fork.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/mm.h>
  30. #include <linux/vmacache.h>
  31. #include <linux/nsproxy.h>
  32. #include <linux/capability.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/security.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/seccomp.h>
  38. #include <linux/swap.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/jiffies.h>
  41. #include <linux/futex.h>
  42. #include <linux/compat.h>
  43. #include <linux/kthread.h>
  44. #include <linux/task_io_accounting_ops.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/ptrace.h>
  47. #include <linux/mount.h>
  48. #include <linux/audit.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/ftrace.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/profile.h>
  53. #include <linux/rmap.h>
  54. #include <linux/ksm.h>
  55. #include <linux/acct.h>
  56. #include <linux/tsacct_kern.h>
  57. #include <linux/cn_proc.h>
  58. #include <linux/freezer.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/taskstats_kern.h>
  61. #include <linux/random.h>
  62. #include <linux/tty.h>
  63. #include <linux/blkdev.h>
  64. #include <linux/fs_struct.h>
  65. #include <linux/magic.h>
  66. #include <linux/perf_event.h>
  67. #include <linux/posix-timers.h>
  68. #include <linux/user-return-notifier.h>
  69. #include <linux/oom.h>
  70. #include <linux/khugepaged.h>
  71. #include <linux/signalfd.h>
  72. #include <linux/uprobes.h>
  73. #include <linux/aio.h>
  74. #include <linux/compiler.h>
  75. #include <asm/pgtable.h>
  76. #include <asm/pgalloc.h>
  77. #include <asm/uaccess.h>
  78. #include <asm/mmu_context.h>
  79. #include <asm/cacheflush.h>
  80. #include <asm/tlbflush.h>
  81. #include <trace/events/sched.h>
  82. #define CREATE_TRACE_POINTS
  83. #include <trace/events/task.h>
  84. /*
  85. * Protected counters by write_lock_irq(&tasklist_lock)
  86. */
  87. unsigned long total_forks; /* Handle normal Linux uptimes. */
  88. int nr_threads; /* The idle threads do not count.. */
  89. int max_threads; /* tunable limit on nr_threads */
  90. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  91. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  92. #ifdef CONFIG_PROVE_RCU
  93. int lockdep_tasklist_lock_is_held(void)
  94. {
  95. return lockdep_is_held(&tasklist_lock);
  96. }
  97. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  98. #endif /* #ifdef CONFIG_PROVE_RCU */
  99. int nr_processes(void)
  100. {
  101. int cpu;
  102. int total = 0;
  103. for_each_possible_cpu(cpu)
  104. total += per_cpu(process_counts, cpu);
  105. return total;
  106. }
  107. void __weak arch_release_task_struct(struct task_struct *tsk)
  108. {
  109. }
  110. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  111. static struct kmem_cache *task_struct_cachep;
  112. static inline struct task_struct *alloc_task_struct_node(int node)
  113. {
  114. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  115. }
  116. static inline void free_task_struct(struct task_struct *tsk)
  117. {
  118. kmem_cache_free(task_struct_cachep, tsk);
  119. }
  120. #endif
  121. void __weak arch_release_thread_info(struct thread_info *ti)
  122. {
  123. }
  124. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  125. /*
  126. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  127. * kmemcache based allocator.
  128. */
  129. # if THREAD_SIZE >= PAGE_SIZE
  130. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  131. int node)
  132. {
  133. struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
  134. THREAD_SIZE_ORDER);
  135. return page ? page_address(page) : NULL;
  136. }
  137. static inline void free_thread_info(struct thread_info *ti)
  138. {
  139. free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  140. }
  141. # else
  142. static struct kmem_cache *thread_info_cache;
  143. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  144. int node)
  145. {
  146. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  147. }
  148. static void free_thread_info(struct thread_info *ti)
  149. {
  150. kmem_cache_free(thread_info_cache, ti);
  151. }
  152. void thread_info_cache_init(void)
  153. {
  154. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  155. THREAD_SIZE, 0, NULL);
  156. BUG_ON(thread_info_cache == NULL);
  157. }
  158. # endif
  159. #endif
  160. /* SLAB cache for signal_struct structures (tsk->signal) */
  161. static struct kmem_cache *signal_cachep;
  162. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  163. struct kmem_cache *sighand_cachep;
  164. /* SLAB cache for files_struct structures (tsk->files) */
  165. struct kmem_cache *files_cachep;
  166. /* SLAB cache for fs_struct structures (tsk->fs) */
  167. struct kmem_cache *fs_cachep;
  168. /* SLAB cache for vm_area_struct structures */
  169. struct kmem_cache *vm_area_cachep;
  170. /* SLAB cache for mm_struct structures (tsk->mm) */
  171. static struct kmem_cache *mm_cachep;
  172. static void account_kernel_stack(struct thread_info *ti, int account)
  173. {
  174. struct zone *zone = page_zone(virt_to_page(ti));
  175. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  176. }
  177. void free_task(struct task_struct *tsk)
  178. {
  179. account_kernel_stack(tsk->stack, -1);
  180. arch_release_thread_info(tsk->stack);
  181. free_thread_info(tsk->stack);
  182. rt_mutex_debug_task_free(tsk);
  183. ftrace_graph_exit_task(tsk);
  184. put_seccomp_filter(tsk);
  185. arch_release_task_struct(tsk);
  186. free_task_struct(tsk);
  187. }
  188. EXPORT_SYMBOL(free_task);
  189. static inline void free_signal_struct(struct signal_struct *sig)
  190. {
  191. taskstats_tgid_free(sig);
  192. sched_autogroup_exit(sig);
  193. kmem_cache_free(signal_cachep, sig);
  194. }
  195. static inline void put_signal_struct(struct signal_struct *sig)
  196. {
  197. if (atomic_dec_and_test(&sig->sigcnt))
  198. free_signal_struct(sig);
  199. }
  200. void __put_task_struct(struct task_struct *tsk)
  201. {
  202. WARN_ON(!tsk->exit_state);
  203. WARN_ON(atomic_read(&tsk->usage));
  204. WARN_ON(tsk == current);
  205. task_numa_free(tsk);
  206. security_task_free(tsk);
  207. exit_creds(tsk);
  208. delayacct_tsk_free(tsk);
  209. put_signal_struct(tsk->signal);
  210. if (!profile_handoff_task(tsk))
  211. free_task(tsk);
  212. }
  213. EXPORT_SYMBOL_GPL(__put_task_struct);
  214. void __init __weak arch_task_cache_init(void) { }
  215. void __init fork_init(unsigned long mempages)
  216. {
  217. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  218. #ifndef ARCH_MIN_TASKALIGN
  219. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  220. #endif
  221. /* create a slab on which task_structs can be allocated */
  222. task_struct_cachep =
  223. kmem_cache_create("task_struct", sizeof(struct task_struct),
  224. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  225. #endif
  226. /* do the arch specific task caches init */
  227. arch_task_cache_init();
  228. /*
  229. * The default maximum number of threads is set to a safe
  230. * value: the thread structures can take up at most half
  231. * of memory.
