igb_ptp.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182
  1. /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
  2. *
  3. * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include <linux/module.h>
  19. #include <linux/device.h>
  20. #include <linux/pci.h>
  21. #include <linux/ptp_classify.h>
  22. #include "igb.h"
  23. #define INCVALUE_MASK 0x7fffffff
  24. #define ISGN 0x80000000
  25. /* The 82580 timesync updates the system timer every 8ns by 8ns,
  26. * and this update value cannot be reprogrammed.
  27. *
  28. * Neither the 82576 nor the 82580 offer registers wide enough to hold
  29. * nanoseconds time values for very long. For the 82580, SYSTIM always
  30. * counts nanoseconds, but the upper 24 bits are not available. The
  31. * frequency is adjusted by changing the 32 bit fractional nanoseconds
  32. * register, TIMINCA.
  33. *
  34. * For the 82576, the SYSTIM register time unit is affect by the
  35. * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  36. * field are needed to provide the nominal 16 nanosecond period,
  37. * leaving 19 bits for fractional nanoseconds.
  38. *
  39. * We scale the NIC clock cycle by a large factor so that relatively
  40. * small clock corrections can be added or subtracted at each clock
  41. * tick. The drawbacks of a large factor are a) that the clock
  42. * register overflows more quickly (not such a big deal) and b) that
  43. * the increment per tick has to fit into 24 bits. As a result we
  44. * need to use a shift of 19 so we can fit a value of 16 into the
  45. * TIMINCA register.
  46. *
  47. *
  48. * SYSTIMH SYSTIML
  49. * +--------------+ +---+---+------+
  50. * 82576 | 32 | | 8 | 5 | 19 |
  51. * +--------------+ +---+---+------+
  52. * \________ 45 bits _______/ fract
  53. *
  54. * +----------+---+ +--------------+
  55. * 82580 | 24 | 8 | | 32 |
  56. * +----------+---+ +--------------+
  57. * reserved \______ 40 bits _____/
  58. *
  59. *
  60. * The 45 bit 82576 SYSTIM overflows every
  61. * 2^45 * 10^-9 / 3600 = 9.77 hours.
  62. *
  63. * The 40 bit 82580 SYSTIM overflows every
  64. * 2^40 * 10^-9 / 60 = 18.3 minutes.
  65. */
  66. #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
  67. #define IGB_PTP_TX_TIMEOUT (HZ * 15)
  68. #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
  69. #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
  70. #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
  71. #define IGB_NBITS_82580 40
  72. static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  73. /* SYSTIM read access for the 82576 */
  74. static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
  75. {
  76. struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  77. struct e1000_hw *hw = &igb->hw;
  78. u64 val;
  79. u32 lo, hi;
  80. lo = rd32(E1000_SYSTIML);
  81. hi = rd32(E1000_SYSTIMH);
  82. val = ((u64) hi) << 32;
  83. val |= lo;
  84. return val;
  85. }
  86. /* SYSTIM read access for the 82580 */
  87. static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
  88. {
  89. struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  90. struct e1000_hw *hw = &igb->hw;
  91. u32 lo, hi;
  92. u64 val;
  93. /* The timestamp latches on lowest register read. For the 82580
  94. * the lowest register is SYSTIMR instead of SYSTIML. However we only
  95. * need to provide nanosecond resolution, so we just ignore it.
  96. */
  97. rd32(E1000_SYSTIMR);
  98. lo = rd32(E1000_SYSTIML);
  99. hi = rd32(E1000_SYSTIMH);
  100. val = ((u64) hi) << 32;
  101. val |= lo;
  102. return val;
  103. }
  104. /* SYSTIM read access for I210/I211 */
  105. static void igb_ptp_read_i210(struct igb_adapter *adapter,
  106. struct timespec64 *ts)
  107. {
  108. struct e1000_hw *hw = &adapter->hw;
  109. u32 sec, nsec;
  110. /* The timestamp latches on lowest register read. For I210/I211, the
  111. * lowest register is SYSTIMR. Since we only need to provide nanosecond
  112. * resolution, we can ignore it.
  113. */
  114. rd32(E1000_SYSTIMR);
  115. nsec = rd32(E1000_SYSTIML);
  116. sec = rd32(E1000_SYSTIMH);
  117. ts->tv_sec = sec;
  118. ts->tv_nsec = nsec;
  119. }
  120. static void igb_ptp_write_i210(struct igb_adapter *adapter,
  121. const struct timespec64 *ts)
  122. {
  123. struct e1000_hw *hw = &adapter->hw;
  124. /* Writing the SYSTIMR register is not necessary as it only provides
  125. * sub-nanosecond resolution.
