exit.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/iocontext.h>
  15. #include <linux/key.h>
  16. #include <linux/security.h>
  17. #include <linux/cpu.h>
  18. #include <linux/acct.h>
  19. #include <linux/tsacct_kern.h>
  20. #include <linux/file.h>
  21. #include <linux/fdtable.h>
  22. #include <linux/freezer.h>
  23. #include <linux/binfmts.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/pid_namespace.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/profile.h>
  28. #include <linux/mount.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/kthread.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/taskstats_kern.h>
  33. #include <linux/delayacct.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/signal.h>
  37. #include <linux/posix-timers.h>
  38. #include <linux/cn_proc.h>
  39. #include <linux/mutex.h>
  40. #include <linux/futex.h>
  41. #include <linux/pipe_fs_i.h>
  42. #include <linux/audit.h> /* for audit_free() */
  43. #include <linux/resource.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/tracehook.h>
  47. #include <linux/fs_struct.h>
  48. #include <linux/init_task.h>
  49. #include <linux/perf_event.h>
  50. #include <trace/events/sched.h>
  51. #include <linux/hw_breakpoint.h>
  52. #include <linux/oom.h>
  53. #include <linux/writeback.h>
  54. #include <linux/shm.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/unistd.h>
  57. #include <asm/pgtable.h>
  58. #include <asm/mmu_context.h>
  59. static void exit_mm(struct task_struct *tsk);
  60. static void __unhash_process(struct task_struct *p, bool group_dead)
  61. {
  62. nr_threads--;
  63. detach_pid(p, PIDTYPE_PID);
  64. if (group_dead) {
  65. detach_pid(p, PIDTYPE_PGID);
  66. detach_pid(p, PIDTYPE_SID);
  67. list_del_rcu(&p->tasks);
  68. list_del_init(&p->sibling);
  69. __this_cpu_dec(process_counts);
  70. }
  71. list_del_rcu(&p->thread_group);
  72. list_del_rcu(&p->thread_node);
  73. }
  74. /*
  75. * This function expects the tasklist_lock write-locked.
  76. */
  77. static void __exit_signal(struct task_struct *tsk)
  78. {
  79. struct signal_struct *sig = tsk->signal;
  80. bool group_dead = thread_group_leader(tsk);
  81. struct sighand_struct *sighand;
  82. struct tty_struct *uninitialized_var(tty);
  83. cputime_t utime, stime;
  84. sighand = rcu_dereference_check(tsk->sighand,
  85. lockdep_tasklist_lock_is_held());
  86. spin_lock(&sighand->siglock);
  87. posix_cpu_timers_exit(tsk);
  88. if (group_dead) {
  89. posix_cpu_timers_exit_group(tsk);
  90. tty = sig->tty;
  91. sig->tty = NULL;
  92. } else {
  93. /*
  94. * This can only happen if the caller is de_thread().
  95. * FIXME: this is the temporary hack, we should teach
  96. * posix-cpu-timers to handle this case correctly.
  97. */
  98. if (unlikely(has_group_leader_pid(tsk)))
  99. posix_cpu_timers_exit_group(tsk);
  100. /*
  101. * If there is any task waiting for the group exit
  102. * then notify it:
  103. */
  104. if (sig->notify_count > 0 && !--sig->notify_count)
  105. wake_up_process(sig->group_exit_task);
  106. if (tsk == sig->curr_target)
  107. sig->curr_target = next_thread(tsk);
  108. }
  109. /*
  110. * Accumulate here the counters for all threads as they die. We could
  111. * skip the group leader because it is the last user of signal_struct,
  112. * but we want to avoid the race with thread_group_cputime() which can
  113. * see the empty ->thread_head list.
  114. */
  115. task_cputime(tsk, &utime, &stime);
  116. write_seqlock(&sig->stats_lock);
  117. sig->utime += utime;
  118. sig->stime += stime;
  119. sig->gtime += task_gtime(tsk);
  120. sig->min_flt += tsk->min_flt;
  121. sig->maj_flt += tsk->maj_flt;
  122. sig->nvcsw += tsk->nvcsw;
  123. sig->nivcsw += tsk->nivcsw;
  124. sig->inblock += task_io_get_inblock(tsk);
  125. sig->oublock += task_io_get_oublock(tsk);
  126. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  127. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  128. sig->nr_threads--;
  129. __unhash_process(tsk, group_dead);
  130. write_sequnlock(&sig->stats_lock);
  131. /*
  132. * Do this under ->siglock, we can race with another thread
  133. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  134. */
  135. flush_sigqueue(&tsk->pending);
  136. tsk->sighand = NULL;
  137. spin_unlock(&sighand->siglock);
  138. __cleanup_sighand(sighand);
  139. clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
  140. if (group_dead) {
  141. flush_sigqueue(&sig->shared_pending);
  142. tty_kref_put(tty);
  143. }
  144. }
  145. static void delayed_put_task_struct(struct rcu_head *rhp)
  146. {
  147. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  148. perf_event_delayed_put(tsk);
  149. trace_sched_process_free(tsk);
  150. put_task_struct(tsk);
  151. }
  152. void release_task(struct task_struct *p)
  153. {
  154. struct task_struct *leader;
  155. int zap_leader;
  156. repeat:
  157. /* don't need to get the RCU readlock here - the process is dead and
  158. * can't be modifying its own credentials. But shut RCU-lockdep up */
  159. rcu_read_lock();
  160. atomic_dec(&__task_cred(p)->user->processes);
  161. rcu_read_unlock();
  162. proc_flush_task(p);
  163. write_lock_irq(&tasklist_lock);
  164. ptrace_release_task(p);
  165. __exit_signal(p);
  166. /*
  167. * If we are the last non-leader member of the thread
  168. * group, and the leader is zombie, then notify the
  169. * group leader's parent process. (if it wants notification.)
  170. */
  171. zap_leader = 0;
  172. leader = p->group_leader;
  173. if (leader != p && thread_group_empty(leader)
  174. && leader->exit_state == EXIT_ZOMBIE) {
  175. /*
  176. * If we were the last child thread and the leader has
  177. * exited already, and the leader's parent ignores SIGCHLD,
  178. * then we are the one who should release the leader.
  179. */
  180. zap_leader = do_notify_parent(leader, leader->exit_signal);
  181. if (zap_leader)
  182. leader->exit_state = EXIT_DEAD;
  183. }
  184. write_unlock_irq(&tasklist_lock);
  185. release_thread(p);
  186. call_rcu(&p->rcu, delayed_put_task_struct);
  187. p = leader;
  188. if (unlikely(zap_leader))
  189. goto repeat;
  190. }
  191. /*
  192. * This checks not only the pgrp, but falls back on the pid if no
  193. * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  194. * without this...