  232. */
  233. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  234. /*
  235. * we need to allow at least 20 threads to boot a system
  236. */
  237. if (max_threads < 20)
  238. max_threads = 20;
  239. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  240. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  241. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  242. init_task.signal->rlim[RLIMIT_NPROC];
  243. }
  244. int __weak arch_dup_task_struct(struct task_struct *dst,
  245. struct task_struct *src)
  246. {
  247. *dst = *src;
  248. return 0;
  249. }
  250. static struct task_struct *dup_task_struct(struct task_struct *orig)
  251. {
  252. struct task_struct *tsk;
  253. struct thread_info *ti;
  254. unsigned long *stackend;
  255. int node = tsk_fork_get_node(orig);
  256. int err;
  257. tsk = alloc_task_struct_node(node);
  258. if (!tsk)
  259. return NULL;
  260. ti = alloc_thread_info_node(tsk, node);
  261. if (!ti)
  262. goto free_tsk;
  263. err = arch_dup_task_struct(tsk, orig);
  264. if (err)
  265. goto free_ti;
  266. tsk->stack = ti;
  267. setup_thread_stack(tsk, orig);
  268. clear_user_return_notifier(tsk);
  269. clear_tsk_need_resched(tsk);
  270. stackend = end_of_stack(tsk);
  271. *stackend = STACK_END_MAGIC; /* for overflow detection */
  272. #ifdef CONFIG_CC_STACKPROTECTOR
  273. tsk->stack_canary = get_random_int();
  274. #endif
  275. /*
  276. * One for us, one for whoever does the "release_task()" (usually
  277. * parent)
  278. */
  279. atomic_set(&tsk->usage, 2);
  280. #ifdef CONFIG_BLK_DEV_IO_TRACE
  281. tsk->btrace_seq = 0;
  282. #endif
  283. tsk->splice_pipe = NULL;
  284. tsk->task_frag.page = NULL;
  285. account_kernel_stack(ti, 1);
  286. return tsk;
  287. free_ti:
  288. free_thread_info(ti);
  289. free_tsk:
  290. free_task_struct(tsk);
  291. return NULL;
  292. }
  293. #ifdef CONFIG_MMU
  294. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  295. {
  296. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  297. struct rb_node **rb_link, *rb_parent;
  298. int retval;
  299. unsigned long charge;
  300. uprobe_start_dup_mmap();
  301. down_write(&oldmm->mmap_sem);
  302. flush_cache_dup_mm(oldmm);
  303. uprobe_dup_mmap(oldmm, mm);
  304. /*
  305. * Not linked in yet - no deadlock potential:
  306. */
  307. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  308. mm->locked_vm = 0;
  309. mm->mmap = NULL;
  310. mm->vmacache_seqnum = 0;
  311. mm->map_count = 0;
  312. cpumask_clear(mm_cpumask(mm));
  313. mm->mm_rb = RB_ROOT;
  314. rb_link = &mm->mm_rb.rb_node;
  315. rb_parent = NULL;
  316. pprev = &mm->mmap;
  317. retval = ksm_fork(mm, oldmm);
  318. if (retval)
  319. goto out;
  320. retval = khugepaged_fork(mm, oldmm);
  321. if (retval)
  322. goto out;
  323. prev = NULL;
  324. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  325. struct file *file;
  326. if (mpnt->vm_flags & VM_DONTCOPY) {
  327. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  328. -vma_pages(mpnt));
  329. continue;
  330. }
  331. charge = 0;
  332. if (mpnt->vm_flags & VM_ACCOUNT) {
  333. unsigned long len = vma_pages(mpnt);
  334. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  335. goto fail_nomem;
  336. charge = len;
  337. }
  338. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  339. if (!tmp)
  340. goto fail_nomem;
  341. *tmp = *mpnt;
  342. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  343. retval = vma_dup_policy(mpnt, tmp);
  344. if (retval)
  345. goto fail_nomem_policy;
  346. tmp->vm_mm = mm;
  347. if (anon_vma_fork(tmp, mpnt))
  348. goto fail_nomem_anon_vma_fork;
  349. tmp->vm_flags &= ~VM_LOCKED;
  350. tmp->vm_next = tmp->vm_prev = NULL;
  351. file = tmp->vm_file;
  352. if (file) {
  353. struct inode *inode = file_inode(file);
  354. struct address_space *mapping = file->f_mapping;
  355. get_file(file);
  356. if (tmp->vm_flags & VM_DENYWRITE)
  357. atomic_dec(&inode->i_writecount);
  358. mutex_lock(&mapping->i_mmap_mutex);
  359. if (tmp->vm_flags & VM_SHARED)
  360. mapping->i_mmap_writable++;
  361. flush_dcache_mmap_lock(mapping);
  362. /* insert tmp into the share list, just after mpnt */
  363. if (unlikely(tmp->vm_flags & VM_NONLINEAR))
  364. vma_nonlinear_insert(tmp,
  365. &mapping->i_mmap_nonlinear);
  366. else
  367. vma_interval_tree_insert_after(tmp, mpnt,
  368. &mapping->i_mmap);
  369. flush_dcache_mmap_unlock(mapping);
  370. mutex_unlock(&mapping->i_mmap_mutex);
  371. }
  372. /*
  373. * Clear hugetlb-related page reserves for children. This only
  374. * affects MAP_PRIVATE mappings. Faults generated by the child
  375. * are not guaranteed to succeed, even if read-only
  376. */
  377. if (is_vm_hugetlb_page(tmp))
  378. reset_vma_resv_huge_pages(tmp);
  379. /*
  380. * Link in the new vma and copy the page table entries.
  381. */
  382. *pprev = tmp;
  383. pprev = &tmp->vm_next;
  384. tmp->vm_prev = prev;
  385. prev = tmp;
  386. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  387. rb_link = &tmp->vm_rb.rb_right;
  388. rb_parent = &tmp->vm_rb;
  389. mm->map_count++;
  390. retval = copy_page_range(mm, oldmm, mpnt);
  391. if (tmp->vm_ops && tmp->vm_ops->open)
  392. tmp->vm_ops->open(tmp);
  393. if (retval)
  394. goto out;
  395. }
  396. /* a new mm has just been created */
  397. arch_dup_mmap(oldmm, mm);
  398. retval = 0;
  399. out:
  400. up_write(&mm->mmap_sem);
  401. flush_tlb_mm(oldmm);
  402. up_write(&oldmm->mmap_sem);
  403. uprobe_end_dup_mmap();
  404. return retval;
  405. fail_nomem_anon_vma_fork:
  406. mpol_put(vma_policy(tmp));
  407. fail_nomem_policy:
  408. kmem_cache_free(vm_area_cachep, tmp);
  409. fail_nomem:
  410. retval = -ENOMEM;
  411. vm_unacct_memory(charge);
  412. goto out;
  413. }
  414. static inline int mm_alloc_pgd(struct mm_struct *mm)
  415. {
  416. mm->pgd = pgd_alloc(mm);
  417. if (unlikely(!mm->pgd))
  418. return -ENOMEM;
  419. return 0;
  420. }
  421. static inline void mm_free_pgd(struct mm_struct *mm)
  422. {
  423. pgd_free(mm, mm->pgd);
  424. }
  425. #else
  426. #define dup_mmap(mm, oldmm) (0)
  427. #define mm_alloc_pgd(mm) (0)
  428. #define mm_free_pgd(mm)
  429. #endif /* CONFIG_MMU */
  430. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  431. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  432. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  433. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  434. static int __init coredump_filter_setup(char *s)
  435. {
  436. default_dump_filter =
  437. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  438. MMF_DUMP_FILTER_MASK;
  439. return 1;
  440. }
  441. __setup("coredump_filter=", coredump_filter_setup);
  442. #include <linux/init_task.h>
  443. static void mm_init_aio(struct mm_struct *mm)
  444. {
  445. #ifdef CONFIG_AIO
  446. spin_lock_init(&mm->ioctx_lock);
  447. mm->ioctx_table = NULL;
  448. #endif
  449. }
  450. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  451. {
  452. atomic_set(&mm->mm_users, 1);
  453. atomic_set(&mm->mm_count, 1);
  454. init_rwsem(&mm->mmap_sem);
  455. INIT_LIST_HEAD(&mm->mmlist);
  456. mm->core_state = NULL;
  457. atomic_long_set(&mm->nr_ptes, 0);
  458. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  459. spin_lock_init(&mm->page_table_lock);
  460. mm_init_aio(mm);
  461. mm_init_owner(mm, p);
  462. clear_tlb_flush_pending(mm);
  463. if (current->mm) {
  464. mm->flags = current->mm->flags & MMF_INIT_MASK;
  465. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  466. } else {
  467. mm->flags = default_dump_filter;
  468. mm->def_flags = 0;
  469. }
  470. if (likely(!mm_alloc_pgd(mm))) {
  471. mmu_notifier_mm_init(mm);
  472. return mm;
  473. }
  474. free_mm(mm);
  475. return NULL;
  476. }
  477. static void check_mm(struct mm_struct *mm)
  478. {
  479. int i;
  480. for (i = 0; i < NR_MM_COUNTERS; i++) {
  481. long x = atomic_long_read(&mm->rss_stat.count[i]);
  482. if (unlikely(x))
  483. printk(KERN_ALERT "BUG: Bad rss-counter state "
  484. "mm:%p idx:%d val:%ld\n", mm, i, x);
  485. }
  486. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  487. VM_BUG_ON(mm->pmd_huge_pte);
  488. #endif
  489. }
  490. /*
  491. * Allocate and initialize an mm_struct.