  126. */
  127. wr32(E1000_SYSTIML, ts->tv_nsec);
  128. wr32(E1000_SYSTIMH, ts->tv_sec);
  129. }
  130. /**
  131. * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
  132. * @adapter: board private structure
  133. * @hwtstamps: timestamp structure to update
  134. * @systim: unsigned 64bit system time value.
  135. *
  136. * We need to convert the system time value stored in the RX/TXSTMP registers
  137. * into a hwtstamp which can be used by the upper level timestamping functions.
  138. *
  139. * The 'tmreg_lock' spinlock is used to protect the consistency of the
  140. * system time value. This is needed because reading the 64 bit time
  141. * value involves reading two (or three) 32 bit registers. The first
  142. * read latches the value. Ditto for writing.
  143. *
  144. * In addition, here have extended the system time with an overflow
  145. * counter in software.
  146. **/
  147. static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
  148. struct skb_shared_hwtstamps *hwtstamps,
  149. u64 systim)
  150. {
  151. unsigned long flags;
  152. u64 ns;
  153. switch (adapter->hw.mac.type) {
  154. case e1000_82576:
  155. case e1000_82580:
  156. case e1000_i354:
  157. case e1000_i350:
  158. spin_lock_irqsave(&adapter->tmreg_lock, flags);
  159. ns = timecounter_cyc2time(&adapter->tc, systim);
  160. spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
  161. memset(hwtstamps, 0, sizeof(*hwtstamps));
  162. hwtstamps->hwtstamp = ns_to_ktime(ns);
  163. break;
  164. case e1000_i210:
  165. case e1000_i211:
  166. memset(hwtstamps, 0, sizeof(*hwtstamps));
  167. /* Upper 32 bits contain s, lower 32 bits contain ns. */
  168. hwtstamps->hwtstamp = ktime_set(systim >> 32,
  169. systim & 0xFFFFFFFF);
  170. break;
  171. default:
  172. break;
  173. }
  174. }
  175. /* PTP clock operations */
  176. static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
  177. {
  178. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  179. ptp_caps);
  180. struct e1000_hw *hw = &igb->hw;
  181. int neg_adj = 0;
  182. u64 rate;
  183. u32 incvalue;
  184. if (ppb < 0) {
  185. neg_adj = 1;
  186. ppb = -ppb;
  187. }
  188. rate = ppb;
  189. rate <<= 14;
  190. rate = div_u64(rate, 1953125);
  191. incvalue = 16 << IGB_82576_TSYNC_SHIFT;
  192. if (neg_adj)
  193. incvalue -= rate;
  194. else
  195. incvalue += rate;
  196. wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
  197. return 0;
  198. }
  199. static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
  200. {
  201. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  202. ptp_caps);
  203. struct e1000_hw *hw = &igb->hw;
  204. int neg_adj = 0;
  205. u64 rate;
  206. u32 inca;
  207. if (ppb < 0) {
  208. neg_adj = 1;
  209. ppb = -ppb;
  210. }
  211. rate = ppb;
  212. rate <<= 26;
  213. rate = div_u64(rate, 1953125);
  214. inca = rate & INCVALUE_MASK;
  215. if (neg_adj)
  216. inca |= ISGN;
  217. wr32(E1000_TIMINCA, inca);
  218. return 0;
  219. }
  220. static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
  221. {
  222. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  223. ptp_caps);
  224. unsigned long flags;
  225. spin_lock_irqsave(&igb->tmreg_lock, flags);
  226. timecounter_adjtime(&igb->tc, delta);
  227. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  228. return 0;
  229. }
  230. static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
  231. {
  232. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  233. ptp_caps);
  234. unsigned long flags;
  235. struct timespec64 now, then = ns_to_timespec64(delta);
  236. spin_lock_irqsave(&igb->tmreg_lock, flags);
  237. igb_ptp_read_i210(igb, &now);
  238. now = timespec64_add(now, then);
  239. igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
  240. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  241. return 0;
  242. }
  243. static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
  244. struct timespec64 *ts)
  245. {
  246. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  247. ptp_caps);
  248. unsigned long flags;
  249. u64 ns;
  250. spin_lock_irqsave(&igb->tmreg_lock, flags);
  251. ns = timecounter_read(&igb->tc);
  252. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  253. *ts = ns_to_timespec64(ns);
