ravb_main.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396
  1. /* Renesas Ethernet AVB device driver
  2. *
  3. * Copyright (C) 2014-2015 Renesas Electronics Corporation
  4. * Copyright (C) 2015 Renesas Solutions Corp.
  5. * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
  6. *
  7. * Based on the SuperH Ethernet driver
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms and conditions of the GNU General Public License version 2,
  11. * as published by the Free Software Foundation.
  12. */
  13. #include <linux/cache.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/err.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/ethtool.h>
  20. #include <linux/if_vlan.h>
  21. #include <linux/kernel.h>
  22. #include <linux/list.h>
  23. #include <linux/module.h>
  24. #include <linux/net_tstamp.h>
  25. #include <linux/of.h>
  26. #include <linux/of_device.h>
  27. #include <linux/of_irq.h>
  28. #include <linux/of_mdio.h>
  29. #include <linux/of_net.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/slab.h>
  32. #include <linux/spinlock.h>
  33. #include <linux/sys_soc.h>
  34. #include <asm/div64.h>
  35. #include "ravb.h"
  36. #define RAVB_DEF_MSG_ENABLE \
  37. (NETIF_MSG_LINK | \
  38. NETIF_MSG_TIMER | \
  39. NETIF_MSG_RX_ERR | \
  40. NETIF_MSG_TX_ERR)
  41. static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
  42. "ch0", /* RAVB_BE */
  43. "ch1", /* RAVB_NC */
  44. };
  45. static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
  46. "ch18", /* RAVB_BE */
  47. "ch19", /* RAVB_NC */
  48. };
  49. void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
  50. u32 set)
  51. {
  52. ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
  53. }
  54. int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
  55. {
  56. int i;
  57. for (i = 0; i < 10000; i++) {
  58. if ((ravb_read(ndev, reg) & mask) == value)
  59. return 0;
  60. udelay(10);
  61. }
  62. return -ETIMEDOUT;
  63. }
  64. static int ravb_config(struct net_device *ndev)
  65. {
  66. int error;
  67. /* Set config mode */
  68. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
  69. /* Check if the operating mode is changed to the config mode */
  70. error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
  71. if (error)
  72. netdev_err(ndev, "failed to switch device to config mode\n");
  73. return error;
  74. }
  75. static void ravb_set_duplex(struct net_device *ndev)
  76. {
  77. struct ravb_private *priv = netdev_priv(ndev);
  78. ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
  79. }
  80. static void ravb_set_rate(struct net_device *ndev)
  81. {
  82. struct ravb_private *priv = netdev_priv(ndev);
  83. switch (priv->speed) {
  84. case 100: /* 100BASE */
  85. ravb_write(ndev, GECMR_SPEED_100, GECMR);
  86. break;
  87. case 1000: /* 1000BASE */
  88. ravb_write(ndev, GECMR_SPEED_1000, GECMR);
  89. break;
  90. }
  91. }
  92. static void ravb_set_buffer_align(struct sk_buff *skb)
  93. {
  94. u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
  95. if (reserve)
  96. skb_reserve(skb, RAVB_ALIGN - reserve);
  97. }
  98. /* Get MAC address from the MAC address registers
  99. *
  100. * Ethernet AVB device doesn't have ROM for MAC address.
  101. * This function gets the MAC address that was used by a bootloader.
  102. */
  103. static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
  104. {
  105. if (mac) {
  106. ether_addr_copy(ndev->dev_addr, mac);
  107. } else {
  108. u32 mahr = ravb_read(ndev, MAHR);
  109. u32 malr = ravb_read(ndev, MALR);
  110. ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
  111. ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
  112. ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
  113. ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
  114. ndev->dev_addr[4] = (malr >> 8) & 0xFF;
  115. ndev->dev_addr[5] = (malr >> 0) & 0xFF;
  116. }
  117. }
  118. static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
  119. {
  120. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  121. mdiobb);
  122. ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
  123. }
  124. /* MDC pin control */
  125. static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
  126. {
  127. ravb_mdio_ctrl(ctrl, PIR_MDC, level);
  128. }
  129. /* Data I/O pin control */
  130. static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
  131. {
  132. ravb_mdio_ctrl(ctrl, PIR_MMD, output);
  133. }
  134. /* Set data bit */
  135. static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
  136. {
  137. ravb_mdio_ctrl(ctrl, PIR_MDO, value);
  138. }
  139. /* Get data bit */
  140. static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
  141. {
  142. struct ravb_private *priv = container_of(ctrl, struct ravb_private,
  143. mdiobb);
  144. return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
  145. }
  146. /* MDIO bus control struct */
  147. static struct mdiobb_ops bb_ops = {
  148. .owner = THIS_MODULE,
  149. .set_mdc = ravb_set_mdc,
  150. .set_mdio_dir = ravb_set_mdio_dir,
  151. .set_mdio_data = ravb_set_mdio_data,
  152. .get_mdio_data = ravb_get_mdio_data,
  153. };
  154. /* Free TX skb function for AVB-IP */
  155. static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
  156. {
  157. struct ravb_private *priv = netdev_priv(ndev);
  158. struct net_device_stats *stats = &priv->stats[q];
  159. struct ravb_tx_desc *desc;
  160. int free_num = 0;
  161. int entry;
  162. u32 size;
  163. for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
  164. bool txed;
  165. entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
  166. NUM_TX_DESC);
  167. desc = &priv->tx_ring[q][entry];
  168. txed = desc->die_dt == DT_FEMPTY;
  169. if (free_txed_only && !txed)
  170. break;
  171. /* Descriptor type must be checked before all other reads */
  172. dma_rmb();
  173. size = le16_to_cpu(desc->ds_tagl) & TX_DS;
  174. /* Free the original skb. */
  175. if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
  176. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  177. size, DMA_TO_DEVICE);
  178. /* Last packet descriptor? */
  179. if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
  180. entry /= NUM_TX_DESC;
  181. dev_kfree_skb_any(priv->tx_skb[q][entry]);
  182. priv->tx_skb[q][entry] = NULL;
  183. if (txed)
  184. stats->tx_packets++;
  185. }
  186. free_num++;
  187. }
  188. if (txed)
  189. stats->tx_bytes += size;
  190. desc->die_dt = DT_EEMPTY;
  191. }
  192. return free_num;
  193. }
  194. /* Free skb's and DMA buffers for Ethernet AVB */
  195. static void ravb_ring_free(struct net_device *ndev, int q)
  196. {
  197. struct ravb_private *priv = netdev_priv(ndev);
  198. int ring_size;
  199. int i;
  200. if (priv->rx_ring[q]) {
  201. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  202. struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
  203. if (!dma_mapping_error(ndev->dev.parent,
  204. le32_to_cpu(desc->dptr)))
  205. dma_unmap_single(ndev->dev.parent,
  206. le32_to_cpu(desc->dptr),
  207. priv->rx_buf_sz,
  208. DMA_FROM_DEVICE);
  209. }
  210. ring_size = sizeof(struct ravb_ex_rx_desc) *
  211. (priv->num_rx_ring[q] + 1);
  212. dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
  213. priv->rx_desc_dma[q]);
  214. priv->rx_ring[q] = NULL;
  215. }
  216. if (priv->tx_ring[q]) {
  217. ravb_tx_free(ndev, q, false);
  218. ring_size = sizeof(struct ravb_tx_desc) *
  219. (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
  220. dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
  221. priv->tx_desc_dma[q]);
  222. priv->tx_ring[q] = NULL;
  223. }
  224. /* Free RX skb ringbuffer */
  225. if (priv->rx_skb[q]) {
  226. for (i = 0; i < priv->num_rx_ring[q]; i++)
  227. dev_kfree_skb(priv->rx_skb[q][i]);
  228. }
  229. kfree(priv->rx_skb[q]);
  230. priv->rx_skb[q] = NULL;
  231. /* Free aligned TX buffers */
  232. kfree(priv->tx_align[q]);
  233. priv->tx_align[q] = NULL;
  234. /* Free TX skb ringbuffer.
  235. * SKBs are freed by ravb_tx_free() call above.
  236. */
  237. kfree(priv->tx_skb[q]);
  238. priv->tx_skb[q] = NULL;
  239. }
  240. /* Format skb and descriptor buffer for Ethernet AVB */
  241. static void ravb_ring_format(struct net_device *ndev, int q)
  242. {
  243. struct ravb_private *priv = netdev_priv(ndev);
  244. struct ravb_ex_rx_desc *rx_desc;
  245. struct ravb_tx_desc *tx_desc;
  246. struct ravb_desc *desc;
  247. int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
  248. int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
  249. NUM_TX_DESC;
  250. dma_addr_t dma_addr;
  251. int i;
  252. priv->cur_rx[q] = 0;
  253. priv->cur_tx[q] = 0;
  254. priv->dirty_rx[q] = 0;
  255. priv->dirty_tx[q] = 0;
  256. memset(priv->rx_ring[q], 0, rx_ring_size);
  257. /* Build RX ring buffer */
  258. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  259. /* RX descriptor */
  260. rx_desc = &priv->rx_ring[q][i];
  261. rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
  262. dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
  263. priv->rx_buf_sz,
  264. DMA_FROM_DEVICE);
  265. /* We just set the data size to 0 for a failed mapping which
  266. * should prevent DMA from happening...