  492. */
  493. struct mm_struct *mm_alloc(void)
  494. {
  495. struct mm_struct *mm;
  496. mm = allocate_mm();
  497. if (!mm)
  498. return NULL;
  499. memset(mm, 0, sizeof(*mm));
  500. mm_init_cpumask(mm);
  501. return mm_init(mm, current);
  502. }
  503. /*
  504. * Called when the last reference to the mm
  505. * is dropped: either by a lazy thread or by
  506. * mmput. Free the page directory and the mm.
  507. */
  508. void __mmdrop(struct mm_struct *mm)
  509. {
  510. BUG_ON(mm == &init_mm);
  511. mm_free_pgd(mm);
  512. destroy_context(mm);
  513. mmu_notifier_mm_destroy(mm);
  514. check_mm(mm);
  515. free_mm(mm);
  516. }
  517. EXPORT_SYMBOL_GPL(__mmdrop);
  518. /*
  519. * Decrement the use count and release all resources for an mm.
  520. */
  521. void mmput(struct mm_struct *mm)
  522. {
  523. might_sleep();
  524. if (atomic_dec_and_test(&mm->mm_users)) {
  525. uprobe_clear_state(mm);
  526. exit_aio(mm);
  527. ksm_exit(mm);
  528. khugepaged_exit(mm); /* must run before exit_mmap */
  529. exit_mmap(mm);
  530. set_mm_exe_file(mm, NULL);
  531. if (!list_empty(&mm->mmlist)) {
  532. spin_lock(&mmlist_lock);
  533. list_del(&mm->mmlist);
  534. spin_unlock(&mmlist_lock);
  535. }
  536. if (mm->binfmt)
  537. module_put(mm->binfmt->module);
  538. mmdrop(mm);
  539. }
  540. }
  541. EXPORT_SYMBOL_GPL(mmput);
  542. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  543. {
  544. if (new_exe_file)
  545. get_file(new_exe_file);
  546. if (mm->exe_file)
  547. fput(mm->exe_file);
  548. mm->exe_file = new_exe_file;
  549. }
  550. struct file *get_mm_exe_file(struct mm_struct *mm)
  551. {
  552. struct file *exe_file;
  553. /* We need mmap_sem to protect against races with removal of exe_file */
  554. down_read(&mm->mmap_sem);
  555. exe_file = mm->exe_file;
  556. if (exe_file)
  557. get_file(exe_file);
  558. up_read(&mm->mmap_sem);
  559. return exe_file;
  560. }
  561. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  562. {
  563. /* It's safe to write the exe_file pointer without exe_file_lock because
  564. * this is called during fork when the task is not yet in /proc */
  565. newmm->exe_file = get_mm_exe_file(oldmm);
  566. }
  567. /**
  568. * get_task_mm - acquire a reference to the task's mm
  569. *
  570. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  571. * this kernel workthread has transiently adopted a user mm with use_mm,
  572. * to do its AIO) is not set and if so returns a reference to it, after
  573. * bumping up the use count. User must release the mm via mmput()
  574. * after use. Typically used by /proc and ptrace.
  575. */
  576. struct mm_struct *get_task_mm(struct task_struct *task)
  577. {
  578. struct mm_struct *mm;
  579. task_lock(task);
  580. mm = task->mm;
  581. if (mm) {
  582. if (task->flags & PF_KTHREAD)
  583. mm = NULL;
  584. else
  585. atomic_inc(&mm->mm_users);
  586. }
  587. task_unlock(task);
  588. return mm;
  589. }
  590. EXPORT_SYMBOL_GPL(get_task_mm);
  591. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  592. {
  593. struct mm_struct *mm;
  594. int err;
  595. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  596. if (err)
  597. return ERR_PTR(err);
  598. mm = get_task_mm(task);
  599. if (mm && mm != current->mm &&
  600. !ptrace_may_access(task, mode)) {
  601. mmput(mm);
  602. mm = ERR_PTR(-EACCES);
  603. }
  604. mutex_unlock(&task->signal->cred_guard_mutex);
  605. return mm;
  606. }
  607. static void complete_vfork_done(struct task_struct *tsk)
  608. {
  609. struct completion *vfork;
  610. task_lock(tsk);
  611. vfork = tsk->vfork_done;
  612. if (likely(vfork)) {
  613. tsk->vfork_done = NULL;
  614. complete(vfork);
  615. }
  616. task_unlock(tsk);
  617. }
  618. static int wait_for_vfork_done(struct task_struct *child,
  619. struct completion *vfork)
  620. {
  621. int killed;
  622. freezer_do_not_count();
  623. killed = wait_for_completion_killable(vfork);
  624. freezer_count();
  625. if (killed) {
  626. task_lock(child);
  627. child->vfork_done = NULL;
  628. task_unlock(child);
  629. }
  630. put_task_struct(child);
  631. return killed;
  632. }
  633. /* Please note the differences between mmput and mm_release.
  634. * mmput is called whenever we stop holding onto a mm_struct,
  635. * error success whatever.
  636. *
  637. * mm_release is called after a mm_struct has been removed
  638. * from the current process.
  639. *
  640. * This difference is important for error handling, when we
  641. * only half set up a mm_struct for a new process and need to restore
  642. * the old one. Because we mmput the new mm_struct before
  643. * restoring the old one. . .
