intel.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771
  1. #include <linux/kernel.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/smp.h>
  5. #include <linux/sched.h>
  6. #include <linux/thread_info.h>
  7. #include <linux/module.h>
  8. #include <linux/uaccess.h>
  9. #include <asm/processor.h>
  10. #include <asm/pgtable.h>
  11. #include <asm/msr.h>
  12. #include <asm/bugs.h>
  13. #include <asm/cpu.h>
  14. #ifdef CONFIG_X86_64
  15. #include <linux/topology.h>
  16. #endif
  17. #include "cpu.h"
  18. #ifdef CONFIG_X86_LOCAL_APIC
  19. #include <asm/mpspec.h>
  20. #include <asm/apic.h>
  21. #endif
  22. static void early_init_intel(struct cpuinfo_x86 *c)
  23. {
  24. u64 misc_enable;
  25. /* Unmask CPUID levels if masked: */
  26. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  27. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  28. MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
  29. c->cpuid_level = cpuid_eax(0);
  30. get_cpu_cap(c);
  31. }
  32. }
  33. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  34. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  35. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  36. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
  37. unsigned lower_word;
  38. wrmsr(MSR_IA32_UCODE_REV, 0, 0);
  39. /* Required by the SDM */
  40. sync_core();
  41. rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
  42. }
  43. /*
  44. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  45. *
  46. * A race condition between speculative fetches and invalidating
  47. * a large page. This is worked around in microcode, but we
  48. * need the microcode to have already been loaded... so if it is
  49. * not, recommend a BIOS update and disable large pages.
  50. */
  51. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
  52. c->microcode < 0x20e) {
  53. printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
  54. clear_cpu_cap(c, X86_FEATURE_PSE);
  55. }
  56. #ifdef CONFIG_X86_64
  57. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  58. #else
  59. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  60. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  61. c->x86_cache_alignment = 128;
  62. #endif
  63. /* CPUID workaround for 0F33/0F34 CPU */
  64. if (c->x86 == 0xF && c->x86_model == 0x3
  65. && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
  66. c->x86_phys_bits = 36;
  67. /*
  68. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  69. * with P/T states and does not stop in deep C-states.
  70. *
  71. * It is also reliable across cores and sockets. (but not across
  72. * cabinets - we turn it off in that case explicitly.)
  73. */
  74. if (c->x86_power & (1 << 8)) {
  75. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  76. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  77. if (!check_tsc_unstable())
  78. set_sched_clock_stable();
  79. }
  80. /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
  81. if (c->x86 == 6) {
  82. switch (c->x86_model) {
  83. case 0x27: /* Penwell */
  84. case 0x35: /* Cloverview */
  85. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
  86. break;
  87. default:
  88. break;
  89. }
  90. }
  91. /*
  92. * There is a known erratum on Pentium III and Core Solo
  93. * and Core Duo CPUs.
  94. * " Page with PAT set to WC while associated MTRR is UC
  95. * may consolidate to UC "
  96. * Because of this erratum, it is better to stick with
  97. * setting WC in MTRR rather than using PAT on these CPUs.
  98. *
  99. * Enable PAT WC only on P4, Core 2 or later CPUs.
  100. */
  101. if (c->x86 == 6 && c->x86_model < 15)
  102. clear_cpu_cap(c, X86_FEATURE_PAT);
  103. #ifdef CONFIG_KMEMCHECK
  104. /*
  105. * P4s have a "fast strings" feature which causes single-
  106. * stepping REP instructions to only generate a #DB on
  107. * cache-line boundaries.
  108. *
  109. * Ingo Molnar reported a Pentium D (model 6) and a Xeon
  110. * (model 2) with the same problem.
  111. */
  112. if (c->x86 == 15)
  113. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  114. MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
  115. pr_info("kmemcheck: Disabling fast string operations\n");
  116. #endif
  117. /*
  118. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  119. * clear the fast string and enhanced fast string CPU capabilities.
  120. */
  121. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  122. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  123. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  124. printk(KERN_INFO "Disabled fast string operations\n");
  125. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  126. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  127. }
  128. }
  129. /*
  130. * Intel Quark Core DevMan_001.pdf section 6.4.11
  131. * "The operating system also is required to invalidate (i.e., flush)
  132. * the TLB when any changes are made to any of the page table entries.
