i915_irq.c 127 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544
  1. /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
  2. */
  3. /*
  4. * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
  5. * All Rights Reserved.
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a
  8. * copy of this software and associated documentation files (the
  9. * "Software"), to deal in the Software without restriction, including
  10. * without limitation the rights to use, copy, modify, merge, publish,
  11. * distribute, sub license, and/or sell copies of the Software, and to
  12. * permit persons to whom the Software is furnished to do so, subject to
  13. * the following conditions:
  14. *
  15. * The above copyright notice and this permission notice (including the
  16. * next paragraph) shall be included in all copies or substantial portions
  17. * of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20. * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23. * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24. * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25. * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26. *
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/sysrq.h>
  30. #include <linux/slab.h>
  31. #include <linux/circ_buf.h>
  32. #include <drm/drmP.h>
  33. #include <drm/i915_drm.h>
  34. #include "i915_drv.h"
  35. #include "i915_trace.h"
  36. #include "intel_drv.h"
  37. /**
  38. * DOC: interrupt handling
  39. *
  40. * These functions provide the basic support for enabling and disabling the
  41. * interrupt handling support. There's a lot more functionality in i915_irq.c
  42. * and related files, but that will be described in separate chapters.
  43. */
  44. static const u32 hpd_ilk[HPD_NUM_PINS] = {
  45. [HPD_PORT_A] = DE_DP_A_HOTPLUG,
  46. };
  47. static const u32 hpd_ivb[HPD_NUM_PINS] = {
  48. [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  49. };
  50. static const u32 hpd_bdw[HPD_NUM_PINS] = {
  51. [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  52. };
  53. static const u32 hpd_ibx[HPD_NUM_PINS] = {
  54. [HPD_CRT] = SDE_CRT_HOTPLUG,
  55. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  56. [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  57. [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  58. [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  59. };
  60. static const u32 hpd_cpt[HPD_NUM_PINS] = {
  61. [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  62. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  63. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  64. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  65. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  66. };
  67. static const u32 hpd_spt[HPD_NUM_PINS] = {
  68. [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  69. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  70. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  71. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  72. [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  73. };
  74. static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  75. [HPD_CRT] = CRT_HOTPLUG_INT_EN,
  76. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  77. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  78. [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  79. [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  80. [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  81. };
  82. static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  83. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  84. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  85. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  86. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  87. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  88. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  89. };
  90. static const u32 hpd_status_i915[HPD_NUM_PINS] = {
  91. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  92. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
  93. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
  94. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  95. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  96. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  97. };
  98. /* BXT hpd list */
  99. static const u32 hpd_bxt[HPD_NUM_PINS] = {
  100. [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
  101. [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
  102. [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
  103. };
  104. /* IIR can theoretically queue up two events. Be paranoid. */
  105. #define GEN8_IRQ_RESET_NDX(type, which) do { \
  106. I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
  107. POSTING_READ(GEN8_##type##_IMR(which)); \
  108. I915_WRITE(GEN8_##type##_IER(which), 0); \
  109. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  110. POSTING_READ(GEN8_##type##_IIR(which)); \
  111. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  112. POSTING_READ(GEN8_##type##_IIR(which)); \
  113. } while (0)
  114. #define GEN5_IRQ_RESET(type) do { \
  115. I915_WRITE(type##IMR, 0xffffffff); \
  116. POSTING_READ(type##IMR); \
  117. I915_WRITE(type##IER, 0); \
  118. I915_WRITE(type##IIR, 0xffffffff); \
  119. POSTING_READ(type##IIR); \
  120. I915_WRITE(type##IIR, 0xffffffff); \
  121. POSTING_READ(type##IIR); \
  122. } while (0)
  123. /*
  124. * We should clear IMR at preinstall/uninstall, and just check at postinstall.
  125. */
  126. static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, u32 reg)
  127. {
  128. u32 val = I915_READ(reg);
  129. if (val == 0)
  130. return;
  131. WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
  132. reg, val);
  133. I915_WRITE(reg, 0xffffffff);
  134. POSTING_READ(reg);
  135. I915_WRITE(reg, 0xffffffff);
  136. POSTING_READ(reg);
  137. }
  138. #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
  139. gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
  140. I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
  141. I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
  142. POSTING_READ(GEN8_##type##_IMR(which)); \
  143. } while (0)
  144. #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
  145. gen5_assert_iir_is_zero(dev_priv, type##IIR); \
  146. I915_WRITE(type##IER, (ier_val)); \
  147. I915_WRITE(type##IMR, (imr_val)); \
  148. POSTING_READ(type##IMR); \
  149. } while (0)
  150. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  151. /* For display hotplug interrupt */
  152. static inline void
  153. i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
  154. uint32_t mask,
  155. uint32_t bits)
  156. {
  157. uint32_t val;
  158. assert_spin_locked(&dev_priv->irq_lock);
  159. WARN_ON(bits & ~mask);
  160. val = I915_READ(PORT_HOTPLUG_EN);
  161. val &= ~mask;
  162. val |= bits;
  163. I915_WRITE(PORT_HOTPLUG_EN, val);
  164. }
  165. /**
  166. * i915_hotplug_interrupt_update - update hotplug interrupt enable
  167. * @dev_priv: driver private
  168. * @mask: bits to update
  169. * @bits: bits to enable
  170. * NOTE: the HPD enable bits are modified both inside and outside
  171. * of an interrupt context. To avoid that read-modify-write cycles
  172. * interfer, these bits are protected by a spinlock. Since this
  173. * function is usually not called from a context where the lock is
  174. * held already, this function acquires the lock itself. A non-locking
  175. * version is also available.
  176. */
  177. void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
  178. uint32_t mask,
  179. uint32_t bits)
  180. {
  181. spin_lock_irq(&dev_priv->irq_lock);
  182. i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
  183. spin_unlock_irq(&dev_priv->irq_lock);
  184. }
  185. /**
  186. * ilk_update_display_irq - update DEIMR
  187. * @dev_priv: driver private
  188. * @interrupt_mask: mask of interrupt bits to update
  189. * @enabled_irq_mask: mask of interrupt bits to enable
  190. */
  191. static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
  192. uint32_t interrupt_mask,
  193. uint32_t enabled_irq_mask)
  194. {
  195. uint32_t new_val;
  196. assert_spin_locked(&dev_priv->irq_lock);
  197. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  198. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  199. return;
  200. new_val = dev_priv->irq_mask;
  201. new_val &= ~interrupt_mask;
  202. new_val |= (~enabled_irq_mask & interrupt_mask);
  203. if (new_val != dev_priv->irq_mask) {
  204. dev_priv->irq_mask = new_val;
  205. I915_WRITE(DEIMR, dev_priv->irq_mask);
  206. POSTING_READ(DEIMR);
  207. }
  208. }
  209. void
  210. ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
  211. {
  212. ilk_update_display_irq(dev_priv, mask, mask);
  213. }
  214. void
  215. ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
  216. {
  217. ilk_update_display_irq(dev_priv, mask, 0);
  218. }
  219. /**
  220. * ilk_update_gt_irq - update GTIMR
  221. * @dev_priv: driver private
  222. * @interrupt_mask: mask of interrupt bits to update
  223. * @enabled_irq_mask: mask of interrupt bits to enable
  224. */
  225. static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
  226. uint32_t interrupt_mask,
  227. uint32_t enabled_irq_mask)
  228. {
  229. assert_spin_locked(&dev_priv->irq_lock);
  230. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  231. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  232. return;
  233. dev_priv->gt_irq_mask &= ~interrupt_mask;
  234. dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
  235. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  236. POSTING_READ(GTIMR);
  237. }
  238. void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  239. {
  240. ilk_update_gt_irq(dev_priv, mask, mask);
  241. }
  242. void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  243. {
  244. ilk_update_gt_irq(dev_priv, mask, 0);
  245. }
  246. static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
  247. {
  248. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
  249. }
  250. static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
  251. {
  252. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
  253. }
  254. static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
  255. {
  256. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
  257. }
  258. /**
  259. * snb_update_pm_irq - update GEN6_PMIMR
  260. * @dev_priv: driver private
  261. * @interrupt_mask: mask of interrupt bits to update
  262. * @enabled_irq_mask: mask of interrupt bits to enable
  263. */
  264. static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
  265. uint32_t interrupt_mask,
  266. uint32_t enabled_irq_mask)
  267. {
  268. uint32_t new_val;
  269. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  270. assert_spin_locked(&dev_priv->irq_lock);
  271. new_val = dev_priv->pm_irq_mask;
  272. new_val &= ~interrupt_mask;
  273. new_val |= (~enabled_irq_mask & interrupt_mask);
  274. if (new_val != dev_priv->pm_irq_mask) {
  275. dev_priv->pm_irq_mask = new_val;
  276. I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
  277. POSTING_READ(gen6_pm_imr(dev_priv));
  278. }
  279. }
  280. void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  281. {
  282. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  283. return;
  284. snb_update_pm_irq(dev_priv, mask, mask);
  285. }
  286. static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
  287. uint32_t mask)
  288. {
  289. snb_update_pm_irq(dev_priv, mask, 0);
  290. }
  291. void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  292. {
  293. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  294. return;
  295. __gen6_disable_pm_irq(dev_priv, mask);
  296. }
  297. void gen6_reset_rps_interrupts(struct drm_device *dev)
  298. {
  299. struct drm_i915_private *dev_priv = dev->dev_private;
  300. uint32_t reg = gen6_pm_iir(dev_priv);
  301. spin_lock_irq(&dev_priv->irq_lock);
  302. I915_WRITE(reg, dev_priv->pm_rps_events);
  303. I915_WRITE(reg, dev_priv->pm_rps_events);
  304. POSTING_READ(reg);
  305. dev_priv->rps.pm_iir = 0;
  306. spin_unlock_irq(&dev_priv->irq_lock);
  307. }
  308. void gen6_enable_rps_interrupts(struct drm_device *dev)
  309. {
  310. struct drm_i915_private *dev_priv = dev->dev_private;
  311. spin_lock_irq(&dev_priv->irq_lock);
  312. WARN_ON(dev_priv->rps.pm_iir);
  313. WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
  314. dev_priv->rps.interrupts_enabled = true;
  315. I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
  316. dev_priv->pm_rps_events);
  317. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  318. spin_unlock_irq(&dev_priv->irq_lock);
  319. }
  320. u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
  321. {
  322. /*
  323. * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
  324. * if GEN6_PM_UP_EI_EXPIRED is masked.
  325. *
  326. * TODO: verify if this can be reproduced on VLV,CHV.
  327. */
  328. if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
  329. mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
  330. if (INTEL_INFO(dev_priv)->gen >= 8)
  331. mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  332. return mask;
  333. }
  334. void gen6_disable_rps_interrupts(struct drm_device *dev)
  335. {
  336. struct drm_i915_private *dev_priv = dev->dev_private;
  337. spin_lock_irq(&dev_priv->irq_lock);
  338. dev_priv->rps.interrupts_enabled = false;
  339. spin_unlock_irq(&dev_priv->irq_lock);
  340. cancel_work_sync(&dev_priv->rps.work);
  341. spin_lock_irq(&dev_priv->irq_lock);
  342. I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  343. __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  344. I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
  345. ~dev_priv->pm_rps_events);
  346. spin_unlock_irq(&dev_priv->irq_lock);
  347. synchronize_irq(dev->irq);
  348. }
  349. /**
  350. * bdw_update_port_irq - update DE port interrupt
  351. * @dev_priv: driver private
  352. * @interrupt_mask: mask of interrupt bits to update
  353. * @enabled_irq_mask: mask of interrupt bits to enable
  354. */
  355. static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
  356. uint32_t interrupt_mask,
  357. uint32_t enabled_irq_mask)
  358. {
  359. uint32_t new_val;
  360. uint32_t old_val;
  361. assert_spin_locked(&dev_priv->irq_lock);
  362. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  363. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  364. return;
  365. old_val = I915_READ(GEN8_DE_PORT_IMR);
  366. new_val = old_val;
  367. new_val &= ~interrupt_mask;
  368. new_val |= (~enabled_irq_mask & interrupt_mask);
  369. if (new_val != old_val) {
  370. I915_WRITE(GEN8_DE_PORT_IMR, new_val);
  371. POSTING_READ(GEN8_DE_PORT_IMR);
  372. }
  373. }
  374. /**
  375. * ibx_display_interrupt_update - update SDEIMR
  376. * @dev_priv: driver private
  377. * @interrupt_mask: mask of interrupt bits to update
  378. * @enabled_irq_mask: mask of interrupt bits to enable
  379. */
  380. void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
  381. uint32_t interrupt_mask,
  382. uint32_t enabled_irq_mask)
  383. {
  384. uint32_t sdeimr = I915_READ(SDEIMR);
  385. sdeimr &= ~interrupt_mask;
  386. sdeimr |= (~enabled_irq_mask & interrupt_mask);
  387. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  388. assert_spin_locked(&dev_priv->irq_lock);
  389. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  390. return;
  391. I915_WRITE(SDEIMR, sdeimr);
  392. POSTING_READ(SDEIMR);
  393. }
  394. static void
  395. __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  396. u32 enable_mask, u32 status_mask)
  397. {
  398. u32 reg = PIPESTAT(pipe);
  399. u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  400. assert_spin_locked(&dev_priv->irq_lock);
  401. WARN_ON(!intel_irqs_enabled(dev_priv));
  402. if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  403. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  404. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  405. pipe_name(pipe), enable_mask, status_mask))
  406. return;
  407. if ((pipestat & enable_mask) == enable_mask)
  408. return;
  409. dev_priv->pipestat_irq_mask[pipe] |= status_mask;
  410. /* Enable the interrupt, clear any pending status */
  411. pipestat |= enable_mask | status_mask;
  412. I915_WRITE(reg, pipestat);
  413. POSTING_READ(reg);
  414. }
  415. static void
  416. __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  417. u32 enable_mask, u32 status_mask)
  418. {
  419. u32 reg = PIPESTAT(pipe);
  420. u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  421. assert_spin_locked(&dev_priv->irq_lock);
  422. WARN_ON(!intel_irqs_enabled(dev_priv));
  423. if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  424. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  425. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  426. pipe_name(pipe), enable_mask, status_mask))
  427. return;
  428. if ((pipestat & enable_mask) == 0)
  429. return;
  430. dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
  431. pipestat &= ~enable_mask;
  432. I915_WRITE(reg, pipestat);
  433. POSTING_READ(reg);
  434. }
  435. static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
  436. {
  437. u32 enable_mask = status_mask << 16;
  438. /*
  439. * On pipe A we don't support the PSR interrupt yet,
  440. * on pipe B and C the same bit MBZ.
  441. */
  442. if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
  443. return 0;
  444. /*
  445. * On pipe B and C we don't support the PSR interrupt yet, on pipe
  446. * A the same bit is for perf counters which we don't use either.
  447. */
  448. if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
  449. return 0;
  450. enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
  451. SPRITE0_FLIP_DONE_INT_EN_VLV |
  452. SPRITE1_FLIP_DONE_INT_EN_VLV);
  453. if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
  454. enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
  455. if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
  456. enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
  457. return enable_mask;
  458. }
  459. void
  460. i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  461. u32 status_mask)
  462. {
  463. u32 enable_mask;
  464. if (IS_VALLEYVIEW(dev_priv->dev))
  465. enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
  466. status_mask);
  467. else
  468. enable_mask = status_mask << 16;
  469. __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  470. }
  471. void
  472. i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  473. u32 status_mask)
  474. {
  475. u32 enable_mask;
  476. if (IS_VALLEYVIEW(dev_priv->dev))
  477. enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
  478. status_mask);
  479. else
  480. enable_mask = status_mask << 16;
  481. __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  482. }
  483. /**
  484. * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
  485. * @dev: drm device
  486. */
  487. static void i915_enable_asle_pipestat(struct drm_device *dev)
  488. {
  489. struct drm_i915_private *dev_priv = dev->dev_private;
  490. if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
  491. return;
  492. spin_lock_irq(&dev_priv->irq_lock);
  493. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
  494. if (INTEL_INFO(dev)->gen >= 4)
  495. i915_enable_pipestat(dev_priv, PIPE_A,
  496. PIPE_LEGACY_BLC_EVENT_STATUS);
  497. spin_unlock_irq(&dev_priv->irq_lock);
  498. }
  499. /*
  500. * This timing diagram depicts the video signal in and
  501. * around the vertical blanking period.
  502. *
  503. * Assumptions about the fictitious mode used in this example:
  504. * vblank_start >= 3
  505. * vsync_start = vblank_start + 1
  506. * vsync_end = vblank_start + 2
  507. * vtotal = vblank_start + 3
  508. *
  509. * start of vblank:
  510. * latch double buffered registers
  511. * increment frame counter (ctg+)
  512. * generate start of vblank interrupt (gen4+)
  513. * |
  514. * | frame start:
  515. * | generate frame start interrupt (aka. vblank interrupt) (gmch)
  516. * | may be shifted forward 1-3 extra lines via PIPECONF
  517. * | |
  518. * | | start of vsync:
  519. * | | generate vsync interrupt
  520. * | | |
  521. * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
  522. * . \hs/ . \hs/ \hs/ \hs/ . \hs/
  523. * ----va---> <-----------------vb--------------------> <--------va-------------
  524. * | | <----vs-----> |
  525. * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
  526. * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
  527. * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
  528. * | | |
  529. * last visible pixel first visible pixel
  530. * | increment frame counter (gen3/4)
  531. * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
  532. *
  533. * x = horizontal active
  534. * _ = horizontal blanking
  535. * hs = horizontal sync
  536. * va = vertical active
  537. * vb = vertical blanking
  538. * vs = vertical sync
  539. * vbs = vblank_start (number)
  540. *
  541. * Summary:
  542. * - most events happen at the start of horizontal sync
  543. * - frame start happens at the start of horizontal blank, 1-4 lines
  544. * (depending on PIPECONF settings) after the start of vblank
  545. * - gen3/4 pixel and frame counter are synchronized with the start
  546. * of horizontal active on the first line of vertical active
  547. */
  548. static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
  549. {
  550. /* Gen2 doesn't have a hardware frame counter */
  551. return 0;
  552. }
  553. /* Called from drm generic code, passed a 'crtc', which
  554. * we use as a pipe index
  555. */
  556. static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
  557. {
  558. struct drm_i915_private *dev_priv = dev->dev_private;
  559. unsigned long high_frame;
  560. unsigned long low_frame;
  561. u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
  562. struct intel_crtc *intel_crtc =
  563. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  564. const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
  565. htotal = mode->crtc_htotal;
  566. hsync_start = mode->crtc_hsync_start;
  567. vbl_start = mode->crtc_vblank_start;
  568. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  569. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  570. /* Convert to pixel count */
  571. vbl_start *= htotal;
  572. /* Start of vblank event occurs at start of hsync */
  573. vbl_start -= htotal - hsync_start;
  574. high_frame = PIPEFRAME(pipe);
  575. low_frame = PIPEFRAMEPIXEL(pipe);
  576. /*
  577. * High & low register fields aren't synchronized, so make sure
  578. * we get a low value that's stable across two reads of the high
  579. * register.
