefetching is always stop.
  260. */
  261. if (err || qspi->fmode == CCR_FMODE_MM)
  262. goto abort;
  263. /* wait end of tx in indirect mode */
  264. err = stm32_qspi_wait_cmd(qspi, op);
  265. if (err)
  266. goto abort;
  267. return 0;
  268. abort:
  269. cr = readl_relaxed(qspi->io_base + QSPI_CR) | CR_ABORT;
  270. writel_relaxed(cr, qspi->io_base + QSPI_CR);
  271. /* wait clear of abort bit by hw */
  272. timeout = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_CR,
  273. cr, !(cr & CR_ABORT), 1,
  274. STM32_ABT_TIMEOUT_US);
  275. writel_relaxed(FCR_CTCF, qspi->io_base + QSPI_FCR);
  276. if (err || timeout)
  277. dev_err(qspi->dev, "%s err:%d abort timeout:%d\n",
  278. __func__, err, timeout);
  279. return err;
  280. }
  281. static int stm32_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
  282. {
  283. struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master);
  284. int ret;
  285. mutex_lock(&qspi->lock);
  286. ret = stm32_qspi_send(mem, op);
  287. mutex_unlock(&qspi->lock);
  288. return ret;
  289. }
  290. static int stm32_qspi_setup(struct spi_device *spi)
  291. {
  292. struct spi_controller *ctrl = spi->master;
  293. struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl);
  294. struct stm32_qspi_flash *flash;
  295. u32 cr, presc;
  296. if (ctrl->busy)
  297. return -EBUSY;
  298. if (!spi->max_speed_hz)
  299. return -EINVAL;
  300. presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1;
  301. flash = &qspi->flash[spi->chip_select];
  302. flash->qspi = qspi;
  303. flash->cs = spi->chip_select;
  304. flash->presc = presc;
  305. mutex_lock(&qspi->lock);
  306. writel_relaxed(LPTR_DFT_TIMEOUT, qspi->io_base + QSPI_LPTR);
  307. cr = FIELD_PREP(CR_FTHRES_MASK, 3) | CR_TCEN | CR_SSHIFT | CR_EN;
  308. writel_relaxed(cr, qspi->io_base + QSPI_CR);
  309. /* set dcr fsize to max address */
  310. writel_relaxed(DCR_FSIZE_MASK, qspi->io_base + QSPI_DCR);
  311. mutex_unlock(&qspi->lock);
  312. return 0;
  313. }
  314. /*
  315. * no special host constraint, so use default spi_mem_default_supports_op
  316. * to check supported mode.
  317. */
  318. static const struct spi_controller_mem_ops stm32_qspi_mem_ops = {
  319. .exec_op = stm32_qspi_exec_op,
  320. };
  321. static void stm32_qspi_release(struct stm32_qspi *qspi)
  322. {
  323. /* disable qspi */
  324. writel_relaxed(0, qspi->io_base + QSPI_CR);
  325. mutex_destroy(&qspi->lock);
  326. clk_disable_unprepare(qspi->clk);
  327. }
  328. static int stm32_qspi_probe(struct platform_device *pdev)
  329. {
  330. struct device *dev = &pdev->dev;
  331. struct spi_controller *ctrl;
  332. struct reset_control *rstc;
  333. struct stm32_qspi *qspi;
  334. struct resource *res;
  335. int ret, irq;
  336. ctrl = spi_alloc_master(dev, sizeof(*qspi));
  337. if (!ctrl)
  338. return -ENOMEM;
  339. qspi = spi_controller_get_devdata(ctrl);
  340. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi");
  341. qspi->io_base = devm_ioremap_resource(dev, res);
  342. if (IS_ERR(qspi->io_base))
  343. return PTR_ERR(qspi->io_base);
  344. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm");
  345. qspi->mm_base = devm_ioremap_resource(dev, res);
  346. if (IS_ERR(qspi->mm_base))
  347. return PTR_ERR(qspi->mm_base);
  348. qspi->mm_size = resource_size(res);
  349. if (qspi->mm_size > STM32_QSPI_MAX_MMAP_SZ)
  350. return -EINVAL;
  351. irq = platform_get_irq(pdev, 0);
  352. ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0,
  353. dev_name(dev), qspi);
  354. if (ret) {
  355. dev_err(dev, "failed to request irq\n");
  356. return ret;
  357. }
  358. init_completion(&qspi->data_completion);
  359. qspi->clk = devm_clk_get(dev, NULL);
  360. if (IS_ERR(qspi->clk))
  361. return PTR_ERR(qspi->clk);
  362. qspi->clk_rate = clk_get_rate(qspi->clk);
  363. if (!qspi->clk_rate)
  364. return -EINVAL;
  365. ret = clk_prepare_enable(qspi->clk);
  366. if (ret) {
  367. dev_err(dev, "can not enable the clock\n");
  368. return ret;
  369. }
  370. rstc = devm_reset_control_get_exclusive(dev, NULL);
  371. if (!IS_ERR(rstc)) {
  372. reset_control_assert(rstc);
  373. udelay(2);
  374. reset_control_deassert(rstc);
  375. }
  376. qspi->dev = dev;
  377. platform_set_drvdata(pdev, qspi);
  378. mutex_init(&qspi->lock);
  379. ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD
  380. | SPI_TX_DUAL | SPI_TX_QUAD;
  381. ctrl->setup = stm32_qspi_setup;
  382. ctrl->bus_num = -1;
  383. ctrl->mem_ops = &stm32_qspi_mem_ops;
  384. ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP;
  385. ctrl->dev.of_node = dev->of_node;
  386. ret = devm_spi_register_master(dev, ctrl);
  387. if (ret)
  388. goto err_spi_register;
  389. return 0;
  390. err_spi_register:
  391. stm32_qspi_release(qspi);
  392. return ret;
  393. }
  394. static int stm32_qspi_remove(struct platform_device *pdev)
  395. {
  396. struct stm32_qspi *qspi = platform_get_drvdata(pdev);
  397. stm32_qspi_release(qspi);
  398. return 0;
  399. }
  400. static const struct of_device_id stm32_qspi_match[] = {
  401. {.compatible = "st,stm32f469-qspi"},
  402. {}
  403. };
  404. MODULE_DEVICE_TABLE(of, stm32_qspi_match);
  405. static struct platform_driver stm32_qspi_driver = {
  406. .probe = stm32_qspi_probe,
  407. .remove = stm32_qspi_remove,
  408. .driver = {
  409. .name = "stm32-qspi",
  410. .of_match_table = stm32_qspi_match,
  411. },
  412. };
  413. module_platform_driver(stm32_qspi_driver);
  414. MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>");
  415. MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver");
  416. MODULE_LICENSE("GPL v2");