  133. * The operating system must reload CR3 to cause the TLB to be flushed"
  134. *
  135. * As a result cpu_has_pge() in arch/x86/include/asm/tlbflush.h should
  136. * be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
  137. * to be modified
  138. */
  139. if (c->x86 == 5 && c->x86_model == 9) {
  140. pr_info("Disabling PGE capability bit\n");
  141. setup_clear_cpu_cap(X86_FEATURE_PGE);
  142. }
  143. }
  144. #ifdef CONFIG_X86_32
  145. /*
  146. * Early probe support logic for ppro memory erratum #50
  147. *
  148. * This is called before we do cpu ident work
  149. */
  150. int ppro_with_ram_bug(void)
  151. {
  152. /* Uses data from early_cpu_detect now */
  153. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  154. boot_cpu_data.x86 == 6 &&
  155. boot_cpu_data.x86_model == 1 &&
  156. boot_cpu_data.x86_mask < 8) {
  157. printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  158. return 1;
  159. }
  160. return 0;
  161. }
  162. static void intel_smp_check(struct cpuinfo_x86 *c)
  163. {
  164. /* calling is from identify_secondary_cpu() ? */
  165. if (!c->cpu_index)
  166. return;
  167. /*
  168. * Mask B, Pentium, but not Pentium MMX
  169. */
  170. if (c->x86 == 5 &&
  171. c->x86_mask >= 1 && c->x86_mask <= 4 &&
  172. c->x86_model <= 3) {
  173. /*
  174. * Remember we have B step Pentia with bugs
  175. */
  176. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  177. "with B stepping processors.\n");
  178. }
  179. }
  180. static int forcepae;
  181. static int __init forcepae_setup(char *__unused)
  182. {
  183. forcepae = 1;
  184. return 1;
  185. }
  186. __setup("forcepae", forcepae_setup);
  187. static void intel_workarounds(struct cpuinfo_x86 *c)
  188. {
  189. #ifdef CONFIG_X86_F00F_BUG
  190. /*
  191. * All models of Pentium and Pentium with MMX technology CPUs
  192. * have the F0 0F bug, which lets nonprivileged users lock up the
  193. * system. Announce that the fault handler will be checking for it.
  194. * The Quark is also family 5, but does not have the same bug.
  195. */
  196. clear_cpu_bug(c, X86_BUG_F00F);
  197. if (!paravirt_enabled() && c->x86 == 5 && c->x86_model < 9) {
  198. static int f00f_workaround_enabled;
  199. set_cpu_bug(c, X86_BUG_F00F);
  200. if (!f00f_workaround_enabled) {
  201. printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
  202. f00f_workaround_enabled = 1;
  203. }
  204. }
  205. #endif
  206. /*
  207. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  208. * model 3 mask 3
  209. */
  210. if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
  211. clear_cpu_cap(c, X86_FEATURE_SEP);
  212. /*
  213. * PAE CPUID issue: many Pentium M report no PAE but may have a
  214. * functionally usable PAE implementation.
  215. * Forcefully enable PAE if kernel parameter "forcepae" is present.
  216. */
  217. if (forcepae) {
  218. printk(KERN_WARNING "PAE forced!\n");
  219. set_cpu_cap(c, X86_FEATURE_PAE);
  220. add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
  221. }
  222. /*
  223. * P4 Xeon errata 037 workaround.
  224. * Hardware prefetcher may cause stale data to be loaded into the cache.
  225. */
  226. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
  227. if (msr_set_bit(MSR_IA32_MISC_ENABLE,
  228. MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
  229. > 0) {
  230. pr_info("CPU: C0 stepping P4 Xeon detected.\n");
  231. pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
  232. }
  233. }
  234. /*
  235. * See if we have a good local APIC by checking for buggy Pentia,
  236. * i.e. all B steppings and the C2 stepping of P54C when using their
  237. * integrated APIC (see 11AP erratum in "Pentium Processor
  238. * Specification Update").