  195. *
  196. * The caller must hold rcu lock or the tasklist lock.
  197. */
  198. struct pid *session_of_pgrp(struct pid *pgrp)
  199. {
  200. struct task_struct *p;
  201. struct pid *sid = NULL;
  202. p = pid_task(pgrp, PIDTYPE_PGID);
  203. if (p == NULL)
  204. p = pid_task(pgrp, PIDTYPE_PID);
  205. if (p != NULL)
  206. sid = task_session(p);
  207. return sid;
  208. }
  209. /*
  210. * Determine if a process group is "orphaned", according to the POSIX
  211. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  212. * by terminal-generated stop signals. Newly orphaned process groups are
  213. * to receive a SIGHUP and a SIGCONT.
  214. *
  215. * "I ask you, have you ever known what it is to be an orphan?"
  216. */
  217. static int will_become_orphaned_pgrp(struct pid *pgrp,
  218. struct task_struct *ignored_task)
  219. {
  220. struct task_struct *p;
  221. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  222. if ((p == ignored_task) ||
  223. (p->exit_state && thread_group_empty(p)) ||
  224. is_global_init(p->real_parent))
  225. continue;
  226. if (task_pgrp(p->real_parent) != pgrp &&
  227. task_session(p->real_parent) == task_session(p))
  228. return 0;
  229. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  230. return 1;
  231. }
  232. int is_current_pgrp_orphaned(void)
  233. {
  234. int retval;
  235. read_lock(&tasklist_lock);
  236. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  237. read_unlock(&tasklist_lock);
  238. return retval;
  239. }
  240. static bool has_stopped_jobs(struct pid *pgrp)
  241. {
  242. struct task_struct *p;
  243. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  244. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  245. return true;
  246. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  247. return false;
  248. }
  249. /*
  250. * Check to see if any process groups have become orphaned as
  251. * a result of our exiting, and if they have any stopped jobs,
  252. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  253. */
  254. static void
  255. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  256. {
  257. struct pid *pgrp = task_pgrp(tsk);
  258. struct task_struct *ignored_task = tsk;
  259. if (!parent)
  260. /* exit: our father is in a different pgrp than
  261. * we are and we were the only connection outside.
  262. */
  263. parent = tsk->real_parent;
  264. else
  265. /* reparent: our child is in a different pgrp than
  266. * we are, and it was the only connection outside.
  267. */
  268. ignored_task = NULL;
  269. if (task_pgrp(parent) != pgrp &&
  270. task_session(parent) == task_session(tsk) &&
  271. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  272. has_stopped_jobs(pgrp)) {
  273. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  274. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  275. }
  276. }
  277. #ifdef CONFIG_MEMCG
  278. /*
  279. * A task is exiting. If it owned this mm, find a new owner for the mm.
  280. */
  281. void mm_update_next_owner(struct mm_struct *mm)
  282. {
  283. struct task_struct *c, *g, *p = current;
  284. retry:
  285. /*
  286. * If the exiting or execing task is not the owner, it's
  287. * someone else's problem.
  288. */
  289. if (mm->owner != p)
  290. return;
  291. /*
  292. * The current owner is exiting/execing and there are no other
  293. * candidates. Do not leave the mm pointing to a possibly
  294. * freed task structure.
  295. */
  296. if (atomic_read(&mm->mm_users) <= 1) {
  297. mm->owner = NULL;
  298. return;
  299. }
  300. read_lock(&tasklist_lock);
  301. /*
  302. * Search in the children
  303. */
  304. list_for_each_entry(c, &p->children, sibling) {
  305. if (c->mm == mm)
  306. goto assign_new_owner;
  307. }
  308. /*
  309. * Search in the siblings
  310. */
  311. list_for_each_entry(c, &p->real_parent->children, sibling) {
  312. if (c->mm == mm)
  313. goto assign_new_owner;
  314. }
  315. /*
  316. * Search through everything else, we should not get here often.
  317. */
  318. for_each_process(g) {
  319. if (g->flags & PF_KTHREAD)
  320. continue;
  321. for_each_thread(g, c) {
  322. if (c->mm == mm)
  323. goto assign_new_owner;
  324. if (c->mm)
  325. break;
  326. }
  327. }
  328. read_unlock(&tasklist_lock);
  329. /*
  330. * We found no owner yet mm_users > 1: this implies that we are
  331. * most likely racing with swapoff (try_to_unuse()) or /proc or
  332. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  333. */
  334. mm->owner = NULL;
  335. return;
  336. assign_new_owner:
  337. BUG_ON(c == p);
  338. get_task_struct(c);
  339. /*
  340. * The task_lock protects c->mm from changing.
  341. * We always want mm->owner->mm == mm
  342. */
  343. task_lock(c);
  344. /*
  345. * Delay read_unlock() till we have the task_lock()
  346. * to ensure that c does not slip away underneath us
  347. */
  348. read_unlock(&tasklist_lock);
  349. if (c->mm != mm) {
  350. task_unlock(c);
  351. put_task_struct(c);
  352. goto retry;
  353. }
  354. mm->owner = c;
  355. task_unlock(c);
  356. put_task_struct(c);
  357. }
  358. #endif /* CONFIG_MEMCG */
  359. /*
  360. * Turn us into a lazy TLB process if we
  361. * aren't already..
  362. */
  363. static void exit_mm(struct task_struct *tsk)
  364. {
  365. struct mm_struct *mm = tsk->mm;
  366. struct core_state *core_state;
  367. mm_release(tsk, mm);
  368. if (!mm)
  369. return;
  370. sync_mm_rss(mm);
  371. /*
  372. * Serialize with any possible pending coredump.
  373. * We must hold mmap_sem around checking core_state
  374. * and clearing tsk->mm. The core-inducing thread
  375. * will increment ->nr_threads for each thread in the
  376. * group with ->mm != NULL.
  377. */
  378. down_read(&mm->mmap_sem);
  379. core_state = mm->core_state;
  380. if (core_state) {
  381. struct core_thread self;
  382. up_read(&mm->mmap_sem);
  383. self.task = tsk;
  384. self.next = xchg(&core_state->dumper.next, &self);
  385. /*
  386. * Implies mb(), the result of xchg() must be visible
  387. * to core_state->dumper.