  644. * Eric Biederman 10 January 1998
  645. */
  646. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  647. {
  648. /* Get rid of any futexes when releasing the mm */
  649. #ifdef CONFIG_FUTEX
  650. if (unlikely(tsk->robust_list)) {
  651. exit_robust_list(tsk);
  652. tsk->robust_list = NULL;
  653. }
  654. #ifdef CONFIG_COMPAT
  655. if (unlikely(tsk->compat_robust_list)) {
  656. compat_exit_robust_list(tsk);
  657. tsk->compat_robust_list = NULL;
  658. }
  659. #endif
  660. if (unlikely(!list_empty(&tsk->pi_state_list)))
  661. exit_pi_state_list(tsk);
  662. #endif
  663. uprobe_free_utask(tsk);
  664. /* Get rid of any cached register state */
  665. deactivate_mm(tsk, mm);
  666. /*
  667. * If we're exiting normally, clear a user-space tid field if
  668. * requested. We leave this alone when dying by signal, to leave
  669. * the value intact in a core dump, and to save the unnecessary
  670. * trouble, say, a killed vfork parent shouldn't touch this mm.
  671. * Userland only wants this done for a sys_exit.
  672. */
  673. if (tsk->clear_child_tid) {
  674. if (!(tsk->flags & PF_SIGNALED) &&
  675. atomic_read(&mm->mm_users) > 1) {
  676. /*
  677. * We don't check the error code - if userspace has
  678. * not set up a proper pointer then tough luck.
  679. */
  680. put_user(0, tsk->clear_child_tid);
  681. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  682. 1, NULL, NULL, 0);
  683. }
  684. tsk->clear_child_tid = NULL;
  685. }
  686. /*
  687. * All done, finally we can wake up parent and return this mm to him.
  688. * Also kthread_stop() uses this completion for synchronization.
  689. */
  690. if (tsk->vfork_done)
  691. complete_vfork_done(tsk);
  692. }
  693. /*
  694. * Allocate a new mm structure and copy contents from the
  695. * mm structure of the passed in task structure.
  696. */
  697. static struct mm_struct *dup_mm(struct task_struct *tsk)
  698. {
  699. struct mm_struct *mm, *oldmm = current->mm;
  700. int err;
  701. mm = allocate_mm();
  702. if (!mm)
  703. goto fail_nomem;
  704. memcpy(mm, oldmm, sizeof(*mm));
  705. mm_init_cpumask(mm);
  706. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  707. mm->pmd_huge_pte = NULL;
  708. #endif
  709. if (!mm_init(mm, tsk))
  710. goto fail_nomem;
  711. if (init_new_context(tsk, mm))
  712. goto fail_nocontext;
  713. dup_mm_exe_file(oldmm, mm);
  714. err = dup_mmap(mm, oldmm);
  715. if (err)
  716. goto free_pt;
  717. mm->hiwater_rss = get_mm_rss(mm);
  718. mm->hiwater_vm = mm->total_vm;
  719. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  720. goto free_pt;
  721. return mm;
  722. free_pt:
  723. /* don't put binfmt in mmput, we haven't got module yet */
  724. mm->binfmt = NULL;
  725. mmput(mm);
  726. fail_nomem:
  727. return NULL;
  728. fail_nocontext:
  729. /*
  730. * If init_new_context() failed, we cannot use mmput() to free the mm
  731. * because it calls destroy_context()
  732. */
  733. mm_free_pgd(mm);
  734. free_mm(mm);
  735. return NULL;
  736. }
  737. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  738. {
  739. struct mm_struct *mm, *oldmm;
  740. int retval;
  741. tsk->min_flt = tsk->maj_flt = 0;
  742. tsk->nvcsw = tsk->nivcsw = 0;
  743. #ifdef CONFIG_DETECT_HUNG_TASK
  744. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  745. #endif
  746. tsk->mm = NULL;
  747. tsk->active_mm = NULL;
  748. /*
  749. * Are we cloning a kernel thread?
  750. *
  751. * We need to steal a active VM for that..
  752. */
  753. oldmm = current->mm;
  754. if (!oldmm)
  755. return 0;
  756. /* initialize the new vmacache entries */
  757. vmacache_flush(tsk);
  758. if (clone_flags & CLONE_VM) {
  759. atomic_inc(&oldmm->mm_users);
  760. mm = oldmm;
  761. goto good_mm;
  762. }
  763. retval = -ENOMEM;
  764. mm = dup_mm(tsk);
  765. if (!mm)
  766. goto fail_nomem;
  767. good_mm:
  768. tsk->mm = mm;
  769. tsk->active_mm = mm;
  770. return 0;
  771. fail_nomem:
  772. return retval;
  773. }
  774. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  775. {
  776. struct fs_struct *fs = current->fs;
  777. if (clone_flags & CLONE_FS) {
  778. /* tsk->fs is already what we want */
  779. spin_lock(&fs->lock);
  780. if (fs->in_exec) {
  781. spin_unlock(&fs->lock);
  782. return -EAGAIN;
  783. }
  784. fs->users++;
  785. spin_unlock(&fs->lock);
  786. return 0;
  787. }
  788. tsk->fs = copy_fs_struct(fs);
  789. if (!tsk->fs)
  790. return -ENOMEM;
  791. return 0;
  792. }
  793. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  794. {
  795. struct files_struct *oldf, *newf;
  796. int error = 0;
  797. /*
  798. * A background process may not have any files ...
  799. */
  800. oldf = current->files;
  801. if (!oldf)
  802. goto out;
  803. if (clone_flags & CLONE_FILES) {
  804. atomic_inc(&oldf->count);
  805. goto out;
  806. }
  807. newf = dup_fd(oldf, &error);
  808. if (!newf)
  809. goto out;
  810. tsk->files = newf;
  811. error = 0;
  812. out:
  813. return error;
  814. }
  815. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  816. {
  817. #ifdef CONFIG_BLOCK
  818. struct io_context *ioc = current->io_context;
  819. struct io_context *new_ioc;
  820. if (!ioc)
  821. return 0;
  822. /*
  823. * Share io context with parent, if CLONE_IO is set
  824. */
  825. if (clone_flags & CLONE_IO) {
  826. ioc_task_link(ioc);
  827. tsk->io_context = ioc;
  828. } else if (ioprio_valid(ioc->ioprio)) {
  829. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  830. if (unlikely(!new_ioc))
  831. return -ENOMEM;
  832. new_ioc->ioprio = ioc->ioprio;
  833. put_io_context(new_ioc);
  834. }
  835. #endif
  836. return 0;
  837. }
  838. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  839. {
  840. struct sighand_struct *sig;
  841. if (clone_flags & CLONE_SIGHAND) {
  842. atomic_inc(&current->sighand->count);
  843. return 0;
  844. }
  845. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  846. rcu_assign_pointer(tsk->sighand, sig);
  847. if (!sig)
  848. return -ENOMEM;
  849. atomic_set(&sig->count, 1);
  850. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  851. return 0;
  852. }
  853. void __cleanup_sighand(struct sighand_struct *sighand)
  854. {
  855. if (atomic_dec_and_test(&sighand->count)) {
  856. signalfd_cleanup(sighand);
  857. kmem_cache_free(sighand_cachep, sighand);
  858. }
  859. }
  860. /*
  861. * Initialize POSIX timer handling for a thread group.