  239. */
  240. if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  241. (c->x86_mask < 0x6 || c->x86_mask == 0xb))
  242. set_cpu_bug(c, X86_BUG_11AP);
  243. #ifdef CONFIG_X86_INTEL_USERCOPY
  244. /*
  245. * Set up the preferred alignment for movsl bulk memory moves
  246. */
  247. switch (c->x86) {
  248. case 4: /* 486: untested */
  249. break;
  250. case 5: /* Old Pentia: untested */
  251. break;
  252. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  253. movsl_mask.mask = 7;
  254. break;
  255. case 15: /* P4 is OK down to 8-byte alignment */
  256. movsl_mask.mask = 7;
  257. break;
  258. }
  259. #endif
  260. intel_smp_check(c);
  261. }
  262. #else
  263. static void intel_workarounds(struct cpuinfo_x86 *c)
  264. {
  265. }
  266. #endif
  267. static void srat_detect_node(struct cpuinfo_x86 *c)
  268. {
  269. #ifdef CONFIG_NUMA
  270. unsigned node;
  271. int cpu = smp_processor_id();
  272. /* Don't do the funky fallback heuristics the AMD version employs
  273. for now. */
  274. node = numa_cpu_node(cpu);
  275. if (node == NUMA_NO_NODE || !node_online(node)) {
  276. /* reuse the value from init_cpu_to_node() */
  277. node = cpu_to_node(cpu);
  278. }
  279. numa_set_node(cpu, node);
  280. #endif
  281. }
  282. /*
  283. * find out the number of processor cores on the die
  284. */
  285. static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
  286. {
  287. unsigned int eax, ebx, ecx, edx;
  288. if (c->cpuid_level < 4)
  289. return 1;
  290. /* Intel has a non-standard dependency on %ecx for this CPUID level. */
  291. cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
  292. if (eax & 0x1f)
  293. return (eax >> 26) + 1;
  294. else
  295. return 1;
  296. }
  297. static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
  298. {
  299. /* Intel VMX MSR indicated features */
  300. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  301. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  302. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  303. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  304. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  305. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  306. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  307. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  308. clear_cpu_cap(c, X86_FEATURE_VNMI);
  309. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  310. clear_cpu_cap(c, X86_FEATURE_EPT);
  311. clear_cpu_cap(c, X86_FEATURE_VPID);
  312. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  313. msr_ctl = vmx_msr_high | vmx_msr_low;
  314. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  315. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  316. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  317. set_cpu_cap(c, X86_FEATURE_VNMI);
  318. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  319. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  320. vmx_msr_low, vmx_msr_high);
  321. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  322. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  323. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  324. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  325. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  326. set_cpu_cap(c, X86_FEATURE_EPT);
  327. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  328. set_cpu_cap(c, X86_FEATURE_VPID);
  329. }
  330. }
  331. static void init_intel_energy_perf(struct cpuinfo_x86 *c)
  332. {
  333. u64 epb;
  334. /*
  335. * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
  336. * (x86_energy_perf_policy(8) is available to change it at run-time.)
  337. */
  338. if (!cpu_has(c, X86_FEATURE_EPB))
  339. return;
  340. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  341. if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
  342. return;
  343. pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
  344. pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
  345. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  346. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  347. }
  348. static void intel_bsp_resume(struct cpuinfo_x86 *c)
  349. {
  350. /*
  351. * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
  352. * so reinitialize it properly like during bootup:
  353. */
  354. init_intel_energy_perf(c);
  355. }
  356. static void init_intel(struct cpuinfo_x86 *c)
  357. {
  358. unsigned int l2 = 0;
  359. early_init_intel(c);
  360. intel_workarounds(c);
  361. /*
  362. * Detect the extended topology information if available. This
  363. * will reinitialise the initial_apicid which will be used
  364. * in init_intel_cacheinfo()
  365. */
  366. detect_extended_topology(c);
  367. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  368. /*
  369. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  370. * detection.
  371. */
  372. c->x86_max_cores = intel_num_cpu_cores(c);
  373. #ifdef CONFIG_X86_32
  374. detect_ht(c);
  375. #endif
  376. }
  377. l2 = init_intel_cacheinfo(c);
  378. /* Detect legacy cache sizes if init_intel_cacheinfo did not */
  379. if (l2 == 0) {
  380. cpu_detect_cache_sizes(c);
  381. l2 = c->x86_cache_size;
  382. }
  383. if (c->cpuid_level > 9) {
  384. unsigned eax = cpuid_eax(10);
  385. /* Check for version and the number of counters */
  386. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  387. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  388. }
  389. if (cpu_has_xmm2)
  390. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  391. if (cpu_has_ds) {
  392. unsigned int l1;
  393. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  394. if (!(l1 & (1<<11)))
  395. set_cpu_cap(c, X86_FEATURE_BTS);
  396. if (!(l1 & (1<<12)))
  397. set_cpu_cap(c, X86_FEATURE_PEBS);
  398. }
  399. if (c->x86 == 6 && cpu_has_clflush &&
  400. (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
  401. set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
  402. #ifdef CONFIG_X86_64
  403. if (c->x86 == 15)
  404. c->x86_cache_alignment = c->x86_clflush_size * 2;
  405. if (c->x86 == 6)
  406. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  407. #else
  408. /*
  409. * Names for the Pentium II/Celeron processors
  410. * detectable only by also checking the cache size.