  388. */
  389. if (atomic_dec_and_test(&core_state->nr_threads))
  390. complete(&core_state->startup);
  391. for (;;) {
  392. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  393. if (!self.task) /* see coredump_finish() */
  394. break;
  395. freezable_schedule();
  396. }
  397. __set_task_state(tsk, TASK_RUNNING);
  398. down_read(&mm->mmap_sem);
  399. }
  400. atomic_inc(&mm->mm_count);
  401. BUG_ON(mm != tsk->active_mm);
  402. /* more a memory barrier than a real lock */
  403. task_lock(tsk);
  404. tsk->mm = NULL;
  405. up_read(&mm->mmap_sem);
  406. enter_lazy_tlb(mm, current);
  407. task_unlock(tsk);
  408. mm_update_next_owner(mm);
  409. mmput(mm);
  410. clear_thread_flag(TIF_MEMDIE);
  411. }
  412. static struct task_struct *find_alive_thread(struct task_struct *p)
  413. {
  414. struct task_struct *t;
  415. for_each_thread(p, t) {
  416. if (!(t->flags & PF_EXITING))
  417. return t;
  418. }
  419. return NULL;
  420. }
  421. static struct task_struct *find_child_reaper(struct task_struct *father)
  422. __releases(&tasklist_lock)
  423. __acquires(&tasklist_lock)
  424. {
  425. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  426. struct task_struct *reaper = pid_ns->child_reaper;
  427. if (likely(reaper != father))
  428. return reaper;
  429. reaper = find_alive_thread(father);
  430. if (reaper) {
  431. pid_ns->child_reaper = reaper;
  432. return reaper;
  433. }
  434. write_unlock_irq(&tasklist_lock);
  435. if (unlikely(pid_ns == &init_pid_ns)) {
  436. panic("Attempted to kill init! exitcode=0x%08x\n",
  437. father->signal->group_exit_code ?: father->exit_code);
  438. }
  439. zap_pid_ns_processes(pid_ns);
  440. write_lock_irq(&tasklist_lock);
  441. return father;
  442. }
  443. /*
  444. * When we die, we re-parent all our children, and try to:
  445. * 1. give them to another thread in our thread group, if such a member exists
  446. * 2. give it to the first ancestor process which prctl'd itself as a
  447. * child_subreaper for its children (like a service manager)
  448. * 3. give it to the init process (PID 1) in our pid namespace
  449. */
  450. static struct task_struct *find_new_reaper(struct task_struct *father,
  451. struct task_struct *child_reaper)
  452. {
  453. struct task_struct *thread, *reaper;
  454. thread = find_alive_thread(father);
  455. if (thread)
  456. return thread;
  457. if (father->signal->has_child_subreaper) {
  458. /*
  459. * Find the first ->is_child_subreaper ancestor in our pid_ns.
  460. * We start from father to ensure we can not look into another
  461. * namespace, this is safe because all its threads are dead.
  462. */
  463. for (reaper = father;
  464. !same_thread_group(reaper, child_reaper);
  465. reaper = reaper->real_parent) {
  466. /* call_usermodehelper() descendants need this check */
  467. if (reaper == &init_task)
  468. break;
  469. if (!reaper->signal->is_child_subreaper)
  470. continue;
  471. thread = find_alive_thread(reaper);
  472. if (thread)
  473. return thread;
  474. }
  475. }
  476. return child_reaper;
  477. }
  478. /*
  479. * Any that need to be release_task'd are put on the @dead list.
  480. */
  481. static void reparent_leader(struct task_struct *father, struct task_struct *p,
  482. struct list_head *dead)
  483. {
  484. if (unlikely(p->exit_state == EXIT_DEAD))
  485. return;
  486. /* We don't want people slaying init. */
  487. p->exit_signal = SIGCHLD;
  488. /* If it has exited notify the new parent about this child's death. */
  489. if (!p->ptrace &&
  490. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  491. if (do_notify_parent(p, p->exit_signal)) {
  492. p->exit_state = EXIT_DEAD;
  493. list_add(&p->ptrace_entry, dead);
  494. }
  495. }
  496. kill_orphaned_pgrp(p, father);
  497. }
  498. /*
  499. * This does two things:
  500. *
  501. * A. Make init inherit all the child processes
  502. * B. Check to see if any process groups have become orphaned
  503. * as a result of our exiting, and if they have any stopped
  504. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  505. */
  506. static void forget_original_parent(struct task_struct *father,
  507. struct list_head *dead)
  508. {
  509. struct task_struct *p, *t, *reaper;
  510. if (unlikely(!list_empty(&father->ptraced)))
  511. exit_ptrace(father, dead);
  512. /* Can drop and reacquire tasklist_lock */
  513. reaper = find_child_reaper(father);
  514. if (list_empty(&father->children))
  515. return;
  516. reaper = find_new_reaper(father, reaper);
  517. list_for_each_entry(p, &father->children, sibling) {
  518. for_each_thread(p, t) {
  519. t->real_parent = reaper;
  520. BUG_ON((!t->ptrace) != (t->parent == father));
  521. if (likely(!t->ptrace))
  522. t->parent = t->real_parent;
  523. if (t->pdeath_signal)
  524. group_send_sig_info(t->pdeath_signal,
  525. SEND_SIG_NOINFO, t);
  526. }
  527. /*
  528. * If this is a threaded reparent there is no need to
  529. * notify anyone anything has happened.
  530. */
  531. if (!same_thread_group(reaper, father))
  532. reparent_leader(father, p, dead);
  533. }
  534. list_splice_tail_init(&father->children, &reaper->children);
  535. }
  536. /*
  537. * Send signals to all our closest relatives so that they know
  538. * to properly mourn us..
  539. */
  540. static void exit_notify(struct task_struct *tsk, int group_dead)
  541. {
  542. bool autoreap;
  543. struct task_struct *p, *n;
  544. LIST_HEAD(dead);
  545. write_lock_irq(&tasklist_lock);
  546. forget_original_parent(tsk, &dead);
  547. if (group_dead)
  548. kill_orphaned_pgrp(tsk->group_leader, NULL);
  549. if (unlikely(tsk->ptrace)) {
  550. int sig = thread_group_leader(tsk) &&
  551. thread_group_empty(tsk) &&
  552. !ptrace_reparented(tsk) ?