  254. return 0;
  255. }
  256. static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
  257. struct timespec64 *ts)
  258. {
  259. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  260. ptp_caps);
  261. unsigned long flags;
  262. spin_lock_irqsave(&igb->tmreg_lock, flags);
  263. igb_ptp_read_i210(igb, ts);
  264. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  265. return 0;
  266. }
  267. static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
  268. const struct timespec64 *ts)
  269. {
  270. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  271. ptp_caps);
  272. unsigned long flags;
  273. u64 ns;
  274. ns = timespec64_to_ns(ts);
  275. spin_lock_irqsave(&igb->tmreg_lock, flags);
  276. timecounter_init(&igb->tc, &igb->cc, ns);
  277. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  278. return 0;
  279. }
  280. static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
  281. const struct timespec64 *ts)
  282. {
  283. struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
  284. ptp_caps);
  285. unsigned long flags;
  286. spin_lock_irqsave(&igb->tmreg_lock, flags);
  287. igb_ptp_write_i210(igb, ts);
  288. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  289. return 0;
  290. }
  291. static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
  292. {
  293. u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
  294. static const u32 mask[IGB_N_SDP] = {
  295. E1000_CTRL_SDP0_DIR,
  296. E1000_CTRL_SDP1_DIR,
  297. E1000_CTRL_EXT_SDP2_DIR,
  298. E1000_CTRL_EXT_SDP3_DIR,
  299. };
  300. if (input)
  301. *ptr &= ~mask[pin];
  302. else
  303. *ptr |= mask[pin];
  304. }
  305. static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
  306. {
  307. static const u32 aux0_sel_sdp[IGB_N_SDP] = {
  308. AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
  309. };
  310. static const u32 aux1_sel_sdp[IGB_N_SDP] = {
  311. AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
  312. };
  313. static const u32 ts_sdp_en[IGB_N_SDP] = {
  314. TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
  315. };
  316. struct e1000_hw *hw = &igb->hw;
  317. u32 ctrl, ctrl_ext, tssdp = 0;
  318. ctrl = rd32(E1000_CTRL);
  319. ctrl_ext = rd32(E1000_CTRL_EXT);
  320. tssdp = rd32(E1000_TSSDP);
  321. igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
  322. /* Make sure this pin is not enabled as an output. */
  323. tssdp &= ~ts_sdp_en[pin];
  324. if (chan == 1) {
  325. tssdp &= ~AUX1_SEL_SDP3;
  326. tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
  327. } else {
  328. tssdp &= ~AUX0_SEL_SDP3;
  329. tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
  330. }
  331. wr32(E1000_TSSDP, tssdp);
  332. wr32(E1000_CTRL, ctrl);
  333. wr32(E1000_CTRL_EXT, ctrl_ext);
  334. }
  335. static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin)
  336. {
  337. static const u32 aux0_sel_sdp[IGB_N_SDP] = {
  338. AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
  339. };
  340. static const u32 aux1_sel_sdp[IGB_N_SDP] = {
  341. AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
  342. };
  343. static const u32 ts_sdp_en[IGB_N_SDP] = {
  344. TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
  345. };
  346. static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
  347. TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
  348. TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
  349. };
  350. static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
  351. TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
  352. TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
  353. };
  354. static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
  355. TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
  356. TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
  357. };
  358. struct e1000_hw *hw = &igb->hw;
  359. u32 ctrl, ctrl_ext, tssdp = 0;
  360. ctrl = rd32(E1000_CTRL);
  361. ctrl_ext = rd32(E1000_CTRL_EXT);
  362. tssdp = rd32(E1000_TSSDP);
  363. igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
  364. /* Make sure this pin is not enabled as an input. */
  365. if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
  366. tssdp &= ~AUX0_TS_SDP_EN;
  367. if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