  267. */
  268. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  269. rx_desc->ds_cc = cpu_to_le16(0);
  270. rx_desc->dptr = cpu_to_le32(dma_addr);
  271. rx_desc->die_dt = DT_FEMPTY;
  272. }
  273. rx_desc = &priv->rx_ring[q][i];
  274. rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  275. rx_desc->die_dt = DT_LINKFIX; /* type */
  276. memset(priv->tx_ring[q], 0, tx_ring_size);
  277. /* Build TX ring buffer */
  278. for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
  279. i++, tx_desc++) {
  280. tx_desc->die_dt = DT_EEMPTY;
  281. tx_desc++;
  282. tx_desc->die_dt = DT_EEMPTY;
  283. }
  284. tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  285. tx_desc->die_dt = DT_LINKFIX; /* type */
  286. /* RX descriptor base address for best effort */
  287. desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
  288. desc->die_dt = DT_LINKFIX; /* type */
  289. desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
  290. /* TX descriptor base address for best effort */
  291. desc = &priv->desc_bat[q];
  292. desc->die_dt = DT_LINKFIX; /* type */
  293. desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
  294. }
  295. /* Init skb and descriptor buffer for Ethernet AVB */
  296. static int ravb_ring_init(struct net_device *ndev, int q)
  297. {
  298. struct ravb_private *priv = netdev_priv(ndev);
  299. struct sk_buff *skb;
  300. int ring_size;
  301. int i;
  302. priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
  303. ETH_HLEN + VLAN_HLEN;
  304. /* Allocate RX and TX skb rings */
  305. priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
  306. sizeof(*priv->rx_skb[q]), GFP_KERNEL);
  307. priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
  308. sizeof(*priv->tx_skb[q]), GFP_KERNEL);
  309. if (!priv->rx_skb[q] || !priv->tx_skb[q])
  310. goto error;
  311. for (i = 0; i < priv->num_rx_ring[q]; i++) {
  312. skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
  313. if (!skb)
  314. goto error;
  315. ravb_set_buffer_align(skb);
  316. priv->rx_skb[q][i] = skb;
  317. }
  318. /* Allocate rings for the aligned buffers */
  319. priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
  320. DPTR_ALIGN - 1, GFP_KERNEL);
  321. if (!priv->tx_align[q])
  322. goto error;
  323. /* Allocate all RX descriptors. */
  324. ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
  325. priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  326. &priv->rx_desc_dma[q],
  327. GFP_KERNEL);
  328. if (!priv->rx_ring[q])
  329. goto error;
  330. priv->dirty_rx[q] = 0;
  331. /* Allocate all TX descriptors. */
  332. ring_size = sizeof(struct ravb_tx_desc) *
  333. (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
  334. priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
  335. &priv->tx_desc_dma[q],
  336. GFP_KERNEL);
  337. if (!priv->tx_ring[q])
  338. goto error;
  339. return 0;
  340. error:
  341. ravb_ring_free(ndev, q);
  342. return -ENOMEM;
  343. }
  344. /* E-MAC init function */
  345. static void ravb_emac_init(struct net_device *ndev)
  346. {
  347. struct ravb_private *priv = netdev_priv(ndev);
  348. /* Receive frame limit set register */
  349. ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
  350. /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
  351. ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
  352. (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
  353. ECMR_TE | ECMR_RE, ECMR);
  354. ravb_set_rate(ndev);
  355. /* Set MAC address */
  356. ravb_write(ndev,
  357. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  358. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  359. ravb_write(ndev,
  360. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  361. /* E-MAC status register clear */
  362. ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
  363. /* E-MAC interrupt enable register */
  364. ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
  365. }
  366. /* Device init function for Ethernet AVB */
  367. static int ravb_dmac_init(struct net_device *ndev)
  368. {
  369. struct ravb_private *priv = netdev_priv(ndev);
  370. int error;
  371. /* Set CONFIG mode */
  372. error = ravb_config(ndev);
  373. if (error)
  374. return error;
  375. error = ravb_ring_init(ndev, RAVB_BE);
  376. if (error)
  377. return error;
  378. error = ravb_ring_init(ndev, RAVB_NC);
  379. if (error) {
  380. ravb_ring_free(ndev, RAVB_BE);
  381. return error;
  382. }
  383. /* Descriptor format */
  384. ravb_ring_format(ndev, RAVB_BE);
  385. ravb_ring_format(ndev, RAVB_NC);
  386. #if defined(__LITTLE_ENDIAN)
  387. ravb_modify(ndev, CCC, CCC_BOC, 0);
  388. #else
  389. ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
  390. #endif
  391. /* Set AVB RX */
  392. ravb_write(ndev,
  393. RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
  394. /* Set FIFO size */
  395. ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
  396. /* Timestamp enable */
  397. ravb_write(ndev, TCCR_TFEN, TCCR);
  398. /* Interrupt init: */
  399. if (priv->chip_id == RCAR_GEN3) {
  400. /* Clear DIL.DPLx */
  401. ravb_write(ndev, 0, DIL);
  402. /* Set queue specific interrupt */
  403. ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
  404. }
  405. /* Frame receive */
  406. ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
  407. /* Disable FIFO full warning */
  408. ravb_write(ndev, 0, RIC1);
  409. /* Receive FIFO full error, descriptor empty */
  410. ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
  411. /* Frame transmitted, timestamp FIFO updated */
  412. ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
  413. /* Setting the control will start the AVB-DMAC process. */
  414. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
  415. return 0;
  416. }
  417. static void ravb_get_tx_tstamp(struct net_device *ndev)
  418. {
  419. struct ravb_private *priv = netdev_priv(ndev);
  420. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  421. struct skb_shared_hwtstamps shhwtstamps;
  422. struct sk_buff *skb;
  423. struct timespec64 ts;
  424. u16 tag, tfa_tag;
  425. int count;
  426. u32 tfa2;
  427. count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
  428. while (count--) {
  429. tfa2 = ravb_read(ndev, TFA2);
  430. tfa_tag = (tfa2 & TFA2_TST) >> 16;
  431. ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
  432. ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
  433. ravb_read(ndev, TFA1);
  434. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  435. shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
  436. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
  437. list) {
  438. skb = ts_skb->skb;
  439. tag = ts_skb->tag;
  440. list_del(&ts_skb->list);
  441. kfree(ts_skb);
  442. if (tag == tfa_tag) {
  443. skb_tstamp_tx(skb, &shhwtstamps);
  444. break;
  445. }
  446. }
  447. ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
  448. }
  449. }
  450. static void ravb_rx_csum(struct sk_buff *skb)
  451. {
  452. u8 *hw_csum;
  453. /* The hardware checksum is 2 bytes appended to packet data */
  454. if (unlikely(skb->len < 2))
  455. return;
  456. hw_csum = skb_tail_pointer(skb) - 2;
  457. skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
  458. skb->ip_summed = CHECKSUM_COMPLETE;
  459. skb_trim(skb, skb->len - 2);
  460. }
  461. /* Packet receive function for Ethernet AVB */
  462. static bool ravb_rx(struct net_device *ndev, int *quota, int q)
  463. {
  464. struct ravb_private *priv = netdev_priv(ndev);
  465. int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
  466. int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
  467. priv->cur_rx[q];
  468. struct net_device_stats *stats = &priv->stats[q];
  469. struct ravb_ex_rx_desc *desc;
  470. struct sk_buff *skb;
  471. dma_addr_t dma_addr;
  472. struct timespec64 ts;
  473. u8 desc_status;
  474. u16 pkt_len;
  475. int limit;
  476. boguscnt = min(boguscnt, *quota);
  477. limit = boguscnt;
  478. desc = &priv->rx_ring[q][entry];
  479. while (desc->die_dt != DT_FEMPTY) {
  480. /* Descriptor type must be checked before all other reads */
  481. dma_rmb();
  482. desc_status = desc->msc;
  483. pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
  484. if (--boguscnt < 0)
  485. break;
  486. /* We use 0-byte descriptors to mark the DMA mapping errors */
  487. if (!pkt_len)
  488. continue;
  489. if (desc_status & MSC_MC)
  490. stats->multicast++;
  491. if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
  492. MSC_CEEF)) {
  493. stats->rx_errors++;
  494. if (desc_status & MSC_CRC)
  495. stats->rx_crc_errors++;
  496. if (desc_status & MSC_RFE)
  497. stats->rx_frame_errors++;
  498. if (desc_status & (MSC_RTLF | MSC_RTSF))
  499. stats->rx_length_errors++;
  500. if (desc_status & MSC_CEEF)
  501. stats->rx_missed_errors++;
  502. } else {
  503. u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
  504. skb = priv->rx_skb[q][entry];
  505. priv->rx_skb[q][entry] = NULL;
  506. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  507. priv->rx_buf_sz,
  508. DMA_FROM_DEVICE);
  509. get_ts &= (q == RAVB_NC) ?
  510. RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
  511. ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  512. if (get_ts) {
  513. struct skb_shared_hwtstamps *shhwtstamps;
  514. shhwtstamps = skb_hwtstamps(skb);
  515. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  516. ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
  517. 32) | le32_to_cpu(desc->ts_sl);
  518. ts.tv_nsec = le32_to_cpu(desc->ts_n);
  519. shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
  520. }
  521. skb_put(skb, pkt_len);
  522. skb->protocol = eth_type_trans(skb, ndev);
  523. if (ndev->features & NETIF_F_RXCSUM)
  524. ravb_rx_csum(skb);
  525. napi_gro_receive(&priv->napi[q], skb);
  526. stats->rx_packets++;
  527. stats->rx_bytes += pkt_len;
  528. }
  529. entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
  530. desc = &priv->rx_ring[q][entry];
  531. }
  532. /* Refill the RX ring buffers. */
  533. for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
  534. entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
  535. desc = &priv->rx_ring[q][entry];
  536. desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
  537. if (!priv->rx_skb[q][entry]) {
  538. skb = netdev_alloc_skb(ndev,
  539. priv->rx_buf_sz +
  540. RAVB_ALIGN - 1);
  541. if (!skb)
  542. break; /* Better luck next round. */
  543. ravb_set_buffer_align(skb);
  544. dma_addr = dma_map_single(ndev->dev.parent, skb->data,
  545. le16_to_cpu(desc->ds_cc),
  546. DMA_FROM_DEVICE);
  547. skb_checksum_none_assert(skb);
  548. /* We just set the data size to 0 for a failed mapping
  549. * which should prevent DMA from happening...