  580. */
  581. do {
  582. high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  583. low = I915_READ(low_frame);
  584. high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  585. } while (high1 != high2);
  586. high1 >>= PIPE_FRAME_HIGH_SHIFT;
  587. pixel = low & PIPE_PIXEL_MASK;
  588. low >>= PIPE_FRAME_LOW_SHIFT;
  589. /*
  590. * The frame counter increments at beginning of active.
  591. * Cook up a vblank counter by also checking the pixel
  592. * counter against vblank start.
  593. */
  594. return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
  595. }
  596. static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
  597. {
  598. struct drm_i915_private *dev_priv = dev->dev_private;
  599. int reg = PIPE_FRMCOUNT_GM45(pipe);
  600. return I915_READ(reg);
  601. }
  602. /* raw reads, only for fast reads of display block, no need for forcewake etc. */
  603. #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
  604. static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
  605. {
  606. struct drm_device *dev = crtc->base.dev;
  607. struct drm_i915_private *dev_priv = dev->dev_private;
  608. const struct drm_display_mode *mode = &crtc->base.hwmode;
  609. enum pipe pipe = crtc->pipe;
  610. int position, vtotal;
  611. vtotal = mode->crtc_vtotal;
  612. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  613. vtotal /= 2;
  614. if (IS_GEN2(dev))
  615. position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
  616. else
  617. position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  618. /*
  619. * On HSW, the DSL reg (0x70000) appears to return 0 if we
  620. * read it just before the start of vblank. So try it again
  621. * so we don't accidentally end up spanning a vblank frame
  622. * increment, causing the pipe_update_end() code to squak at us.
  623. *
  624. * The nature of this problem means we can't simply check the ISR
  625. * bit and return the vblank start value; nor can we use the scanline
  626. * debug register in the transcoder as it appears to have the same
  627. * problem. We may need to extend this to include other platforms,
  628. * but so far testing only shows the problem on HSW.
  629. */
  630. if (IS_HASWELL(dev) && !position) {
  631. int i, temp;
  632. for (i = 0; i < 100; i++) {
  633. udelay(1);
  634. temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
  635. DSL_LINEMASK_GEN3;
  636. if (temp != position) {
  637. position = temp;
  638. break;
  639. }
  640. }
  641. }
  642. /*
  643. * See update_scanline_offset() for the details on the
  644. * scanline_offset adjustment.
  645. */
  646. return (position + crtc->scanline_offset) % vtotal;
  647. }
  648. static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
  649. unsigned int flags, int *vpos, int *hpos,
  650. ktime_t *stime, ktime_t *etime,
  651. const struct drm_display_mode *mode)
  652. {
  653. struct drm_i915_private *dev_priv = dev->dev_private;
  654. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  655. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  656. int position;
  657. int vbl_start, vbl_end, hsync_start, htotal, vtotal;
  658. bool in_vbl = true;
  659. int ret = 0;
  660. unsigned long irqflags;
  661. if (WARN_ON(!mode->crtc_clock)) {
  662. DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
  663. "pipe %c\n", pipe_name(pipe));
  664. return 0;
  665. }
  666. htotal = mode->crtc_htotal;
  667. hsync_start = mode->crtc_hsync_start;
  668. vtotal = mode->crtc_vtotal;
  669. vbl_start = mode->crtc_vblank_start;
  670. vbl_end = mode->crtc_vblank_end;
  671. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  672. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  673. vbl_end /= 2;
  674. vtotal /= 2;
  675. }
  676. ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
  677. /*
  678. * Lock uncore.lock, as we will do multiple timing critical raw
  679. * register reads, potentially with preemption disabled, so the
  680. * following code must not block on uncore.lock.
  681. */
  682. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  683. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  684. /* Get optional system timestamp before query. */
  685. if (stime)
  686. *stime = ktime_get();
  687. if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  688. /* No obvious pixelcount register. Only query vertical
  689. * scanout position from Display scan line register.
  690. */
  691. position = __intel_get_crtc_scanline(intel_crtc);
  692. } else {
  693. /* Have access to pixelcount since start of frame.
  694. * We can split this into vertical and horizontal
  695. * scanout position.
  696. */
  697. position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
  698. /* convert to pixel counts */
  699. vbl_start *= htotal;
  700. vbl_end *= htotal;
  701. vtotal *= htotal;
  702. /*
  703. * In interlaced modes, the pixel counter counts all pixels,
  704. * so one field will have htotal more pixels. In order to avoid
  705. * the reported position from jumping backwards when the pixel
  706. * counter is beyond the length of the shorter field, just
  707. * clamp the position the length of the shorter field. This
  708. * matches how the scanline counter based position works since
  709. * the scanline counter doesn't count the two half lines.
  710. */
  711. if (position >= vtotal)
  712. position = vtotal - 1;
  713. /*
  714. * Start of vblank interrupt is triggered at start of hsync,
  715. * just prior to the first active line of vblank. However we
  716. * consider lines to start at the leading edge of horizontal
  717. * active. So, should we get here before we've crossed into
  718. * the horizontal active of the first line in vblank, we would
  719. * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
  720. * always add htotal-hsync_start to the current pixel position.
  721. */
  722. position = (position + htotal - hsync_start) % vtotal;
  723. }
  724. /* Get optional system timestamp after query. */
  725. if (etime)
  726. *etime = ktime_get();
  727. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  728. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  729. in_vbl = position >= vbl_start && position < vbl_end;
  730. /*
  731. * While in vblank, position will be negative
  732. * counting up towards 0 at vbl_end. And outside
  733. * vblank, position will be positive counting
  734. * up since vbl_end.
  735. */
  736. if (position >= vbl_start)
  737. position -= vbl_end;
  738. else
  739. position += vtotal - vbl_end;
  740. if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  741. *vpos = position;
  742. *hpos = 0;
  743. } else {
  744. *vpos = position / htotal;
  745. *hpos = position - (*vpos * htotal);
  746. }
  747. /* In vblank? */
  748. if (in_vbl)
  749. ret |= DRM_SCANOUTPOS_IN_VBLANK;
  750. return ret;
  751. }
  752. int intel_get_crtc_scanline(struct intel_crtc *crtc)
  753. {
  754. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  755. unsigned long irqflags;
  756. int position;
  757. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  758. position = __intel_get_crtc_scanline(crtc);
  759. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  760. return position;
  761. }
  762. static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
  763. int *max_error,
  764. struct timeval *vblank_time,
  765. unsigned flags)
  766. {
  767. struct drm_crtc *crtc;
  768. if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
  769. DRM_ERROR("Invalid crtc %d\n", pipe);
  770. return -EINVAL;
  771. }
  772. /* Get drm_crtc to timestamp: */
  773. crtc = intel_get_crtc_for_pipe(dev, pipe);
  774. if (crtc == NULL) {
  775. DRM_ERROR("Invalid crtc %d\n", pipe);
  776. return -EINVAL;
  777. }
  778. if (!crtc->hwmode.crtc_clock) {
  779. DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
  780. return -EBUSY;
  781. }
  782. /* Helper routine in DRM core does all the work: */
  783. return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
  784. vblank_time, flags,
  785. &crtc->hwmode);
  786. }
  787. static void ironlake_rps_change_irq_handler(struct drm_device *dev)
  788. {
  789. struct drm_i915_private *dev_priv = dev->dev_private;
  790. u32 busy_up, busy_down, max_avg, min_avg;
  791. u8 new_delay;
  792. spin_lock(&mchdev_lock);
  793. I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
  794. new_delay = dev_priv->ips.cur_delay;
  795. I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
  796. busy_up = I915_READ(RCPREVBSYTUPAVG);
  797. busy_down = I915_READ(RCPREVBSYTDNAVG);
  798. max_avg = I915_READ(RCBMAXAVG);
  799. min_avg = I915_READ(RCBMINAVG);
  800. /* Handle RCS change request from hw */
  801. if (busy_up > max_avg) {
  802. if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
  803. new_delay = dev_priv->ips.cur_delay - 1;
  804. if (new_delay < dev_priv->ips.max_delay)
  805. new_delay = dev_priv->ips.max_delay;
  806. } else if (busy_down < min_avg) {
  807. if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
  808. new_delay = dev_priv->ips.cur_delay + 1;
  809. if (new_delay > dev_priv->ips.min_delay)
  810. new_delay = dev_priv->ips.min_delay;
  811. }
  812. if (ironlake_set_drps(dev, new_delay))
  813. dev_priv->ips.cur_delay = new_delay;
  814. spin_unlock(&mchdev_lock);
  815. return;
  816. }
  817. static void notify_ring(struct intel_engine_cs *ring)
  818. {
  819. if (!intel_ring_initialized(ring))
  820. return;
  821. trace_i915_gem_request_notify(ring);
  822. wake_up_all(&ring->irq_queue);
  823. }
  824. static void vlv_c0_read(struct drm_i915_private *dev_priv,
  825. struct intel_rps_ei *ei)
  826. {
  827. ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
  828. ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
  829. ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
  830. }
  831. static bool vlv_c0_above(struct drm_i915_private *dev_priv,
  832. const struct intel_rps_ei *old,
  833. const struct intel_rps_ei *now,
  834. int threshold)
  835. {
  836. u64 time, c0;
  837. unsigned int mul = 100;
  838. if (old->cz_clock == 0)
  839. return false;
  840. if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
  841. mul <<= 8;
  842. time = now->cz_clock - old->cz_clock;
  843. time *= threshold * dev_priv->czclk_freq;
  844. /* Workload can be split between render + media, e.g. SwapBuffers
  845. * being blitted in X after being rendered in mesa. To account for
  846. * this we need to combine both engines into our activity counter.
  847. */
  848. c0 = now->render_c0 - old->render_c0;
  849. c0 += now->media_c0 - old->media_c0;
  850. c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
  851. return c0 >= time;
  852. }
  853. void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
  854. {
  855. vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
  856. dev_priv->rps.up_ei = dev_priv->rps.down_ei;
  857. }
  858. static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
  859. {
  860. struct intel_rps_ei now;
  861. u32 events = 0;
  862. if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
  863. return 0;
  864. vlv_c0_read(dev_priv, &now);
  865. if (now.cz_clock == 0)
  866. return 0;
  867. if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
  868. if (!vlv_c0_above(dev_priv,
  869. &dev_priv->rps.down_ei, &now,
  870. dev_priv->rps.down_threshold))
  871. events |= GEN6_PM_RP_DOWN_THRESHOLD;
  872. dev_priv->rps.down_ei = now;
  873. }
  874. if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
  875. if (vlv_c0_above(dev_priv,
  876. &dev_priv->rps.up_ei, &now,
  877. dev_priv->rps.up_threshold))
  878. events |= GEN6_PM_RP_UP_THRESHOLD;
  879. dev_priv->rps.up_ei = now;
  880. }
  881. return events;
  882. }
  883. static bool any_waiters(struct drm_i915_private *dev_priv)
  884. {
  885. struct intel_engine_cs *ring;
  886. int i;
  887. for_each_ring(ring, dev_priv, i)
  888. if (ring->irq_refcount)
  889. return true;
  890. return false;
  891. }
  892. static void gen6_pm_rps_work(struct work_struct *work)
  893. {
  894. struct drm_i915_private *dev_priv =
  895. container_of(work, struct drm_i915_private, rps.work);
  896. bool client_boost;
  897. int new_delay, adj, min, max;
  898. u32 pm_iir;
  899. spin_lock_irq(&dev_priv->irq_lock);
  900. /* Speed up work cancelation during disabling rps interrupts. */
  901. if (!dev_priv->rps.interrupts_enabled) {
  902. spin_unlock_irq(&dev_priv->irq_lock);
  903. return;
  904. }
  905. pm_iir = dev_priv->rps.pm_iir;
  906. dev_priv->rps.pm_iir = 0;
  907. /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
  908. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  909. client_boost = dev_priv->rps.client_boost;
  910. dev_priv->rps.client_boost = false;
  911. spin_unlock_irq(&dev_priv->irq_lock);
  912. /* Make sure we didn't queue anything we're not going to process. */
  913. WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
  914. if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
  915. return;
  916. mutex_lock(&dev_priv->rps.hw_lock);
  917. pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
  918. adj = dev_priv->rps.last_adj;
  919. new_delay = dev_priv->rps.cur_freq;
  920. min = dev_priv->rps.min_freq_softlimit;
  921. max = dev_priv->rps.max_freq_softlimit;
  922. if (client_boost) {
  923. new_delay = dev_priv->rps.max_freq_softlimit;
  924. adj = 0;
  925. } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
  926. if (adj > 0)
  927. adj *= 2;
  928. else /* CHV needs even encode values */
  929. adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
  930. /*
  931. * For better performance, jump directly
  932. * to RPe if we're below it.
  933. */
  934. if (new_delay < dev_priv->rps.efficient_freq - adj) {
  935. new_delay = dev_priv->rps.efficient_freq;
  936. adj = 0;
  937. }
  938. } else if (any_waiters(dev_priv)) {
  939. adj = 0;
  940. } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
  941. if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
  942. new_delay = dev_priv->rps.efficient_freq;
  943. else
  944. new_delay = dev_priv->rps.min_freq_softlimit;
  945. adj = 0;
  946. } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
  947. if (adj < 0)
  948. adj *= 2;
  949. else /* CHV needs even encode values */
  950. adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
  951. } else { /* unknown event */
  952. adj = 0;
  953. }
  954. dev_priv->rps.last_adj = adj;
  955. /* sysfs frequency interfaces may have snuck in while servicing the
  956. * interrupt
  957. */
  958. new_delay += adj;
  959. new_delay = clamp_t(int, new_delay, min, max);
  960. intel_set_rps(dev_priv->dev, new_delay);
  961. mutex_unlock(&dev_priv->rps.hw_lock);
  962. }
  963. /**
  964. * ivybridge_parity_work - Workqueue called when a parity error interrupt
  965. * occurred.
  966. * @work: workqueue struct
  967. *
  968. * Doesn't actually do anything except notify userspace. As a consequence of
  969. * this event, userspace should try to remap the bad rows since statistically
  970. * it is likely the same row is more likely to go bad again.
  971. */
  972. static void ivybridge_parity_work(struct work_struct *work)
  973. {
  974. struct drm_i915_private *dev_priv =
  975. container_of(work, struct drm_i915_private, l3_parity.error_work);
  976. u32 error_status, row, bank, subbank;
  977. char *parity_event[6];
  978. uint32_t misccpctl;
  979. uint8_t slice = 0;
  980. /* We must turn off DOP level clock gating to access the L3 registers.
  981. * In order to prevent a get/put style interface, acquire struct mutex
  982. * any time we access those registers.