  553. tsk->exit_signal : SIGCHLD;
  554. autoreap = do_notify_parent(tsk, sig);
  555. } else if (thread_group_leader(tsk)) {
  556. autoreap = thread_group_empty(tsk) &&
  557. do_notify_parent(tsk, tsk->exit_signal);
  558. } else {
  559. autoreap = true;
  560. }
  561. tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
  562. if (tsk->exit_state == EXIT_DEAD)
  563. list_add(&tsk->ptrace_entry, &dead);
  564. /* mt-exec, de_thread() is waiting for group leader */
  565. if (unlikely(tsk->signal->notify_count < 0))
  566. wake_up_process(tsk->signal->group_exit_task);
  567. write_unlock_irq(&tasklist_lock);
  568. list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
  569. list_del_init(&p->ptrace_entry);
  570. release_task(p);
  571. }
  572. }
  573. #ifdef CONFIG_DEBUG_STACK_USAGE
  574. static void check_stack_usage(void)
  575. {
  576. static DEFINE_SPINLOCK(low_water_lock);
  577. static int lowest_to_date = THREAD_SIZE;
  578. unsigned long free;
  579. free = stack_not_used(current);
  580. if (free >= lowest_to_date)
  581. return;
  582. spin_lock(&low_water_lock);
  583. if (free < lowest_to_date) {
  584. pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
  585. current->comm, task_pid_nr(current), free);
  586. lowest_to_date = free;
  587. }
  588. spin_unlock(&low_water_lock);
  589. }
  590. #else
  591. static inline void check_stack_usage(void) {}
  592. #endif
  593. void do_exit(long code)
  594. {
  595. struct task_struct *tsk = current;
  596. int group_dead;
  597. TASKS_RCU(int tasks_rcu_i);
  598. profile_task_exit(tsk);
  599. WARN_ON(blk_needs_flush_plug(tsk));
  600. if (unlikely(in_interrupt()))
  601. panic("Aiee, killing interrupt handler!");
  602. if (unlikely(!tsk->pid))
  603. panic("Attempted to kill the idle task!");
  604. /*
  605. * If do_exit is called because this processes oopsed, it's possible
  606. * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
  607. * continuing. Amongst other possible reasons, this is to prevent
  608. * mm_release()->clear_child_tid() from writing to a user-controlled
  609. * kernel address.
  610. */
  611. set_fs(USER_DS);
  612. ptrace_event(PTRACE_EVENT_EXIT, code);
  613. validate_creds_for_do_exit(tsk);
  614. /*
  615. * We're taking recursive faults here in do_exit. Safest is to just
  616. * leave this task alone and wait for reboot.
  617. */
  618. if (unlikely(tsk->flags & PF_EXITING)) {
  619. pr_alert("Fixing recursive fault but reboot is needed!\n");
  620. /*
  621. * We can do this unlocked here. The futex code uses
  622. * this flag just to verify whether the pi state
  623. * cleanup has been done or not. In the worst case it
  624. * loops once more. We pretend that the cleanup was
  625. * done as there is no way to return. Either the
  626. * OWNER_DIED bit is set by now or we push the blocked
  627. * task into the wait for ever nirwana as well.
  628. */
  629. tsk->flags |= PF_EXITPIDONE;
  630. set_current_state(TASK_UNINTERRUPTIBLE);
  631. schedule();
  632. }
  633. exit_signals(tsk); /* sets PF_EXITING */
  634. /*
  635. * tsk->flags are checked in the futex code to protect against
  636. * an exiting task cleaning up the robust pi futexes.
  637. */
  638. smp_mb();
  639. raw_spin_unlock_wait(&tsk->pi_lock);
  640. if (unlikely(in_atomic()))
  641. pr_info("note: %s[%d] exited with preempt_count %d\n",
  642. current->comm, task_pid_nr(current),
  643. preempt_count());
  644. acct_update_integrals(tsk);
  645. /* sync mm's RSS info before statistics gathering */
  646. if (tsk->mm)
  647. sync_mm_rss(tsk->mm);
  648. group_dead = atomic_dec_and_test(&tsk->signal->live);
  649. if (group_dead) {
  650. hrtimer_cancel(&tsk->signal->real_timer);
  651. exit_itimers(tsk->signal);
  652. if (tsk->mm)
  653. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  654. }
  655. acct_collect(code, group_dead);
  656. if (group_dead)
  657. tty_audit_exit();
  658. audit_free(tsk);
  659. tsk->exit_code = code;
  660. taskstats_exit(tsk, group_dead);
  661. exit_mm(tsk);
  662. if (group_dead)
  663. acct_process();
  664. trace_sched_process_exit(tsk);
  665. exit_sem(tsk);
  666. exit_shm(tsk);
  667. exit_files(tsk);
  668. exit_fs(tsk);
  669. if (group_dead)
  670. disassociate_ctty(1);
  671. exit_task_namespaces(tsk);
  672. exit_task_work(tsk);
  673. exit_thread();
  674. /*
  675. * Flush inherited counters to the parent - before the parent
  676. * gets woken up by child-exit notifications.
  677. *
  678. * because of cgroup mode, must be called before cgroup_exit()
  679. */
  680. perf_event_exit_task(tsk);
  681. cgroup_exit(tsk);
  682. module_put(task_thread_info(tsk)->exec_domain->module);
  683. /*
  684. * FIXME: do that only when needed, using sched_exit tracepoint
  685. */
  686. flush_ptrace_hw_breakpoint(tsk);
  687. TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
  688. exit_notify(tsk, group_dead);
  689. proc_exit_connector(tsk);
  690. #ifdef CONFIG_NUMA
  691. task_lock(tsk);
  692. mpol_put(tsk->mempolicy);
  693. tsk->mempolicy = NULL;
  694. task_unlock(tsk);
  695. #endif
  696. #ifdef CONFIG_FUTEX
  697. if (unlikely(current->pi_state_cache))
  698. kfree(current->pi_state_cache);
  699. #endif
  700. /*
  701. * Make sure we are holding no locks:
  702. */
  703. debug_check_no_locks_held();
  704. /*
  705. * We can do this unlocked here. The futex code uses this flag
  706. * just to verify whether the pi state cleanup has been done
  707. * or not. In the worst case it loops once more.
  708. */
  709. tsk->flags |= PF_EXITPIDONE;
  710. if (tsk->io_context)
  711. exit_io_context(tsk);
  712. if (tsk->splice_pipe)
  713. free_pipe_info(tsk->splice_pipe);
  714. if (tsk->task_frag.page)
  715. put_page(tsk->task_frag.page);
  716. validate_creds_for_do_exit(tsk);
  717. check_stack_usage();
  718. preempt_disable();
  719. if (tsk->nr_dirtied)
  720. __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
  721. exit_rcu();
  722. TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
  723. /*
  724. * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
  725. * when the following two conditions become true.