  368. tssdp &= ~AUX1_TS_SDP_EN;
  369. tssdp &= ~ts_sdp_sel_clr[pin];
  370. if (chan == 1)
  371. tssdp |= ts_sdp_sel_tt1[pin];
  372. else
  373. tssdp |= ts_sdp_sel_tt0[pin];
  374. tssdp |= ts_sdp_en[pin];
  375. wr32(E1000_TSSDP, tssdp);
  376. wr32(E1000_CTRL, ctrl);
  377. wr32(E1000_CTRL_EXT, ctrl_ext);
  378. }
  379. static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
  380. struct ptp_clock_request *rq, int on)
  381. {
  382. struct igb_adapter *igb =
  383. container_of(ptp, struct igb_adapter, ptp_caps);
  384. struct e1000_hw *hw = &igb->hw;
  385. u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh;
  386. unsigned long flags;
  387. struct timespec ts;
  388. int pin = -1;
  389. s64 ns;
  390. switch (rq->type) {
  391. case PTP_CLK_REQ_EXTTS:
  392. if (on) {
  393. pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
  394. rq->extts.index);
  395. if (pin < 0)
  396. return -EBUSY;
  397. }
  398. if (rq->extts.index == 1) {
  399. tsauxc_mask = TSAUXC_EN_TS1;
  400. tsim_mask = TSINTR_AUTT1;
  401. } else {
  402. tsauxc_mask = TSAUXC_EN_TS0;
  403. tsim_mask = TSINTR_AUTT0;
  404. }
  405. spin_lock_irqsave(&igb->tmreg_lock, flags);
  406. tsauxc = rd32(E1000_TSAUXC);
  407. tsim = rd32(E1000_TSIM);
  408. if (on) {
  409. igb_pin_extts(igb, rq->extts.index, pin);
  410. tsauxc |= tsauxc_mask;
  411. tsim |= tsim_mask;
  412. } else {
  413. tsauxc &= ~tsauxc_mask;
  414. tsim &= ~tsim_mask;
  415. }
  416. wr32(E1000_TSAUXC, tsauxc);
  417. wr32(E1000_TSIM, tsim);
  418. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  419. return 0;
  420. case PTP_CLK_REQ_PEROUT:
  421. if (on) {
  422. pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
  423. rq->perout.index);
  424. if (pin < 0)
  425. return -EBUSY;
  426. }
  427. ts.tv_sec = rq->perout.period.sec;
  428. ts.tv_nsec = rq->perout.period.nsec;
  429. ns = timespec_to_ns(&ts);
  430. ns = ns >> 1;
  431. if (on && ns < 500000LL) {
  432. /* 2k interrupts per second is an awful lot. */
  433. return -EINVAL;
  434. }
  435. ts = ns_to_timespec(ns);
  436. if (rq->perout.index == 1) {
  437. tsauxc_mask = TSAUXC_EN_TT1;
  438. tsim_mask = TSINTR_TT1;
  439. trgttiml = E1000_TRGTTIML1;
  440. trgttimh = E1000_TRGTTIMH1;
  441. } else {
  442. tsauxc_mask = TSAUXC_EN_TT0;
  443. tsim_mask = TSINTR_TT0;
  444. trgttiml = E1000_TRGTTIML0;
  445. trgttimh = E1000_TRGTTIMH0;
  446. }
  447. spin_lock_irqsave(&igb->tmreg_lock, flags);
  448. tsauxc = rd32(E1000_TSAUXC);
  449. tsim = rd32(E1000_TSIM);
  450. if (on) {
  451. int i = rq->perout.index;
  452. igb_pin_perout(igb, i, pin);
  453. igb->perout[i].start.tv_sec = rq->perout.start.sec;
  454. igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
  455. igb->perout[i].period.tv_sec = ts.tv_sec;
  456. igb->perout[i].period.tv_nsec = ts.tv_nsec;
  457. wr32(trgttiml, rq->perout.start.sec);
  458. wr32(trgttimh, rq->perout.start.nsec);
  459. tsauxc |= tsauxc_mask;
  460. tsim |= tsim_mask;
  461. } else {
  462. tsauxc &= ~tsauxc_mask;
  463. tsim &= ~tsim_mask;
  464. }
  465. wr32(E1000_TSAUXC, tsauxc);
  466. wr32(E1000_TSIM, tsim);
  467. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  468. return 0;
  469. case PTP_CLK_REQ_PPS:
  470. spin_lock_irqsave(&igb->tmreg_lock, flags);
  471. tsim = rd32(E1000_TSIM);
  472. if (on)
  473. tsim |= TSINTR_SYS_WRAP;
  474. else
  475. tsim &= ~TSINTR_SYS_WRAP;
  476. wr32(E1000_TSIM, tsim);
  477. spin_unlock_irqrestore(&igb->tmreg_lock, flags);
  478. return 0;
  479. }
  480. return -EOPNOTSUPP;
  481. }
  482. static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
  483. struct ptp_clock_request *rq, int on)
  484. {
  485. return -EOPNOTSUPP;
  486. }
  487. static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
  488. enum ptp_pin_function func, unsigned int chan)
  489. {
  490. switch (func) {
  491. case PTP_PF_NONE:
  492. case PTP_PF_EXTTS:
  493. case PTP_PF_PEROUT:
  494. break;
  495. case PTP_PF_PHYSYNC:
  496. return -1;
  497. }
  498. return 0;
  499. }
  500. /**
  501. * igb_ptp_tx_work
  502. * @work: pointer to work struct
  503. *
  504. * This work function polls the TSYNCTXCTL valid bit to determine when a
  505. * timestamp has been taken for the current stored skb.