  862. */
  863. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  864. {
  865. unsigned long cpu_limit;
  866. /* Thread group counters. */
  867. thread_group_cputime_init(sig);
  868. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  869. if (cpu_limit != RLIM_INFINITY) {
  870. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  871. sig->cputimer.running = 1;
  872. }
  873. /* The timer lists. */
  874. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  875. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  876. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  877. }
  878. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  879. {
  880. struct signal_struct *sig;
  881. if (clone_flags & CLONE_THREAD)
  882. return 0;
  883. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  884. tsk->signal = sig;
  885. if (!sig)
  886. return -ENOMEM;
  887. sig->nr_threads = 1;
  888. atomic_set(&sig->live, 1);
  889. atomic_set(&sig->sigcnt, 1);
  890. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  891. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  892. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  893. init_waitqueue_head(&sig->wait_chldexit);
  894. sig->curr_target = tsk;
  895. init_sigpending(&sig->shared_pending);
  896. INIT_LIST_HEAD(&sig->posix_timers);
  897. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  898. sig->real_timer.function = it_real_fn;
  899. task_lock(current->group_leader);
  900. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  901. task_unlock(current->group_leader);
  902. posix_cpu_timers_init_group(sig);
  903. tty_audit_fork(sig);
  904. sched_autogroup_fork(sig);
  905. #ifdef CONFIG_CGROUPS
  906. init_rwsem(&sig->group_rwsem);
  907. #endif
  908. sig->oom_score_adj = current->signal->oom_score_adj;
  909. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  910. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  911. current->signal->is_child_subreaper;
  912. mutex_init(&sig->cred_guard_mutex);
  913. return 0;
  914. }
  915. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  916. {
  917. current->clear_child_tid = tidptr;
  918. return task_pid_vnr(current);
  919. }
  920. static void rt_mutex_init_task(struct task_struct *p)
  921. {
  922. raw_spin_lock_init(&p->pi_lock);
  923. #ifdef CONFIG_RT_MUTEXES
  924. p->pi_waiters = RB_ROOT;
  925. p->pi_waiters_leftmost = NULL;
  926. p->pi_blocked_on = NULL;
  927. p->pi_top_task = NULL;
  928. #endif
  929. }
  930. #ifdef CONFIG_MEMCG
  931. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  932. {
  933. mm->owner = p;
  934. }
  935. #endif /* CONFIG_MEMCG */
  936. /*
  937. * Initialize POSIX timer handling for a single task.
  938. */
  939. static void posix_cpu_timers_init(struct task_struct *tsk)
  940. {
  941. tsk->cputime_expires.prof_exp = 0;
  942. tsk->cputime_expires.virt_exp = 0;
  943. tsk->cputime_expires.sched_exp = 0;
  944. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  945. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  946. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  947. }
  948. static inline void
  949. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  950. {
  951. task->pids[type].pid = pid;
  952. }
  953. /*
  954. * This creates a new process as a copy of the old one,
  955. * but does not actually start it yet.
  956. *
  957. * It copies the registers, and all the appropriate
  958. * parts of the process environment (as per the clone
  959. * flags). The actual kick-off is left to the caller.
  960. */
  961. static struct task_struct *copy_process(unsigned long clone_flags,
  962. unsigned long stack_start,
  963. unsigned long stack_size,
  964. int __user *child_tidptr,
  965. struct pid *pid,
  966. int trace)
  967. {
  968. int retval;
  969. struct task_struct *p;
  970. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  971. return ERR_PTR(-EINVAL);
  972. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  973. return ERR_PTR(-EINVAL);
  974. /*
  975. * Thread groups must share signals as well, and detached threads
  976. * can only be started up within the thread group.
  977. */
  978. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  979. return ERR_PTR(-EINVAL);
  980. /*
  981. * Shared signal handlers imply shared VM. By way of the above,
  982. * thread groups also imply shared VM. Blocking this case allows
  983. * for various simplifications in other code.
  984. */
  985. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  986. return ERR_PTR(-EINVAL);
  987. /*
  988. * Siblings of global init remain as zombies on exit since they are
  989. * not reaped by their parent (swapper). To solve this and to avoid
  990. * multi-rooted process trees, prevent global and container-inits
  991. * from creating siblings.
  992. */
  993. if ((clone_flags & CLONE_PARENT) &&
  994. current->signal->flags & SIGNAL_UNKILLABLE)
  995. return ERR_PTR(-EINVAL);
  996. /*
  997. * If the new process will be in a different pid or user namespace
  998. * do not allow it to share a thread group or signal handlers or
  999. * parent with the forking task.
  1000. */
  1001. if (clone_flags & CLONE_SIGHAND) {
  1002. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1003. (task_active_pid_ns(current) !=
  1004. current->nsproxy->pid_ns_for_children))
  1005. return ERR_PTR(-EINVAL);
  1006. }
  1007. retval = security_task_create(clone_flags);
  1008. if (retval)
  1009. goto fork_out;
  1010. retval = -ENOMEM;
  1011. p = dup_task_struct(current);
  1012. if (!p)
  1013. goto fork_out;
  1014. ftrace_graph_init_task(p);
  1015. get_seccomp_filter(p);
  1016. rt_mutex_init_task(p);
  1017. #ifdef CONFIG_PROVE_LOCKING
  1018. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1019. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1020. #endif
  1021. retval = -EAGAIN;
  1022. if (atomic_read(&p->real_cred->user->processes) >=
  1023. task_rlimit(p, RLIMIT_NPROC)) {
  1024. if (p->real_cred->user != INIT_USER &&
  1025. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1026. goto bad_fork_free;
  1027. }
  1028. current->flags &= ~PF_NPROC_EXCEEDED;
  1029. retval = copy_creds(p, clone_flags);
  1030. if (retval < 0)
  1031. goto bad_fork_free;
  1032. /*
  1033. * If multiple threads are within copy_process(), then this check
  1034. * triggers too late. This doesn't hurt, the check is only there
  1035. * to stop root fork bombs.