  726. * - There is race condition of mmap_sem (It is acquired by
  727. * exit_mm()), and
  728. * - SMI occurs before setting TASK_RUNINNG.
  729. * (or hypervisor of virtual machine switches to other guest)
  730. * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
  731. *
  732. * To avoid it, we have to wait for releasing tsk->pi_lock which
  733. * is held by try_to_wake_up()
  734. */
  735. smp_mb();
  736. raw_spin_unlock_wait(&tsk->pi_lock);
  737. /* causes final put_task_struct in finish_task_switch(). */
  738. tsk->state = TASK_DEAD;
  739. tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
  740. schedule();
  741. BUG();
  742. /* Avoid "noreturn function does return". */
  743. for (;;)
  744. cpu_relax(); /* For when BUG is null */
  745. }
  746. EXPORT_SYMBOL_GPL(do_exit);
  747. void complete_and_exit(struct completion *comp, long code)
  748. {
  749. if (comp)
  750. complete(comp);
  751. do_exit(code);
  752. }
  753. EXPORT_SYMBOL(complete_and_exit);
  754. SYSCALL_DEFINE1(exit, int, error_code)
  755. {
  756. do_exit((error_code&0xff)<<8);
  757. }
  758. /*
  759. * Take down every thread in the group. This is called by fatal signals
  760. * as well as by sys_exit_group (below).
  761. */
  762. void
  763. do_group_exit(int exit_code)
  764. {
  765. struct signal_struct *sig = current->signal;
  766. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  767. if (signal_group_exit(sig))
  768. exit_code = sig->group_exit_code;
  769. else if (!thread_group_empty(current)) {
  770. struct sighand_struct *const sighand = current->sighand;
  771. spin_lock_irq(&sighand->siglock);
  772. if (signal_group_exit(sig))
  773. /* Another thread got here before we took the lock. */
  774. exit_code = sig->group_exit_code;
  775. else {
  776. sig->group_exit_code = exit_code;
  777. sig->flags = SIGNAL_GROUP_EXIT;
  778. zap_other_threads(current);
  779. }
  780. spin_unlock_irq(&sighand->siglock);
  781. }
  782. do_exit(exit_code);
  783. /* NOTREACHED */
  784. }
  785. /*
  786. * this kills every thread in the thread group. Note that any externally
  787. * wait4()-ing process will get the correct exit code - even if this
  788. * thread is not the thread group leader.
  789. */
  790. SYSCALL_DEFINE1(exit_group, int, error_code)
  791. {
  792. do_group_exit((error_code & 0xff) << 8);
  793. /* NOTREACHED */
  794. return 0;
  795. }
  796. struct wait_opts {
  797. enum pid_type wo_type;
  798. int wo_flags;
  799. struct pid *wo_pid;
  800. struct siginfo __user *wo_info;
  801. int __user *wo_stat;
  802. struct rusage __user *wo_rusage;
  803. wait_queue_t child_wait;
  804. int notask_error;
  805. };
  806. static inline
  807. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  808. {
  809. if (type != PIDTYPE_PID)
  810. task = task->group_leader;
  811. return task->pids[type].pid;
  812. }
  813. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  814. {
  815. return wo->wo_type == PIDTYPE_MAX ||
  816. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  817. }
  818. static int eligible_child(struct wait_opts *wo, struct task_struct *p)
  819. {
  820. if (!eligible_pid(wo, p))
  821. return 0;
  822. /* Wait for all children (clone and not) if __WALL is set;
  823. * otherwise, wait for clone children *only* if __WCLONE is
  824. * set; otherwise, wait for non-clone children *only*. (Note:
  825. * A "clone" child here is one that reports to its parent
  826. * using a signal other than SIGCHLD.) */
  827. if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  828. && !(wo->wo_flags & __WALL))
  829. return 0;
  830. return 1;
  831. }
  832. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  833. pid_t pid, uid_t uid, int why, int status)
  834. {
  835. struct siginfo __user *infop;
  836. int retval = wo->wo_rusage
  837. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  838. put_task_struct(p);
  839. infop = wo->wo_info;
  840. if (infop) {
  841. if (!retval)
  842. retval = put_user(SIGCHLD, &infop->si_signo);
  843. if (!retval)
  844. retval = put_user(0, &infop->si_errno);
  845. if (!retval)
  846. retval = put_user((short)why, &infop->si_code);
  847. if (!retval)
  848. retval = put_user(pid, &infop->si_pid);
  849. if (!retval)
  850. retval = put_user(uid, &infop->si_uid);
  851. if (!retval)
  852. retval = put_user(status, &infop->si_status);
  853. }
  854. if (!retval)
  855. retval = pid;
  856. return retval;
  857. }
  858. /*
  859. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  860. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  861. * the lock and this task is uninteresting. If we return nonzero, we have
  862. * released the lock and the system call should return.
  863. */
  864. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  865. {
  866. int state, retval, status;
  867. pid_t pid = task_pid_vnr(p);
  868. uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
  869. struct siginfo __user *infop;
  870. if (!likely(wo->wo_flags & WEXITED))
  871. return 0;
  872. if (unlikely(wo->wo_flags & WNOWAIT)) {
  873. int exit_code = p->exit_code;
  874. int why;
  875. get_task_struct(p);
  876. read_unlock(&tasklist_lock);
  877. sched_annotate_sleep();
  878. if ((exit_code & 0x7f) == 0) {
  879. why = CLD_EXITED;
  880. status = exit_code >> 8;
  881. } else {
  882. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  883. status = exit_code & 0x7f;
  884. }
  885. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  886. }
  887. /*
  888. * Move the task's state to DEAD/TRACE, only one thread can do this.
  889. */
  890. state = (ptrace_reparented(p) && thread_group_leader(p)) ?
  891. EXIT_TRACE : EXIT_DEAD;
  892. if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
  893. return 0;
  894. /*
  895. * We own this thread, nobody else can reap it.
  896. */
  897. read_unlock(&tasklist_lock);
  898. sched_annotate_sleep();
  899. /*
  900. * Check thread_group_leader() to exclude the traced sub-threads.
  901. */
  902. if (state == EXIT_DEAD && thread_group_leader(p)) {
  903. struct signal_struct *sig = p->signal;
  904. struct signal_struct *psig = current->signal;
  905. unsigned long maxrss;
  906. cputime_t tgutime, tgstime;
  907. /*
  908. * The resource counters for the group leader are in its
  909. * own task_struct. Those for dead threads in the group
  910. * are in its signal_struct, as are those for the child
  911. * processes it has previously reaped. All these
  912. * accumulate in the parent's signal_struct c* fields.