  506. **/
  507. static void igb_ptp_tx_work(struct work_struct *work)
  508. {
  509. struct igb_adapter *adapter = container_of(work, struct igb_adapter,
  510. ptp_tx_work);
  511. struct e1000_hw *hw = &adapter->hw;
  512. u32 tsynctxctl;
  513. if (!adapter->ptp_tx_skb)
  514. return;
  515. if (time_is_before_jiffies(adapter->ptp_tx_start +
  516. IGB_PTP_TX_TIMEOUT)) {
  517. dev_kfree_skb_any(adapter->ptp_tx_skb);
  518. adapter->ptp_tx_skb = NULL;
  519. clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
  520. adapter->tx_hwtstamp_timeouts++;
  521. dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
  522. return;
  523. }
  524. tsynctxctl = rd32(E1000_TSYNCTXCTL);
  525. if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
  526. igb_ptp_tx_hwtstamp(adapter);
  527. else
  528. /* reschedule to check later */
  529. schedule_work(&adapter->ptp_tx_work);
  530. }
  531. static void igb_ptp_overflow_check(struct work_struct *work)
  532. {
  533. struct igb_adapter *igb =
  534. container_of(work, struct igb_adapter, ptp_overflow_work.work);
  535. struct timespec64 ts;
  536. igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
  537. pr_debug("igb overflow check at %lld.%09lu\n",
  538. (long long) ts.tv_sec, ts.tv_nsec);
  539. schedule_delayed_work(&igb->ptp_overflow_work,
  540. IGB_SYSTIM_OVERFLOW_PERIOD);
  541. }
  542. /**
  543. * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
  544. * @adapter: private network adapter structure
  545. *
  546. * This watchdog task is scheduled to detect error case where hardware has
  547. * dropped an Rx packet that was timestamped when the ring is full. The
  548. * particular error is rare but leaves the device in a state unable to timestamp
  549. * any future packets.
  550. **/
  551. void igb_ptp_rx_hang(struct igb_adapter *adapter)
  552. {
  553. struct e1000_hw *hw = &adapter->hw;
  554. u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
  555. unsigned long rx_event;
  556. if (hw->mac.type != e1000_82576)
  557. return;
  558. /* If we don't have a valid timestamp in the registers, just update the
  559. * timeout counter and exit
  560. */
  561. if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
  562. adapter->last_rx_ptp_check = jiffies;
  563. return;
  564. }
  565. /* Determine the most recent watchdog or rx_timestamp event */
  566. rx_event = adapter->last_rx_ptp_check;
  567. if (time_after(adapter->last_rx_timestamp, rx_event))
  568. rx_event = adapter->last_rx_timestamp;
  569. /* Only need to read the high RXSTMP register to clear the lock */
  570. if (time_is_before_jiffies(rx_event + 5 * HZ)) {
  571. rd32(E1000_RXSTMPH);
  572. adapter->last_rx_ptp_check = jiffies;
  573. adapter->rx_hwtstamp_cleared++;
  574. dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
  575. }
  576. }
  577. /**
  578. * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
  579. * @adapter: Board private structure.
  580. *
  581. * If we were asked to do hardware stamping and such a time stamp is
  582. * available, then it must have been for this skb here because we only
  583. * allow only one such packet into the queue.
  584. **/
  585. static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
  586. {
  587. struct e1000_hw *hw = &adapter->hw;
  588. struct skb_shared_hwtstamps shhwtstamps;
  589. u64 regval;
  590. regval = rd32(E1000_TXSTMPL);
  591. regval |= (u64)rd32(E1000_TXSTMPH) << 32;
  592. igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
  593. skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
  594. dev_kfree_skb_any(adapter->ptp_tx_skb);
  595. adapter->ptp_tx_skb = NULL;
  596. clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
  597. }
  598. /**
  599. * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
  600. * @q_vector: Pointer to interrupt specific structure
  601. * @va: Pointer to address containing Rx buffer
  602. * @skb: Buffer containing timestamp and packet
  603. *
  604. * This function is meant to retrieve a timestamp from the first buffer of an
  605. * incoming frame. The value is stored in little endian format starting on
  606. * byte 8.
  607. **/
  608. void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
  609. unsigned char *va,
  610. struct sk_buff *skb)
  611. {
  612. __le64 *regval = (__le64 *)va;
  613. /* The timestamp is recorded in little endian format.
  614. * DWORD: 0 1 2 3
  615. * Field: Reserved Reserved SYSTIML SYSTIMH
  616. */
  617. igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
  618. le64_to_cpu(regval[1]));
  619. }
  620. /**
  621. * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
  622. * @q_vector: Pointer to interrupt specific structure
  623. * @skb: Buffer containing timestamp and packet
  624. *
  625. * This function is meant to retrieve a timestamp from the internal registers
  626. * of the adapter and store it in the skb.
  627. **/
  628. void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
  629. struct sk_buff *skb)
  630. {
  631. struct igb_adapter *adapter = q_vector->adapter;
  632. struct e1000_hw *hw = &adapter->hw;
  633. u64 regval;
  634. /* If this bit is set, then the RX registers contain the time stamp. No
  635. * other packet will be time stamped until we read these registers, so
  636. * read the registers to make them available again. Because only one
  637. * packet can be time stamped at a time, we know that the register
  638. * values must belong to this one here and therefore we don't need to
  639. * compare any of the additional attributes stored for it.
  640. *
  641. * If nothing went wrong, then it should have a shared tx_flags that we
  642. * can turn into a skb_shared_hwtstamps.