  1036. */
  1037. retval = -EAGAIN;
  1038. if (nr_threads >= max_threads)
  1039. goto bad_fork_cleanup_count;
  1040. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1041. goto bad_fork_cleanup_count;
  1042. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1043. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  1044. p->flags |= PF_FORKNOEXEC;
  1045. INIT_LIST_HEAD(&p->children);
  1046. INIT_LIST_HEAD(&p->sibling);
  1047. rcu_copy_process(p);
  1048. p->vfork_done = NULL;
  1049. spin_lock_init(&p->alloc_lock);
  1050. init_sigpending(&p->pending);
  1051. p->utime = p->stime = p->gtime = 0;
  1052. p->utimescaled = p->stimescaled = 0;
  1053. #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  1054. p->prev_cputime.utime = p->prev_cputime.stime = 0;
  1055. #endif
  1056. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1057. seqlock_init(&p->vtime_seqlock);
  1058. p->vtime_snap = 0;
  1059. p->vtime_snap_whence = VTIME_SLEEPING;
  1060. #endif
  1061. #if defined(SPLIT_RSS_COUNTING)
  1062. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1063. #endif
  1064. p->default_timer_slack_ns = current->timer_slack_ns;
  1065. task_io_accounting_init(&p->ioac);
  1066. acct_clear_integrals(p);
  1067. posix_cpu_timers_init(p);
  1068. do_posix_clock_monotonic_gettime(&p->start_time);
  1069. p->real_start_time = p->start_time;
  1070. monotonic_to_bootbased(&p->real_start_time);
  1071. p->io_context = NULL;
  1072. p->audit_context = NULL;
  1073. if (clone_flags & CLONE_THREAD)
  1074. threadgroup_change_begin(current);
  1075. cgroup_fork(p);
  1076. #ifdef CONFIG_NUMA
  1077. p->mempolicy = mpol_dup(p->mempolicy);
  1078. if (IS_ERR(p->mempolicy)) {
  1079. retval = PTR_ERR(p->mempolicy);
  1080. p->mempolicy = NULL;
  1081. goto bad_fork_cleanup_threadgroup_lock;
  1082. }
  1083. #endif
  1084. #ifdef CONFIG_CPUSETS
  1085. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1086. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1087. seqcount_init(&p->mems_allowed_seq);
  1088. #endif
  1089. #ifdef CONFIG_TRACE_IRQFLAGS
  1090. p->irq_events = 0;
  1091. p->hardirqs_enabled = 0;
  1092. p->hardirq_enable_ip = 0;
  1093. p->hardirq_enable_event = 0;
  1094. p->hardirq_disable_ip = _THIS_IP_;
  1095. p->hardirq_disable_event = 0;
  1096. p->softirqs_enabled = 1;
  1097. p->softirq_enable_ip = _THIS_IP_;
  1098. p->softirq_enable_event = 0;
  1099. p->softirq_disable_ip = 0;
  1100. p->softirq_disable_event = 0;
  1101. p->hardirq_context = 0;
  1102. p->softirq_context = 0;
  1103. #endif
  1104. #ifdef CONFIG_LOCKDEP
  1105. p->lockdep_depth = 0; /* no locks held yet */
  1106. p->curr_chain_key = 0;
  1107. p->lockdep_recursion = 0;
  1108. #endif
  1109. #ifdef CONFIG_DEBUG_MUTEXES
  1110. p->blocked_on = NULL; /* not blocked yet */
  1111. #endif
  1112. #ifdef CONFIG_MEMCG
  1113. p->memcg_batch.do_batch = 0;
  1114. p->memcg_batch.memcg = NULL;
  1115. #endif
  1116. #ifdef CONFIG_BCACHE
  1117. p->sequential_io = 0;
  1118. p->sequential_io_avg = 0;
  1119. #endif
  1120. /* Perform scheduler related setup. Assign this task to a CPU. */
  1121. retval = sched_fork(clone_flags, p);
  1122. if (retval)
  1123. goto bad_fork_cleanup_policy;
  1124. retval = perf_event_init_task(p);
  1125. if (retval)
  1126. goto bad_fork_cleanup_policy;
  1127. retval = audit_alloc(p);
  1128. if (retval)
  1129. goto bad_fork_cleanup_policy;
  1130. /* copy all the process information */
  1131. retval = copy_semundo(clone_flags, p);
  1132. if (retval)
  1133. goto bad_fork_cleanup_audit;
  1134. retval = copy_files(clone_flags, p);
  1135. if (retval)
  1136. goto bad_fork_cleanup_semundo;
  1137. retval = copy_fs(clone_flags, p);
  1138. if (retval)
  1139. goto bad_fork_cleanup_files;
  1140. retval = copy_sighand(clone_flags, p);
  1141. if (retval)
  1142. goto bad_fork_cleanup_fs;
  1143. retval = copy_signal(clone_flags, p);
  1144. if (retval)
  1145. goto bad_fork_cleanup_sighand;
  1146. retval = copy_mm(clone_flags, p);
  1147. if (retval)
  1148. goto bad_fork_cleanup_signal;
  1149. retval = copy_namespaces(clone_flags, p);
  1150. if (retval)
  1151. goto bad_fork_cleanup_mm;
  1152. retval = copy_io(clone_flags, p);
  1153. if (retval)
  1154. goto bad_fork_cleanup_namespaces;
  1155. retval = copy_thread(clone_flags, stack_start, stack_size, p);
  1156. if (retval)
  1157. goto bad_fork_cleanup_io;
  1158. if (pid != &init_struct_pid) {
  1159. retval = -ENOMEM;
  1160. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1161. if (!pid)
  1162. goto bad_fork_cleanup_io;
  1163. }
  1164. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1165. /*
  1166. * Clear TID on mm_release()?
  1167. */
  1168. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1169. #ifdef CONFIG_BLOCK
  1170. p->plug = NULL;
  1171. #endif
  1172. #ifdef CONFIG_FUTEX
  1173. p->robust_list = NULL;
  1174. #ifdef CONFIG_COMPAT
  1175. p->compat_robust_list = NULL;
  1176. #endif
  1177. INIT_LIST_HEAD(&p->pi_state_list);
  1178. p->pi_state_cache = NULL;
  1179. #endif
  1180. /*
  1181. * sigaltstack should be cleared when sharing the same VM
  1182. */
  1183. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1184. p->sas_ss_sp = p->sas_ss_size = 0;
  1185. /*
  1186. * Syscall tracing and stepping should be turned off in the
  1187. * child regardless of CLONE_PTRACE.
  1188. */
  1189. user_disable_single_step(p);
  1190. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1191. #ifdef TIF_SYSCALL_EMU
  1192. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1193. #endif
  1194. clear_all_latency_tracing(p);
  1195. /* ok, now we should be set up.. */
  1196. p->pid = pid_nr(pid);
  1197. if (clone_flags & CLONE_THREAD) {
  1198. p->exit_signal = -1;
  1199. p->group_leader = current->group_leader;
  1200. p->tgid = current->tgid;
  1201. } else {
  1202. if (clone_flags & CLONE_PARENT)
  1203. p->exit_signal = current->group_leader->exit_signal;
  1204. else
  1205. p->exit_signal = (clone_flags & CSIGNAL);
  1206. p->group_leader = p;
  1207. p->tgid = p->pid;
  1208. }
  1209. p->nr_dirtied = 0;
  1210. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1211. p->dirty_paused_when = 0;
  1212. p->pdeath_signal = 0;
  1213. INIT_LIST_HEAD(&p->thread_group);
  1214. p->task_works = NULL;
  1215. /*
  1216. * Make it visible to the rest of the system, but dont wake it up yet.
  1217. * Need tasklist lock for parent etc handling!
  1218. */
  1219. write_lock_irq(&tasklist_lock);
  1220. /* CLONE_PARENT re-uses the old parent */
  1221. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1222. p->real_parent = current->real_parent;
  1223. p->parent_exec_id = current->parent_exec_id;
  1224. } else {
  1225. p->real_parent = current;
  1226. p->parent_exec_id = current->self_exec_id;
  1227. }
  1228. spin_lock(&current->sighand->siglock);
  1229. /*
  1230. * Process group and session signals need to be delivered to just the
  1231. * parent before the fork or both the parent and the child after the
  1232. * fork. Restart if a signal comes in before we add the new process to
  1233. * it's process group.