  983. */
  984. mutex_lock(&dev_priv->dev->struct_mutex);
  985. /* If we've screwed up tracking, just let the interrupt fire again */
  986. if (WARN_ON(!dev_priv->l3_parity.which_slice))
  987. goto out;
  988. misccpctl = I915_READ(GEN7_MISCCPCTL);
  989. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  990. POSTING_READ(GEN7_MISCCPCTL);
  991. while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
  992. u32 reg;
  993. slice--;
  994. if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
  995. break;
  996. dev_priv->l3_parity.which_slice &= ~(1<<slice);
  997. reg = GEN7_L3CDERRST1 + (slice * 0x200);
  998. error_status = I915_READ(reg);
  999. row = GEN7_PARITY_ERROR_ROW(error_status);
  1000. bank = GEN7_PARITY_ERROR_BANK(error_status);
  1001. subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
  1002. I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
  1003. POSTING_READ(reg);
  1004. parity_event[0] = I915_L3_PARITY_UEVENT "=1";
  1005. parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
  1006. parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
  1007. parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
  1008. parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
  1009. parity_event[5] = NULL;
  1010. kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
  1011. KOBJ_CHANGE, parity_event);
  1012. DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
  1013. slice, row, bank, subbank);
  1014. kfree(parity_event[4]);
  1015. kfree(parity_event[3]);
  1016. kfree(parity_event[2]);
  1017. kfree(parity_event[1]);
  1018. }
  1019. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  1020. out:
  1021. WARN_ON(dev_priv->l3_parity.which_slice);
  1022. spin_lock_irq(&dev_priv->irq_lock);
  1023. gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
  1024. spin_unlock_irq(&dev_priv->irq_lock);
  1025. mutex_unlock(&dev_priv->dev->struct_mutex);
  1026. }
  1027. static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
  1028. {
  1029. struct drm_i915_private *dev_priv = dev->dev_private;
  1030. if (!HAS_L3_DPF(dev))
  1031. return;
  1032. spin_lock(&dev_priv->irq_lock);
  1033. gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
  1034. spin_unlock(&dev_priv->irq_lock);
  1035. iir &= GT_PARITY_ERROR(dev);
  1036. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
  1037. dev_priv->l3_parity.which_slice |= 1 << 1;
  1038. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
  1039. dev_priv->l3_parity.which_slice |= 1 << 0;
  1040. queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
  1041. }
  1042. static void ilk_gt_irq_handler(struct drm_device *dev,
  1043. struct drm_i915_private *dev_priv,
  1044. u32 gt_iir)
  1045. {
  1046. if (gt_iir &
  1047. (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
  1048. notify_ring(&dev_priv->ring[RCS]);
  1049. if (gt_iir & ILK_BSD_USER_INTERRUPT)
  1050. notify_ring(&dev_priv->ring[VCS]);
  1051. }
  1052. static void snb_gt_irq_handler(struct drm_device *dev,
  1053. struct drm_i915_private *dev_priv,
  1054. u32 gt_iir)
  1055. {
  1056. if (gt_iir &
  1057. (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
  1058. notify_ring(&dev_priv->ring[RCS]);
  1059. if (gt_iir & GT_BSD_USER_INTERRUPT)
  1060. notify_ring(&dev_priv->ring[VCS]);
  1061. if (gt_iir & GT_BLT_USER_INTERRUPT)
  1062. notify_ring(&dev_priv->ring[BCS]);
  1063. if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
  1064. GT_BSD_CS_ERROR_INTERRUPT |
  1065. GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
  1066. DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
  1067. if (gt_iir & GT_PARITY_ERROR(dev))
  1068. ivybridge_parity_error_irq_handler(dev, gt_iir);
  1069. }
  1070. static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
  1071. u32 master_ctl)
  1072. {
  1073. irqreturn_t ret = IRQ_NONE;
  1074. if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
  1075. u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
  1076. if (tmp) {
  1077. I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
  1078. ret = IRQ_HANDLED;
  1079. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
  1080. intel_lrc_irq_handler(&dev_priv->ring[RCS]);
  1081. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
  1082. notify_ring(&dev_priv->ring[RCS]);
  1083. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
  1084. intel_lrc_irq_handler(&dev_priv->ring[BCS]);
  1085. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
  1086. notify_ring(&dev_priv->ring[BCS]);
  1087. } else
  1088. DRM_ERROR("The master control interrupt lied (GT0)!\n");
  1089. }
  1090. if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
  1091. u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
  1092. if (tmp) {
  1093. I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
  1094. ret = IRQ_HANDLED;
  1095. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
  1096. intel_lrc_irq_handler(&dev_priv->ring[VCS]);
  1097. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
  1098. notify_ring(&dev_priv->ring[VCS]);
  1099. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
  1100. intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
  1101. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
  1102. notify_ring(&dev_priv->ring[VCS2]);
  1103. } else
  1104. DRM_ERROR("The master control interrupt lied (GT1)!\n");
  1105. }
  1106. if (master_ctl & GEN8_GT_VECS_IRQ) {
  1107. u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
  1108. if (tmp) {
  1109. I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
  1110. ret = IRQ_HANDLED;
  1111. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
  1112. intel_lrc_irq_handler(&dev_priv->ring[VECS]);
  1113. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
  1114. notify_ring(&dev_priv->ring[VECS]);
  1115. } else
  1116. DRM_ERROR("The master control interrupt lied (GT3)!\n");
  1117. }
  1118. if (master_ctl & GEN8_GT_PM_IRQ) {
  1119. u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
  1120. if (tmp & dev_priv->pm_rps_events) {
  1121. I915_WRITE_FW(GEN8_GT_IIR(2),
  1122. tmp & dev_priv->pm_rps_events);
  1123. ret = IRQ_HANDLED;
  1124. gen6_rps_irq_handler(dev_priv, tmp);
  1125. } else
  1126. DRM_ERROR("The master control interrupt lied (PM)!\n");
  1127. }
  1128. return ret;
  1129. }
  1130. static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
  1131. {
  1132. switch (port) {
  1133. case PORT_A:
  1134. return val & PORTA_HOTPLUG_LONG_DETECT;
  1135. case PORT_B:
  1136. return val & PORTB_HOTPLUG_LONG_DETECT;
  1137. case PORT_C:
  1138. return val & PORTC_HOTPLUG_LONG_DETECT;
  1139. default:
  1140. return false;
  1141. }
  1142. }
  1143. static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
  1144. {
  1145. switch (port) {
  1146. case PORT_E:
  1147. return val & PORTE_HOTPLUG_LONG_DETECT;
  1148. default:
  1149. return false;
  1150. }
  1151. }
  1152. static bool spt_port_hotplug_long_detect(enum port port, u32 val)
  1153. {
  1154. switch (port) {
  1155. case PORT_A:
  1156. return val & PORTA_HOTPLUG_LONG_DETECT;
  1157. case PORT_B:
  1158. return val & PORTB_HOTPLUG_LONG_DETECT;
  1159. case PORT_C:
  1160. return val & PORTC_HOTPLUG_LONG_DETECT;
  1161. case PORT_D:
  1162. return val & PORTD_HOTPLUG_LONG_DETECT;
  1163. default:
  1164. return false;
  1165. }
  1166. }
  1167. static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
  1168. {
  1169. switch (port) {
  1170. case PORT_A:
  1171. return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
  1172. default:
  1173. return false;
  1174. }
  1175. }
  1176. static bool pch_port_hotplug_long_detect(enum port port, u32 val)
  1177. {
  1178. switch (port) {
  1179. case PORT_B:
  1180. return val & PORTB_HOTPLUG_LONG_DETECT;
  1181. case PORT_C:
  1182. return val & PORTC_HOTPLUG_LONG_DETECT;
  1183. case PORT_D:
  1184. return val & PORTD_HOTPLUG_LONG_DETECT;
  1185. default:
  1186. return false;
  1187. }
  1188. }
  1189. static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
  1190. {
  1191. switch (port) {
  1192. case PORT_B:
  1193. return val & PORTB_HOTPLUG_INT_LONG_PULSE;
  1194. case PORT_C:
  1195. return val & PORTC_HOTPLUG_INT_LONG_PULSE;
  1196. case PORT_D:
  1197. return val & PORTD_HOTPLUG_INT_LONG_PULSE;
  1198. default:
  1199. return false;
  1200. }
  1201. }
  1202. /*
  1203. * Get a bit mask of pins that have triggered, and which ones may be long.
  1204. * This can be called multiple times with the same masks to accumulate
  1205. * hotplug detection results from several registers.
  1206. *
  1207. * Note that the caller is expected to zero out the masks initially.
  1208. */
  1209. static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
  1210. u32 hotplug_trigger, u32 dig_hotplug_reg,
  1211. const u32 hpd[HPD_NUM_PINS],
  1212. bool long_pulse_detect(enum port port, u32 val))
  1213. {
  1214. enum port port;
  1215. int i;
  1216. for_each_hpd_pin(i) {
  1217. if ((hpd[i] & hotplug_trigger) == 0)
  1218. continue;
  1219. *pin_mask |= BIT(i);
  1220. if (!intel_hpd_pin_to_port(i, &port))
  1221. continue;
  1222. if (long_pulse_detect(port, dig_hotplug_reg))
  1223. *long_mask |= BIT(i);
  1224. }
  1225. DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
  1226. hotplug_trigger, dig_hotplug_reg, *pin_mask);
  1227. }
  1228. static void gmbus_irq_handler(struct drm_device *dev)
  1229. {
  1230. struct drm_i915_private *dev_priv = dev->dev_private;
  1231. wake_up_all(&dev_priv->gmbus_wait_queue);
  1232. }
  1233. static void dp_aux_irq_handler(struct drm_device *dev)
  1234. {
  1235. struct drm_i915_private *dev_priv = dev->dev_private;
  1236. wake_up_all(&dev_priv->gmbus_wait_queue);
  1237. }
  1238. #if defined(CONFIG_DEBUG_FS)
  1239. static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
  1240. uint32_t crc0, uint32_t crc1,
  1241. uint32_t crc2, uint32_t crc3,
  1242. uint32_t crc4)
  1243. {
  1244. struct drm_i915_private *dev_priv = dev->dev_private;
  1245. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  1246. struct intel_pipe_crc_entry *entry;
  1247. int head, tail;
  1248. spin_lock(&pipe_crc->lock);
  1249. if (!pipe_crc->entries) {
  1250. spin_unlock(&pipe_crc->lock);
  1251. DRM_DEBUG_KMS("spurious interrupt\n");
  1252. return;
  1253. }
  1254. head = pipe_crc->head;
  1255. tail = pipe_crc->tail;
  1256. if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
  1257. spin_unlock(&pipe_crc->lock);
  1258. DRM_ERROR("CRC buffer overflowing\n");
  1259. return;
  1260. }
  1261. entry = &pipe_crc->entries[head];
  1262. entry->frame = dev->driver->get_vblank_counter(dev, pipe);
  1263. entry->crc[0] = crc0;
  1264. entry->crc[1] = crc1;
  1265. entry->crc[2] = crc2;
  1266. entry->crc[3] = crc3;
  1267. entry->crc[4] = crc4;
  1268. head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  1269. pipe_crc->head = head;
  1270. spin_unlock(&pipe_crc->lock);
  1271. wake_up_interruptible(&pipe_crc->wq);
  1272. }
  1273. #else
  1274. static inline void
  1275. display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
  1276. uint32_t crc0, uint32_t crc1,
  1277. uint32_t crc2, uint32_t crc3,
  1278. uint32_t crc4) {}
  1279. #endif
  1280. static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1281. {
  1282. struct drm_i915_private *dev_priv = dev->dev_private;
  1283. display_pipe_crc_irq_handler(dev, pipe,
  1284. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1285. 0, 0, 0, 0);
  1286. }
  1287. static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1288. {
  1289. struct drm_i915_private *dev_priv = dev->dev_private;
  1290. display_pipe_crc_irq_handler(dev, pipe,
  1291. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1292. I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
  1293. I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
  1294. I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
  1295. I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
  1296. }
  1297. static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1298. {
  1299. struct drm_i915_private *dev_priv = dev->dev_private;
  1300. uint32_t res1, res2;
  1301. if (INTEL_INFO(dev)->gen >= 3)
  1302. res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
  1303. else
  1304. res1 = 0;
  1305. if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  1306. res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
  1307. else
  1308. res2 = 0;
  1309. display_pipe_crc_irq_handler(dev, pipe,
  1310. I915_READ(PIPE_CRC_RES_RED(pipe)),
  1311. I915_READ(PIPE_CRC_RES_GREEN(pipe)),
  1312. I915_READ(PIPE_CRC_RES_BLUE(pipe)),
  1313. res1, res2);
  1314. }
  1315. /* The RPS events need forcewake, so we add them to a work queue and mask their
  1316. * IMR bits until the work is done. Other interrupts can be processed without
  1317. * the work queue. */
  1318. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
  1319. {
  1320. if (pm_iir & dev_priv->pm_rps_events) {
  1321. spin_lock(&dev_priv->irq_lock);
  1322. gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
  1323. if (dev_priv->rps.interrupts_enabled) {
  1324. dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
  1325. queue_work(dev_priv->wq, &dev_priv->rps.work);
  1326. }
  1327. spin_unlock(&dev_priv->irq_lock);
  1328. }
  1329. if (INTEL_INFO(dev_priv)->gen >= 8)
  1330. return;
  1331. if (HAS_VEBOX(dev_priv->dev)) {
  1332. if (pm_iir & PM_VEBOX_USER_INTERRUPT)
  1333. notify_ring(&dev_priv->ring[VECS]);
  1334. if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
  1335. DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
  1336. }
  1337. }
  1338. static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
  1339. {
  1340. if (!drm_handle_vblank(dev, pipe))
  1341. return false;
  1342. return true;
  1343. }
  1344. static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
  1345. {
  1346. struct drm_i915_private *dev_priv = dev->dev_private;
  1347. u32 pipe_stats[I915_MAX_PIPES] = { };
  1348. int pipe;
  1349. spin_lock(&dev_priv->irq_lock);
  1350. for_each_pipe(dev_priv, pipe) {
  1351. int reg;
  1352. u32 mask, iir_bit = 0;
  1353. /*
  1354. * PIPESTAT bits get signalled even when the interrupt is
  1355. * disabled with the mask bits, and some of the status bits do
  1356. * not generate interrupts at all (like the underrun bit). Hence
  1357. * we need to be careful that we only handle what we want to
  1358. * handle.
  1359. */
  1360. /* fifo underruns are filterered in the underrun handler. */
  1361. mask = PIPE_FIFO_UNDERRUN_STATUS;
  1362. switch (pipe) {
  1363. case PIPE_A:
  1364. iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
  1365. break;
  1366. case PIPE_B:
  1367. iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  1368. break;
  1369. case PIPE_C:
  1370. iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  1371. break;
  1372. }
  1373. if (iir & iir_bit)
  1374. mask |= dev_priv->pipestat_irq_mask[pipe];
  1375. if (!mask)
  1376. continue;
  1377. reg = PIPESTAT(pipe);
  1378. mask |= PIPESTAT_INT_ENABLE_MASK;
  1379. pipe_stats[pipe] = I915_READ(reg) & mask;
  1380. /*
  1381. * Clear the PIPE*STAT regs before the IIR
  1382. */
  1383. if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
  1384. PIPESTAT_INT_STATUS_MASK))
  1385. I915_WRITE(reg, pipe_stats[pipe]);
  1386. }
  1387. spin_unlock(&dev_priv->irq_lock);
  1388. for_each_pipe(dev_priv, pipe) {
  1389. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  1390. intel_pipe_handle_vblank(dev, pipe))
  1391. intel_check_page_flip(dev, pipe);
  1392. if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
  1393. intel_prepare_page_flip(dev, pipe);
  1394. intel_finish_page_flip(dev, pipe);
  1395. }
  1396. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1397. i9xx_pipe_crc_irq_handler(dev, pipe);
  1398. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1399. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1400. }
  1401. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1402. gmbus_irq_handler(dev);
  1403. }
  1404. static void i9xx_hpd_irq_handler(struct drm_device *dev)
  1405. {
  1406. struct drm_i915_private *dev_priv = dev->dev_private;
  1407. u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
  1408. u32 pin_mask = 0, long_mask = 0;
  1409. if (!hotplug_status)
  1410. return;
  1411. I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
  1412. /*
  1413. * Make sure hotplug status is cleared before we clear IIR, or else we
  1414. * may miss hotplug events.