  913. *
  914. * We don't bother to take a lock here to protect these
  915. * p->signal fields because the whole thread group is dead
  916. * and nobody can change them.
  917. *
  918. * psig->stats_lock also protects us from our sub-theads
  919. * which can reap other children at the same time. Until
  920. * we change k_getrusage()-like users to rely on this lock
  921. * we have to take ->siglock as well.
  922. *
  923. * We use thread_group_cputime_adjusted() to get times for
  924. * the thread group, which consolidates times for all threads
  925. * in the group including the group leader.
  926. */
  927. thread_group_cputime_adjusted(p, &tgutime, &tgstime);
  928. spin_lock_irq(&current->sighand->siglock);
  929. write_seqlock(&psig->stats_lock);
  930. psig->cutime += tgutime + sig->cutime;
  931. psig->cstime += tgstime + sig->cstime;
  932. psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
  933. psig->cmin_flt +=
  934. p->min_flt + sig->min_flt + sig->cmin_flt;
  935. psig->cmaj_flt +=
  936. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  937. psig->cnvcsw +=
  938. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  939. psig->cnivcsw +=
  940. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  941. psig->cinblock +=
  942. task_io_get_inblock(p) +
  943. sig->inblock + sig->cinblock;
  944. psig->coublock +=
  945. task_io_get_oublock(p) +
  946. sig->oublock + sig->coublock;
  947. maxrss = max(sig->maxrss, sig->cmaxrss);
  948. if (psig->cmaxrss < maxrss)
  949. psig->cmaxrss = maxrss;
  950. task_io_accounting_add(&psig->ioac, &p->ioac);
  951. task_io_accounting_add(&psig->ioac, &sig->ioac);
  952. write_sequnlock(&psig->stats_lock);
  953. spin_unlock_irq(&current->sighand->siglock);
  954. }
  955. retval = wo->wo_rusage
  956. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  957. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  958. ? p->signal->group_exit_code : p->exit_code;
  959. if (!retval && wo->wo_stat)
  960. retval = put_user(status, wo->wo_stat);
  961. infop = wo->wo_info;
  962. if (!retval && infop)
  963. retval = put_user(SIGCHLD, &infop->si_signo);
  964. if (!retval && infop)
  965. retval = put_user(0, &infop->si_errno);
  966. if (!retval && infop) {
  967. int why;
  968. if ((status & 0x7f) == 0) {
  969. why = CLD_EXITED;
  970. status >>= 8;
  971. } else {
  972. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  973. status &= 0x7f;
  974. }
  975. retval = put_user((short)why, &infop->si_code);
  976. if (!retval)
  977. retval = put_user(status, &infop->si_status);
  978. }
  979. if (!retval && infop)
  980. retval = put_user(pid, &infop->si_pid);
  981. if (!retval && infop)
  982. retval = put_user(uid, &infop->si_uid);
  983. if (!retval)
  984. retval = pid;
  985. if (state == EXIT_TRACE) {
  986. write_lock_irq(&tasklist_lock);
  987. /* We dropped tasklist, ptracer could die and untrace */
  988. ptrace_unlink(p);
  989. /* If parent wants a zombie, don't release it now */
  990. state = EXIT_ZOMBIE;
  991. if (do_notify_parent(p, p->exit_signal))
  992. state = EXIT_DEAD;
  993. p->exit_state = state;
  994. write_unlock_irq(&tasklist_lock);
  995. }
  996. if (state == EXIT_DEAD)
  997. release_task(p);
  998. return retval;
  999. }
  1000. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1001. {
  1002. if (ptrace) {
  1003. if (task_is_stopped_or_traced(p) &&
  1004. !(p->jobctl & JOBCTL_LISTENING))
  1005. return &p->exit_code;
  1006. } else {
  1007. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1008. return &p->signal->group_exit_code;
  1009. }
  1010. return NULL;
  1011. }
  1012. /**
  1013. * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
  1014. * @wo: wait options
  1015. * @ptrace: is the wait for ptrace
  1016. * @p: task to wait for
  1017. *
  1018. * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
  1019. *
  1020. * CONTEXT:
  1021. * read_lock(&tasklist_lock), which is released if return value is
  1022. * non-zero. Also, grabs and releases @p->sighand->siglock.
  1023. *
  1024. * RETURNS:
  1025. * 0 if wait condition didn't exist and search for other wait conditions
  1026. * should continue. Non-zero return, -errno on failure and @p's pid on
  1027. * success, implies that tasklist_lock is released and wait condition
  1028. * search should terminate.
  1029. */
  1030. static int wait_task_stopped(struct wait_opts *wo,
  1031. int ptrace, struct task_struct *p)
  1032. {
  1033. struct siginfo __user *infop;
  1034. int retval, exit_code, *p_code, why;
  1035. uid_t uid = 0; /* unneeded, required by compiler */
  1036. pid_t pid;
  1037. /*
  1038. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1039. */
  1040. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1041. return 0;
  1042. if (!task_stopped_code(p, ptrace))
  1043. return 0;
  1044. exit_code = 0;
  1045. spin_lock_irq(&p->sighand->siglock);
  1046. p_code = task_stopped_code(p, ptrace);
  1047. if (unlikely(!p_code))
  1048. goto unlock_sig;
  1049. exit_code = *p_code;
  1050. if (!exit_code)
  1051. goto unlock_sig;
  1052. if (!unlikely(wo->wo_flags & WNOWAIT))
  1053. *p_code = 0;
  1054. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1055. unlock_sig:
  1056. spin_unlock_irq(&p->sighand->siglock);
  1057. if (!exit_code)
  1058. return 0;
  1059. /*
  1060. * Now we are pretty sure this task is interesting.
  1061. * Make sure it doesn't get reaped out from under us while we
  1062. * give up the lock and then examine it below. We don't want to
  1063. * keep holding onto the tasklist_lock while we call getrusage and
  1064. * possibly take page faults for user memory.