  643. */
  644. if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
  645. return;
  646. regval = rd32(E1000_RXSTMPL);
  647. regval |= (u64)rd32(E1000_RXSTMPH) << 32;
  648. igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
  649. /* Update the last_rx_timestamp timer in order to enable watchdog check
  650. * for error case of latched timestamp on a dropped packet.
  651. */
  652. adapter->last_rx_timestamp = jiffies;
  653. }
  654. /**
  655. * igb_ptp_get_ts_config - get hardware time stamping config
  656. * @netdev:
  657. * @ifreq:
  658. *
  659. * Get the hwtstamp_config settings to return to the user. Rather than attempt
  660. * to deconstruct the settings from the registers, just return a shadow copy
  661. * of the last known settings.
  662. **/
  663. int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
  664. {
  665. struct igb_adapter *adapter = netdev_priv(netdev);
  666. struct hwtstamp_config *config = &adapter->tstamp_config;
  667. return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
  668. -EFAULT : 0;
  669. }
  670. /**
  671. * igb_ptp_set_timestamp_mode - setup hardware for timestamping
  672. * @adapter: networking device structure
  673. * @config: hwtstamp configuration
  674. *
  675. * Outgoing time stamping can be enabled and disabled. Play nice and
  676. * disable it when requested, although it shouldn't case any overhead
  677. * when no packet needs it. At most one packet in the queue may be
  678. * marked for time stamping, otherwise it would be impossible to tell
  679. * for sure to which packet the hardware time stamp belongs.
  680. *
  681. * Incoming time stamping has to be configured via the hardware
  682. * filters. Not all combinations are supported, in particular event
  683. * type has to be specified. Matching the kind of event packet is
  684. * not supported, with the exception of "all V2 events regardless of
  685. * level 2 or 4".
  686. */
  687. static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
  688. struct hwtstamp_config *config)
  689. {
  690. struct e1000_hw *hw = &adapter->hw;
  691. u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
  692. u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
  693. u32 tsync_rx_cfg = 0;
  694. bool is_l4 = false;
  695. bool is_l2 = false;
  696. u32 regval;
  697. /* reserved for future extensions */
  698. if (config->flags)
  699. return -EINVAL;
  700. switch (config->tx_type) {
  701. case HWTSTAMP_TX_OFF:
  702. tsync_tx_ctl = 0;
  703. case HWTSTAMP_TX_ON:
  704. break;
  705. default:
  706. return -ERANGE;
  707. }
  708. switch (config->rx_filter) {
  709. case HWTSTAMP_FILTER_NONE:
  710. tsync_rx_ctl = 0;
  711. break;
  712. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  713. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
  714. tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
  715. is_l4 = true;
  716. break;
  717. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  718. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
  719. tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
  720. is_l4 = true;
  721. break;
  722. case HWTSTAMP_FILTER_PTP_V2_EVENT:
  723. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  724. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  725. case HWTSTAMP_FILTER_PTP_V2_SYNC:
  726. case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
  727. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  728. case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
  729. case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
  730. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  731. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
  732. config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
  733. is_l2 = true;
  734. is_l4 = true;
  735. break;
  736. case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
  737. case HWTSTAMP_FILTER_ALL:
  738. /* 82576 cannot timestamp all packets, which it needs to do to
  739. * support both V1 Sync and Delay_Req messages
  740. */
  741. if (hw->mac.type != e1000_82576) {
  742. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
  743. config->rx_filter = HWTSTAMP_FILTER_ALL;
  744. break;
  745. }
  746. /* fall through */
  747. default:
  748. config->rx_filter = HWTSTAMP_FILTER_NONE;
  749. return -ERANGE;
  750. }
  751. if (hw->mac.type == e1000_82575) {
  752. if (tsync_rx_ctl | tsync_tx_ctl)
  753. return -EINVAL;
  754. return 0;
  755. }
  756. /* Per-packet timestamping only works if all packets are
  757. * timestamped, so enable timestamping in all packets as
  758. * long as one Rx filter was configured.