  1415. */
  1416. POSTING_READ(PORT_HOTPLUG_STAT);
  1417. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  1418. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
  1419. if (hotplug_trigger) {
  1420. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1421. hotplug_trigger, hpd_status_g4x,
  1422. i9xx_port_hotplug_long_detect);
  1423. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1424. }
  1425. if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
  1426. dp_aux_irq_handler(dev);
  1427. } else {
  1428. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
  1429. if (hotplug_trigger) {
  1430. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1431. hotplug_trigger, hpd_status_i915,
  1432. i9xx_port_hotplug_long_detect);
  1433. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1434. }
  1435. }
  1436. }
  1437. static irqreturn_t valleyview_irq_handler(int irq, void *arg)
  1438. {
  1439. struct drm_device *dev = arg;
  1440. struct drm_i915_private *dev_priv = dev->dev_private;
  1441. u32 iir, gt_iir, pm_iir;
  1442. irqreturn_t ret = IRQ_NONE;
  1443. if (!intel_irqs_enabled(dev_priv))
  1444. return IRQ_NONE;
  1445. while (true) {
  1446. /* Find, clear, then process each source of interrupt */
  1447. gt_iir = I915_READ(GTIIR);
  1448. if (gt_iir)
  1449. I915_WRITE(GTIIR, gt_iir);
  1450. pm_iir = I915_READ(GEN6_PMIIR);
  1451. if (pm_iir)
  1452. I915_WRITE(GEN6_PMIIR, pm_iir);
  1453. iir = I915_READ(VLV_IIR);
  1454. if (iir) {
  1455. /* Consume port before clearing IIR or we'll miss events */
  1456. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1457. i9xx_hpd_irq_handler(dev);
  1458. I915_WRITE(VLV_IIR, iir);
  1459. }
  1460. if (gt_iir == 0 && pm_iir == 0 && iir == 0)
  1461. goto out;
  1462. ret = IRQ_HANDLED;
  1463. if (gt_iir)
  1464. snb_gt_irq_handler(dev, dev_priv, gt_iir);
  1465. if (pm_iir)
  1466. gen6_rps_irq_handler(dev_priv, pm_iir);
  1467. /* Call regardless, as some status bits might not be
  1468. * signalled in iir */
  1469. valleyview_pipestat_irq_handler(dev, iir);
  1470. }
  1471. out:
  1472. return ret;
  1473. }
  1474. static irqreturn_t cherryview_irq_handler(int irq, void *arg)
  1475. {
  1476. struct drm_device *dev = arg;
  1477. struct drm_i915_private *dev_priv = dev->dev_private;
  1478. u32 master_ctl, iir;
  1479. irqreturn_t ret = IRQ_NONE;
  1480. if (!intel_irqs_enabled(dev_priv))
  1481. return IRQ_NONE;
  1482. for (;;) {
  1483. master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
  1484. iir = I915_READ(VLV_IIR);
  1485. if (master_ctl == 0 && iir == 0)
  1486. break;
  1487. ret = IRQ_HANDLED;
  1488. I915_WRITE(GEN8_MASTER_IRQ, 0);
  1489. /* Find, clear, then process each source of interrupt */
  1490. if (iir) {
  1491. /* Consume port before clearing IIR or we'll miss events */
  1492. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1493. i9xx_hpd_irq_handler(dev);
  1494. I915_WRITE(VLV_IIR, iir);
  1495. }
  1496. gen8_gt_irq_handler(dev_priv, master_ctl);
  1497. /* Call regardless, as some status bits might not be
  1498. * signalled in iir */
  1499. valleyview_pipestat_irq_handler(dev, iir);
  1500. I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
  1501. POSTING_READ(GEN8_MASTER_IRQ);
  1502. }
  1503. return ret;
  1504. }
  1505. static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
  1506. const u32 hpd[HPD_NUM_PINS])
  1507. {
  1508. struct drm_i915_private *dev_priv = to_i915(dev);
  1509. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1510. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1511. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1512. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1513. dig_hotplug_reg, hpd,
  1514. pch_port_hotplug_long_detect);
  1515. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1516. }
  1517. static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
  1518. {
  1519. struct drm_i915_private *dev_priv = dev->dev_private;
  1520. int pipe;
  1521. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
  1522. if (hotplug_trigger)
  1523. ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
  1524. if (pch_iir & SDE_AUDIO_POWER_MASK) {
  1525. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
  1526. SDE_AUDIO_POWER_SHIFT);
  1527. DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
  1528. port_name(port));
  1529. }
  1530. if (pch_iir & SDE_AUX_MASK)
  1531. dp_aux_irq_handler(dev);
  1532. if (pch_iir & SDE_GMBUS)
  1533. gmbus_irq_handler(dev);
  1534. if (pch_iir & SDE_AUDIO_HDCP_MASK)
  1535. DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
  1536. if (pch_iir & SDE_AUDIO_TRANS_MASK)
  1537. DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
  1538. if (pch_iir & SDE_POISON)
  1539. DRM_ERROR("PCH poison interrupt\n");
  1540. if (pch_iir & SDE_FDI_MASK)
  1541. for_each_pipe(dev_priv, pipe)
  1542. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1543. pipe_name(pipe),
  1544. I915_READ(FDI_RX_IIR(pipe)));
  1545. if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
  1546. DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
  1547. if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
  1548. DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
  1549. if (pch_iir & SDE_TRANSA_FIFO_UNDER)
  1550. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1551. if (pch_iir & SDE_TRANSB_FIFO_UNDER)
  1552. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1553. }
  1554. static void ivb_err_int_handler(struct drm_device *dev)
  1555. {
  1556. struct drm_i915_private *dev_priv = dev->dev_private;
  1557. u32 err_int = I915_READ(GEN7_ERR_INT);
  1558. enum pipe pipe;
  1559. if (err_int & ERR_INT_POISON)
  1560. DRM_ERROR("Poison interrupt\n");
  1561. for_each_pipe(dev_priv, pipe) {
  1562. if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
  1563. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1564. if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
  1565. if (IS_IVYBRIDGE(dev))
  1566. ivb_pipe_crc_irq_handler(dev, pipe);
  1567. else
  1568. hsw_pipe_crc_irq_handler(dev, pipe);
  1569. }
  1570. }
  1571. I915_WRITE(GEN7_ERR_INT, err_int);
  1572. }
  1573. static void cpt_serr_int_handler(struct drm_device *dev)
  1574. {
  1575. struct drm_i915_private *dev_priv = dev->dev_private;
  1576. u32 serr_int = I915_READ(SERR_INT);
  1577. if (serr_int & SERR_INT_POISON)
  1578. DRM_ERROR("PCH poison interrupt\n");
  1579. if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
  1580. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1581. if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
  1582. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1583. if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
  1584. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
  1585. I915_WRITE(SERR_INT, serr_int);
  1586. }
  1587. static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
  1588. {
  1589. struct drm_i915_private *dev_priv = dev->dev_private;
  1590. int pipe;
  1591. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
  1592. if (hotplug_trigger)
  1593. ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
  1594. if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
  1595. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
  1596. SDE_AUDIO_POWER_SHIFT_CPT);
  1597. DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
  1598. port_name(port));
  1599. }
  1600. if (pch_iir & SDE_AUX_MASK_CPT)
  1601. dp_aux_irq_handler(dev);
  1602. if (pch_iir & SDE_GMBUS_CPT)
  1603. gmbus_irq_handler(dev);
  1604. if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
  1605. DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
  1606. if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
  1607. DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
  1608. if (pch_iir & SDE_FDI_MASK_CPT)
  1609. for_each_pipe(dev_priv, pipe)
  1610. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1611. pipe_name(pipe),
  1612. I915_READ(FDI_RX_IIR(pipe)));
  1613. if (pch_iir & SDE_ERROR_CPT)
  1614. cpt_serr_int_handler(dev);
  1615. }
  1616. static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
  1617. {
  1618. struct drm_i915_private *dev_priv = dev->dev_private;
  1619. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
  1620. ~SDE_PORTE_HOTPLUG_SPT;
  1621. u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
  1622. u32 pin_mask = 0, long_mask = 0;
  1623. if (hotplug_trigger) {
  1624. u32 dig_hotplug_reg;
  1625. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1626. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1627. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1628. dig_hotplug_reg, hpd_spt,
  1629. spt_port_hotplug_long_detect);
  1630. }
  1631. if (hotplug2_trigger) {
  1632. u32 dig_hotplug_reg;
  1633. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
  1634. I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
  1635. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
  1636. dig_hotplug_reg, hpd_spt,
  1637. spt_port_hotplug2_long_detect);
  1638. }
  1639. if (pin_mask)
  1640. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1641. if (pch_iir & SDE_GMBUS_CPT)
  1642. gmbus_irq_handler(dev);
  1643. }
  1644. static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
  1645. const u32 hpd[HPD_NUM_PINS])
  1646. {
  1647. struct drm_i915_private *dev_priv = to_i915(dev);
  1648. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1649. dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  1650. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
  1651. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1652. dig_hotplug_reg, hpd,
  1653. ilk_port_hotplug_long_detect);
  1654. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1655. }
  1656. static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
  1657. {
  1658. struct drm_i915_private *dev_priv = dev->dev_private;
  1659. enum pipe pipe;
  1660. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
  1661. if (hotplug_trigger)
  1662. ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
  1663. if (de_iir & DE_AUX_CHANNEL_A)
  1664. dp_aux_irq_handler(dev);
  1665. if (de_iir & DE_GSE)
  1666. intel_opregion_asle_intr(dev);
  1667. if (de_iir & DE_POISON)
  1668. DRM_ERROR("Poison interrupt\n");
  1669. for_each_pipe(dev_priv, pipe) {
  1670. if (de_iir & DE_PIPE_VBLANK(pipe) &&
  1671. intel_pipe_handle_vblank(dev, pipe))
  1672. intel_check_page_flip(dev, pipe);
  1673. if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
  1674. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1675. if (de_iir & DE_PIPE_CRC_DONE(pipe))
  1676. i9xx_pipe_crc_irq_handler(dev, pipe);
  1677. /* plane/pipes map 1:1 on ilk+ */
  1678. if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
  1679. intel_prepare_page_flip(dev, pipe);
  1680. intel_finish_page_flip_plane(dev, pipe);
  1681. }
  1682. }
  1683. /* check event from PCH */
  1684. if (de_iir & DE_PCH_EVENT) {
  1685. u32 pch_iir = I915_READ(SDEIIR);
  1686. if (HAS_PCH_CPT(dev))
  1687. cpt_irq_handler(dev, pch_iir);
  1688. else
  1689. ibx_irq_handler(dev, pch_iir);
  1690. /* should clear PCH hotplug event before clear CPU irq */
  1691. I915_WRITE(SDEIIR, pch_iir);
  1692. }
  1693. if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
  1694. ironlake_rps_change_irq_handler(dev);
  1695. }
  1696. static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
  1697. {
  1698. struct drm_i915_private *dev_priv = dev->dev_private;
  1699. enum pipe pipe;
  1700. u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
  1701. if (hotplug_trigger)
  1702. ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
  1703. if (de_iir & DE_ERR_INT_IVB)
  1704. ivb_err_int_handler(dev);
  1705. if (de_iir & DE_AUX_CHANNEL_A_IVB)
  1706. dp_aux_irq_handler(dev);
  1707. if (de_iir & DE_GSE_IVB)
  1708. intel_opregion_asle_intr(dev);
  1709. for_each_pipe(dev_priv, pipe) {
  1710. if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
  1711. intel_pipe_handle_vblank(dev, pipe))
  1712. intel_check_page_flip(dev, pipe);
  1713. /* plane/pipes map 1:1 on ilk+ */
  1714. if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
  1715. intel_prepare_page_flip(dev, pipe);
  1716. intel_finish_page_flip_plane(dev, pipe);
  1717. }
  1718. }
  1719. /* check event from PCH */
  1720. if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
  1721. u32 pch_iir = I915_READ(SDEIIR);
  1722. cpt_irq_handler(dev, pch_iir);
  1723. /* clear PCH hotplug event before clear CPU irq */
  1724. I915_WRITE(SDEIIR, pch_iir);
  1725. }
  1726. }
  1727. /*
  1728. * To handle irqs with the minimum potential races with fresh interrupts, we:
  1729. * 1 - Disable Master Interrupt Control.
  1730. * 2 - Find the source(s) of the interrupt.
  1731. * 3 - Clear the Interrupt Identity bits (IIR).
  1732. * 4 - Process the interrupt(s) that had bits set in the IIRs.
  1733. * 5 - Re-enable Master Interrupt Control.
  1734. */
  1735. static irqreturn_t ironlake_irq_handler(int irq, void *arg)
  1736. {
  1737. struct drm_device *dev = arg;
  1738. struct drm_i915_private *dev_priv = dev->dev_private;
  1739. u32 de_iir, gt_iir, de_ier, sde_ier = 0;
  1740. irqreturn_t ret = IRQ_NONE;
  1741. if (!intel_irqs_enabled(dev_priv))
  1742. return IRQ_NONE;
  1743. /* We get interrupts on unclaimed registers, so check for this before we
  1744. * do any I915_{READ,WRITE}. */
  1745. intel_uncore_check_errors(dev);
  1746. /* disable master interrupt before clearing iir */
  1747. de_ier = I915_READ(DEIER);
  1748. I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
  1749. POSTING_READ(DEIER);
  1750. /* Disable south interrupts. We'll only write to SDEIIR once, so further
  1751. * interrupts will will be stored on its back queue, and then we'll be
  1752. * able to process them after we restore SDEIER (as soon as we restore
  1753. * it, we'll get an interrupt if SDEIIR still has something to process
  1754. * due to its back queue). */
  1755. if (!HAS_PCH_NOP(dev)) {
  1756. sde_ier = I915_READ(SDEIER);
  1757. I915_WRITE(SDEIER, 0);
  1758. POSTING_READ(SDEIER);
  1759. }
  1760. /* Find, clear, then process each source of interrupt */
  1761. gt_iir = I915_READ(GTIIR);
  1762. if (gt_iir) {
  1763. I915_WRITE(GTIIR, gt_iir);
  1764. ret = IRQ_HANDLED;
  1765. if (INTEL_INFO(dev)->gen >= 6)
  1766. snb_gt_irq_handler(dev, dev_priv, gt_iir);
  1767. else
  1768. ilk_gt_irq_handler(dev, dev_priv, gt_iir);
  1769. }
  1770. de_iir = I915_READ(DEIIR);
  1771. if (de_iir) {
  1772. I915_WRITE(DEIIR, de_iir);
  1773. ret = IRQ_HANDLED;
  1774. if (INTEL_INFO(dev)->gen >= 7)
  1775. ivb_display_irq_handler(dev, de_iir);
  1776. else
  1777. ilk_display_irq_handler(dev, de_iir);
  1778. }
  1779. if (INTEL_INFO(dev)->gen >= 6) {
  1780. u32 pm_iir = I915_READ(GEN6_PMIIR);
  1781. if (pm_iir) {
  1782. I915_WRITE(GEN6_PMIIR, pm_iir);
  1783. ret = IRQ_HANDLED;
  1784. gen6_rps_irq_handler(dev_priv, pm_iir);
  1785. }
  1786. }
  1787. I915_WRITE(DEIER, de_ier);
  1788. POSTING_READ(DEIER);
  1789. if (!HAS_PCH_NOP(dev)) {
  1790. I915_WRITE(SDEIER, sde_ier);
  1791. POSTING_READ(SDEIER);
  1792. }
  1793. return ret;
  1794. }
  1795. static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
  1796. const u32 hpd[HPD_NUM_PINS])
  1797. {
  1798. struct drm_i915_private *dev_priv = to_i915(dev);
  1799. u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
  1800. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1801. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1802. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1803. dig_hotplug_reg, hpd,
  1804. bxt_port_hotplug_long_detect);
  1805. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1806. }
  1807. static irqreturn_t gen8_irq_handler(int irq, void *arg)
  1808. {
  1809. struct drm_device *dev = arg;
  1810. struct drm_i915_private *dev_priv = dev->dev_private;
  1811. u32 master_ctl;
  1812. irqreturn_t ret = IRQ_NONE;
  1813. uint32_t tmp = 0;
  1814. enum pipe pipe;
  1815. u32 aux_mask = GEN8_AUX_CHANNEL_A;
  1816. if (!intel_irqs_enabled(dev_priv))
  1817. return IRQ_NONE;
  1818. if (INTEL_INFO(dev_priv)->gen >= 9)
  1819. aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  1820. GEN9_AUX_CHANNEL_D;
  1821. master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
  1822. master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
  1823. if (!master_ctl)
  1824. return IRQ_NONE;
  1825. I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
  1826. /* Find, clear, then process each source of interrupt */
  1827. ret = gen8_gt_irq_handler(dev_priv, master_ctl);
  1828. if (master_ctl & GEN8_DE_MISC_IRQ) {
  1829. tmp = I915_READ(GEN8_DE_MISC_IIR);
  1830. if (tmp) {
  1831. I915_WRITE(GEN8_DE_MISC_IIR, tmp);
  1832. ret = IRQ_HANDLED;
  1833. if (tmp & GEN8_DE_MISC_GSE)
  1834. intel_opregion_asle_intr(dev);
  1835. else
  1836. DRM_ERROR("Unexpected DE Misc interrupt\n");
  1837. }
  1838. else
  1839. DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
  1840. }
  1841. if (master_ctl & GEN8_DE_PORT_IRQ) {
  1842. tmp = I915_READ(GEN8_DE_PORT_IIR);
  1843. if (tmp) {
  1844. bool found = false;
  1845. u32 hotplug_trigger = 0;
  1846. if (IS_BROXTON(dev_priv))
  1847. hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
  1848. else if (IS_BROADWELL(dev_priv))
  1849. hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
  1850. I915_WRITE(GEN8_DE_PORT_IIR, tmp);
  1851. ret = IRQ_HANDLED;
  1852. if (tmp & aux_mask) {
  1853. dp_aux_irq_handler(dev);
  1854. found = true;
  1855. }
  1856. if (hotplug_trigger) {
  1857. if (IS_BROXTON(dev))
  1858. bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
  1859. else
  1860. ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
  1861. found = true;
  1862. }
  1863. if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
  1864. gmbus_irq_handler(dev);
  1865. found = true;
  1866. }
  1867. if (!found)
  1868. DRM_ERROR("Unexpected DE Port interrupt\n");
  1869. }
  1870. else
  1871. DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
  1872. }
  1873. for_each_pipe(dev_priv, pipe) {
  1874. uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
  1875. if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
  1876. continue;
  1877. pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
  1878. if (pipe_iir) {
  1879. ret = IRQ_HANDLED;
  1880. I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
  1881. if (pipe_iir & GEN8_PIPE_VBLANK &&
  1882. intel_pipe_handle_vblank(dev, pipe))
  1883. intel_check_page_flip(dev, pipe);
  1884. if (INTEL_INFO(dev_priv)->gen >= 9)
  1885. flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
  1886. else
  1887. flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
  1888. if (flip_done) {
  1889. intel_prepare_page_flip(dev, pipe);
  1890. intel_finish_page_flip_plane(dev, pipe);
  1891. }
  1892. if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
  1893. hsw_pipe_crc_irq_handler(dev, pipe);
  1894. if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
  1895. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  1896. pipe);
  1897. if (INTEL_INFO(dev_priv)->gen >= 9)
  1898. fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  1899. else
  1900. fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  1901. if (fault_errors)
  1902. DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
  1903. pipe_name(pipe),
  1904. pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
  1905. } else
  1906. DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
  1907. }
  1908. if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
  1909. master_ctl & GEN8_DE_PCH_IRQ) {
  1910. /*
  1911. * FIXME(BDW): Assume for now that the new interrupt handling
  1912. * scheme also closed the SDE interrupt handling race we've seen
  1913. * on older pch-split platforms. But this needs testing.
  1914. */
  1915. u32 pch_iir = I915_READ(SDEIIR);
  1916. if (pch_iir) {
  1917. I915_WRITE(SDEIIR, pch_iir);
  1918. ret = IRQ_HANDLED;
  1919. if (HAS_PCH_SPT(dev_priv))
  1920. spt_irq_handler(dev, pch_iir);
  1921. else
  1922. cpt_irq_handler(dev, pch_iir);
  1923. } else
  1924. DRM_ERROR("The master control interrupt lied (SDE)!\n");
  1925. }
  1926. I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  1927. POSTING_READ_FW(GEN8_MASTER_IRQ);
  1928. return ret;
  1929. }
  1930. static void i915_error_wake_up(struct drm_i915_private *dev_priv,
  1931. bool reset_completed)
  1932. {
  1933. struct intel_engine_cs *ring;
  1934. int i;
  1935. /*
  1936. * Notify all waiters for GPU completion events that reset state has
  1937. * been changed, and that they need to restart their wait after
  1938. * checking for potential errors (and bail out to drop locks if there is
  1939. * a gpu reset pending so that i915_error_work_func can acquire them).