  1234. * A fatal signal pending means that current will exit, so the new
  1235. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1236. */
  1237. recalc_sigpending();
  1238. if (signal_pending(current)) {
  1239. spin_unlock(&current->sighand->siglock);
  1240. write_unlock_irq(&tasklist_lock);
  1241. retval = -ERESTARTNOINTR;
  1242. goto bad_fork_free_pid;
  1243. }
  1244. if (likely(p->pid)) {
  1245. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1246. init_task_pid(p, PIDTYPE_PID, pid);
  1247. if (thread_group_leader(p)) {
  1248. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1249. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1250. if (is_child_reaper(pid)) {
  1251. ns_of_pid(pid)->child_reaper = p;
  1252. p->signal->flags |= SIGNAL_UNKILLABLE;
  1253. }
  1254. p->signal->leader_pid = pid;
  1255. p->signal->tty = tty_kref_get(current->signal->tty);
  1256. list_add_tail(&p->sibling, &p->real_parent->children);
  1257. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1258. attach_pid(p, PIDTYPE_PGID);
  1259. attach_pid(p, PIDTYPE_SID);
  1260. __this_cpu_inc(process_counts);
  1261. } else {
  1262. current->signal->nr_threads++;
  1263. atomic_inc(&current->signal->live);
  1264. atomic_inc(&current->signal->sigcnt);
  1265. list_add_tail_rcu(&p->thread_group,
  1266. &p->group_leader->thread_group);
  1267. list_add_tail_rcu(&p->thread_node,
  1268. &p->signal->thread_head);
  1269. }
  1270. attach_pid(p, PIDTYPE_PID);
  1271. nr_threads++;
  1272. }
  1273. total_forks++;
  1274. spin_unlock(&current->sighand->siglock);
  1275. write_unlock_irq(&tasklist_lock);
  1276. proc_fork_connector(p);
  1277. cgroup_post_fork(p);
  1278. if (clone_flags & CLONE_THREAD)
  1279. threadgroup_change_end(current);
  1280. perf_event_fork(p);
  1281. trace_task_newtask(p, clone_flags);
  1282. uprobe_copy_process(p, clone_flags);
  1283. return p;
  1284. bad_fork_free_pid:
  1285. if (pid != &init_struct_pid)
  1286. free_pid(pid);
  1287. bad_fork_cleanup_io:
  1288. if (p->io_context)
  1289. exit_io_context(p);
  1290. bad_fork_cleanup_namespaces:
  1291. exit_task_namespaces(p);
  1292. bad_fork_cleanup_mm:
  1293. if (p->mm)
  1294. mmput(p->mm);
  1295. bad_fork_cleanup_signal:
  1296. if (!(clone_flags & CLONE_THREAD))
  1297. free_signal_struct(p->signal);
  1298. bad_fork_cleanup_sighand:
  1299. __cleanup_sighand(p->sighand);
  1300. bad_fork_cleanup_fs:
  1301. exit_fs(p); /* blocking */
  1302. bad_fork_cleanup_files:
  1303. exit_files(p); /* blocking */
  1304. bad_fork_cleanup_semundo:
  1305. exit_sem(p);
  1306. bad_fork_cleanup_audit:
  1307. audit_free(p);
  1308. bad_fork_cleanup_policy:
  1309. perf_event_free_task(p);
  1310. #ifdef CONFIG_NUMA
  1311. mpol_put(p->mempolicy);
  1312. bad_fork_cleanup_threadgroup_lock:
  1313. #endif
  1314. if (clone_flags & CLONE_THREAD)
  1315. threadgroup_change_end(current);
  1316. delayacct_tsk_free(p);
  1317. module_put(task_thread_info(p)->exec_domain->module);
  1318. bad_fork_cleanup_count:
  1319. atomic_dec(&p->cred->user->processes);
  1320. exit_creds(p);
  1321. bad_fork_free:
  1322. free_task(p);
  1323. fork_out:
  1324. return ERR_PTR(retval);
  1325. }
  1326. static inline void init_idle_pids(struct pid_link *links)
  1327. {
  1328. enum pid_type type;
  1329. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1330. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1331. links[type].pid = &init_struct_pid;
  1332. }
  1333. }
  1334. struct task_struct *fork_idle(int cpu)
  1335. {
  1336. struct task_struct *task;
  1337. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
  1338. if (!IS_ERR(task)) {
  1339. init_idle_pids(task->pids);
  1340. init_idle(task, cpu);
  1341. }
  1342. return task;
  1343. }
  1344. /*
  1345. * Ok, this is the main fork-routine.
  1346. *
  1347. * It copies the process, and if successful kick-starts
  1348. * it and waits for it to finish using the VM if required.
  1349. */
  1350. long do_fork(unsigned long clone_flags,
  1351. unsigned long stack_start,
  1352. unsigned long stack_size,
  1353. int __user *parent_tidptr,
  1354. int __user *child_tidptr)
  1355. {
  1356. struct task_struct *p;
  1357. int trace = 0;
  1358. long nr;
  1359. /*
  1360. * Determine whether and which event to report to ptracer. When
  1361. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1362. * requested, no event is reported; otherwise, report if the event
  1363. * for the type of forking is enabled.
  1364. */
  1365. if (!(clone_flags & CLONE_UNTRACED)) {
  1366. if (clone_flags & CLONE_VFORK)
  1367. trace = PTRACE_EVENT_VFORK;
  1368. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1369. trace = PTRACE_EVENT_CLONE;
  1370. else
  1371. trace = PTRACE_EVENT_FORK;
  1372. if (likely(!ptrace_event_enabled(current, trace)))
  1373. trace = 0;
  1374. }
  1375. p = copy_process(clone_flags, stack_start, stack_size,
  1376. child_tidptr, NULL, trace);
  1377. /*
  1378. * Do this prior waking up the new thread - the thread pointer
  1379. * might get invalid after that point, if the thread exits quickly.
  1380. */
  1381. if (!IS_ERR(p)) {
  1382. struct completion vfork;
  1383. trace_sched_process_fork(current, p);
  1384. nr = task_pid_vnr(p);
  1385. if (clone_flags & CLONE_PARENT_SETTID)
  1386. put_user(nr, parent_tidptr);
  1387. if (clone_flags & CLONE_VFORK) {
  1388. p->vfork_done = &vfork;
  1389. init_completion(&vfork);
  1390. get_task_struct(p);
  1391. }
  1392. wake_up_new_task(p);
  1393. /* forking complete and child started to run, tell ptracer */
  1394. if (unlikely(trace))
  1395. ptrace_event(trace, nr);
  1396. if (clone_flags & CLONE_VFORK) {
  1397. if (!wait_for_vfork_done(p, &vfork))
  1398. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1399. }
  1400. } else {
  1401. nr = PTR_ERR(p);
  1402. }
  1403. return nr;
  1404. }
  1405. /*
  1406. * Create a kernel thread.
  1407. */
  1408. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1409. {
  1410. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1411. (unsigned long)arg, NULL, NULL);
  1412. }
  1413. #ifdef __ARCH_WANT_SYS_FORK
  1414. SYSCALL_DEFINE0(fork)
  1415. {
  1416. #ifdef CONFIG_MMU
  1417. return do_fork(SIGCHLD, 0, 0, NULL, NULL);
  1418. #else
  1419. /* can not support in nommu mode */
  1420. return -EINVAL;
  1421. #endif
  1422. }
  1423. #endif
  1424. #ifdef __ARCH_WANT_SYS_VFORK
  1425. SYSCALL_DEFINE0(vfork)
  1426. {
  1427. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1428. 0, NULL, NULL);
  1429. }
  1430. #endif
  1431. #ifdef __ARCH_WANT_SYS_CLONE
  1432. #ifdef CONFIG_CLONE_BACKWARDS
  1433. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1434. int __user *, parent_tidptr,
  1435. int, tls_val,
  1436. int __user *, child_tidptr)
  1437. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1438. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1439. int __user *, parent_tidptr,
  1440. int __user *, child_tidptr,
  1441. int, tls_val)
  1442. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1443. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1444. int, stack_size,
  1445. int __user *, parent_tidptr,
  1446. int __user *, child_tidptr,
  1447. int, tls_val)
  1448. #else
  1449. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1450. int __user *, parent_tidptr,
  1451. int __user *, child_tidptr,
  1452. int, tls_val)
  1453. #endif
  1454. {
  1455. return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
  1456. }
  1457. #endif
  1458. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1459. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1460. #endif
  1461. static void sighand_ctor(void *data)
  1462. {
  1463. struct sighand_struct *sighand = data;
  1464. spin_lock_init(&sighand->siglock);
  1465. init_waitqueue_head(&sighand->signalfd_wqh);
  1466. }
  1467. void __init proc_caches_init(void)
  1468. {
  1469. sighand_cachep = kmem_cache_create("sighand_cache",
  1470. sizeof(struct sighand_struct), 0,
  1471. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1472. SLAB_NOTRACK, sighand_ctor);
  1473. signal_cachep = kmem_cache_create("signal_cache",
  1474. sizeof(struct signal_struct), 0,
  1475. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1476. files_cachep = kmem_cache_create("files_cache",
  1477. sizeof(struct files_struct), 0,
  1478. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1479. fs_cachep = kmem_cache_create("fs_cache",
  1480. sizeof(struct fs_struct), 0,
  1481. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1482. /*
  1483. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1484. * whole struct cpumask for the OFFSTACK case. We could change
  1485. * this to *only* allocate as much of it as required by the
  1486. * maximum number of CPU's we can ever have. The cpumask_allocation
  1487. * is at the end of the structure, exactly for that reason.