  550. */
  551. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  552. desc->ds_cc = cpu_to_le16(0);
  553. desc->dptr = cpu_to_le32(dma_addr);
  554. priv->rx_skb[q][entry] = skb;
  555. }
  556. /* Descriptor type must be set after all the above writes */
  557. dma_wmb();
  558. desc->die_dt = DT_FEMPTY;
  559. }
  560. *quota -= limit - (++boguscnt);
  561. return boguscnt <= 0;
  562. }
  563. static void ravb_rcv_snd_disable(struct net_device *ndev)
  564. {
  565. /* Disable TX and RX */
  566. ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
  567. }
  568. static void ravb_rcv_snd_enable(struct net_device *ndev)
  569. {
  570. /* Enable TX and RX */
  571. ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
  572. }
  573. /* function for waiting dma process finished */
  574. static int ravb_stop_dma(struct net_device *ndev)
  575. {
  576. int error;
  577. /* Wait for stopping the hardware TX process */
  578. error = ravb_wait(ndev, TCCR,
  579. TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
  580. if (error)
  581. return error;
  582. error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
  583. 0);
  584. if (error)
  585. return error;
  586. /* Stop the E-MAC's RX/TX processes. */
  587. ravb_rcv_snd_disable(ndev);
  588. /* Wait for stopping the RX DMA process */
  589. error = ravb_wait(ndev, CSR, CSR_RPO, 0);
  590. if (error)
  591. return error;
  592. /* Stop AVB-DMAC process */
  593. return ravb_config(ndev);
  594. }
  595. /* E-MAC interrupt handler */
  596. static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
  597. {
  598. struct ravb_private *priv = netdev_priv(ndev);
  599. u32 ecsr, psr;
  600. ecsr = ravb_read(ndev, ECSR);
  601. ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
  602. if (ecsr & ECSR_MPD)
  603. pm_wakeup_event(&priv->pdev->dev, 0);
  604. if (ecsr & ECSR_ICD)
  605. ndev->stats.tx_carrier_errors++;
  606. if (ecsr & ECSR_LCHNG) {
  607. /* Link changed */
  608. if (priv->no_avb_link)
  609. return;
  610. psr = ravb_read(ndev, PSR);
  611. if (priv->avb_link_active_low)
  612. psr ^= PSR_LMON;
  613. if (!(psr & PSR_LMON)) {
  614. /* DIsable RX and TX */
  615. ravb_rcv_snd_disable(ndev);
  616. } else {
  617. /* Enable RX and TX */
  618. ravb_rcv_snd_enable(ndev);
  619. }
  620. }
  621. }
  622. static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
  623. {
  624. struct net_device *ndev = dev_id;
  625. struct ravb_private *priv = netdev_priv(ndev);
  626. spin_lock(&priv->lock);
  627. ravb_emac_interrupt_unlocked(ndev);
  628. mmiowb();
  629. spin_unlock(&priv->lock);
  630. return IRQ_HANDLED;
  631. }
  632. /* Error interrupt handler */
  633. static void ravb_error_interrupt(struct net_device *ndev)
  634. {
  635. struct ravb_private *priv = netdev_priv(ndev);
  636. u32 eis, ris2;
  637. eis = ravb_read(ndev, EIS);
  638. ravb_write(ndev, ~EIS_QFS, EIS);
  639. if (eis & EIS_QFS) {
  640. ris2 = ravb_read(ndev, RIS2);
  641. ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
  642. /* Receive Descriptor Empty int */
  643. if (ris2 & RIS2_QFF0)
  644. priv->stats[RAVB_BE].rx_over_errors++;
  645. /* Receive Descriptor Empty int */
  646. if (ris2 & RIS2_QFF1)
  647. priv->stats[RAVB_NC].rx_over_errors++;
  648. /* Receive FIFO Overflow int */
  649. if (ris2 & RIS2_RFFF)
  650. priv->rx_fifo_errors++;
  651. }
  652. }
  653. static bool ravb_queue_interrupt(struct net_device *ndev, int q)
  654. {
  655. struct ravb_private *priv = netdev_priv(ndev);
  656. u32 ris0 = ravb_read(ndev, RIS0);
  657. u32 ric0 = ravb_read(ndev, RIC0);
  658. u32 tis = ravb_read(ndev, TIS);
  659. u32 tic = ravb_read(ndev, TIC);
  660. if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
  661. if (napi_schedule_prep(&priv->napi[q])) {
  662. /* Mask RX and TX interrupts */
  663. if (priv->chip_id == RCAR_GEN2) {
  664. ravb_write(ndev, ric0 & ~BIT(q), RIC0);
  665. ravb_write(ndev, tic & ~BIT(q), TIC);
  666. } else {
  667. ravb_write(ndev, BIT(q), RID0);
  668. ravb_write(ndev, BIT(q), TID);
  669. }
  670. __napi_schedule(&priv->napi[q]);
  671. } else {
  672. netdev_warn(ndev,
  673. "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
  674. ris0, ric0);
  675. netdev_warn(ndev,
  676. " tx status 0x%08x, tx mask 0x%08x.\n",
  677. tis, tic);
  678. }
  679. return true;
  680. }
  681. return false;
  682. }
  683. static bool ravb_timestamp_interrupt(struct net_device *ndev)
  684. {
  685. u32 tis = ravb_read(ndev, TIS);
  686. if (tis & TIS_TFUF) {
  687. ravb_write(ndev, ~TIS_TFUF, TIS);
  688. ravb_get_tx_tstamp(ndev);
  689. return true;
  690. }
  691. return false;
  692. }
  693. static irqreturn_t ravb_interrupt(int irq, void *dev_id)
  694. {
  695. struct net_device *ndev = dev_id;
  696. struct ravb_private *priv = netdev_priv(ndev);
  697. irqreturn_t result = IRQ_NONE;
  698. u32 iss;
  699. spin_lock(&priv->lock);
  700. /* Get interrupt status */
  701. iss = ravb_read(ndev, ISS);
  702. /* Received and transmitted interrupts */
  703. if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
  704. int q;
  705. /* Timestamp updated */
  706. if (ravb_timestamp_interrupt(ndev))
  707. result = IRQ_HANDLED;
  708. /* Network control and best effort queue RX/TX */
  709. for (q = RAVB_NC; q >= RAVB_BE; q--) {
  710. if (ravb_queue_interrupt(ndev, q))
  711. result = IRQ_HANDLED;
  712. }
  713. }
  714. /* E-MAC status summary */
  715. if (iss & ISS_MS) {
  716. ravb_emac_interrupt_unlocked(ndev);
  717. result = IRQ_HANDLED;
  718. }
  719. /* Error status summary */
  720. if (iss & ISS_ES) {
  721. ravb_error_interrupt(ndev);
  722. result = IRQ_HANDLED;
  723. }
  724. /* gPTP interrupt status summary */
  725. if (iss & ISS_CGIS) {
  726. ravb_ptp_interrupt(ndev);
  727. result = IRQ_HANDLED;
  728. }
  729. mmiowb();
  730. spin_unlock(&priv->lock);
  731. return result;
  732. }
  733. /* Timestamp/Error/gPTP interrupt handler */
  734. static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
  735. {
  736. struct net_device *ndev = dev_id;
  737. struct ravb_private *priv = netdev_priv(ndev);
  738. irqreturn_t result = IRQ_NONE;
  739. u32 iss;
  740. spin_lock(&priv->lock);
  741. /* Get interrupt status */
  742. iss = ravb_read(ndev, ISS);
  743. /* Timestamp updated */
  744. if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
  745. result = IRQ_HANDLED;
  746. /* Error status summary */
  747. if (iss & ISS_ES) {
  748. ravb_error_interrupt(ndev);
  749. result = IRQ_HANDLED;
  750. }
  751. /* gPTP interrupt status summary */
  752. if (iss & ISS_CGIS) {
  753. ravb_ptp_interrupt(ndev);
  754. result = IRQ_HANDLED;
  755. }
  756. mmiowb();
  757. spin_unlock(&priv->lock);
  758. return result;
  759. }
  760. static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
  761. {
  762. struct net_device *ndev = dev_id;
  763. struct ravb_private *priv = netdev_priv(ndev);
  764. irqreturn_t result = IRQ_NONE;
  765. spin_lock(&priv->lock);
  766. /* Network control/Best effort queue RX/TX */
  767. if (ravb_queue_interrupt(ndev, q))
  768. result = IRQ_HANDLED;
  769. mmiowb();
  770. spin_unlock(&priv->lock);
  771. return result;
  772. }
  773. static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
  774. {
  775. return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
  776. }
  777. static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
  778. {
  779. return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
  780. }
  781. static int ravb_poll(struct napi_struct *napi, int budget)
  782. {
  783. struct net_device *ndev = napi->dev;
  784. struct ravb_private *priv = netdev_priv(ndev);
  785. unsigned long flags;
  786. int q = napi - priv->napi;
  787. int mask = BIT(q);
  788. int quota = budget;
  789. u32 ris0, tis;
  790. for (;;) {
  791. tis = ravb_read(ndev, TIS);
  792. ris0 = ravb_read(ndev, RIS0);
  793. if (!((ris0 & mask) || (tis & mask)))
  794. break;
  795. /* Processing RX Descriptor Ring */
  796. if (ris0 & mask) {
  797. /* Clear RX interrupt */
  798. ravb_write(ndev, ~mask, RIS0);
  799. if (ravb_rx(ndev, &quota, q))
  800. goto out;
  801. }
  802. /* Processing TX Descriptor Ring */
  803. if (tis & mask) {
  804. spin_lock_irqsave(&priv->lock, flags);
  805. /* Clear TX interrupt */
  806. ravb_write(ndev, ~mask, TIS);
  807. ravb_tx_free(ndev, q, true);
  808. netif_wake_subqueue(ndev, q);
  809. mmiowb();
  810. spin_unlock_irqrestore(&priv->lock, flags);
  811. }
  812. }
  813. napi_complete(napi);
  814. /* Re-enable RX/TX interrupts */
  815. spin_lock_irqsave(&priv->lock, flags);
  816. if (priv->chip_id == RCAR_GEN2) {
  817. ravb_modify(ndev, RIC0, mask, mask);
  818. ravb_modify(ndev, TIC, mask, mask);
  819. } else {
  820. ravb_write(ndev, mask, RIE0);
  821. ravb_write(ndev, mask, TIE);
  822. }
  823. mmiowb();
  824. spin_unlock_irqrestore(&priv->lock, flags);
  825. /* Receive error message handling */