  759. */
  760. if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
  761. tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
  762. tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
  763. config->rx_filter = HWTSTAMP_FILTER_ALL;
  764. is_l2 = true;
  765. is_l4 = true;
  766. if ((hw->mac.type == e1000_i210) ||
  767. (hw->mac.type == e1000_i211)) {
  768. regval = rd32(E1000_RXPBS);
  769. regval |= E1000_RXPBS_CFG_TS_EN;
  770. wr32(E1000_RXPBS, regval);
  771. }
  772. }
  773. /* enable/disable TX */
  774. regval = rd32(E1000_TSYNCTXCTL);
  775. regval &= ~E1000_TSYNCTXCTL_ENABLED;
  776. regval |= tsync_tx_ctl;
  777. wr32(E1000_TSYNCTXCTL, regval);
  778. /* enable/disable RX */
  779. regval = rd32(E1000_TSYNCRXCTL);
  780. regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
  781. regval |= tsync_rx_ctl;
  782. wr32(E1000_TSYNCRXCTL, regval);
  783. /* define which PTP packets are time stamped */
  784. wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
  785. /* define ethertype filter for timestamped packets */
  786. if (is_l2)
  787. wr32(E1000_ETQF(3),
  788. (E1000_ETQF_FILTER_ENABLE | /* enable filter */
  789. E1000_ETQF_1588 | /* enable timestamping */
  790. ETH_P_1588)); /* 1588 eth protocol type */
  791. else
  792. wr32(E1000_ETQF(3), 0);
  793. /* L4 Queue Filter[3]: filter by destination port and protocol */
  794. if (is_l4) {
  795. u32 ftqf = (IPPROTO_UDP /* UDP */
  796. | E1000_FTQF_VF_BP /* VF not compared */
  797. | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
  798. | E1000_FTQF_MASK); /* mask all inputs */
  799. ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
  800. wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
  801. wr32(E1000_IMIREXT(3),
  802. (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
  803. if (hw->mac.type == e1000_82576) {
  804. /* enable source port check */
  805. wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
  806. ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
  807. }
  808. wr32(E1000_FTQF(3), ftqf);
  809. } else {
  810. wr32(E1000_FTQF(3), E1000_FTQF_MASK);
  811. }
  812. wrfl();
  813. /* clear TX/RX time stamp registers, just to be sure */
  814. regval = rd32(E1000_TXSTMPL);
  815. regval = rd32(E1000_TXSTMPH);
  816. regval = rd32(E1000_RXSTMPL);
  817. regval = rd32(E1000_RXSTMPH);
  818. return 0;
  819. }
  820. /**
  821. * igb_ptp_set_ts_config - set hardware time stamping config
  822. * @netdev:
  823. * @ifreq:
  824. *
  825. **/
  826. int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
  827. {
  828. struct igb_adapter *adapter = netdev_priv(netdev);
  829. struct hwtstamp_config config;
  830. int err;
  831. if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
  832. return -EFAULT;
  833. err = igb_ptp_set_timestamp_mode(adapter, &config);
  834. if (err)
  835. return err;
  836. /* save these settings for future reference */
  837. memcpy(&adapter->tstamp_config, &config,
  838. sizeof(adapter->tstamp_config));
  839. return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
  840. -EFAULT : 0;
  841. }
  842. void igb_ptp_init(struct igb_adapter *adapter)
  843. {
  844. struct e1000_hw *hw = &adapter->hw;
  845. struct net_device *netdev = adapter->netdev;
  846. int i;
  847. switch (hw->mac.type) {
  848. case e1000_82576:
  849. snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
  850. adapter->ptp_caps.owner = THIS_MODULE;
  851. adapter->ptp_caps.max_adj = 999999881;
  852. adapter->ptp_caps.n_ext_ts = 0;
  853. adapter->ptp_caps.pps = 0;
  854. adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
  855. adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
  856. adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
  857. adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
  858. adapter->ptp_caps.enable = igb_ptp_feature_enable;
  859. adapter->cc.read = igb_ptp_read_82576;
  860. adapter->cc.mask = CYCLECOUNTER_MASK(64);
  861. adapter->cc.mult = 1;
  862. adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
  863. /* Dial the nominal frequency. */
  864. wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
  865. break;
  866. case e1000_82580:
  867. case e1000_i354:
  868. case e1000_i350:
  869. snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
  870. adapter->ptp_caps.owner = THIS_MODULE;
  871. adapter->ptp_caps.max_adj = 62499999;
  872. adapter->ptp_caps.n_ext_ts = 0;
  873. adapter->ptp_caps.pps = 0;
  874. adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
  875. adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
  876. adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
  877. adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
  878. adapter->ptp_caps.enable = igb_ptp_feature_enable;
  879. adapter->cc.read = igb_ptp_read_82580;
  880. adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
  881. adapter->cc.mult = 1;
  882. adapter->cc.shift = 0;
  883. /* Enable the timer functions by clearing bit 31. */
  884. wr32(E1000_TSAUXC, 0x0);
  885. break;
  886. case e1000_i210:
  887. case e1000_i211:
  888. for (i = 0; i < IGB_N_SDP; i++) {