  411. * Dixon is NOT a Celeron.
  412. */
  413. if (c->x86 == 6) {
  414. char *p = NULL;
  415. switch (c->x86_model) {
  416. case 5:
  417. if (l2 == 0)
  418. p = "Celeron (Covington)";
  419. else if (l2 == 256)
  420. p = "Mobile Pentium II (Dixon)";
  421. break;
  422. case 6:
  423. if (l2 == 128)
  424. p = "Celeron (Mendocino)";
  425. else if (c->x86_mask == 0 || c->x86_mask == 5)
  426. p = "Celeron-A";
  427. break;
  428. case 8:
  429. if (l2 == 128)
  430. p = "Celeron (Coppermine)";
  431. break;
  432. }
  433. if (p)
  434. strcpy(c->x86_model_id, p);
  435. }
  436. if (c->x86 == 15)
  437. set_cpu_cap(c, X86_FEATURE_P4);
  438. if (c->x86 == 6)
  439. set_cpu_cap(c, X86_FEATURE_P3);
  440. #endif
  441. /* Work around errata */
  442. srat_detect_node(c);
  443. if (cpu_has(c, X86_FEATURE_VMX))
  444. detect_vmx_virtcap(c);
  445. init_intel_energy_perf(c);
  446. }
  447. #ifdef CONFIG_X86_32
  448. static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  449. {
  450. /*
  451. * Intel PIII Tualatin. This comes in two flavours.
  452. * One has 256kb of cache, the other 512. We have no way
  453. * to determine which, so we use a boottime override
  454. * for the 512kb model, and assume 256 otherwise.
  455. */
  456. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  457. size = 256;
  458. /*
  459. * Intel Quark SoC X1000 contains a 4-way set associative
  460. * 16K cache with a 16 byte cache line and 256 lines per tag
  461. */
  462. if ((c->x86 == 5) && (c->x86_model == 9))
  463. size = 16;
  464. return size;
  465. }
  466. #endif
  467. #define TLB_INST_4K 0x01
  468. #define TLB_INST_4M 0x02
  469. #define TLB_INST_2M_4M 0x03
  470. #define TLB_INST_ALL 0x05
  471. #define TLB_INST_1G 0x06
  472. #define TLB_DATA_4K 0x11
  473. #define TLB_DATA_4M 0x12
  474. #define TLB_DATA_2M_4M 0x13
  475. #define TLB_DATA_4K_4M 0x14
  476. #define TLB_DATA_1G 0x16
  477. #define TLB_DATA0_4K 0x21
  478. #define TLB_DATA0_4M 0x22
  479. #define TLB_DATA0_2M_4M 0x23
  480. #define STLB_4K 0x41
  481. #define STLB_4K_2M 0x42
  482. static const struct _tlb_table intel_tlb_table[] = {
  483. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  484. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  485. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  486. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  487. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  488. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  489. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  490. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  491. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  492. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  493. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  494. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  495. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  496. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  497. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  498. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  499. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  500. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  501. { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
  502. { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
  503. { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  504. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  505. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  506. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  507. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  508. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  509. { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
  510. { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
  511. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  512. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  513. { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
  514. { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
  515. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  516. { 0x00, 0, 0 }
  517. };
  518. static void intel_tlb_lookup(const unsigned char desc)
  519. {
  520. unsigned char k;
  521. if (desc == 0)
  522. return;
  523. /* look up this descriptor in the table */
  524. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  525. intel_tlb_table[k].descriptor != 0; k++)
  526. ;
  527. if (intel_tlb_table[k].tlb_type == 0)
  528. return;
  529. switch (intel_tlb_table[k].tlb_type) {
  530. case STLB_4K:
  531. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  532. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  533. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  534. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  535. break;
  536. case STLB_4K_2M:
  537. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  538. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  539. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  540. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  541. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  542. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  543. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  544. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  545. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  546. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  547. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  548. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  549. break;
  550. case TLB_INST_ALL:
  551. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  552. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  553. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  554. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  555. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  556. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  557. break;
  558. case TLB_INST_4K:
  559. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  560. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  561. break;
  562. case TLB_INST_4M:
  563. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  564. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  565. break;
  566. case TLB_INST_2M_4M:
  567. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  568. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  569. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  570. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  571. break;
  572. case TLB_DATA_4K:
  573. case TLB_DATA0_4K:
  574. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  575. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  576. break;
  577. case TLB_DATA_4M:
  578. case TLB_DATA0_4M:
  579. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  580. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  581. break;
  582. case TLB_DATA_2M_4M:
  583. case TLB_DATA0_2M_4M:
  584. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  585. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  586. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  587. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  588. break;
  589. case TLB_DATA_4K_4M:
  590. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  591. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  592. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  593. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  594. break;
  595. case TLB_DATA_1G:
  596. if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
  597. tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
  598. break;
  599. }
  600. }
  601. static void intel_detect_tlb(struct cpuinfo_x86 *c)
  602. {
  603. int i, j, n;
  604. unsigned int regs[4];
  605. unsigned char *desc = (unsigned char *)regs;
  606. if (c->cpuid_level < 2)
  607. return;
  608. /* Number of times to iterate */
  609. n = cpuid_eax(2) & 0xFF;
  610. for (i = 0 ; i < n ; i++) {
  611. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  612. /* If bit 31 is set, this is an unknown format */
  613. for (j = 0 ; j < 3 ; j++)
  614. if (regs[j] & (1 << 31))
  615. regs[j] = 0;
  616. /* Byte 0 is level count, not a descriptor */
  617. for (j = 1 ; j < 16 ; j++)
  618. intel_tlb_lookup(desc[j]);
  619. }
  620. }
  621. static const struct cpu_dev intel_cpu_dev = {
  622. .c_vendor = "Intel",
  623. .c_ident = { "GenuineIntel" },
  624. #ifdef CONFIG_X86_32
  625. .legacy_models = {
  626. { .family = 4, .model_names =
  627. {
  628. [0] = "486 DX-25/33",
  629. [1] = "486 DX-50",
  630. [2] = "486 SX",
  631. [3] = "486 DX/2",
  632. [4] = "486 SL",
  633. [5] = "486 SX/2",
  634. [7] = "486 DX/2-WB",
  635. [8] = "486 DX/4",
  636. [9] = "486 DX/4-WB"
  637. }
  638. },
  639. { .family = 5, .model_names =
  640. {
  641. [0] = "Pentium 60/66 A-step",
  642. [1] = "Pentium 60/66",
  643. [2] = "Pentium 75 - 200",
  644. [3] = "OverDrive PODP5V83",
  645. [4] = "Pentium MMX",
  646. [7] = "Mobile Pentium 75 - 200",
  647. [8] = "Mobile Pentium MMX",
  648. [9] = "Quark SoC X1000",
  649. }
  650. },
  651. { .family = 6, .model_names =
  652. {
  653. [0] = "Pentium Pro A-step",
  654. [1] = "Pentium Pro",
  655. [3] = "Pentium II (Klamath)",
  656. [4] = "Pentium II (Deschutes)",
  657. [5] = "Pentium II (Deschutes)",
  658. [6] = "Mobile Pentium II",
  659. [7] = "Pentium III (Katmai)",
  660. [8] = "Pentium III (Coppermine)",
  661. [10] = "Pentium III (Cascades)",
  662. [11] = "Pentium III (Tualatin)",
  663. }
  664. },
  665. { .family = 15, .model_names =
  666. {
  667. [0] = "Pentium 4 (Unknown)",
  668. [1] = "Pentium 4 (Willamette)",
  669. [2] = "Pentium 4 (Northwood)",
  670. [4] = "Pentium 4 (Foster)",
  671. [5] = "Pentium 4 (Foster)",
  672. }
  673. },
  674. },
  675. .legacy_cache_size = intel_size_cache,
  676. #endif
  677. .c_detect_tlb = intel_detect_tlb,
  678. .c_early_init = early_init_intel,
  679. .c_init = init_intel,
  680. .c_bsp_resume = intel_bsp_resume,
  681. .c_x86_vendor = X86_VENDOR_INTEL,
  682. };
  683. cpu_dev_register(intel_cpu_dev);