  826. priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
  827. priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
  828. if (priv->rx_over_errors != ndev->stats.rx_over_errors)
  829. ndev->stats.rx_over_errors = priv->rx_over_errors;
  830. if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
  831. ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
  832. out:
  833. return budget - quota;
  834. }
  835. /* PHY state control function */
  836. static void ravb_adjust_link(struct net_device *ndev)
  837. {
  838. struct ravb_private *priv = netdev_priv(ndev);
  839. struct phy_device *phydev = ndev->phydev;
  840. bool new_state = false;
  841. if (phydev->link) {
  842. if (phydev->duplex != priv->duplex) {
  843. new_state = true;
  844. priv->duplex = phydev->duplex;
  845. ravb_set_duplex(ndev);
  846. }
  847. if (phydev->speed != priv->speed) {
  848. new_state = true;
  849. priv->speed = phydev->speed;
  850. ravb_set_rate(ndev);
  851. }
  852. if (!priv->link) {
  853. ravb_modify(ndev, ECMR, ECMR_TXF, 0);
  854. new_state = true;
  855. priv->link = phydev->link;
  856. if (priv->no_avb_link)
  857. ravb_rcv_snd_enable(ndev);
  858. }
  859. } else if (priv->link) {
  860. new_state = true;
  861. priv->link = 0;
  862. priv->speed = 0;
  863. priv->duplex = -1;
  864. if (priv->no_avb_link)
  865. ravb_rcv_snd_disable(ndev);
  866. }
  867. if (new_state && netif_msg_link(priv))
  868. phy_print_status(phydev);
  869. }
  870. static const struct soc_device_attribute r8a7795es10[] = {
  871. { .soc_id = "r8a7795", .revision = "ES1.0", },
  872. { /* sentinel */ }
  873. };
  874. /* PHY init function */
  875. static int ravb_phy_init(struct net_device *ndev)
  876. {
  877. struct device_node *np = ndev->dev.parent->of_node;
  878. struct ravb_private *priv = netdev_priv(ndev);
  879. struct phy_device *phydev;
  880. struct device_node *pn;
  881. int err;
  882. priv->link = 0;
  883. priv->speed = 0;
  884. priv->duplex = -1;
  885. /* Try connecting to PHY */
  886. pn = of_parse_phandle(np, "phy-handle", 0);
  887. if (!pn) {
  888. /* In the case of a fixed PHY, the DT node associated
  889. * to the PHY is the Ethernet MAC DT node.
  890. */
  891. if (of_phy_is_fixed_link(np)) {
  892. err = of_phy_register_fixed_link(np);
  893. if (err)
  894. return err;
  895. }
  896. pn = of_node_get(np);
  897. }
  898. phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
  899. priv->phy_interface);
  900. of_node_put(pn);
  901. if (!phydev) {
  902. netdev_err(ndev, "failed to connect PHY\n");
  903. err = -ENOENT;
  904. goto err_deregister_fixed_link;
  905. }
  906. /* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
  907. * at this time.
  908. */
  909. if (soc_device_match(r8a7795es10)) {
  910. err = phy_set_max_speed(phydev, SPEED_100);
  911. if (err) {
  912. netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
  913. goto err_phy_disconnect;
  914. }
  915. netdev_info(ndev, "limited PHY to 100Mbit/s\n");
  916. }
  917. /* 10BASE is not supported */
  918. phydev->supported &= ~PHY_10BT_FEATURES;
  919. phy_attached_info(phydev);
  920. return 0;
  921. err_phy_disconnect:
  922. phy_disconnect(phydev);
  923. err_deregister_fixed_link:
  924. if (of_phy_is_fixed_link(np))
  925. of_phy_deregister_fixed_link(np);
  926. return err;
  927. }
  928. /* PHY control start function */
  929. static int ravb_phy_start(struct net_device *ndev)
  930. {
  931. int error;
  932. error = ravb_phy_init(ndev);
  933. if (error)
  934. return error;
  935. phy_start(ndev->phydev);
  936. return 0;
  937. }
  938. static int ravb_get_link_ksettings(struct net_device *ndev,
  939. struct ethtool_link_ksettings *cmd)
  940. {
  941. struct ravb_private *priv = netdev_priv(ndev);
  942. unsigned long flags;
  943. if (!ndev->phydev)
  944. return -ENODEV;
  945. spin_lock_irqsave(&priv->lock, flags);
  946. phy_ethtool_ksettings_get(ndev->phydev, cmd);
  947. spin_unlock_irqrestore(&priv->lock, flags);
  948. return 0;
  949. }
  950. static int ravb_set_link_ksettings(struct net_device *ndev,
  951. const struct ethtool_link_ksettings *cmd)
  952. {
  953. struct ravb_private *priv = netdev_priv(ndev);
  954. unsigned long flags;
  955. int error;
  956. if (!ndev->phydev)
  957. return -ENODEV;
  958. spin_lock_irqsave(&priv->lock, flags);
  959. /* Disable TX and RX */
  960. ravb_rcv_snd_disable(ndev);
  961. error = phy_ethtool_ksettings_set(ndev->phydev, cmd);
  962. if (error)
  963. goto error_exit;
  964. if (cmd->base.duplex == DUPLEX_FULL)
  965. priv->duplex = 1;
  966. else
  967. priv->duplex = 0;
  968. ravb_set_duplex(ndev);
  969. error_exit:
  970. mdelay(1);
  971. /* Enable TX and RX */
  972. ravb_rcv_snd_enable(ndev);
  973. mmiowb();
  974. spin_unlock_irqrestore(&priv->lock, flags);
  975. return error;
  976. }
  977. static int ravb_nway_reset(struct net_device *ndev)
  978. {
  979. struct ravb_private *priv = netdev_priv(ndev);
  980. int error = -ENODEV;
  981. unsigned long flags;
  982. if (ndev->phydev) {
  983. spin_lock_irqsave(&priv->lock, flags);
  984. error = phy_start_aneg(ndev->phydev);
  985. spin_unlock_irqrestore(&priv->lock, flags);
  986. }
  987. return error;
  988. }
  989. static u32 ravb_get_msglevel(struct net_device *ndev)
  990. {
  991. struct ravb_private *priv = netdev_priv(ndev);
  992. return priv->msg_enable;
  993. }
  994. static void ravb_set_msglevel(struct net_device *ndev, u32 value)
  995. {
  996. struct ravb_private *priv = netdev_priv(ndev);
  997. priv->msg_enable = value;
  998. }
  999. static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
  1000. "rx_queue_0_current",
  1001. "tx_queue_0_current",
  1002. "rx_queue_0_dirty",
  1003. "tx_queue_0_dirty",
  1004. "rx_queue_0_packets",
  1005. "tx_queue_0_packets",
  1006. "rx_queue_0_bytes",
  1007. "tx_queue_0_bytes",
  1008. "rx_queue_0_mcast_packets",
  1009. "rx_queue_0_errors",
  1010. "rx_queue_0_crc_errors",
  1011. "rx_queue_0_frame_errors",
  1012. "rx_queue_0_length_errors",
  1013. "rx_queue_0_missed_errors",
  1014. "rx_queue_0_over_errors",
  1015. "rx_queue_1_current",
  1016. "tx_queue_1_current",
  1017. "rx_queue_1_dirty",
  1018. "tx_queue_1_dirty",
  1019. "rx_queue_1_packets",
  1020. "tx_queue_1_packets",
  1021. "rx_queue_1_bytes",
  1022. "tx_queue_1_bytes",
  1023. "rx_queue_1_mcast_packets",
  1024. "rx_queue_1_errors",
  1025. "rx_queue_1_crc_errors",
  1026. "rx_queue_1_frame_errors",
  1027. "rx_queue_1_length_errors",
  1028. "rx_queue_1_missed_errors",
  1029. "rx_queue_1_over_errors",
  1030. };
  1031. #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
  1032. static int ravb_get_sset_count(struct net_device *netdev, int sset)
  1033. {
  1034. switch (sset) {
  1035. case ETH_SS_STATS:
  1036. return RAVB_STATS_LEN;
  1037. default:
  1038. return -EOPNOTSUPP;
  1039. }
  1040. }
  1041. static void ravb_get_ethtool_stats(struct net_device *ndev,
  1042. struct ethtool_stats *estats, u64 *data)
  1043. {
  1044. struct ravb_private *priv = netdev_priv(ndev);
  1045. int i = 0;
  1046. int q;
  1047. /* Device-specific stats */
  1048. for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
  1049. struct net_device_stats *stats = &priv->stats[q];
  1050. data[i++] = priv->cur_rx[q];
  1051. data[i++] = priv->cur_tx[q];
  1052. data[i++] = priv->dirty_rx[q];
  1053. data[i++] = priv->dirty_tx[q];
  1054. data[i++] = stats->rx_packets;
  1055. data[i++] = stats->tx_packets;
  1056. data[i++] = stats->rx_bytes;
  1057. data[i++] = stats->tx_bytes;
  1058. data[i++] = stats->multicast;
  1059. data[i++] = stats->rx_errors;
  1060. data[i++] = stats->rx_crc_errors;
  1061. data[i++] = stats->rx_frame_errors;
  1062. data[i++] = stats->rx_length_errors;
  1063. data[i++] = stats->rx_missed_errors;
  1064. data[i++] = stats->rx_over_errors;
  1065. }
  1066. }
  1067. static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1068. {
  1069. switch (stringset) {
  1070. case ETH_SS_STATS:
  1071. memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
  1072. break;
  1073. }
  1074. }
  1075. static void ravb_get_ringparam(struct net_device *ndev,
  1076. struct ethtool_ringparam *ring)
  1077. {
  1078. struct ravb_private *priv = netdev_priv(ndev);
  1079. ring->rx_max_pending = BE_RX_RING_MAX;
  1080. ring->tx_max_pending = BE_TX_RING_MAX;
  1081. ring->rx_pending = priv->num_rx_ring[RAVB_BE];
  1082. ring->tx_pending = priv->num_tx_ring[RAVB_BE];
  1083. }
  1084. static int ravb_set_ringparam(struct net_device *ndev,
  1085. struct ethtool_ringparam *ring)
  1086. {
  1087. struct ravb_private *priv = netdev_priv(ndev);
  1088. int error;
  1089. if (ring->tx_pending > BE_TX_RING_MAX ||
  1090. ring->rx_pending > BE_RX_RING_MAX ||
  1091. ring->tx_pending < BE_TX_RING_MIN ||
  1092. ring->rx_pending < BE_RX_RING_MIN)
  1093. return -EINVAL;
  1094. if (ring->rx_mini_pending || ring->rx_jumbo_pending)
  1095. return -EINVAL;