  1940. */
  1941. /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
  1942. for_each_ring(ring, dev_priv, i)
  1943. wake_up_all(&ring->irq_queue);
  1944. /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
  1945. wake_up_all(&dev_priv->pending_flip_queue);
  1946. /*
  1947. * Signal tasks blocked in i915_gem_wait_for_error that the pending
  1948. * reset state is cleared.
  1949. */
  1950. if (reset_completed)
  1951. wake_up_all(&dev_priv->gpu_error.reset_queue);
  1952. }
  1953. /**
  1954. * i915_reset_and_wakeup - do process context error handling work
  1955. * @dev: drm device
  1956. *
  1957. * Fire an error uevent so userspace can see that a hang or error
  1958. * was detected.
  1959. */
  1960. static void i915_reset_and_wakeup(struct drm_device *dev)
  1961. {
  1962. struct drm_i915_private *dev_priv = to_i915(dev);
  1963. struct i915_gpu_error *error = &dev_priv->gpu_error;
  1964. char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
  1965. char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
  1966. char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
  1967. int ret;
  1968. kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
  1969. /*
  1970. * Note that there's only one work item which does gpu resets, so we
  1971. * need not worry about concurrent gpu resets potentially incrementing
  1972. * error->reset_counter twice. We only need to take care of another
  1973. * racing irq/hangcheck declaring the gpu dead for a second time. A
  1974. * quick check for that is good enough: schedule_work ensures the
  1975. * correct ordering between hang detection and this work item, and since
  1976. * the reset in-progress bit is only ever set by code outside of this
  1977. * work we don't need to worry about any other races.
  1978. */
  1979. if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
  1980. DRM_DEBUG_DRIVER("resetting chip\n");
  1981. kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
  1982. reset_event);
  1983. /*
  1984. * In most cases it's guaranteed that we get here with an RPM
  1985. * reference held, for example because there is a pending GPU
  1986. * request that won't finish until the reset is done. This
  1987. * isn't the case at least when we get here by doing a
  1988. * simulated reset via debugs, so get an RPM reference.
  1989. */
  1990. intel_runtime_pm_get(dev_priv);
  1991. intel_prepare_reset(dev);
  1992. /*
  1993. * All state reset _must_ be completed before we update the
  1994. * reset counter, for otherwise waiters might miss the reset
  1995. * pending state and not properly drop locks, resulting in
  1996. * deadlocks with the reset work.
  1997. */
  1998. ret = i915_reset(dev);
  1999. intel_finish_reset(dev);
  2000. intel_runtime_pm_put(dev_priv);
  2001. if (ret == 0) {
  2002. /*
  2003. * After all the gem state is reset, increment the reset
  2004. * counter and wake up everyone waiting for the reset to
  2005. * complete.
  2006. *
  2007. * Since unlock operations are a one-sided barrier only,
  2008. * we need to insert a barrier here to order any seqno
  2009. * updates before
  2010. * the counter increment.
  2011. */
  2012. smp_mb__before_atomic();
  2013. atomic_inc(&dev_priv->gpu_error.reset_counter);
  2014. kobject_uevent_env(&dev->primary->kdev->kobj,
  2015. KOBJ_CHANGE, reset_done_event);
  2016. } else {
  2017. atomic_or(I915_WEDGED, &error->reset_counter);
  2018. }
  2019. /*
  2020. * Note: The wake_up also serves as a memory barrier so that
  2021. * waiters see the update value of the reset counter atomic_t.
  2022. */
  2023. i915_error_wake_up(dev_priv, true);
  2024. }
  2025. }
  2026. static void i915_report_and_clear_eir(struct drm_device *dev)
  2027. {
  2028. struct drm_i915_private *dev_priv = dev->dev_private;
  2029. uint32_t instdone[I915_NUM_INSTDONE_REG];
  2030. u32 eir = I915_READ(EIR);
  2031. int pipe, i;
  2032. if (!eir)
  2033. return;
  2034. pr_err("render error detected, EIR: 0x%08x\n", eir);
  2035. i915_get_extra_instdone(dev, instdone);
  2036. if (IS_G4X(dev)) {
  2037. if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
  2038. u32 ipeir = I915_READ(IPEIR_I965);
  2039. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  2040. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  2041. for (i = 0; i < ARRAY_SIZE(instdone); i++)
  2042. pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  2043. pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
  2044. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  2045. I915_WRITE(IPEIR_I965, ipeir);
  2046. POSTING_READ(IPEIR_I965);
  2047. }
  2048. if (eir & GM45_ERROR_PAGE_TABLE) {
  2049. u32 pgtbl_err = I915_READ(PGTBL_ER);
  2050. pr_err("page table error\n");
  2051. pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
  2052. I915_WRITE(PGTBL_ER, pgtbl_err);
  2053. POSTING_READ(PGTBL_ER);
  2054. }
  2055. }
  2056. if (!IS_GEN2(dev)) {
  2057. if (eir & I915_ERROR_PAGE_TABLE) {
  2058. u32 pgtbl_err = I915_READ(PGTBL_ER);
  2059. pr_err("page table error\n");
  2060. pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
  2061. I915_WRITE(PGTBL_ER, pgtbl_err);
  2062. POSTING_READ(PGTBL_ER);
  2063. }
  2064. }
  2065. if (eir & I915_ERROR_MEMORY_REFRESH) {
  2066. pr_err("memory refresh error:\n");
  2067. for_each_pipe(dev_priv, pipe)
  2068. pr_err("pipe %c stat: 0x%08x\n",
  2069. pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
  2070. /* pipestat has already been acked */
  2071. }
  2072. if (eir & I915_ERROR_INSTRUCTION) {
  2073. pr_err("instruction error\n");
  2074. pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
  2075. for (i = 0; i < ARRAY_SIZE(instdone); i++)
  2076. pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  2077. if (INTEL_INFO(dev)->gen < 4) {
  2078. u32 ipeir = I915_READ(IPEIR);
  2079. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
  2080. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
  2081. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
  2082. I915_WRITE(IPEIR, ipeir);
  2083. POSTING_READ(IPEIR);
  2084. } else {
  2085. u32 ipeir = I915_READ(IPEIR_I965);
  2086. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  2087. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  2088. pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
  2089. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  2090. I915_WRITE(IPEIR_I965, ipeir);
  2091. POSTING_READ(IPEIR_I965);
  2092. }
  2093. }
  2094. I915_WRITE(EIR, eir);
  2095. POSTING_READ(EIR);
  2096. eir = I915_READ(EIR);
  2097. if (eir) {
  2098. /*
  2099. * some errors might have become stuck,
  2100. * mask them.
  2101. */
  2102. DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
  2103. I915_WRITE(EMR, I915_READ(EMR) | eir);
  2104. I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  2105. }
  2106. }
  2107. /**
  2108. * i915_handle_error - handle a gpu error
  2109. * @dev: drm device
  2110. *
  2111. * Do some basic checking of register state at error time and
  2112. * dump it to the syslog. Also call i915_capture_error_state() to make
  2113. * sure we get a record and make it available in debugfs. Fire a uevent
  2114. * so userspace knows something bad happened (should trigger collection
  2115. * of a ring dump etc.).
  2116. */
  2117. void i915_handle_error(struct drm_device *dev, bool wedged,
  2118. const char *fmt, ...)
  2119. {
  2120. struct drm_i915_private *dev_priv = dev->dev_private;
  2121. va_list args;
  2122. char error_msg[80];
  2123. va_start(args, fmt);
  2124. vscnprintf(error_msg, sizeof(error_msg), fmt, args);
  2125. va_end(args);
  2126. i915_capture_error_state(dev, wedged, error_msg);
  2127. i915_report_and_clear_eir(dev);
  2128. if (wedged) {
  2129. atomic_or(I915_RESET_IN_PROGRESS_FLAG,
  2130. &dev_priv->gpu_error.reset_counter);
  2131. /*
  2132. * Wakeup waiting processes so that the reset function
  2133. * i915_reset_and_wakeup doesn't deadlock trying to grab
  2134. * various locks. By bumping the reset counter first, the woken
  2135. * processes will see a reset in progress and back off,
  2136. * releasing their locks and then wait for the reset completion.
  2137. * We must do this for _all_ gpu waiters that might hold locks
  2138. * that the reset work needs to acquire.
  2139. *
  2140. * Note: The wake_up serves as the required memory barrier to
  2141. * ensure that the waiters see the updated value of the reset
  2142. * counter atomic_t.
  2143. */
  2144. i915_error_wake_up(dev_priv, false);
  2145. }
  2146. i915_reset_and_wakeup(dev);
  2147. }
  2148. /* Called from drm generic code, passed 'crtc' which
  2149. * we use as a pipe index
  2150. */
  2151. static int i915_enable_vblank(struct drm_device *dev, int pipe)
  2152. {
  2153. struct drm_i915_private *dev_priv = dev->dev_private;
  2154. unsigned long irqflags;
  2155. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2156. if (INTEL_INFO(dev)->gen >= 4)
  2157. i915_enable_pipestat(dev_priv, pipe,
  2158. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2159. else
  2160. i915_enable_pipestat(dev_priv, pipe,
  2161. PIPE_VBLANK_INTERRUPT_STATUS);
  2162. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2163. return 0;
  2164. }
  2165. static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
  2166. {
  2167. struct drm_i915_private *dev_priv = dev->dev_private;
  2168. unsigned long irqflags;
  2169. uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2170. DE_PIPE_VBLANK(pipe);
  2171. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2172. ironlake_enable_display_irq(dev_priv, bit);
  2173. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2174. return 0;
  2175. }
  2176. static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
  2177. {
  2178. struct drm_i915_private *dev_priv = dev->dev_private;
  2179. unsigned long irqflags;
  2180. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2181. i915_enable_pipestat(dev_priv, pipe,
  2182. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2183. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2184. return 0;
  2185. }
  2186. static int gen8_enable_vblank(struct drm_device *dev, int pipe)
  2187. {
  2188. struct drm_i915_private *dev_priv = dev->dev_private;
  2189. unsigned long irqflags;
  2190. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2191. dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
  2192. I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  2193. POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  2194. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2195. return 0;
  2196. }
  2197. /* Called from drm generic code, passed 'crtc' which
  2198. * we use as a pipe index
  2199. */
  2200. static void i915_disable_vblank(struct drm_device *dev, int pipe)
  2201. {
  2202. struct drm_i915_private *dev_priv = dev->dev_private;
  2203. unsigned long irqflags;
  2204. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2205. i915_disable_pipestat(dev_priv, pipe,
  2206. PIPE_VBLANK_INTERRUPT_STATUS |
  2207. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2208. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2209. }
  2210. static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
  2211. {
  2212. struct drm_i915_private *dev_priv = dev->dev_private;
  2213. unsigned long irqflags;
  2214. uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2215. DE_PIPE_VBLANK(pipe);
  2216. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2217. ironlake_disable_display_irq(dev_priv, bit);
  2218. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2219. }
  2220. static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
  2221. {
  2222. struct drm_i915_private *dev_priv = dev->dev_private;
  2223. unsigned long irqflags;
  2224. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2225. i915_disable_pipestat(dev_priv, pipe,
  2226. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2227. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2228. }
  2229. static void gen8_disable_vblank(struct drm_device *dev, int pipe)
  2230. {
  2231. struct drm_i915_private *dev_priv = dev->dev_private;
  2232. unsigned long irqflags;
  2233. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2234. dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
  2235. I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  2236. POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  2237. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2238. }
  2239. static bool
  2240. ring_idle(struct intel_engine_cs *ring, u32 seqno)
  2241. {
  2242. return (list_empty(&ring->request_list) ||
  2243. i915_seqno_passed(seqno, ring->last_submitted_seqno));
  2244. }
  2245. static bool
  2246. ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
  2247. {
  2248. if (INTEL_INFO(dev)->gen >= 8) {
  2249. return (ipehr >> 23) == 0x1c;
  2250. } else {
  2251. ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
  2252. return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
  2253. MI_SEMAPHORE_REGISTER);
  2254. }
  2255. }
  2256. static struct intel_engine_cs *
  2257. semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
  2258. {
  2259. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2260. struct intel_engine_cs *signaller;
  2261. int i;
  2262. if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
  2263. for_each_ring(signaller, dev_priv, i) {
  2264. if (ring == signaller)
  2265. continue;
  2266. if (offset == signaller->semaphore.signal_ggtt[ring->id])
  2267. return signaller;
  2268. }
  2269. } else {
  2270. u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
  2271. for_each_ring(signaller, dev_priv, i) {
  2272. if(ring == signaller)
  2273. continue;
  2274. if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
  2275. return signaller;
  2276. }
  2277. }
  2278. DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
  2279. ring->id, ipehr, offset);
  2280. return NULL;
  2281. }
  2282. static struct intel_engine_cs *
  2283. semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
  2284. {
  2285. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2286. u32 cmd, ipehr, head;
  2287. u64 offset = 0;
  2288. int i, backwards;
  2289. /*
  2290. * This function does not support execlist mode - any attempt to
  2291. * proceed further into this function will result in a kernel panic
  2292. * when dereferencing ring->buffer, which is not set up in execlist
  2293. * mode.
  2294. *
  2295. * The correct way of doing it would be to derive the currently
  2296. * executing ring buffer from the current context, which is derived
  2297. * from the currently running request. Unfortunately, to get the
  2298. * current request we would have to grab the struct_mutex before doing
  2299. * anything else, which would be ill-advised since some other thread
  2300. * might have grabbed it already and managed to hang itself, causing
  2301. * the hang checker to deadlock.
  2302. *
  2303. * Therefore, this function does not support execlist mode in its
  2304. * current form. Just return NULL and move on.
  2305. */
  2306. if (ring->buffer == NULL)
  2307. return NULL;
  2308. ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
  2309. if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
  2310. return NULL;
  2311. /*
  2312. * HEAD is likely pointing to the dword after the actual command,
  2313. * so scan backwards until we find the MBOX. But limit it to just 3
  2314. * or 4 dwords depending on the semaphore wait command size.
  2315. * Note that we don't care about ACTHD here since that might
  2316. * point at at batch, and semaphores are always emitted into the
  2317. * ringbuffer itself.
  2318. */
  2319. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  2320. backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
  2321. for (i = backwards; i; --i) {
  2322. /*
  2323. * Be paranoid and presume the hw has gone off into the wild -
  2324. * our ring is smaller than what the hardware (and hence
  2325. * HEAD_ADDR) allows. Also handles wrap-around.
  2326. */
  2327. head &= ring->buffer->size - 1;
  2328. /* This here seems to blow up */
  2329. cmd = ioread32(ring->buffer->virtual_start + head);
  2330. if (cmd == ipehr)
  2331. break;
  2332. head -= 4;
  2333. }
  2334. if (!i)
  2335. return NULL;
  2336. *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
  2337. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2338. offset = ioread32(ring->buffer->virtual_start + head + 12);
  2339. offset <<= 32;
  2340. offset = ioread32(ring->buffer->virtual_start + head + 8);
  2341. }
  2342. return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
  2343. }
  2344. static int semaphore_passed(struct intel_engine_cs *ring)
  2345. {
  2346. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2347. struct intel_engine_cs *signaller;
  2348. u32 seqno;
  2349. ring->hangcheck.deadlock++;
  2350. signaller = semaphore_waits_for(ring, &seqno);
  2351. if (signaller == NULL)
  2352. return -1;
  2353. /* Prevent pathological recursion due to driver bugs */
  2354. if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
  2355. return -1;
  2356. if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
  2357. return 1;
  2358. /* cursory check for an unkickable deadlock */
  2359. if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
  2360. semaphore_passed(signaller) < 0)
  2361. return -1;
  2362. return 0;
  2363. }
  2364. static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
  2365. {
  2366. struct intel_engine_cs *ring;
  2367. int i;
  2368. for_each_ring(ring, dev_priv, i)
  2369. ring->hangcheck.deadlock = 0;
  2370. }
  2371. static enum intel_ring_hangcheck_action
  2372. ring_stuck(struct intel_engine_cs *ring, u64 acthd)
  2373. {
  2374. struct drm_device *dev = ring->dev;
  2375. struct drm_i915_private *dev_priv = dev->dev_private;
  2376. u32 tmp;
  2377. if (acthd != ring->hangcheck.acthd) {
  2378. if (acthd > ring->hangcheck.max_acthd) {
  2379. ring->hangcheck.max_acthd = acthd;
  2380. return HANGCHECK_ACTIVE;
  2381. }
  2382. return HANGCHECK_ACTIVE_LOOP;
  2383. }
  2384. if (IS_GEN2(dev))
  2385. return HANGCHECK_HUNG;
  2386. /* Is the chip hanging on a WAIT_FOR_EVENT?
  2387. * If so we can simply poke the RB_WAIT bit
  2388. * and break the hang. This should work on
  2389. * all but the second generation chipsets.
  2390. */
  2391. tmp = I915_READ_CTL(ring);
  2392. if (tmp & RING_WAIT) {
  2393. i915_handle_error(dev, false,
  2394. "Kicking stuck wait on %s",
  2395. ring->name);
  2396. I915_WRITE_CTL(ring, tmp);
  2397. return HANGCHECK_KICK;
  2398. }
  2399. if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
  2400. switch (semaphore_passed(ring)) {
  2401. default:
  2402. return HANGCHECK_HUNG;
  2403. case 1:
  2404. i915_handle_error(dev, false,
  2405. "Kicking stuck semaphore on %s",
  2406. ring->name);
  2407. I915_WRITE_CTL(ring, tmp);
  2408. return HANGCHECK_KICK;
  2409. case 0:
  2410. return HANGCHECK_WAIT;
  2411. }
  2412. }
  2413. return HANGCHECK_HUNG;
  2414. }
  2415. /*
  2416. * This is called when the chip hasn't reported back with completed
  2417. * batchbuffers in a long time. We keep track per ring seqno progress and
  2418. * if there are no progress, hangcheck score for that ring is increased.