  1065. */
  1066. get_task_struct(p);
  1067. pid = task_pid_vnr(p);
  1068. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1069. read_unlock(&tasklist_lock);
  1070. sched_annotate_sleep();
  1071. if (unlikely(wo->wo_flags & WNOWAIT))
  1072. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1073. retval = wo->wo_rusage
  1074. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1075. if (!retval && wo->wo_stat)
  1076. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1077. infop = wo->wo_info;
  1078. if (!retval && infop)
  1079. retval = put_user(SIGCHLD, &infop->si_signo);
  1080. if (!retval && infop)
  1081. retval = put_user(0, &infop->si_errno);
  1082. if (!retval && infop)
  1083. retval = put_user((short)why, &infop->si_code);
  1084. if (!retval && infop)
  1085. retval = put_user(exit_code, &infop->si_status);
  1086. if (!retval && infop)
  1087. retval = put_user(pid, &infop->si_pid);
  1088. if (!retval && infop)
  1089. retval = put_user(uid, &infop->si_uid);
  1090. if (!retval)
  1091. retval = pid;
  1092. put_task_struct(p);
  1093. BUG_ON(!retval);
  1094. return retval;
  1095. }
  1096. /*
  1097. * Handle do_wait work for one task in a live, non-stopped state.
  1098. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1099. * the lock and this task is uninteresting. If we return nonzero, we have
  1100. * released the lock and the system call should return.
  1101. */
  1102. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1103. {
  1104. int retval;
  1105. pid_t pid;
  1106. uid_t uid;
  1107. if (!unlikely(wo->wo_flags & WCONTINUED))
  1108. return 0;
  1109. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1110. return 0;
  1111. spin_lock_irq(&p->sighand->siglock);
  1112. /* Re-check with the lock held. */
  1113. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1114. spin_unlock_irq(&p->sighand->siglock);
  1115. return 0;
  1116. }
  1117. if (!unlikely(wo->wo_flags & WNOWAIT))
  1118. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1119. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1120. spin_unlock_irq(&p->sighand->siglock);
  1121. pid = task_pid_vnr(p);
  1122. get_task_struct(p);
  1123. read_unlock(&tasklist_lock);
  1124. sched_annotate_sleep();
  1125. if (!wo->wo_info) {
  1126. retval = wo->wo_rusage
  1127. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1128. put_task_struct(p);
  1129. if (!retval && wo->wo_stat)
  1130. retval = put_user(0xffff, wo->wo_stat);
  1131. if (!retval)
  1132. retval = pid;
  1133. } else {
  1134. retval = wait_noreap_copyout(wo, p, pid, uid,
  1135. CLD_CONTINUED, SIGCONT);
  1136. BUG_ON(retval == 0);
  1137. }
  1138. return retval;
  1139. }
  1140. /*
  1141. * Consider @p for a wait by @parent.
  1142. *
  1143. * -ECHILD should be in ->notask_error before the first call.
  1144. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1145. * Returns zero if the search for a child should continue;
  1146. * then ->notask_error is 0 if @p is an eligible child,
  1147. * or another error from security_task_wait(), or still -ECHILD.
  1148. */
  1149. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1150. struct task_struct *p)
  1151. {
  1152. int ret;
  1153. if (unlikely(p->exit_state == EXIT_DEAD))
  1154. return 0;
  1155. ret = eligible_child(wo, p);
  1156. if (!ret)
  1157. return ret;
  1158. ret = security_task_wait(p);
  1159. if (unlikely(ret < 0)) {
  1160. /*
  1161. * If we have not yet seen any eligible child,
  1162. * then let this error code replace -ECHILD.
  1163. * A permission error will give the user a clue
  1164. * to look for security policy problems, rather
  1165. * than for mysterious wait bugs.
  1166. */
  1167. if (wo->notask_error)
  1168. wo->notask_error = ret;
  1169. return 0;
  1170. }
  1171. if (unlikely(p->exit_state == EXIT_TRACE)) {
  1172. /*
  1173. * ptrace == 0 means we are the natural parent. In this case
  1174. * we should clear notask_error, debugger will notify us.
  1175. */
  1176. if (likely(!ptrace))
  1177. wo->notask_error = 0;
  1178. return 0;
  1179. }
  1180. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1181. /*
  1182. * If it is traced by its real parent's group, just pretend
  1183. * the caller is ptrace_do_wait() and reap this child if it
  1184. * is zombie.
  1185. *
  1186. * This also hides group stop state from real parent; otherwise
  1187. * a single stop can be reported twice as group and ptrace stop.
  1188. * If a ptracer wants to distinguish these two events for its
  1189. * own children it should create a separate process which takes
  1190. * the role of real parent.
  1191. */
  1192. if (!ptrace_reparented(p))
  1193. ptrace = 1;
  1194. }
  1195. /* slay zombie? */
  1196. if (p->exit_state == EXIT_ZOMBIE) {
  1197. /* we don't reap group leaders with subthreads */
  1198. if (!delay_group_leader(p)) {
  1199. /*
  1200. * A zombie ptracee is only visible to its ptracer.
  1201. * Notification and reaping will be cascaded to the
  1202. * real parent when the ptracer detaches.
  1203. */
  1204. if (unlikely(ptrace) || likely(!p->ptrace))
  1205. return wait_task_zombie(wo, p);
  1206. }
  1207. /*
  1208. * Allow access to stopped/continued state via zombie by
  1209. * falling through. Clearing of notask_error is complex.
  1210. *
  1211. * When !@ptrace:
  1212. *
  1213. * If WEXITED is set, notask_error should naturally be
  1214. * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
  1215. * so, if there are live subthreads, there are events to
  1216. * wait for. If all subthreads are dead, it's still safe
  1217. * to clear - this function will be called again in finite
  1218. * amount time once all the subthreads are released and
  1219. * will then return without clearing.
  1220. *
  1221. * When @ptrace:
  1222. *
  1223. * Stopped state is per-task and thus can't change once the
  1224. * target task dies. Only continued and exited can happen.
  1225. * Clear notask_error if WCONTINUED | WEXITED.
  1226. */
  1227. if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
  1228. wo->notask_error = 0;
  1229. } else {
  1230. /*
  1231. * @p is alive and it's gonna stop, continue or exit, so
  1232. * there always is something to wait for.
  1233. */
  1234. wo->notask_error = 0;
  1235. }
  1236. /*
  1237. * Wait for stopped. Depending on @ptrace, different stopped state
  1238. * is used and the two don't interact with each other.
  1239. */
  1240. ret = wait_task_stopped(wo, ptrace, p);
  1241. if (ret)
  1242. return ret;
  1243. /*
  1244. * Wait for continued. There's only one continued state and the
  1245. * ptracer can consume it which can confuse the real parent. Don't
  1246. * use WCONTINUED from ptracer. You don't need or want it.
  1247. */
  1248. return wait_task_continued(wo, p);
  1249. }
  1250. /*
  1251. * Do the work of do_wait() for one thread in the group, @tsk.