  1096. if (netif_running(ndev)) {
  1097. netif_device_detach(ndev);
  1098. /* Stop PTP Clock driver */
  1099. if (priv->chip_id == RCAR_GEN2)
  1100. ravb_ptp_stop(ndev);
  1101. /* Wait for DMA stopping */
  1102. error = ravb_stop_dma(ndev);
  1103. if (error) {
  1104. netdev_err(ndev,
  1105. "cannot set ringparam! Any AVB processes are still running?\n");
  1106. return error;
  1107. }
  1108. synchronize_irq(ndev->irq);
  1109. /* Free all the skb's in the RX queue and the DMA buffers. */
  1110. ravb_ring_free(ndev, RAVB_BE);
  1111. ravb_ring_free(ndev, RAVB_NC);
  1112. }
  1113. /* Set new parameters */
  1114. priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
  1115. priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
  1116. if (netif_running(ndev)) {
  1117. error = ravb_dmac_init(ndev);
  1118. if (error) {
  1119. netdev_err(ndev,
  1120. "%s: ravb_dmac_init() failed, error %d\n",
  1121. __func__, error);
  1122. return error;
  1123. }
  1124. ravb_emac_init(ndev);
  1125. /* Initialise PTP Clock driver */
  1126. if (priv->chip_id == RCAR_GEN2)
  1127. ravb_ptp_init(ndev, priv->pdev);
  1128. netif_device_attach(ndev);
  1129. }
  1130. return 0;
  1131. }
  1132. static int ravb_get_ts_info(struct net_device *ndev,
  1133. struct ethtool_ts_info *info)
  1134. {
  1135. struct ravb_private *priv = netdev_priv(ndev);
  1136. info->so_timestamping =
  1137. SOF_TIMESTAMPING_TX_SOFTWARE |
  1138. SOF_TIMESTAMPING_RX_SOFTWARE |
  1139. SOF_TIMESTAMPING_SOFTWARE |
  1140. SOF_TIMESTAMPING_TX_HARDWARE |
  1141. SOF_TIMESTAMPING_RX_HARDWARE |
  1142. SOF_TIMESTAMPING_RAW_HARDWARE;
  1143. info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
  1144. info->rx_filters =
  1145. (1 << HWTSTAMP_FILTER_NONE) |
  1146. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  1147. (1 << HWTSTAMP_FILTER_ALL);
  1148. info->phc_index = ptp_clock_index(priv->ptp.clock);
  1149. return 0;
  1150. }
  1151. static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
  1152. {
  1153. struct ravb_private *priv = netdev_priv(ndev);
  1154. wol->supported = WAKE_MAGIC;
  1155. wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
  1156. }
  1157. static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
  1158. {
  1159. struct ravb_private *priv = netdev_priv(ndev);
  1160. if (wol->wolopts & ~WAKE_MAGIC)
  1161. return -EOPNOTSUPP;
  1162. priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
  1163. device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
  1164. return 0;
  1165. }
  1166. static const struct ethtool_ops ravb_ethtool_ops = {
  1167. .nway_reset = ravb_nway_reset,
  1168. .get_msglevel = ravb_get_msglevel,
  1169. .set_msglevel = ravb_set_msglevel,
  1170. .get_link = ethtool_op_get_link,
  1171. .get_strings = ravb_get_strings,
  1172. .get_ethtool_stats = ravb_get_ethtool_stats,
  1173. .get_sset_count = ravb_get_sset_count,
  1174. .get_ringparam = ravb_get_ringparam,
  1175. .set_ringparam = ravb_set_ringparam,
  1176. .get_ts_info = ravb_get_ts_info,
  1177. .get_link_ksettings = ravb_get_link_ksettings,
  1178. .set_link_ksettings = ravb_set_link_ksettings,
  1179. .get_wol = ravb_get_wol,
  1180. .set_wol = ravb_set_wol,
  1181. };
  1182. static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
  1183. struct net_device *ndev, struct device *dev,
  1184. const char *ch)
  1185. {
  1186. char *name;
  1187. int error;
  1188. name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
  1189. if (!name)
  1190. return -ENOMEM;
  1191. error = request_irq(irq, handler, 0, name, ndev);
  1192. if (error)
  1193. netdev_err(ndev, "cannot request IRQ %s\n", name);
  1194. return error;
  1195. }
  1196. /* Network device open function for Ethernet AVB */
  1197. static int ravb_open(struct net_device *ndev)
  1198. {
  1199. struct ravb_private *priv = netdev_priv(ndev);
  1200. struct platform_device *pdev = priv->pdev;
  1201. struct device *dev = &pdev->dev;
  1202. int error;
  1203. napi_enable(&priv->napi[RAVB_BE]);
  1204. napi_enable(&priv->napi[RAVB_NC]);
  1205. if (priv->chip_id == RCAR_GEN2) {
  1206. error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
  1207. ndev->name, ndev);
  1208. if (error) {
  1209. netdev_err(ndev, "cannot request IRQ\n");
  1210. goto out_napi_off;
  1211. }
  1212. } else {
  1213. error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
  1214. dev, "ch22:multi");
  1215. if (error)
  1216. goto out_napi_off;
  1217. error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
  1218. dev, "ch24:emac");
  1219. if (error)
  1220. goto out_free_irq;
  1221. error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
  1222. ndev, dev, "ch0:rx_be");
  1223. if (error)
  1224. goto out_free_irq_emac;
  1225. error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
  1226. ndev, dev, "ch18:tx_be");
  1227. if (error)
  1228. goto out_free_irq_be_rx;
  1229. error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
  1230. ndev, dev, "ch1:rx_nc");
  1231. if (error)
  1232. goto out_free_irq_be_tx;
  1233. error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
  1234. ndev, dev, "ch19:tx_nc");
  1235. if (error)
  1236. goto out_free_irq_nc_rx;
  1237. }
  1238. /* Device init */
  1239. error = ravb_dmac_init(ndev);
  1240. if (error)
  1241. goto out_free_irq_nc_tx;
  1242. ravb_emac_init(ndev);
  1243. /* Initialise PTP Clock driver */
  1244. if (priv->chip_id == RCAR_GEN2)
  1245. ravb_ptp_init(ndev, priv->pdev);
  1246. netif_tx_start_all_queues(ndev);
  1247. /* PHY control start */
  1248. error = ravb_phy_start(ndev);
  1249. if (error)
  1250. goto out_ptp_stop;
  1251. return 0;
  1252. out_ptp_stop:
  1253. /* Stop PTP Clock driver */
  1254. if (priv->chip_id == RCAR_GEN2)
  1255. ravb_ptp_stop(ndev);
  1256. out_free_irq_nc_tx:
  1257. if (priv->chip_id == RCAR_GEN2)
  1258. goto out_free_irq;
  1259. free_irq(priv->tx_irqs[RAVB_NC], ndev);
  1260. out_free_irq_nc_rx:
  1261. free_irq(priv->rx_irqs[RAVB_NC], ndev);
  1262. out_free_irq_be_tx:
  1263. free_irq(priv->tx_irqs[RAVB_BE], ndev);
  1264. out_free_irq_be_rx:
  1265. free_irq(priv->rx_irqs[RAVB_BE], ndev);
  1266. out_free_irq_emac:
  1267. free_irq(priv->emac_irq, ndev);
  1268. out_free_irq:
  1269. free_irq(ndev->irq, ndev);
  1270. out_napi_off:
  1271. napi_disable(&priv->napi[RAVB_NC]);
  1272. napi_disable(&priv->napi[RAVB_BE]);
  1273. return error;
  1274. }
  1275. /* Timeout function for Ethernet AVB */
  1276. static void ravb_tx_timeout(struct net_device *ndev)
  1277. {
  1278. struct ravb_private *priv = netdev_priv(ndev);
  1279. netif_err(priv, tx_err, ndev,
  1280. "transmit timed out, status %08x, resetting...\n",
  1281. ravb_read(ndev, ISS));
  1282. /* tx_errors count up */
  1283. ndev->stats.tx_errors++;
  1284. schedule_work(&priv->work);
  1285. }
  1286. static void ravb_tx_timeout_work(struct work_struct *work)
  1287. {
  1288. struct ravb_private *priv = container_of(work, struct ravb_private,
  1289. work);
  1290. struct net_device *ndev = priv->ndev;
  1291. netif_tx_stop_all_queues(ndev);
  1292. /* Stop PTP Clock driver */
  1293. if (priv->chip_id == RCAR_GEN2)
  1294. ravb_ptp_stop(ndev);
  1295. /* Wait for DMA stopping */
  1296. ravb_stop_dma(ndev);
  1297. ravb_ring_free(ndev, RAVB_BE);
  1298. ravb_ring_free(ndev, RAVB_NC);
  1299. /* Device init */
  1300. ravb_dmac_init(ndev);
  1301. ravb_emac_init(ndev);
  1302. /* Initialise PTP Clock driver */
  1303. if (priv->chip_id == RCAR_GEN2)
  1304. ravb_ptp_init(ndev, priv->pdev);
  1305. netif_tx_start_all_queues(ndev);
  1306. }
  1307. /* Packet transmit function for Ethernet AVB */
  1308. static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1309. {
  1310. struct ravb_private *priv = netdev_priv(ndev);
  1311. u16 q = skb_get_queue_mapping(skb);
  1312. struct ravb_tstamp_skb *ts_skb;
  1313. struct ravb_tx_desc *desc;
  1314. unsigned long flags;
  1315. u32 dma_addr;
  1316. void *buffer;
  1317. u32 entry;
  1318. u32 len;
  1319. spin_lock_irqsave(&priv->lock, flags);
  1320. if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
  1321. NUM_TX_DESC) {
  1322. netif_err(priv, tx_queued, ndev,
  1323. "still transmitting with the full ring!\n");
  1324. netif_stop_subqueue(ndev, q);
  1325. spin_unlock_irqrestore(&priv->lock, flags);
  1326. return NETDEV_TX_BUSY;
  1327. }
  1328. if (skb_put_padto(skb, ETH_ZLEN))
  1329. goto exit;
  1330. entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
  1331. priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
  1332. buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
  1333. entry / NUM_TX_DESC * DPTR_ALIGN;
  1334. len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
  1335. /* Zero length DMA descriptors are problematic as they seem to
  1336. * terminate DMA transfers. Avoid them by simply using a length of
  1337. * DPTR_ALIGN (4) when skb data is aligned to DPTR_ALIGN.