  889. struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
  890. snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
  891. ppd->index = i;
  892. ppd->func = PTP_PF_NONE;
  893. }
  894. snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
  895. adapter->ptp_caps.owner = THIS_MODULE;
  896. adapter->ptp_caps.max_adj = 62499999;
  897. adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
  898. adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
  899. adapter->ptp_caps.n_pins = IGB_N_SDP;
  900. adapter->ptp_caps.pps = 1;
  901. adapter->ptp_caps.pin_config = adapter->sdp_config;
  902. adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
  903. adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
  904. adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
  905. adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
  906. adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
  907. adapter->ptp_caps.verify = igb_ptp_verify_pin;
  908. /* Enable the timer functions by clearing bit 31. */
  909. wr32(E1000_TSAUXC, 0x0);
  910. break;
  911. default:
  912. adapter->ptp_clock = NULL;
  913. return;
  914. }
  915. wrfl();
  916. spin_lock_init(&adapter->tmreg_lock);
  917. INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
  918. /* Initialize the clock and overflow work for devices that need it. */
  919. if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
  920. struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
  921. igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
  922. } else {
  923. timecounter_init(&adapter->tc, &adapter->cc,
  924. ktime_to_ns(ktime_get_real()));
  925. INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
  926. igb_ptp_overflow_check);
  927. schedule_delayed_work(&adapter->ptp_overflow_work,
  928. IGB_SYSTIM_OVERFLOW_PERIOD);
  929. }
  930. /* Initialize the time sync interrupts for devices that support it. */
  931. if (hw->mac.type >= e1000_82580) {
  932. wr32(E1000_TSIM, TSYNC_INTERRUPTS);
  933. wr32(E1000_IMS, E1000_IMS_TS);
  934. }
  935. adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
  936. adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
  937. adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
  938. &adapter->pdev->dev);
  939. if (IS_ERR(adapter->ptp_clock)) {
  940. adapter->ptp_clock = NULL;
  941. dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
  942. } else {
  943. dev_info(&adapter->pdev->dev, "added PHC on %s\n",
  944. adapter->netdev->name);
  945. adapter->flags |= IGB_FLAG_PTP;
  946. }
  947. }
  948. /**
  949. * igb_ptp_stop - Disable PTP device and stop the overflow check.
  950. * @adapter: Board private structure.
  951. *
  952. * This function stops the PTP support and cancels the delayed work.
  953. **/
  954. void igb_ptp_stop(struct igb_adapter *adapter)
  955. {
  956. switch (adapter->hw.mac.type) {
  957. case e1000_82576:
  958. case e1000_82580:
  959. case e1000_i354:
  960. case e1000_i350:
  961. cancel_delayed_work_sync(&adapter->ptp_overflow_work);
  962. break;
  963. case e1000_i210:
  964. case e1000_i211:
  965. /* No delayed work to cancel. */
  966. break;
  967. default:
  968. return;
  969. }
  970. cancel_work_sync(&adapter->ptp_tx_work);
  971. if (adapter->ptp_tx_skb) {
  972. dev_kfree_skb_any(adapter->ptp_tx_skb);
  973. adapter->ptp_tx_skb = NULL;
  974. clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
  975. }
  976. if (adapter->ptp_clock) {
  977. ptp_clock_unregister(adapter->ptp_clock);
  978. dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
  979. adapter->netdev->name);
  980. adapter->flags &= ~IGB_FLAG_PTP;
  981. }
  982. }
  983. /**
  984. * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
  985. * @adapter: Board private structure.
  986. *
  987. * This function handles the reset work required to re-enable the PTP device.
  988. **/
  989. void igb_ptp_reset(struct igb_adapter *adapter)
  990. {
  991. struct e1000_hw *hw = &adapter->hw;
  992. unsigned long flags;
  993. if (!(adapter->flags & IGB_FLAG_PTP))
  994. return;
  995. /* reset the tstamp_config */
  996. igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
  997. spin_lock_irqsave(&adapter->tmreg_lock, flags);
  998. switch (adapter->hw.mac.type) {
  999. case e1000_82576:
  1000. /* Dial the nominal frequency. */
  1001. wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
  1002. break;
  1003. case e1000_82580:
  1004. case e1000_i354:
  1005. case e1000_i350:
  1006. case e1000_i210:
  1007. case e1000_i211:
  1008. wr32(E1000_TSAUXC, 0x0);
  1009. wr32(E1000_TSSDP, 0x0);
  1010. wr32(E1000_TSIM, TSYNC_INTERRUPTS);
  1011. wr32(E1000_IMS, E1000_IMS_TS);
  1012. break;
  1013. default:
  1014. /* No work to do. */
  1015. goto out;
  1016. }
  1017. /* Re-initialize the timer. */
  1018. if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
  1019. struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
  1020. igb_ptp_write_i210(adapter, &ts);
  1021. } else {
  1022. timecounter_init(&adapter->tc, &adapter->cc,
  1023. ktime_to_ns(ktime_get_real()));
  1024. }
  1025. out:
  1026. spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
  1027. }