  1252. *
  1253. * -ECHILD should be in ->notask_error before the first call.
  1254. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1255. * Returns zero if the search for a child should continue; then
  1256. * ->notask_error is 0 if there were any eligible children,
  1257. * or another error from security_task_wait(), or still -ECHILD.
  1258. */
  1259. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1260. {
  1261. struct task_struct *p;
  1262. list_for_each_entry(p, &tsk->children, sibling) {
  1263. int ret = wait_consider_task(wo, 0, p);
  1264. if (ret)
  1265. return ret;
  1266. }
  1267. return 0;
  1268. }
  1269. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1270. {
  1271. struct task_struct *p;
  1272. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1273. int ret = wait_consider_task(wo, 1, p);
  1274. if (ret)
  1275. return ret;
  1276. }
  1277. return 0;
  1278. }
  1279. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1280. int sync, void *key)
  1281. {
  1282. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1283. child_wait);
  1284. struct task_struct *p = key;
  1285. if (!eligible_pid(wo, p))
  1286. return 0;
  1287. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1288. return 0;
  1289. return default_wake_function(wait, mode, sync, key);
  1290. }
  1291. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1292. {
  1293. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1294. TASK_INTERRUPTIBLE, 1, p);
  1295. }
  1296. static long do_wait(struct wait_opts *wo)
  1297. {
  1298. struct task_struct *tsk;
  1299. int retval;
  1300. trace_sched_process_wait(wo->wo_pid);
  1301. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1302. wo->child_wait.private = current;
  1303. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1304. repeat:
  1305. /*
  1306. * If there is nothing that can match our critiera just get out.
  1307. * We will clear ->notask_error to zero if we see any child that
  1308. * might later match our criteria, even if we are not able to reap
  1309. * it yet.
  1310. */
  1311. wo->notask_error = -ECHILD;
  1312. if ((wo->wo_type < PIDTYPE_MAX) &&
  1313. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1314. goto notask;
  1315. set_current_state(TASK_INTERRUPTIBLE);
  1316. read_lock(&tasklist_lock);
  1317. tsk = current;
  1318. do {
  1319. retval = do_wait_thread(wo, tsk);
  1320. if (retval)
  1321. goto end;
  1322. retval = ptrace_do_wait(wo, tsk);
  1323. if (retval)
  1324. goto end;
  1325. if (wo->wo_flags & __WNOTHREAD)
  1326. break;
  1327. } while_each_thread(current, tsk);
  1328. read_unlock(&tasklist_lock);
  1329. notask:
  1330. retval = wo->notask_error;
  1331. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1332. retval = -ERESTARTSYS;
  1333. if (!signal_pending(current)) {
  1334. schedule();
  1335. goto repeat;
  1336. }
  1337. }
  1338. end:
  1339. __set_current_state(TASK_RUNNING);
  1340. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1341. return retval;
  1342. }
  1343. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1344. infop, int, options, struct rusage __user *, ru)
  1345. {
  1346. struct wait_opts wo;
  1347. struct pid *pid = NULL;
  1348. enum pid_type type;
  1349. long ret;
  1350. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1351. return -EINVAL;
  1352. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1353. return -EINVAL;
  1354. switch (which) {
  1355. case P_ALL:
  1356. type = PIDTYPE_MAX;
  1357. break;
  1358. case P_PID:
  1359. type = PIDTYPE_PID;
  1360. if (upid <= 0)
  1361. return -EINVAL;
  1362. break;
  1363. case P_PGID:
  1364. type = PIDTYPE_PGID;
  1365. if (upid <= 0)
  1366. return -EINVAL;
  1367. break;
  1368. default:
  1369. return -EINVAL;
  1370. }
  1371. if (type < PIDTYPE_MAX)
  1372. pid = find_get_pid(upid);
  1373. wo.wo_type = type;
  1374. wo.wo_pid = pid;
  1375. wo.wo_flags = options;
  1376. wo.wo_info = infop;
  1377. wo.wo_stat = NULL;
  1378. wo.wo_rusage = ru;
  1379. ret = do_wait(&wo);
  1380. if (ret > 0) {
  1381. ret = 0;
  1382. } else if (infop) {
  1383. /*
  1384. * For a WNOHANG return, clear out all the fields
  1385. * we would set so the user can easily tell the
  1386. * difference.
  1387. */
  1388. if (!ret)
  1389. ret = put_user(0, &infop->si_signo);
  1390. if (!ret)
  1391. ret = put_user(0, &infop->si_errno);
  1392. if (!ret)
  1393. ret = put_user(0, &infop->si_code);
  1394. if (!ret)
  1395. ret = put_user(0, &infop->si_pid);
  1396. if (!ret)
  1397. ret = put_user(0, &infop->si_uid);
  1398. if (!ret)
  1399. ret = put_user(0, &infop->si_status);
  1400. }
  1401. put_pid(pid);
  1402. return ret;
  1403. }
  1404. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1405. int, options, struct rusage __user *, ru)
  1406. {
  1407. struct wait_opts wo;
  1408. struct pid *pid = NULL;
  1409. enum pid_type type;
  1410. long ret;
  1411. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1412. __WNOTHREAD|__WCLONE|__WALL))
  1413. return -EINVAL;
  1414. if (upid == -1)
  1415. type = PIDTYPE_MAX;
  1416. else if (upid < 0) {
  1417. type = PIDTYPE_PGID;
  1418. pid = find_get_pid(-upid);
  1419. } else if (upid == 0) {
  1420. type = PIDTYPE_PGID;
  1421. pid = get_task_pid(current, PIDTYPE_PGID);
  1422. } else /* upid > 0 */ {
  1423. type = PIDTYPE_PID;
  1424. pid = find_get_pid(upid);
  1425. }
  1426. wo.wo_type = type;
  1427. wo.wo_pid = pid;
  1428. wo.wo_flags = options | WEXITED;
  1429. wo.wo_info = NULL;
  1430. wo.wo_stat = stat_addr;
  1431. wo.wo_rusage = ru;
  1432. ret = do_wait(&wo);
  1433. put_pid(pid);
  1434. return ret;
  1435. }
  1436. #ifdef __ARCH_WANT_SYS_WAITPID
  1437. /*
  1438. * sys_waitpid() remains for compatibility. waitpid() should be
  1439. * implemented by calling sys_wait4() from libc.a.
  1440. */
  1441. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1442. {
  1443. return sys_wait4(pid, stat_addr, options, NULL);
  1444. }
  1445. #endif