  1338. *
  1339. * As skb is guaranteed to have at least ETH_ZLEN (60) bytes of
  1340. * data by the call to skb_put_padto() above this is safe with
  1341. * respect to both the length of the first DMA descriptor (len)
  1342. * overflowing the available data and the length of the second DMA
  1343. * descriptor (skb->len - len) being negative.
  1344. */
  1345. if (len == 0)
  1346. len = DPTR_ALIGN;
  1347. memcpy(buffer, skb->data, len);
  1348. dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
  1349. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1350. goto drop;
  1351. desc = &priv->tx_ring[q][entry];
  1352. desc->ds_tagl = cpu_to_le16(len);
  1353. desc->dptr = cpu_to_le32(dma_addr);
  1354. buffer = skb->data + len;
  1355. len = skb->len - len;
  1356. dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
  1357. if (dma_mapping_error(ndev->dev.parent, dma_addr))
  1358. goto unmap;
  1359. desc++;
  1360. desc->ds_tagl = cpu_to_le16(len);
  1361. desc->dptr = cpu_to_le32(dma_addr);
  1362. /* TX timestamp required */
  1363. if (q == RAVB_NC) {
  1364. ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
  1365. if (!ts_skb) {
  1366. desc--;
  1367. dma_unmap_single(ndev->dev.parent, dma_addr, len,
  1368. DMA_TO_DEVICE);
  1369. goto unmap;
  1370. }
  1371. ts_skb->skb = skb;
  1372. ts_skb->tag = priv->ts_skb_tag++;
  1373. priv->ts_skb_tag &= 0x3ff;
  1374. list_add_tail(&ts_skb->list, &priv->ts_skb_list);
  1375. /* TAG and timestamp required flag */
  1376. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  1377. desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
  1378. desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
  1379. }
  1380. skb_tx_timestamp(skb);
  1381. /* Descriptor type must be set after all the above writes */
  1382. dma_wmb();
  1383. desc->die_dt = DT_FEND;
  1384. desc--;
  1385. desc->die_dt = DT_FSTART;
  1386. ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
  1387. priv->cur_tx[q] += NUM_TX_DESC;
  1388. if (priv->cur_tx[q] - priv->dirty_tx[q] >
  1389. (priv->num_tx_ring[q] - 1) * NUM_TX_DESC &&
  1390. !ravb_tx_free(ndev, q, true))
  1391. netif_stop_subqueue(ndev, q);
  1392. exit:
  1393. mmiowb();
  1394. spin_unlock_irqrestore(&priv->lock, flags);
  1395. return NETDEV_TX_OK;
  1396. unmap:
  1397. dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
  1398. le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
  1399. drop:
  1400. dev_kfree_skb_any(skb);
  1401. priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
  1402. goto exit;
  1403. }
  1404. static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
  1405. struct net_device *sb_dev,
  1406. select_queue_fallback_t fallback)
  1407. {
  1408. /* If skb needs TX timestamp, it is handled in network control queue */
  1409. return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
  1410. RAVB_BE;
  1411. }
  1412. static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
  1413. {
  1414. struct ravb_private *priv = netdev_priv(ndev);
  1415. struct net_device_stats *nstats, *stats0, *stats1;
  1416. nstats = &ndev->stats;
  1417. stats0 = &priv->stats[RAVB_BE];
  1418. stats1 = &priv->stats[RAVB_NC];
  1419. nstats->tx_dropped += ravb_read(ndev, TROCR);
  1420. ravb_write(ndev, 0, TROCR); /* (write clear) */
  1421. nstats->collisions += ravb_read(ndev, CDCR);
  1422. ravb_write(ndev, 0, CDCR); /* (write clear) */
  1423. nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
  1424. ravb_write(ndev, 0, LCCR); /* (write clear) */
  1425. nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
  1426. ravb_write(ndev, 0, CERCR); /* (write clear) */
  1427. nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
  1428. ravb_write(ndev, 0, CEECR); /* (write clear) */
  1429. nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
  1430. nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
  1431. nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
  1432. nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
  1433. nstats->multicast = stats0->multicast + stats1->multicast;
  1434. nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
  1435. nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
  1436. nstats->rx_frame_errors =
  1437. stats0->rx_frame_errors + stats1->rx_frame_errors;
  1438. nstats->rx_length_errors =
  1439. stats0->rx_length_errors + stats1->rx_length_errors;
  1440. nstats->rx_missed_errors =
  1441. stats0->rx_missed_errors + stats1->rx_missed_errors;
  1442. nstats->rx_over_errors =
  1443. stats0->rx_over_errors + stats1->rx_over_errors;
  1444. return nstats;
  1445. }
  1446. /* Update promiscuous bit */
  1447. static void ravb_set_rx_mode(struct net_device *ndev)
  1448. {
  1449. struct ravb_private *priv = netdev_priv(ndev);
  1450. unsigned long flags;
  1451. spin_lock_irqsave(&priv->lock, flags);
  1452. ravb_modify(ndev, ECMR, ECMR_PRM,
  1453. ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
  1454. mmiowb();
  1455. spin_unlock_irqrestore(&priv->lock, flags);
  1456. }
  1457. /* Device close function for Ethernet AVB */
  1458. static int ravb_close(struct net_device *ndev)
  1459. {
  1460. struct device_node *np = ndev->dev.parent->of_node;
  1461. struct ravb_private *priv = netdev_priv(ndev);
  1462. struct ravb_tstamp_skb *ts_skb, *ts_skb2;
  1463. netif_tx_stop_all_queues(ndev);
  1464. /* Disable interrupts by clearing the interrupt masks. */
  1465. ravb_write(ndev, 0, RIC0);
  1466. ravb_write(ndev, 0, RIC2);
  1467. ravb_write(ndev, 0, TIC);
  1468. /* Stop PTP Clock driver */
  1469. if (priv->chip_id == RCAR_GEN2)
  1470. ravb_ptp_stop(ndev);
  1471. /* Set the config mode to stop the AVB-DMAC's processes */
  1472. if (ravb_stop_dma(ndev) < 0)
  1473. netdev_err(ndev,
  1474. "device will be stopped after h/w processes are done.\n");
  1475. /* Clear the timestamp list */
  1476. list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
  1477. list_del(&ts_skb->list);
  1478. kfree(ts_skb);
  1479. }
  1480. /* PHY disconnect */
  1481. if (ndev->phydev) {
  1482. phy_stop(ndev->phydev);
  1483. phy_disconnect(ndev->phydev);
  1484. if (of_phy_is_fixed_link(np))
  1485. of_phy_deregister_fixed_link(np);
  1486. }
  1487. if (priv->chip_id != RCAR_GEN2) {
  1488. free_irq(priv->tx_irqs[RAVB_NC], ndev);
  1489. free_irq(priv->rx_irqs[RAVB_NC], ndev);
  1490. free_irq(priv->tx_irqs[RAVB_BE], ndev);
  1491. free_irq(priv->rx_irqs[RAVB_BE], ndev);
  1492. free_irq(priv->emac_irq, ndev);
  1493. }
  1494. free_irq(ndev->irq, ndev);
  1495. napi_disable(&priv->napi[RAVB_NC]);
  1496. napi_disable(&priv->napi[RAVB_BE]);
  1497. /* Free all the skb's in the RX queue and the DMA buffers. */
  1498. ravb_ring_free(ndev, RAVB_BE);
  1499. ravb_ring_free(ndev, RAVB_NC);
  1500. return 0;
  1501. }
  1502. static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
  1503. {
  1504. struct ravb_private *priv = netdev_priv(ndev);
  1505. struct hwtstamp_config config;
  1506. config.flags = 0;
  1507. config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
  1508. HWTSTAMP_TX_OFF;
  1509. if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
  1510. config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
  1511. else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
  1512. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1513. else
  1514. config.rx_filter = HWTSTAMP_FILTER_NONE;
  1515. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1516. -EFAULT : 0;
  1517. }
  1518. /* Control hardware time stamping */
  1519. static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
  1520. {
  1521. struct ravb_private *priv = netdev_priv(ndev);
  1522. struct hwtstamp_config config;
  1523. u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
  1524. u32 tstamp_tx_ctrl;
  1525. if (copy_from_user(&config, req->ifr_data, sizeof(config)))
  1526. return -EFAULT;
  1527. /* Reserved for future extensions */
  1528. if (config.flags)
  1529. return -EINVAL;
  1530. switch (config.tx_type) {
  1531. case HWTSTAMP_TX_OFF:
  1532. tstamp_tx_ctrl = 0;
  1533. break;
  1534. case HWTSTAMP_TX_ON:
  1535. tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
  1536. break;
  1537. default:
  1538. return -ERANGE;
  1539. }
  1540. switch (config.rx_filter) {
  1541. case HWTSTAMP_FILTER_NONE:
  1542. tstamp_rx_ctrl = 0;
  1543. break;