  2419. * Further, acthd is inspected to see if the ring is stuck. On stuck case
  2420. * we kick the ring. If we see no progress on three subsequent calls
  2421. * we assume chip is wedged and try to fix it by resetting the chip.
  2422. */
  2423. static void i915_hangcheck_elapsed(struct work_struct *work)
  2424. {
  2425. struct drm_i915_private *dev_priv =
  2426. container_of(work, typeof(*dev_priv),
  2427. gpu_error.hangcheck_work.work);
  2428. struct drm_device *dev = dev_priv->dev;
  2429. struct intel_engine_cs *ring;
  2430. int i;
  2431. int busy_count = 0, rings_hung = 0;
  2432. bool stuck[I915_NUM_RINGS] = { 0 };
  2433. #define BUSY 1
  2434. #define KICK 5
  2435. #define HUNG 20
  2436. if (!i915.enable_hangcheck)
  2437. return;
  2438. for_each_ring(ring, dev_priv, i) {
  2439. u64 acthd;
  2440. u32 seqno;
  2441. bool busy = true;
  2442. semaphore_clear_deadlocks(dev_priv);
  2443. seqno = ring->get_seqno(ring, false);
  2444. acthd = intel_ring_get_active_head(ring);
  2445. if (ring->hangcheck.seqno == seqno) {
  2446. if (ring_idle(ring, seqno)) {
  2447. ring->hangcheck.action = HANGCHECK_IDLE;
  2448. if (waitqueue_active(&ring->irq_queue)) {
  2449. /* Issue a wake-up to catch stuck h/w. */
  2450. if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
  2451. if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
  2452. DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
  2453. ring->name);
  2454. else
  2455. DRM_INFO("Fake missed irq on %s\n",
  2456. ring->name);
  2457. wake_up_all(&ring->irq_queue);
  2458. }
  2459. /* Safeguard against driver failure */
  2460. ring->hangcheck.score += BUSY;
  2461. } else
  2462. busy = false;
  2463. } else {
  2464. /* We always increment the hangcheck score
  2465. * if the ring is busy and still processing
  2466. * the same request, so that no single request
  2467. * can run indefinitely (such as a chain of
  2468. * batches). The only time we do not increment
  2469. * the hangcheck score on this ring, if this
  2470. * ring is in a legitimate wait for another
  2471. * ring. In that case the waiting ring is a
  2472. * victim and we want to be sure we catch the
  2473. * right culprit. Then every time we do kick
  2474. * the ring, add a small increment to the
  2475. * score so that we can catch a batch that is
  2476. * being repeatedly kicked and so responsible
  2477. * for stalling the machine.
  2478. */
  2479. ring->hangcheck.action = ring_stuck(ring,
  2480. acthd);
  2481. switch (ring->hangcheck.action) {
  2482. case HANGCHECK_IDLE:
  2483. case HANGCHECK_WAIT:
  2484. case HANGCHECK_ACTIVE:
  2485. break;
  2486. case HANGCHECK_ACTIVE_LOOP:
  2487. ring->hangcheck.score += BUSY;
  2488. break;
  2489. case HANGCHECK_KICK:
  2490. ring->hangcheck.score += KICK;
  2491. break;
  2492. case HANGCHECK_HUNG:
  2493. ring->hangcheck.score += HUNG;
  2494. stuck[i] = true;
  2495. break;
  2496. }
  2497. }
  2498. } else {
  2499. ring->hangcheck.action = HANGCHECK_ACTIVE;
  2500. /* Gradually reduce the count so that we catch DoS
  2501. * attempts across multiple batches.
  2502. */
  2503. if (ring->hangcheck.score > 0)
  2504. ring->hangcheck.score--;
  2505. ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
  2506. }
  2507. ring->hangcheck.seqno = seqno;
  2508. ring->hangcheck.acthd = acthd;
  2509. busy_count += busy;
  2510. }
  2511. for_each_ring(ring, dev_priv, i) {
  2512. if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
  2513. DRM_INFO("%s on %s\n",
  2514. stuck[i] ? "stuck" : "no progress",
  2515. ring->name);
  2516. rings_hung++;
  2517. }
  2518. }
  2519. if (rings_hung)
  2520. return i915_handle_error(dev, true, "Ring hung");
  2521. if (busy_count)
  2522. /* Reset timer case chip hangs without another request
  2523. * being added */
  2524. i915_queue_hangcheck(dev);
  2525. }
  2526. void i915_queue_hangcheck(struct drm_device *dev)
  2527. {
  2528. struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
  2529. if (!i915.enable_hangcheck)
  2530. return;
  2531. /* Don't continually defer the hangcheck so that it is always run at
  2532. * least once after work has been scheduled on any ring. Otherwise,
  2533. * we will ignore a hung ring if a second ring is kept busy.
  2534. */
  2535. queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
  2536. round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
  2537. }
  2538. static void ibx_irq_reset(struct drm_device *dev)
  2539. {
  2540. struct drm_i915_private *dev_priv = dev->dev_private;
  2541. if (HAS_PCH_NOP(dev))
  2542. return;
  2543. GEN5_IRQ_RESET(SDE);
  2544. if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
  2545. I915_WRITE(SERR_INT, 0xffffffff);
  2546. }
  2547. /*
  2548. * SDEIER is also touched by the interrupt handler to work around missed PCH
  2549. * interrupts. Hence we can't update it after the interrupt handler is enabled -
  2550. * instead we unconditionally enable all PCH interrupt sources here, but then
  2551. * only unmask them as needed with SDEIMR.
  2552. *
  2553. * This function needs to be called before interrupts are enabled.
  2554. */
  2555. static void ibx_irq_pre_postinstall(struct drm_device *dev)
  2556. {
  2557. struct drm_i915_private *dev_priv = dev->dev_private;
  2558. if (HAS_PCH_NOP(dev))
  2559. return;
  2560. WARN_ON(I915_READ(SDEIER) != 0);
  2561. I915_WRITE(SDEIER, 0xffffffff);
  2562. POSTING_READ(SDEIER);
  2563. }
  2564. static void gen5_gt_irq_reset(struct drm_device *dev)
  2565. {
  2566. struct drm_i915_private *dev_priv = dev->dev_private;
  2567. GEN5_IRQ_RESET(GT);
  2568. if (INTEL_INFO(dev)->gen >= 6)
  2569. GEN5_IRQ_RESET(GEN6_PM);
  2570. }
  2571. /* drm_dma.h hooks
  2572. */
  2573. static void ironlake_irq_reset(struct drm_device *dev)
  2574. {
  2575. struct drm_i915_private *dev_priv = dev->dev_private;
  2576. I915_WRITE(HWSTAM, 0xffffffff);
  2577. GEN5_IRQ_RESET(DE);
  2578. if (IS_GEN7(dev))
  2579. I915_WRITE(GEN7_ERR_INT, 0xffffffff);
  2580. gen5_gt_irq_reset(dev);
  2581. ibx_irq_reset(dev);
  2582. }
  2583. static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
  2584. {
  2585. enum pipe pipe;
  2586. i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
  2587. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  2588. for_each_pipe(dev_priv, pipe)
  2589. I915_WRITE(PIPESTAT(pipe), 0xffff);
  2590. GEN5_IRQ_RESET(VLV_);
  2591. }
  2592. static void valleyview_irq_preinstall(struct drm_device *dev)
  2593. {
  2594. struct drm_i915_private *dev_priv = dev->dev_private;
  2595. /* VLV magic */
  2596. I915_WRITE(VLV_IMR, 0);
  2597. I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
  2598. I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
  2599. I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
  2600. gen5_gt_irq_reset(dev);
  2601. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  2602. vlv_display_irq_reset(dev_priv);
  2603. }
  2604. static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
  2605. {
  2606. GEN8_IRQ_RESET_NDX(GT, 0);
  2607. GEN8_IRQ_RESET_NDX(GT, 1);
  2608. GEN8_IRQ_RESET_NDX(GT, 2);
  2609. GEN8_IRQ_RESET_NDX(GT, 3);
  2610. }
  2611. static void gen8_irq_reset(struct drm_device *dev)
  2612. {
  2613. struct drm_i915_private *dev_priv = dev->dev_private;
  2614. int pipe;
  2615. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2616. POSTING_READ(GEN8_MASTER_IRQ);
  2617. gen8_gt_irq_reset(dev_priv);
  2618. for_each_pipe(dev_priv, pipe)
  2619. if (intel_display_power_is_enabled(dev_priv,
  2620. POWER_DOMAIN_PIPE(pipe)))
  2621. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2622. GEN5_IRQ_RESET(GEN8_DE_PORT_);
  2623. GEN5_IRQ_RESET(GEN8_DE_MISC_);
  2624. GEN5_IRQ_RESET(GEN8_PCU_);
  2625. if (HAS_PCH_SPLIT(dev))
  2626. ibx_irq_reset(dev);
  2627. }
  2628. void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
  2629. unsigned int pipe_mask)
  2630. {
  2631. uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
  2632. spin_lock_irq(&dev_priv->irq_lock);
  2633. if (pipe_mask & 1 << PIPE_A)
  2634. GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
  2635. dev_priv->de_irq_mask[PIPE_A],
  2636. ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
  2637. if (pipe_mask & 1 << PIPE_B)
  2638. GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
  2639. dev_priv->de_irq_mask[PIPE_B],
  2640. ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
  2641. if (pipe_mask & 1 << PIPE_C)
  2642. GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
  2643. dev_priv->de_irq_mask[PIPE_C],
  2644. ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
  2645. spin_unlock_irq(&dev_priv->irq_lock);
  2646. }
  2647. static void cherryview_irq_preinstall(struct drm_device *dev)
  2648. {
  2649. struct drm_i915_private *dev_priv = dev->dev_private;
  2650. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2651. POSTING_READ(GEN8_MASTER_IRQ);
  2652. gen8_gt_irq_reset(dev_priv);
  2653. GEN5_IRQ_RESET(GEN8_PCU_);
  2654. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
  2655. vlv_display_irq_reset(dev_priv);
  2656. }
  2657. static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
  2658. const u32 hpd[HPD_NUM_PINS])
  2659. {
  2660. struct drm_i915_private *dev_priv = to_i915(dev);
  2661. struct intel_encoder *encoder;
  2662. u32 enabled_irqs = 0;
  2663. for_each_intel_encoder(dev, encoder)
  2664. if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
  2665. enabled_irqs |= hpd[encoder->hpd_pin];
  2666. return enabled_irqs;
  2667. }
  2668. static void ibx_hpd_irq_setup(struct drm_device *dev)
  2669. {
  2670. struct drm_i915_private *dev_priv = dev->dev_private;
  2671. u32 hotplug_irqs, hotplug, enabled_irqs;
  2672. if (HAS_PCH_IBX(dev)) {
  2673. hotplug_irqs = SDE_HOTPLUG_MASK;
  2674. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
  2675. } else {
  2676. hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
  2677. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
  2678. }
  2679. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2680. /*
  2681. * Enable digital hotplug on the PCH, and configure the DP short pulse
  2682. * duration to 2ms (which is the minimum in the Display Port spec).
  2683. * The pulse duration bits are reserved on LPT+.
  2684. */
  2685. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2686. hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
  2687. hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
  2688. hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
  2689. hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
  2690. /*
  2691. * When CPU and PCH are on the same package, port A
  2692. * HPD must be enabled in both north and south.
  2693. */
  2694. if (HAS_PCH_LPT_LP(dev))
  2695. hotplug |= PORTA_HOTPLUG_ENABLE;
  2696. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2697. }
  2698. static void spt_hpd_irq_setup(struct drm_device *dev)
  2699. {
  2700. struct drm_i915_private *dev_priv = dev->dev_private;
  2701. u32 hotplug_irqs, hotplug, enabled_irqs;
  2702. hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
  2703. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
  2704. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2705. /* Enable digital hotplug on the PCH */
  2706. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2707. hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
  2708. PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
  2709. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2710. hotplug = I915_READ(PCH_PORT_HOTPLUG2);
  2711. hotplug |= PORTE_HOTPLUG_ENABLE;
  2712. I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
  2713. }
  2714. static void ilk_hpd_irq_setup(struct drm_device *dev)
  2715. {
  2716. struct drm_i915_private *dev_priv = dev->dev_private;
  2717. u32 hotplug_irqs, hotplug, enabled_irqs;
  2718. if (INTEL_INFO(dev)->gen >= 8) {
  2719. hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
  2720. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
  2721. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2722. } else if (INTEL_INFO(dev)->gen >= 7) {
  2723. hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
  2724. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
  2725. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2726. } else {
  2727. hotplug_irqs = DE_DP_A_HOTPLUG;
  2728. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
  2729. ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2730. }
  2731. /*
  2732. * Enable digital hotplug on the CPU, and configure the DP short pulse
  2733. * duration to 2ms (which is the minimum in the Display Port spec)
  2734. * The pulse duration bits are reserved on HSW+.
  2735. */
  2736. hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
  2737. hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
  2738. hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
  2739. I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
  2740. ibx_hpd_irq_setup(dev);
  2741. }
  2742. static void bxt_hpd_irq_setup(struct drm_device *dev)
  2743. {
  2744. struct drm_i915_private *dev_priv = dev->dev_private;
  2745. u32 hotplug_irqs, hotplug, enabled_irqs;
  2746. enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
  2747. hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
  2748. bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
  2749. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2750. hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
  2751. PORTA_HOTPLUG_ENABLE;
  2752. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2753. }
  2754. static void ibx_irq_postinstall(struct drm_device *dev)
  2755. {
  2756. struct drm_i915_private *dev_priv = dev->dev_private;
  2757. u32 mask;
  2758. if (HAS_PCH_NOP(dev))
  2759. return;
  2760. if (HAS_PCH_IBX(dev))
  2761. mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
  2762. else
  2763. mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
  2764. gen5_assert_iir_is_zero(dev_priv, SDEIIR);
  2765. I915_WRITE(SDEIMR, ~mask);
  2766. }
  2767. static void gen5_gt_irq_postinstall(struct drm_device *dev)
  2768. {
  2769. struct drm_i915_private *dev_priv = dev->dev_private;
  2770. u32 pm_irqs, gt_irqs;
  2771. pm_irqs = gt_irqs = 0;
  2772. dev_priv->gt_irq_mask = ~0;
  2773. if (HAS_L3_DPF(dev)) {
  2774. /* L3 parity interrupt is always unmasked. */
  2775. dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
  2776. gt_irqs |= GT_PARITY_ERROR(dev);
  2777. }
  2778. gt_irqs |= GT_RENDER_USER_INTERRUPT;
  2779. if (IS_GEN5(dev)) {
  2780. gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
  2781. ILK_BSD_USER_INTERRUPT;
  2782. } else {
  2783. gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
  2784. }
  2785. GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
  2786. if (INTEL_INFO(dev)->gen >= 6) {
  2787. /*
  2788. * RPS interrupts will get enabled/disabled on demand when RPS
  2789. * itself is enabled/disabled.