  1488. */
  1489. mm_cachep = kmem_cache_create("mm_struct",
  1490. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1491. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1492. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1493. mmap_init();
  1494. nsproxy_cache_init();
  1495. }
  1496. /*
  1497. * Check constraints on flags passed to the unshare system call.
  1498. */
  1499. static int check_unshare_flags(unsigned long unshare_flags)
  1500. {
  1501. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1502. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1503. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1504. CLONE_NEWUSER|CLONE_NEWPID))
  1505. return -EINVAL;
  1506. /*
  1507. * Not implemented, but pretend it works if there is nothing to
  1508. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1509. * needs to unshare vm.
  1510. */
  1511. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1512. /* FIXME: get_task_mm() increments ->mm_users */
  1513. if (atomic_read(&current->mm->mm_users) > 1)
  1514. return -EINVAL;
  1515. }
  1516. return 0;
  1517. }
  1518. /*
  1519. * Unshare the filesystem structure if it is being shared
  1520. */
  1521. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1522. {
  1523. struct fs_struct *fs = current->fs;
  1524. if (!(unshare_flags & CLONE_FS) || !fs)
  1525. return 0;
  1526. /* don't need lock here; in the worst case we'll do useless copy */
  1527. if (fs->users == 1)
  1528. return 0;
  1529. *new_fsp = copy_fs_struct(fs);
  1530. if (!*new_fsp)
  1531. return -ENOMEM;
  1532. return 0;
  1533. }
  1534. /*
  1535. * Unshare file descriptor table if it is being shared
  1536. */
  1537. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1538. {
  1539. struct files_struct *fd = current->files;
  1540. int error = 0;
  1541. if ((unshare_flags & CLONE_FILES) &&
  1542. (fd && atomic_read(&fd->count) > 1)) {
  1543. *new_fdp = dup_fd(fd, &error);
  1544. if (!*new_fdp)
  1545. return error;
  1546. }
  1547. return 0;
  1548. }
  1549. /*
  1550. * unshare allows a process to 'unshare' part of the process
  1551. * context which was originally shared using clone. copy_*
  1552. * functions used by do_fork() cannot be used here directly
  1553. * because they modify an inactive task_struct that is being
  1554. * constructed. Here we are modifying the current, active,
  1555. * task_struct.
  1556. */
  1557. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1558. {
  1559. struct fs_struct *fs, *new_fs = NULL;
  1560. struct files_struct *fd, *new_fd = NULL;
  1561. struct cred *new_cred = NULL;
  1562. struct nsproxy *new_nsproxy = NULL;
  1563. int do_sysvsem = 0;
  1564. int err;
  1565. /*
  1566. * If unsharing a user namespace must also unshare the thread.
  1567. */
  1568. if (unshare_flags & CLONE_NEWUSER)
  1569. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1570. /*
  1571. * If unsharing a thread from a thread group, must also unshare vm.
  1572. */
  1573. if (unshare_flags & CLONE_THREAD)
  1574. unshare_flags |= CLONE_VM;
  1575. /*
  1576. * If unsharing vm, must also unshare signal handlers.
  1577. */
  1578. if (unshare_flags & CLONE_VM)
  1579. unshare_flags |= CLONE_SIGHAND;
  1580. /*
  1581. * If unsharing namespace, must also unshare filesystem information.
  1582. */
  1583. if (unshare_flags & CLONE_NEWNS)
  1584. unshare_flags |= CLONE_FS;
  1585. err = check_unshare_flags(unshare_flags);
  1586. if (err)
  1587. goto bad_unshare_out;
  1588. /*
  1589. * CLONE_NEWIPC must also detach from the undolist: after switching
  1590. * to a new ipc namespace, the semaphore arrays from the old
  1591. * namespace are unreachable.
  1592. */
  1593. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1594. do_sysvsem = 1;
  1595. err = unshare_fs(unshare_flags, &new_fs);
  1596. if (err)
  1597. goto bad_unshare_out;
  1598. err = unshare_fd(unshare_flags, &new_fd);
  1599. if (err)
  1600. goto bad_unshare_cleanup_fs;
  1601. err = unshare_userns(unshare_flags, &new_cred);
  1602. if (err)
  1603. goto bad_unshare_cleanup_fd;
  1604. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1605. new_cred, new_fs);
  1606. if (err)
  1607. goto bad_unshare_cleanup_cred;
  1608. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1609. if (do_sysvsem) {
  1610. /*
  1611. * CLONE_SYSVSEM is equivalent to sys_exit().
  1612. */
  1613. exit_sem(current);
  1614. }
  1615. if (new_nsproxy)
  1616. switch_task_namespaces(current, new_nsproxy);
  1617. task_lock(current);
  1618. if (new_fs) {
  1619. fs = current->fs;
  1620. spin_lock(&fs->lock);
  1621. current->fs = new_fs;
  1622. if (--fs->users)
  1623. new_fs = NULL;
  1624. else
  1625. new_fs = fs;
  1626. spin_unlock(&fs->lock);
  1627. }
  1628. if (new_fd) {
  1629. fd = current->files;
  1630. current->files = new_fd;
  1631. new_fd = fd;
  1632. }
  1633. task_unlock(current);
  1634. if (new_cred) {
  1635. /* Install the new user namespace */
  1636. commit_creds(new_cred);
  1637. new_cred = NULL;
  1638. }
  1639. }
  1640. bad_unshare_cleanup_cred:
  1641. if (new_cred)
  1642. put_cred(new_cred);
  1643. bad_unshare_cleanup_fd:
  1644. if (new_fd)
  1645. put_files_struct(new_fd);
  1646. bad_unshare_cleanup_fs:
  1647. if (new_fs)
  1648. free_fs_struct(new_fs);
  1649. bad_unshare_out:
  1650. return err;
  1651. }
  1652. /*
  1653. * Helper to unshare the files of the current task.
  1654. * We don't want to expose copy_files internals to
  1655. * the exec layer of the kernel.
  1656. */
  1657. int unshare_files(struct files_struct **displaced)
  1658. {
  1659. struct task_struct *task = current;
  1660. struct files_struct *copy = NULL;
  1661. int error;
  1662. error = unshare_fd(CLONE_FILES, &copy);
  1663. if (error || !copy) {
  1664. *displaced = NULL;
  1665. return error;
  1666. }
  1667. *displaced = task->files;
  1668. task_lock(task);
  1669. task->files = copy;
  1670. task_unlock(task);
  1671. return 0;
  1672. }