  1544. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  1545. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
  1546. break;
  1547. default:
  1548. config.rx_filter = HWTSTAMP_FILTER_ALL;
  1549. tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
  1550. }
  1551. priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
  1552. priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
  1553. return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
  1554. -EFAULT : 0;
  1555. }
  1556. /* ioctl to device function */
  1557. static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
  1558. {
  1559. struct phy_device *phydev = ndev->phydev;
  1560. if (!netif_running(ndev))
  1561. return -EINVAL;
  1562. if (!phydev)
  1563. return -ENODEV;
  1564. switch (cmd) {
  1565. case SIOCGHWTSTAMP:
  1566. return ravb_hwtstamp_get(ndev, req);
  1567. case SIOCSHWTSTAMP:
  1568. return ravb_hwtstamp_set(ndev, req);
  1569. }
  1570. return phy_mii_ioctl(phydev, req, cmd);
  1571. }
  1572. static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
  1573. {
  1574. if (netif_running(ndev))
  1575. return -EBUSY;
  1576. ndev->mtu = new_mtu;
  1577. netdev_update_features(ndev);
  1578. return 0;
  1579. }
  1580. static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
  1581. {
  1582. struct ravb_private *priv = netdev_priv(ndev);
  1583. unsigned long flags;
  1584. spin_lock_irqsave(&priv->lock, flags);
  1585. /* Disable TX and RX */
  1586. ravb_rcv_snd_disable(ndev);
  1587. /* Modify RX Checksum setting */
  1588. ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
  1589. /* Enable TX and RX */
  1590. ravb_rcv_snd_enable(ndev);
  1591. spin_unlock_irqrestore(&priv->lock, flags);
  1592. }
  1593. static int ravb_set_features(struct net_device *ndev,
  1594. netdev_features_t features)
  1595. {
  1596. netdev_features_t changed = ndev->features ^ features;
  1597. if (changed & NETIF_F_RXCSUM)
  1598. ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
  1599. ndev->features = features;
  1600. return 0;
  1601. }
  1602. static const struct net_device_ops ravb_netdev_ops = {
  1603. .ndo_open = ravb_open,
  1604. .ndo_stop = ravb_close,
  1605. .ndo_start_xmit = ravb_start_xmit,
  1606. .ndo_select_queue = ravb_select_queue,
  1607. .ndo_get_stats = ravb_get_stats,
  1608. .ndo_set_rx_mode = ravb_set_rx_mode,
  1609. .ndo_tx_timeout = ravb_tx_timeout,
  1610. .ndo_do_ioctl = ravb_do_ioctl,
  1611. .ndo_change_mtu = ravb_change_mtu,
  1612. .ndo_validate_addr = eth_validate_addr,
  1613. .ndo_set_mac_address = eth_mac_addr,
  1614. .ndo_set_features = ravb_set_features,
  1615. };
  1616. /* MDIO bus init function */
  1617. static int ravb_mdio_init(struct ravb_private *priv)
  1618. {
  1619. struct platform_device *pdev = priv->pdev;
  1620. struct device *dev = &pdev->dev;
  1621. int error;
  1622. /* Bitbang init */
  1623. priv->mdiobb.ops = &bb_ops;
  1624. /* MII controller setting */
  1625. priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
  1626. if (!priv->mii_bus)
  1627. return -ENOMEM;
  1628. /* Hook up MII support for ethtool */
  1629. priv->mii_bus->name = "ravb_mii";
  1630. priv->mii_bus->parent = dev;
  1631. snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1632. pdev->name, pdev->id);
  1633. /* Register MDIO bus */
  1634. error = of_mdiobus_register(priv->mii_bus, dev->of_node);
  1635. if (error)
  1636. goto out_free_bus;
  1637. return 0;
  1638. out_free_bus:
  1639. free_mdio_bitbang(priv->mii_bus);
  1640. return error;
  1641. }
  1642. /* MDIO bus release function */
  1643. static int ravb_mdio_release(struct ravb_private *priv)
  1644. {
  1645. /* Unregister mdio bus */
  1646. mdiobus_unregister(priv->mii_bus);
  1647. /* Free bitbang info */
  1648. free_mdio_bitbang(priv->mii_bus);
  1649. return 0;
  1650. }
  1651. static const struct of_device_id ravb_match_table[] = {
  1652. { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
  1653. { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
  1654. { .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
  1655. { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
  1656. { .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
  1657. { }
  1658. };
  1659. MODULE_DEVICE_TABLE(of, ravb_match_table);
  1660. static int ravb_set_gti(struct net_device *ndev)
  1661. {
  1662. struct ravb_private *priv = netdev_priv(ndev);
  1663. struct device *dev = ndev->dev.parent;
  1664. unsigned long rate;
  1665. uint64_t inc;
  1666. rate = clk_get_rate(priv->clk);
  1667. if (!rate)
  1668. return -EINVAL;
  1669. inc = 1000000000ULL << 20;
  1670. do_div(inc, rate);
  1671. if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
  1672. dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
  1673. inc, GTI_TIV_MIN, GTI_TIV_MAX);
  1674. return -EINVAL;
  1675. }
  1676. ravb_write(ndev, inc, GTI);
  1677. return 0;
  1678. }
  1679. static void ravb_set_config_mode(struct net_device *ndev)
  1680. {
  1681. struct ravb_private *priv = netdev_priv(ndev);
  1682. if (priv->chip_id == RCAR_GEN2) {
  1683. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
  1684. /* Set CSEL value */
  1685. ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
  1686. } else {
  1687. ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
  1688. CCC_GAC | CCC_CSEL_HPB);
  1689. }
  1690. }
  1691. /* Set tx and rx clock internal delay modes */
  1692. static void ravb_set_delay_mode(struct net_device *ndev)
  1693. {
  1694. struct ravb_private *priv = netdev_priv(ndev);
  1695. int set = 0;
  1696. if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
  1697. priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
  1698. set |= APSR_DM_RDM;
  1699. if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
  1700. priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
  1701. set |= APSR_DM_TDM;
  1702. ravb_modify(ndev, APSR, APSR_DM, set);
  1703. }
  1704. static int ravb_probe(struct platform_device *pdev)
  1705. {
  1706. struct device_node *np = pdev->dev.of_node;
  1707. struct ravb_private *priv;
  1708. enum ravb_chip_id chip_id;
  1709. struct net_device *ndev;
  1710. int error, irq, q;
  1711. struct resource *res;
  1712. int i;
  1713. if (!np) {
  1714. dev_err(&pdev->dev,
  1715. "this driver is required to be instantiated from device tree\n");
  1716. return -EINVAL;
  1717. }
  1718. /* Get base address */
  1719. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1720. if (!res) {
  1721. dev_err(&pdev->dev, "invalid resource\n");
  1722. return -EINVAL;
  1723. }
  1724. ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
  1725. NUM_TX_QUEUE, NUM_RX_QUEUE);
  1726. if (!ndev)
  1727. return -ENOMEM;
  1728. ndev->features = NETIF_F_RXCSUM;
  1729. ndev->hw_features = NETIF_F_RXCSUM;
  1730. pm_runtime_enable(&pdev->dev);
  1731. pm_runtime_get_sync(&pdev->dev);
  1732. /* The Ether-specific entries in the device structure. */
  1733. ndev->base_addr = res->start;
  1734. chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
  1735. if (chip_id == RCAR_GEN3)
  1736. irq = platform_get_irq_byname(pdev, "ch22");
  1737. else
  1738. irq = platform_get_irq(pdev, 0);
  1739. if (irq < 0) {
  1740. error = irq;
  1741. goto out_release;
  1742. }
  1743. ndev->irq = irq;
  1744. SET_NETDEV_DEV(ndev, &pdev->dev);
  1745. priv = netdev_priv(ndev);
  1746. priv->ndev = ndev;
  1747. priv->pdev = pdev;
  1748. priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
  1749. priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
  1750. priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
  1751. priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
  1752. priv->addr = devm_ioremap_resource(&pdev->dev, res);
  1753. if (IS_ERR(priv->addr)) {
  1754. error = PTR_ERR(priv->addr);
  1755. goto out_release;
  1756. }
  1757. spin_lock_init(&priv->lock);
  1758. INIT_WORK(&priv->work, ravb_tx_timeout_work);
  1759. priv->phy_interface = of_get_phy_mode(np);
  1760. priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
  1761. priv->avb_link_active_low =
  1762. of_property_read_bool(np, "renesas,ether-link-active-low");
  1763. if (chip_id == RCAR_GEN3) {
  1764. irq = platform_get_irq_byname(pdev, "ch24");
  1765. if (irq < 0) {
  1766. error = irq;
  1767. goto out_release;
  1768. }