  2790. */
  2791. if (HAS_VEBOX(dev))
  2792. pm_irqs |= PM_VEBOX_USER_INTERRUPT;
  2793. dev_priv->pm_irq_mask = 0xffffffff;
  2794. GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
  2795. }
  2796. }
  2797. static int ironlake_irq_postinstall(struct drm_device *dev)
  2798. {
  2799. struct drm_i915_private *dev_priv = dev->dev_private;
  2800. u32 display_mask, extra_mask;
  2801. if (INTEL_INFO(dev)->gen >= 7) {
  2802. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
  2803. DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
  2804. DE_PLANEB_FLIP_DONE_IVB |
  2805. DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
  2806. extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
  2807. DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
  2808. DE_DP_A_HOTPLUG_IVB);
  2809. } else {
  2810. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
  2811. DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
  2812. DE_AUX_CHANNEL_A |
  2813. DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
  2814. DE_POISON);
  2815. extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
  2816. DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
  2817. DE_DP_A_HOTPLUG);
  2818. }
  2819. dev_priv->irq_mask = ~display_mask;
  2820. I915_WRITE(HWSTAM, 0xeffe);
  2821. ibx_irq_pre_postinstall(dev);
  2822. GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
  2823. gen5_gt_irq_postinstall(dev);
  2824. ibx_irq_postinstall(dev);
  2825. if (IS_IRONLAKE_M(dev)) {
  2826. /* Enable PCU event interrupts
  2827. *
  2828. * spinlocking not required here for correctness since interrupt
  2829. * setup is guaranteed to run in single-threaded context. But we
  2830. * need it to make the assert_spin_locked happy. */
  2831. spin_lock_irq(&dev_priv->irq_lock);
  2832. ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
  2833. spin_unlock_irq(&dev_priv->irq_lock);
  2834. }
  2835. return 0;
  2836. }
  2837. static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
  2838. {
  2839. u32 pipestat_mask;
  2840. u32 iir_mask;
  2841. enum pipe pipe;
  2842. pipestat_mask = PIPESTAT_INT_STATUS_MASK |
  2843. PIPE_FIFO_UNDERRUN_STATUS;
  2844. for_each_pipe(dev_priv, pipe)
  2845. I915_WRITE(PIPESTAT(pipe), pipestat_mask);
  2846. POSTING_READ(PIPESTAT(PIPE_A));
  2847. pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
  2848. PIPE_CRC_DONE_INTERRUPT_STATUS;
  2849. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  2850. for_each_pipe(dev_priv, pipe)
  2851. i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
  2852. iir_mask = I915_DISPLAY_PORT_INTERRUPT |
  2853. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2854. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  2855. if (IS_CHERRYVIEW(dev_priv))
  2856. iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  2857. dev_priv->irq_mask &= ~iir_mask;
  2858. I915_WRITE(VLV_IIR, iir_mask);
  2859. I915_WRITE(VLV_IIR, iir_mask);
  2860. I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
  2861. I915_WRITE(VLV_IMR, dev_priv->irq_mask);
  2862. POSTING_READ(VLV_IMR);
  2863. }
  2864. static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
  2865. {
  2866. u32 pipestat_mask;
  2867. u32 iir_mask;
  2868. enum pipe pipe;
  2869. iir_mask = I915_DISPLAY_PORT_INTERRUPT |
  2870. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2871. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  2872. if (IS_CHERRYVIEW(dev_priv))
  2873. iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  2874. dev_priv->irq_mask |= iir_mask;
  2875. I915_WRITE(VLV_IMR, dev_priv->irq_mask);
  2876. I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
  2877. I915_WRITE(VLV_IIR, iir_mask);
  2878. I915_WRITE(VLV_IIR, iir_mask);
  2879. POSTING_READ(VLV_IIR);
  2880. pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
  2881. PIPE_CRC_DONE_INTERRUPT_STATUS;
  2882. i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  2883. for_each_pipe(dev_priv, pipe)
  2884. i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
  2885. pipestat_mask = PIPESTAT_INT_STATUS_MASK |
  2886. PIPE_FIFO_UNDERRUN_STATUS;
  2887. for_each_pipe(dev_priv, pipe)
  2888. I915_WRITE(PIPESTAT(pipe), pipestat_mask);
  2889. POSTING_READ(PIPESTAT(PIPE_A));
  2890. }
  2891. void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
  2892. {
  2893. assert_spin_locked(&dev_priv->irq_lock);
  2894. if (dev_priv->display_irqs_enabled)
  2895. return;
  2896. dev_priv->display_irqs_enabled = true;
  2897. if (intel_irqs_enabled(dev_priv))
  2898. valleyview_display_irqs_install(dev_priv);
  2899. }
  2900. void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
  2901. {
  2902. assert_spin_locked(&dev_priv->irq_lock);
  2903. if (!dev_priv->display_irqs_enabled)
  2904. return;
  2905. dev_priv->display_irqs_enabled = false;
  2906. if (intel_irqs_enabled(dev_priv))
  2907. valleyview_display_irqs_uninstall(dev_priv);
  2908. }
  2909. static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
  2910. {
  2911. dev_priv->irq_mask = ~0;
  2912. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  2913. POSTING_READ(PORT_HOTPLUG_EN);
  2914. I915_WRITE(VLV_IIR, 0xffffffff);
  2915. I915_WRITE(VLV_IIR, 0xffffffff);
  2916. I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
  2917. I915_WRITE(VLV_IMR, dev_priv->irq_mask);
  2918. POSTING_READ(VLV_IMR);
  2919. /* Interrupt setup is already guaranteed to be single-threaded, this is
  2920. * just to make the assert_spin_locked check happy. */
  2921. spin_lock_irq(&dev_priv->irq_lock);
  2922. if (dev_priv->display_irqs_enabled)
  2923. valleyview_display_irqs_install(dev_priv);
  2924. spin_unlock_irq(&dev_priv->irq_lock);
  2925. }
  2926. static int valleyview_irq_postinstall(struct drm_device *dev)
  2927. {
  2928. struct drm_i915_private *dev_priv = dev->dev_private;
  2929. vlv_display_irq_postinstall(dev_priv);
  2930. gen5_gt_irq_postinstall(dev);
  2931. /* ack & enable invalid PTE error interrupts */
  2932. #if 0 /* FIXME: add support to irq handler for checking these bits */
  2933. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  2934. I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
  2935. #endif
  2936. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  2937. return 0;
  2938. }
  2939. static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
  2940. {
  2941. /* These are interrupts we'll toggle with the ring mask register */
  2942. uint32_t gt_interrupts[] = {
  2943. GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  2944. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  2945. GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
  2946. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
  2947. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
  2948. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  2949. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  2950. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
  2951. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
  2952. 0,
  2953. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
  2954. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
  2955. };
  2956. dev_priv->pm_irq_mask = 0xffffffff;
  2957. GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
  2958. GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
  2959. /*
  2960. * RPS interrupts will get enabled/disabled on demand when RPS itself
  2961. * is enabled/disabled.
  2962. */
  2963. GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
  2964. GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
  2965. }
  2966. static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
  2967. {
  2968. uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
  2969. uint32_t de_pipe_enables;
  2970. u32 de_port_masked = GEN8_AUX_CHANNEL_A;
  2971. u32 de_port_enables;
  2972. enum pipe pipe;
  2973. if (INTEL_INFO(dev_priv)->gen >= 9) {
  2974. de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
  2975. GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  2976. de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  2977. GEN9_AUX_CHANNEL_D;
  2978. if (IS_BROXTON(dev_priv))
  2979. de_port_masked |= BXT_DE_PORT_GMBUS;
  2980. } else {
  2981. de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
  2982. GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  2983. }
  2984. de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
  2985. GEN8_PIPE_FIFO_UNDERRUN;
  2986. de_port_enables = de_port_masked;
  2987. if (IS_BROXTON(dev_priv))
  2988. de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
  2989. else if (IS_BROADWELL(dev_priv))
  2990. de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
  2991. dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
  2992. dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
  2993. dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
  2994. for_each_pipe(dev_priv, pipe)
  2995. if (intel_display_power_is_enabled(dev_priv,
  2996. POWER_DOMAIN_PIPE(pipe)))
  2997. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  2998. dev_priv->de_irq_mask[pipe],
  2999. de_pipe_enables);
  3000. GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
  3001. }
  3002. static int gen8_irq_postinstall(struct drm_device *dev)
  3003. {
  3004. struct drm_i915_private *dev_priv = dev->dev_private;
  3005. if (HAS_PCH_SPLIT(dev))
  3006. ibx_irq_pre_postinstall(dev);
  3007. gen8_gt_irq_postinstall(dev_priv);
  3008. gen8_de_irq_postinstall(dev_priv);
  3009. if (HAS_PCH_SPLIT(dev))
  3010. ibx_irq_postinstall(dev);
  3011. I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
  3012. POSTING_READ(GEN8_MASTER_IRQ);
  3013. return 0;
  3014. }
  3015. static int cherryview_irq_postinstall(struct drm_device *dev)
  3016. {
  3017. struct drm_i915_private *dev_priv = dev->dev_private;
  3018. vlv_display_irq_postinstall(dev_priv);
  3019. gen8_gt_irq_postinstall(dev_priv);
  3020. I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
  3021. POSTING_READ(GEN8_MASTER_IRQ);
  3022. return 0;
  3023. }
  3024. static void gen8_irq_uninstall(struct drm_device *dev)
  3025. {
  3026. struct drm_i915_private *dev_priv = dev->dev_private;
  3027. if (!dev_priv)
  3028. return;
  3029. gen8_irq_reset(dev);
  3030. }
  3031. static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
  3032. {
  3033. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3034. * just to make the assert_spin_locked check happy. */
  3035. spin_lock_irq(&dev_priv->irq_lock);
  3036. if (dev_priv->display_irqs_enabled)
  3037. valleyview_display_irqs_uninstall(dev_priv);
  3038. spin_unlock_irq(&dev_priv->irq_lock);
  3039. vlv_display_irq_reset(dev_priv);
  3040. dev_priv->irq_mask = ~0;
  3041. }
  3042. static void valleyview_irq_uninstall(struct drm_device *dev)
  3043. {
  3044. struct drm_i915_private *dev_priv = dev->dev_private;
  3045. if (!dev_priv)
  3046. return;
  3047. I915_WRITE(VLV_MASTER_IER, 0);
  3048. gen5_gt_irq_reset(dev);
  3049. I915_WRITE(HWSTAM, 0xffffffff);
  3050. vlv_display_irq_uninstall(dev_priv);
  3051. }
  3052. static void cherryview_irq_uninstall(struct drm_device *dev)
  3053. {
  3054. struct drm_i915_private *dev_priv = dev->dev_private;
  3055. if (!dev_priv)
  3056. return;
  3057. I915_WRITE(GEN8_MASTER_IRQ, 0);
  3058. POSTING_READ(GEN8_MASTER_IRQ);
  3059. gen8_gt_irq_reset(dev_priv);
  3060. GEN5_IRQ_RESET(GEN8_PCU_);
  3061. vlv_display_irq_uninstall(dev_priv);
  3062. }
  3063. static void ironlake_irq_uninstall(struct drm_device *dev)
  3064. {
  3065. struct drm_i915_private *dev_priv = dev->dev_private;
  3066. if (!dev_priv)
  3067. return;
  3068. ironlake_irq_reset(dev);
  3069. }
  3070. static void i8xx_irq_preinstall(struct drm_device * dev)
  3071. {
  3072. struct drm_i915_private *dev_priv = dev->dev_private;
  3073. int pipe;
  3074. for_each_pipe(dev_priv, pipe)
  3075. I915_WRITE(PIPESTAT(pipe), 0);
  3076. I915_WRITE16(IMR, 0xffff);
  3077. I915_WRITE16(IER, 0x0);
  3078. POSTING_READ16(IER);
  3079. }
  3080. static int i8xx_irq_postinstall(struct drm_device *dev)
  3081. {
  3082. struct drm_i915_private *dev_priv = dev->dev_private;
  3083. I915_WRITE16(EMR,
  3084. ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  3085. /* Unmask the interrupts that we always want on. */
  3086. dev_priv->irq_mask =
  3087. ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3088. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3089. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3090. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3091. I915_WRITE16(IMR, dev_priv->irq_mask);
  3092. I915_WRITE16(IER,
  3093. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3094. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3095. I915_USER_INTERRUPT);
  3096. POSTING_READ16(IER);
  3097. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3098. * just to make the assert_spin_locked check happy. */
  3099. spin_lock_irq(&dev_priv->irq_lock);
  3100. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3101. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3102. spin_unlock_irq(&dev_priv->irq_lock);
  3103. return 0;
  3104. }
  3105. /*
  3106. * Returns true when a page flip has completed.
  3107. */
  3108. static bool i8xx_handle_vblank(struct drm_device *dev,
  3109. int plane, int pipe, u32 iir)
  3110. {
  3111. struct drm_i915_private *dev_priv = dev->dev_private;
  3112. u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  3113. if (!intel_pipe_handle_vblank(dev, pipe))
  3114. return false;
  3115. if ((iir & flip_pending) == 0)
  3116. goto check_page_flip;
  3117. /* We detect FlipDone by looking for the change in PendingFlip from '1'
  3118. * to '0' on the following vblank, i.e. IIR has the Pendingflip
  3119. * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  3120. * the flip is completed (no longer pending). Since this doesn't raise
  3121. * an interrupt per se, we watch for the change at vblank.
  3122. */
  3123. if (I915_READ16(ISR) & flip_pending)
  3124. goto check_page_flip;
  3125. intel_prepare_page_flip(dev, plane);
  3126. intel_finish_page_flip(dev, pipe);
  3127. return true;
  3128. check_page_flip:
  3129. intel_check_page_flip(dev, pipe);
  3130. return false;
  3131. }
  3132. static irqreturn_t i8xx_irq_handler(int irq, void *arg)
  3133. {
  3134. struct drm_device *dev = arg;
  3135. struct drm_i915_private *dev_priv = dev->dev_private;
  3136. u16 iir, new_iir;
  3137. u32 pipe_stats[2];
  3138. int pipe;
  3139. u16 flip_mask =
  3140. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3141. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3142. if (!intel_irqs_enabled(dev_priv))
  3143. return IRQ_NONE;
  3144. iir = I915_READ16(IIR);
  3145. if (iir == 0)
  3146. return IRQ_NONE;
  3147. while (iir & ~flip_mask) {
  3148. /* Can't rely on pipestat interrupt bit in iir as it might
  3149. * have been cleared after the pipestat interrupt was received.
  3150. * It doesn't set the bit in iir again, but it still produces
  3151. * interrupts (for non-MSI).
  3152. */
  3153. spin_lock(&dev_priv->irq_lock);
  3154. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3155. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3156. for_each_pipe(dev_priv, pipe) {
  3157. int reg = PIPESTAT(pipe);
  3158. pipe_stats[pipe] = I915_READ(reg);
  3159. /*
  3160. * Clear the PIPE*STAT regs before the IIR
  3161. */
  3162. if (pipe_stats[pipe] & 0x8000ffff)
  3163. I915_WRITE(reg, pipe_stats[pipe]);
  3164. }
  3165. spin_unlock(&dev_priv->irq_lock);
  3166. I915_WRITE16(IIR, iir & ~flip_mask);
  3167. new_iir = I915_READ16(IIR); /* Flush posted writes */
  3168. if (iir & I915_USER_INTERRUPT)
  3169. notify_ring(&dev_priv->ring[RCS]);
  3170. for_each_pipe(dev_priv, pipe) {
  3171. int plane = pipe;
  3172. if (HAS_FBC(dev))
  3173. plane = !plane;
  3174. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  3175. i8xx_handle_vblank(dev, plane, pipe, iir))
  3176. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  3177. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3178. i9xx_pipe_crc_irq_handler(dev, pipe);
  3179. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3180. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  3181. pipe);
  3182. }
  3183. iir = new_iir;
  3184. }
  3185. return IRQ_HANDLED;
  3186. }
  3187. static void i8xx_irq_uninstall(struct drm_device * dev)
  3188. {
  3189. struct drm_i915_private *dev_priv = dev->dev_private;
  3190. int pipe;
  3191. for_each_pipe(dev_priv, pipe) {
  3192. /* Clear enable bits; then clear status bits */
  3193. I915_WRITE(PIPESTAT(pipe), 0);
  3194. I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  3195. }
  3196. I915_WRITE16(IMR, 0xffff);
  3197. I915_WRITE16(IER, 0x0);
  3198. I915_WRITE16(IIR, I915_READ16(IIR));
  3199. }
  3200. static void i915_irq_preinstall(struct drm_device * dev)
  3201. {
  3202. struct drm_i915_private *dev_priv = dev->dev_private;
  3203. int pipe;
  3204. if (I915_HAS_HOTPLUG(dev)) {
  3205. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3206. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3207. }
  3208. I915_WRITE16(HWSTAM, 0xeffe);
  3209. for_each_pipe(dev_priv, pipe)
  3210. I915_WRITE(PIPESTAT(pipe), 0);
  3211. I915_WRITE(IMR, 0xffffffff);
  3212. I915_WRITE(IER, 0x0);
  3213. POSTING_READ(IER);
  3214. }
  3215. static int i915_irq_postinstall(struct drm_device *dev)
  3216. {
  3217. struct drm_i915_private *dev_priv = dev->dev_private;
  3218. u32 enable_mask;
  3219. I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  3220. /* Unmask the interrupts that we always want on. */
  3221. dev_priv->irq_mask =
  3222. ~(I915_ASLE_INTERRUPT |
  3223. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3224. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3225. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3226. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3227. enable_mask =
  3228. I915_ASLE_INTERRUPT |
  3229. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3230. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3231. I915_USER_INTERRUPT;
  3232. if (I915_HAS_HOTPLUG(dev)) {
  3233. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3234. POSTING_READ(PORT_HOTPLUG_EN);
  3235. /* Enable in IER... */
  3236. enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
  3237. /* and unmask in IMR */
  3238. dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
  3239. }
  3240. I915_WRITE(IMR, dev_priv->irq_mask);
  3241. I915_WRITE(IER, enable_mask);
  3242. POSTING_READ(IER);
  3243. i915_enable_asle_pipestat(dev);
  3244. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3245. * just to make the assert_spin_locked check happy. */
  3246. spin_lock_irq(&dev_priv->irq_lock);
  3247. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3248. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3249. spin_unlock_irq(&dev_priv->irq_lock);
  3250. return 0;
  3251. }
  3252. /*
  3253. * Returns true when a page flip has completed.
  3254. */
  3255. static bool i915_handle_vblank(struct drm_device *dev,
  3256. int plane, int pipe, u32 iir)
  3257. {
  3258. struct drm_i915_private *dev_priv = dev->dev_private;
  3259. u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  3260. if (!intel_pipe_handle_vblank(dev, pipe))
  3261. return false;
  3262. if ((iir & flip_pending) == 0)
  3263. goto check_page_flip;
  3264. /* We detect FlipDone by looking for the change in PendingFlip from '1'
  3265. * to '0' on the following vblank, i.e. IIR has the Pendingflip
  3266. * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  3267. * the flip is completed (no longer pending). Since this doesn't raise
  3268. * an interrupt per se, we watch for the change at vblank.
  3269. */
  3270. if (I915_READ(ISR) & flip_pending)
  3271. goto check_page_flip;
  3272. intel_prepare_page_flip(dev, plane);
  3273. intel_finish_page_flip(dev, pipe);
  3274. return true;
  3275. check_page_flip:
  3276. intel_check_page_flip(dev, pipe);
  3277. return false;
  3278. }
  3279. static irqreturn_t i915_irq_handler(int irq, void *arg)
  3280. {
  3281. struct drm_device *dev = arg;
  3282. struct drm_i915_private *dev_priv = dev->dev_private;
  3283. u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
  3284. u32 flip_mask =
  3285. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3286. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3287. int pipe, ret = IRQ_NONE;
  3288. if (!intel_irqs_enabled(dev_priv))
  3289. return IRQ_NONE;
  3290. iir = I915_READ(IIR);
  3291. do {
  3292. bool irq_received = (iir & ~flip_mask) != 0;
  3293. bool blc_event = false;
  3294. /* Can't rely on pipestat interrupt bit in iir as it might
  3295. * have been cleared after the pipestat interrupt was received.
  3296. * It doesn't set the bit in iir again, but it still produces
  3297. * interrupts (for non-MSI).