  1769. priv->emac_irq = irq;
  1770. for (i = 0; i < NUM_RX_QUEUE; i++) {
  1771. irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
  1772. if (irq < 0) {
  1773. error = irq;
  1774. goto out_release;
  1775. }
  1776. priv->rx_irqs[i] = irq;
  1777. }
  1778. for (i = 0; i < NUM_TX_QUEUE; i++) {
  1779. irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
  1780. if (irq < 0) {
  1781. error = irq;
  1782. goto out_release;
  1783. }
  1784. priv->tx_irqs[i] = irq;
  1785. }
  1786. }
  1787. priv->chip_id = chip_id;
  1788. priv->clk = devm_clk_get(&pdev->dev, NULL);
  1789. if (IS_ERR(priv->clk)) {
  1790. error = PTR_ERR(priv->clk);
  1791. goto out_release;
  1792. }
  1793. ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
  1794. ndev->min_mtu = ETH_MIN_MTU;
  1795. /* Set function */
  1796. ndev->netdev_ops = &ravb_netdev_ops;
  1797. ndev->ethtool_ops = &ravb_ethtool_ops;
  1798. /* Set AVB config mode */
  1799. ravb_set_config_mode(ndev);
  1800. /* Set GTI value */
  1801. error = ravb_set_gti(ndev);
  1802. if (error)
  1803. goto out_release;
  1804. /* Request GTI loading */
  1805. ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
  1806. if (priv->chip_id != RCAR_GEN2)
  1807. ravb_set_delay_mode(ndev);
  1808. /* Allocate descriptor base address table */
  1809. priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
  1810. priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
  1811. &priv->desc_bat_dma, GFP_KERNEL);
  1812. if (!priv->desc_bat) {
  1813. dev_err(&pdev->dev,
  1814. "Cannot allocate desc base address table (size %d bytes)\n",
  1815. priv->desc_bat_size);
  1816. error = -ENOMEM;
  1817. goto out_release;
  1818. }
  1819. for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
  1820. priv->desc_bat[q].die_dt = DT_EOS;
  1821. ravb_write(ndev, priv->desc_bat_dma, DBAT);
  1822. /* Initialise HW timestamp list */
  1823. INIT_LIST_HEAD(&priv->ts_skb_list);
  1824. /* Initialise PTP Clock driver */
  1825. if (chip_id != RCAR_GEN2)
  1826. ravb_ptp_init(ndev, pdev);
  1827. /* Debug message level */
  1828. priv->msg_enable = RAVB_DEF_MSG_ENABLE;
  1829. /* Read and set MAC address */
  1830. ravb_read_mac_address(ndev, of_get_mac_address(np));
  1831. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1832. dev_warn(&pdev->dev,
  1833. "no valid MAC address supplied, using a random one\n");
  1834. eth_hw_addr_random(ndev);
  1835. }
  1836. /* MDIO bus init */
  1837. error = ravb_mdio_init(priv);
  1838. if (error) {
  1839. dev_err(&pdev->dev, "failed to initialize MDIO\n");
  1840. goto out_dma_free;
  1841. }
  1842. netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
  1843. netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
  1844. /* Network device register */
  1845. error = register_netdev(ndev);
  1846. if (error)
  1847. goto out_napi_del;
  1848. device_set_wakeup_capable(&pdev->dev, 1);
  1849. /* Print device information */
  1850. netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
  1851. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1852. platform_set_drvdata(pdev, ndev);
  1853. return 0;
  1854. out_napi_del:
  1855. netif_napi_del(&priv->napi[RAVB_NC]);
  1856. netif_napi_del(&priv->napi[RAVB_BE]);
  1857. ravb_mdio_release(priv);
  1858. out_dma_free:
  1859. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  1860. priv->desc_bat_dma);
  1861. /* Stop PTP Clock driver */
  1862. if (chip_id != RCAR_GEN2)
  1863. ravb_ptp_stop(ndev);
  1864. out_release:
  1865. free_netdev(ndev);
  1866. pm_runtime_put(&pdev->dev);
  1867. pm_runtime_disable(&pdev->dev);
  1868. return error;
  1869. }
  1870. static int ravb_remove(struct platform_device *pdev)
  1871. {
  1872. struct net_device *ndev = platform_get_drvdata(pdev);
  1873. struct ravb_private *priv = netdev_priv(ndev);
  1874. /* Stop PTP Clock driver */
  1875. if (priv->chip_id != RCAR_GEN2)
  1876. ravb_ptp_stop(ndev);
  1877. dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
  1878. priv->desc_bat_dma);
  1879. /* Set reset mode */
  1880. ravb_write(ndev, CCC_OPC_RESET, CCC);
  1881. pm_runtime_put_sync(&pdev->dev);
  1882. unregister_netdev(ndev);
  1883. netif_napi_del(&priv->napi[RAVB_NC]);
  1884. netif_napi_del(&priv->napi[RAVB_BE]);
  1885. ravb_mdio_release(priv);
  1886. pm_runtime_disable(&pdev->dev);
  1887. free_netdev(ndev);
  1888. platform_set_drvdata(pdev, NULL);
  1889. return 0;
  1890. }
  1891. static int ravb_wol_setup(struct net_device *ndev)
  1892. {
  1893. struct ravb_private *priv = netdev_priv(ndev);
  1894. /* Disable interrupts by clearing the interrupt masks. */
  1895. ravb_write(ndev, 0, RIC0);
  1896. ravb_write(ndev, 0, RIC2);
  1897. ravb_write(ndev, 0, TIC);
  1898. /* Only allow ECI interrupts */
  1899. synchronize_irq(priv->emac_irq);
  1900. napi_disable(&priv->napi[RAVB_NC]);
  1901. napi_disable(&priv->napi[RAVB_BE]);
  1902. ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
  1903. /* Enable MagicPacket */
  1904. ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
  1905. return enable_irq_wake(priv->emac_irq);
  1906. }
  1907. static int ravb_wol_restore(struct net_device *ndev)
  1908. {
  1909. struct ravb_private *priv = netdev_priv(ndev);
  1910. int ret;
  1911. napi_enable(&priv->napi[RAVB_NC]);
  1912. napi_enable(&priv->napi[RAVB_BE]);
  1913. /* Disable MagicPacket */
  1914. ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
  1915. ret = ravb_close(ndev);
  1916. if (ret < 0)
  1917. return ret;
  1918. return disable_irq_wake(priv->emac_irq);
  1919. }
  1920. static int __maybe_unused ravb_suspend(struct device *dev)
  1921. {
  1922. struct net_device *ndev = dev_get_drvdata(dev);
  1923. struct ravb_private *priv = netdev_priv(ndev);
  1924. int ret;
  1925. if (!netif_running(ndev))
  1926. return 0;
  1927. netif_device_detach(ndev);
  1928. if (priv->wol_enabled)
  1929. ret = ravb_wol_setup(ndev);
  1930. else
  1931. ret = ravb_close(ndev);
  1932. return ret;
  1933. }
  1934. static int __maybe_unused ravb_resume(struct device *dev)
  1935. {
  1936. struct net_device *ndev = dev_get_drvdata(dev);
  1937. struct ravb_private *priv = netdev_priv(ndev);
  1938. int ret = 0;
  1939. /* If WoL is enabled set reset mode to rearm the WoL logic */
  1940. if (priv->wol_enabled)
  1941. ravb_write(ndev, CCC_OPC_RESET, CCC);
  1942. /* All register have been reset to default values.
  1943. * Restore all registers which where setup at probe time and
  1944. * reopen device if it was running before system suspended.
  1945. */
  1946. /* Set AVB config mode */
  1947. ravb_set_config_mode(ndev);
  1948. /* Set GTI value */
  1949. ret = ravb_set_gti(ndev);
  1950. if (ret)
  1951. return ret;
  1952. /* Request GTI loading */
  1953. ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
  1954. if (priv->chip_id != RCAR_GEN2)
  1955. ravb_set_delay_mode(ndev);
  1956. /* Restore descriptor base address table */
  1957. ravb_write(ndev, priv->desc_bat_dma, DBAT);
  1958. if (netif_running(ndev)) {
  1959. if (priv->wol_enabled) {
  1960. ret = ravb_wol_restore(ndev);
  1961. if (ret)
  1962. return ret;
  1963. }
  1964. ret = ravb_open(ndev);
  1965. if (ret < 0)
  1966. return ret;
  1967. netif_device_attach(ndev);
  1968. }
  1969. return ret;
  1970. }
  1971. static int __maybe_unused ravb_runtime_nop(struct device *dev)
  1972. {
  1973. /* Runtime PM callback shared between ->runtime_suspend()
  1974. * and ->runtime_resume(). Simply returns success.
  1975. *
  1976. * This driver re-initializes all registers after
  1977. * pm_runtime_get_sync() anyway so there is no need
  1978. * to save and restore registers here.
  1979. */
  1980. return 0;
  1981. }
  1982. static const struct dev_pm_ops ravb_dev_pm_ops = {
  1983. SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
  1984. SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
  1985. };
  1986. static struct platform_driver ravb_driver = {
  1987. .probe = ravb_probe,
  1988. .remove = ravb_remove,
  1989. .driver = {
  1990. .name = "ravb",
  1991. .pm = &ravb_dev_pm_ops,
  1992. .of_match_table = ravb_match_table,
  1993. },
  1994. };
  1995. module_platform_driver(ravb_driver);
  1996. MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
  1997. MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
  1998. MODULE_LICENSE("GPL v2");