  3298. */
  3299. spin_lock(&dev_priv->irq_lock);
  3300. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3301. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3302. for_each_pipe(dev_priv, pipe) {
  3303. int reg = PIPESTAT(pipe);
  3304. pipe_stats[pipe] = I915_READ(reg);
  3305. /* Clear the PIPE*STAT regs before the IIR */
  3306. if (pipe_stats[pipe] & 0x8000ffff) {
  3307. I915_WRITE(reg, pipe_stats[pipe]);
  3308. irq_received = true;
  3309. }
  3310. }
  3311. spin_unlock(&dev_priv->irq_lock);
  3312. if (!irq_received)
  3313. break;
  3314. /* Consume port. Then clear IIR or we'll miss events */
  3315. if (I915_HAS_HOTPLUG(dev) &&
  3316. iir & I915_DISPLAY_PORT_INTERRUPT)
  3317. i9xx_hpd_irq_handler(dev);
  3318. I915_WRITE(IIR, iir & ~flip_mask);
  3319. new_iir = I915_READ(IIR); /* Flush posted writes */
  3320. if (iir & I915_USER_INTERRUPT)
  3321. notify_ring(&dev_priv->ring[RCS]);
  3322. for_each_pipe(dev_priv, pipe) {
  3323. int plane = pipe;
  3324. if (HAS_FBC(dev))
  3325. plane = !plane;
  3326. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  3327. i915_handle_vblank(dev, plane, pipe, iir))
  3328. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  3329. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  3330. blc_event = true;
  3331. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3332. i9xx_pipe_crc_irq_handler(dev, pipe);
  3333. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3334. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  3335. pipe);
  3336. }
  3337. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  3338. intel_opregion_asle_intr(dev);
  3339. /* With MSI, interrupts are only generated when iir
  3340. * transitions from zero to nonzero. If another bit got
  3341. * set while we were handling the existing iir bits, then
  3342. * we would never get another interrupt.
  3343. *
  3344. * This is fine on non-MSI as well, as if we hit this path
  3345. * we avoid exiting the interrupt handler only to generate
  3346. * another one.
  3347. *
  3348. * Note that for MSI this could cause a stray interrupt report
  3349. * if an interrupt landed in the time between writing IIR and
  3350. * the posting read. This should be rare enough to never
  3351. * trigger the 99% of 100,000 interrupts test for disabling
  3352. * stray interrupts.
  3353. */
  3354. ret = IRQ_HANDLED;
  3355. iir = new_iir;
  3356. } while (iir & ~flip_mask);
  3357. return ret;
  3358. }
  3359. static void i915_irq_uninstall(struct drm_device * dev)
  3360. {
  3361. struct drm_i915_private *dev_priv = dev->dev_private;
  3362. int pipe;
  3363. if (I915_HAS_HOTPLUG(dev)) {
  3364. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3365. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3366. }
  3367. I915_WRITE16(HWSTAM, 0xffff);
  3368. for_each_pipe(dev_priv, pipe) {
  3369. /* Clear enable bits; then clear status bits */
  3370. I915_WRITE(PIPESTAT(pipe), 0);
  3371. I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  3372. }
  3373. I915_WRITE(IMR, 0xffffffff);
  3374. I915_WRITE(IER, 0x0);
  3375. I915_WRITE(IIR, I915_READ(IIR));
  3376. }
  3377. static void i965_irq_preinstall(struct drm_device * dev)
  3378. {
  3379. struct drm_i915_private *dev_priv = dev->dev_private;
  3380. int pipe;
  3381. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3382. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3383. I915_WRITE(HWSTAM, 0xeffe);
  3384. for_each_pipe(dev_priv, pipe)
  3385. I915_WRITE(PIPESTAT(pipe), 0);
  3386. I915_WRITE(IMR, 0xffffffff);
  3387. I915_WRITE(IER, 0x0);
  3388. POSTING_READ(IER);
  3389. }
  3390. static int i965_irq_postinstall(struct drm_device *dev)
  3391. {
  3392. struct drm_i915_private *dev_priv = dev->dev_private;
  3393. u32 enable_mask;
  3394. u32 error_mask;
  3395. /* Unmask the interrupts that we always want on. */
  3396. dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
  3397. I915_DISPLAY_PORT_INTERRUPT |
  3398. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3399. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3400. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3401. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
  3402. I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  3403. enable_mask = ~dev_priv->irq_mask;
  3404. enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3405. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3406. enable_mask |= I915_USER_INTERRUPT;
  3407. if (IS_G4X(dev))
  3408. enable_mask |= I915_BSD_USER_INTERRUPT;
  3409. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3410. * just to make the assert_spin_locked check happy. */
  3411. spin_lock_irq(&dev_priv->irq_lock);
  3412. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  3413. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3414. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3415. spin_unlock_irq(&dev_priv->irq_lock);
  3416. /*
  3417. * Enable some error detection, note the instruction error mask
  3418. * bit is reserved, so we leave it masked.
  3419. */
  3420. if (IS_G4X(dev)) {
  3421. error_mask = ~(GM45_ERROR_PAGE_TABLE |
  3422. GM45_ERROR_MEM_PRIV |
  3423. GM45_ERROR_CP_PRIV |
  3424. I915_ERROR_MEMORY_REFRESH);
  3425. } else {
  3426. error_mask = ~(I915_ERROR_PAGE_TABLE |
  3427. I915_ERROR_MEMORY_REFRESH);
  3428. }
  3429. I915_WRITE(EMR, error_mask);
  3430. I915_WRITE(IMR, dev_priv->irq_mask);
  3431. I915_WRITE(IER, enable_mask);
  3432. POSTING_READ(IER);
  3433. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3434. POSTING_READ(PORT_HOTPLUG_EN);
  3435. i915_enable_asle_pipestat(dev);
  3436. return 0;
  3437. }
  3438. static void i915_hpd_irq_setup(struct drm_device *dev)
  3439. {
  3440. struct drm_i915_private *dev_priv = dev->dev_private;
  3441. u32 hotplug_en;
  3442. assert_spin_locked(&dev_priv->irq_lock);
  3443. /* Note HDMI and DP share hotplug bits */
  3444. /* enable bits are the same for all generations */
  3445. hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
  3446. /* Programming the CRT detection parameters tends
  3447. to generate a spurious hotplug event about three
  3448. seconds later. So just do it once.
  3449. */
  3450. if (IS_G4X(dev))
  3451. hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
  3452. hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
  3453. /* Ignore TV since it's buggy */
  3454. i915_hotplug_interrupt_update_locked(dev_priv,
  3455. (HOTPLUG_INT_EN_MASK
  3456. | CRT_HOTPLUG_VOLTAGE_COMPARE_MASK),
  3457. hotplug_en);
  3458. }
  3459. static irqreturn_t i965_irq_handler(int irq, void *arg)
  3460. {
  3461. struct drm_device *dev = arg;
  3462. struct drm_i915_private *dev_priv = dev->dev_private;
  3463. u32 iir, new_iir;
  3464. u32 pipe_stats[I915_MAX_PIPES];
  3465. int ret = IRQ_NONE, pipe;
  3466. u32 flip_mask =
  3467. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3468. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3469. if (!intel_irqs_enabled(dev_priv))
  3470. return IRQ_NONE;
  3471. iir = I915_READ(IIR);
  3472. for (;;) {
  3473. bool irq_received = (iir & ~flip_mask) != 0;
  3474. bool blc_event = false;
  3475. /* Can't rely on pipestat interrupt bit in iir as it might
  3476. * have been cleared after the pipestat interrupt was received.
  3477. * It doesn't set the bit in iir again, but it still produces
  3478. * interrupts (for non-MSI).
  3479. */
  3480. spin_lock(&dev_priv->irq_lock);
  3481. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3482. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3483. for_each_pipe(dev_priv, pipe) {
  3484. int reg = PIPESTAT(pipe);
  3485. pipe_stats[pipe] = I915_READ(reg);
  3486. /*
  3487. * Clear the PIPE*STAT regs before the IIR
  3488. */
  3489. if (pipe_stats[pipe] & 0x8000ffff) {
  3490. I915_WRITE(reg, pipe_stats[pipe]);
  3491. irq_received = true;
  3492. }
  3493. }
  3494. spin_unlock(&dev_priv->irq_lock);
  3495. if (!irq_received)
  3496. break;
  3497. ret = IRQ_HANDLED;
  3498. /* Consume port. Then clear IIR or we'll miss events */
  3499. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  3500. i9xx_hpd_irq_handler(dev);
  3501. I915_WRITE(IIR, iir & ~flip_mask);
  3502. new_iir = I915_READ(IIR); /* Flush posted writes */
  3503. if (iir & I915_USER_INTERRUPT)
  3504. notify_ring(&dev_priv->ring[RCS]);
  3505. if (iir & I915_BSD_USER_INTERRUPT)
  3506. notify_ring(&dev_priv->ring[VCS]);
  3507. for_each_pipe(dev_priv, pipe) {
  3508. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  3509. i915_handle_vblank(dev, pipe, pipe, iir))
  3510. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
  3511. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  3512. blc_event = true;
  3513. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3514. i9xx_pipe_crc_irq_handler(dev, pipe);
  3515. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3516. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  3517. }
  3518. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  3519. intel_opregion_asle_intr(dev);
  3520. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  3521. gmbus_irq_handler(dev);
  3522. /* With MSI, interrupts are only generated when iir
  3523. * transitions from zero to nonzero. If another bit got
  3524. * set while we were handling the existing iir bits, then
  3525. * we would never get another interrupt.
  3526. *
  3527. * This is fine on non-MSI as well, as if we hit this path
  3528. * we avoid exiting the interrupt handler only to generate
  3529. * another one.
  3530. *
  3531. * Note that for MSI this could cause a stray interrupt report
  3532. * if an interrupt landed in the time between writing IIR and
  3533. * the posting read. This should be rare enough to never
  3534. * trigger the 99% of 100,000 interrupts test for disabling
  3535. * stray interrupts.
  3536. */
  3537. iir = new_iir;
  3538. }
  3539. return ret;
  3540. }
  3541. static void i965_irq_uninstall(struct drm_device * dev)
  3542. {
  3543. struct drm_i915_private *dev_priv = dev->dev_private;
  3544. int pipe;
  3545. if (!dev_priv)
  3546. return;
  3547. i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
  3548. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3549. I915_WRITE(HWSTAM, 0xffffffff);
  3550. for_each_pipe(dev_priv, pipe)
  3551. I915_WRITE(PIPESTAT(pipe), 0);
  3552. I915_WRITE(IMR, 0xffffffff);
  3553. I915_WRITE(IER, 0x0);
  3554. for_each_pipe(dev_priv, pipe)
  3555. I915_WRITE(PIPESTAT(pipe),
  3556. I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
  3557. I915_WRITE(IIR, I915_READ(IIR));
  3558. }
  3559. /**
  3560. * intel_irq_init - initializes irq support
  3561. * @dev_priv: i915 device instance
  3562. *
  3563. * This function initializes all the irq support including work items, timers
  3564. * and all the vtables. It does not setup the interrupt itself though.
  3565. */
  3566. void intel_irq_init(struct drm_i915_private *dev_priv)
  3567. {
  3568. struct drm_device *dev = dev_priv->dev;
  3569. intel_hpd_init_work(dev_priv);
  3570. INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
  3571. INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
  3572. /* Let's track the enabled rps events */
  3573. if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
  3574. /* WaGsvRC0ResidencyMethod:vlv */
  3575. dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
  3576. else
  3577. dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
  3578. INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
  3579. i915_hangcheck_elapsed);
  3580. pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
  3581. if (IS_GEN2(dev_priv)) {
  3582. dev->max_vblank_count = 0;
  3583. dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
  3584. } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
  3585. dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
  3586. dev->driver->get_vblank_counter = gm45_get_vblank_counter;
  3587. } else {
  3588. dev->driver->get_vblank_counter = i915_get_vblank_counter;
  3589. dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
  3590. }
  3591. /*
  3592. * Opt out of the vblank disable timer on everything except gen2.
  3593. * Gen2 doesn't have a hardware frame counter and so depends on
  3594. * vblank interrupts to produce sane vblank seuquence numbers.
  3595. */
  3596. if (!IS_GEN2(dev_priv))
  3597. dev->vblank_disable_immediate = true;
  3598. dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
  3599. dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
  3600. if (IS_CHERRYVIEW(dev_priv)) {
  3601. dev->driver->irq_handler = cherryview_irq_handler;
  3602. dev->driver->irq_preinstall = cherryview_irq_preinstall;
  3603. dev->driver->irq_postinstall = cherryview_irq_postinstall;
  3604. dev->driver->irq_uninstall = cherryview_irq_uninstall;
  3605. dev->driver->enable_vblank = valleyview_enable_vblank;
  3606. dev->driver->disable_vblank = valleyview_disable_vblank;
  3607. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3608. } else if (IS_VALLEYVIEW(dev_priv)) {
  3609. dev->driver->irq_handler = valleyview_irq_handler;
  3610. dev->driver->irq_preinstall = valleyview_irq_preinstall;
  3611. dev->driver->irq_postinstall = valleyview_irq_postinstall;
  3612. dev->driver->irq_uninstall = valleyview_irq_uninstall;
  3613. dev->driver->enable_vblank = valleyview_enable_vblank;
  3614. dev->driver->disable_vblank = valleyview_disable_vblank;
  3615. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3616. } else if (INTEL_INFO(dev_priv)->gen >= 8) {
  3617. dev->driver->irq_handler = gen8_irq_handler;
  3618. dev->driver->irq_preinstall = gen8_irq_reset;
  3619. dev->driver->irq_postinstall = gen8_irq_postinstall;
  3620. dev->driver->irq_uninstall = gen8_irq_uninstall;
  3621. dev->driver->enable_vblank = gen8_enable_vblank;
  3622. dev->driver->disable_vblank = gen8_disable_vblank;
  3623. if (IS_BROXTON(dev))
  3624. dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
  3625. else if (HAS_PCH_SPT(dev))
  3626. dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
  3627. else
  3628. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3629. } else if (HAS_PCH_SPLIT(dev)) {
  3630. dev->driver->irq_handler = ironlake_irq_handler;
  3631. dev->driver->irq_preinstall = ironlake_irq_reset;
  3632. dev->driver->irq_postinstall = ironlake_irq_postinstall;
  3633. dev->driver->irq_uninstall = ironlake_irq_uninstall;
  3634. dev->driver->enable_vblank = ironlake_enable_vblank;
  3635. dev->driver->disable_vblank = ironlake_disable_vblank;
  3636. dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
  3637. } else {
  3638. if (INTEL_INFO(dev_priv)->gen == 2) {
  3639. dev->driver->irq_preinstall = i8xx_irq_preinstall;
  3640. dev->driver->irq_postinstall = i8xx_irq_postinstall;
  3641. dev->driver->irq_handler = i8xx_irq_handler;
  3642. dev->driver->irq_uninstall = i8xx_irq_uninstall;
  3643. } else if (INTEL_INFO(dev_priv)->gen == 3) {
  3644. dev->driver->irq_preinstall = i915_irq_preinstall;
  3645. dev->driver->irq_postinstall = i915_irq_postinstall;
  3646. dev->driver->irq_uninstall = i915_irq_uninstall;
  3647. dev->driver->irq_handler = i915_irq_handler;
  3648. } else {
  3649. dev->driver->irq_preinstall = i965_irq_preinstall;
  3650. dev->driver->irq_postinstall = i965_irq_postinstall;
  3651. dev->driver->irq_uninstall = i965_irq_uninstall;
  3652. dev->driver->irq_handler = i965_irq_handler;
  3653. }
  3654. if (I915_HAS_HOTPLUG(dev_priv))
  3655. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3656. dev->driver->enable_vblank = i915_enable_vblank;
  3657. dev->driver->disable_vblank = i915_disable_vblank;
  3658. }
  3659. }
  3660. /**
  3661. * intel_irq_install - enables the hardware interrupt
  3662. * @dev_priv: i915 device instance
  3663. *
  3664. * This function enables the hardware interrupt handling, but leaves the hotplug
  3665. * handling still disabled. It is called after intel_irq_init().
  3666. *
  3667. * In the driver load and resume code we need working interrupts in a few places
  3668. * but don't want to deal with the hassle of concurrent probe and hotplug
  3669. * workers. Hence the split into this two-stage approach.
  3670. */
  3671. int intel_irq_install(struct drm_i915_private *dev_priv)
  3672. {
  3673. /*
  3674. * We enable some interrupt sources in our postinstall hooks, so mark
  3675. * interrupts as enabled _before_ actually enabling them to avoid
  3676. * special cases in our ordering checks.
  3677. */
  3678. dev_priv->pm.irqs_enabled = true;
  3679. return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
  3680. }
  3681. /**
  3682. * intel_irq_uninstall - finilizes all irq handling
  3683. * @dev_priv: i915 device instance
  3684. *
  3685. * This stops interrupt and hotplug handling and unregisters and frees all
  3686. * resources acquired in the init functions.
  3687. */
  3688. void intel_irq_uninstall(struct drm_i915_private *dev_priv)
  3689. {
  3690. drm_irq_uninstall(dev_priv->dev);
  3691. intel_hpd_cancel_work(dev_priv);
  3692. dev_priv->pm.irqs_enabled = false;
  3693. }
  3694. /**
  3695. * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
  3696. * @dev_priv: i915 device instance
  3697. *
  3698. * This function is used to disable interrupts at runtime, both in the runtime
  3699. * pm and the system suspend/resume code.
  3700. */
  3701. void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
  3702. {
  3703. dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
  3704. dev_priv->pm.irqs_enabled = false;
  3705. synchronize_irq(dev_priv->dev->irq);
  3706. }
  3707. /**
  3708. * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
  3709. * @dev_priv: i915 device instance
  3710. *
  3711. * This function is used to enable interrupts at runtime, both in the runtime
  3712. * pm and the system suspend/resume code.
  3713. */
  3714. void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
  3715. {
  3716. dev_priv->pm.irqs_enabled = true;
  3717. dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
  3718. dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
  3719. }