send.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/moduleparam.h>
  35. #include <linux/gfp.h>
  36. #include <net/sock.h>
  37. #include <linux/in.h>
  38. #include <linux/list.h>
  39. #include <linux/ratelimit.h>
  40. #include <linux/export.h>
  41. #include <linux/sizes.h>
  42. #include "rds.h"
  43. /* When transmitting messages in rds_send_xmit, we need to emerge from
  44. * time to time and briefly release the CPU. Otherwise the softlock watchdog
  45. * will kick our shin.
  46. * Also, it seems fairer to not let one busy connection stall all the
  47. * others.
  48. *
  49. * send_batch_count is the number of times we'll loop in send_xmit. Setting
  50. * it to 0 will restore the old behavior (where we looped until we had
  51. * drained the queue).
  52. */
  53. static int send_batch_count = SZ_1K;
  54. module_param(send_batch_count, int, 0444);
  55. MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
  56. static void rds_send_remove_from_sock(struct list_head *messages, int status);
  57. /*
  58. * Reset the send state. Callers must ensure that this doesn't race with
  59. * rds_send_xmit().
  60. */
  61. void rds_send_path_reset(struct rds_conn_path *cp)
  62. {
  63. struct rds_message *rm, *tmp;
  64. unsigned long flags;
  65. if (cp->cp_xmit_rm) {
  66. rm = cp->cp_xmit_rm;
  67. cp->cp_xmit_rm = NULL;
  68. /* Tell the user the RDMA op is no longer mapped by the
  69. * transport. This isn't entirely true (it's flushed out
  70. * independently) but as the connection is down, there's
  71. * no ongoing RDMA to/from that memory */
  72. rds_message_unmapped(rm);
  73. rds_message_put(rm);
  74. }
  75. cp->cp_xmit_sg = 0;
  76. cp->cp_xmit_hdr_off = 0;
  77. cp->cp_xmit_data_off = 0;
  78. cp->cp_xmit_atomic_sent = 0;
  79. cp->cp_xmit_rdma_sent = 0;
  80. cp->cp_xmit_data_sent = 0;
  81. cp->cp_conn->c_map_queued = 0;
  82. cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
  83. cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
  84. /* Mark messages as retransmissions, and move them to the send q */
  85. spin_lock_irqsave(&cp->cp_lock, flags);
  86. list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
  87. set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
  88. set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
  89. }
  90. list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
  91. spin_unlock_irqrestore(&cp->cp_lock, flags);
  92. }
  93. EXPORT_SYMBOL_GPL(rds_send_path_reset);
  94. static int acquire_in_xmit(struct rds_conn_path *cp)
  95. {
  96. return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
  97. }
  98. static void release_in_xmit(struct rds_conn_path *cp)
  99. {
  100. clear_bit(RDS_IN_XMIT, &cp->cp_flags);
  101. smp_mb__after_atomic();
  102. /*
  103. * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
  104. * hot path and finding waiters is very rare. We don't want to walk
  105. * the system-wide hashed waitqueue buckets in the fast path only to
  106. * almost never find waiters.
  107. */
  108. if (waitqueue_active(&cp->cp_waitq))
  109. wake_up_all(&cp->cp_waitq);
  110. }
  111. /*
  112. * We're making the conscious trade-off here to only send one message
  113. * down the connection at a time.
  114. * Pro:
  115. * - tx queueing is a simple fifo list
  116. * - reassembly is optional and easily done by transports per conn
  117. * - no per flow rx lookup at all, straight to the socket
  118. * - less per-frag memory and wire overhead
  119. * Con:
  120. * - queued acks can be delayed behind large messages
  121. * Depends:
  122. * - small message latency is higher behind queued large messages
  123. * - large message latency isn't starved by intervening small sends
  124. */
  125. int rds_send_xmit(struct rds_conn_path *cp)
  126. {
  127. struct rds_connection *conn = cp->cp_conn;
  128. struct rds_message *rm;
  129. unsigned long flags;
  130. unsigned int tmp;
  131. struct scatterlist *sg;
  132. int ret = 0;
  133. LIST_HEAD(to_be_dropped);
  134. int batch_count;
  135. unsigned long send_gen = 0;
  136. restart:
  137. batch_count = 0;
  138. /*
  139. * sendmsg calls here after having queued its message on the send
  140. * queue. We only have one task feeding the connection at a time. If
  141. * another thread is already feeding the queue then we back off. This
  142. * avoids blocking the caller and trading per-connection data between
  143. * caches per message.
  144. */
  145. if (!acquire_in_xmit(cp)) {
  146. rds_stats_inc(s_send_lock_contention);
  147. ret = -ENOMEM;
  148. goto out;
  149. }
  150. /*
  151. * we record the send generation after doing the xmit acquire.
  152. * if someone else manages to jump in and do some work, we'll use
  153. * this to avoid a goto restart farther down.
  154. *
  155. * The acquire_in_xmit() check above ensures that only one
  156. * caller can increment c_send_gen at any time.
  157. */
  158. cp->cp_send_gen++;
  159. send_gen = cp->cp_send_gen;
  160. /*
  161. * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
  162. * we do the opposite to avoid races.
  163. */
  164. if (!rds_conn_path_up(cp)) {
  165. release_in_xmit(cp);
  166. ret = 0;
  167. goto out;
  168. }
  169. if (conn->c_trans->xmit_path_prepare)
  170. conn->c_trans->xmit_path_prepare(cp);
  171. /*
  172. * spin trying to push headers and data down the connection until
  173. * the connection doesn't make forward progress.
  174. */
  175. while (1) {
  176. rm = cp->cp_xmit_rm;
  177. /*
  178. * If between sending messages, we can send a pending congestion
  179. * map update.
  180. */
  181. if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
  182. rm = rds_cong_update_alloc(conn);
  183. if (IS_ERR(rm)) {
  184. ret = PTR_ERR(rm);
  185. break;
  186. }
  187. rm->data.op_active = 1;
  188. rm->m_inc.i_conn_path = cp;
  189. rm->m_inc.i_conn = cp->cp_conn;
  190. cp->cp_xmit_rm = rm;
  191. }
  192. /*
  193. * If not already working on one, grab the next message.
  194. *
  195. * cp_xmit_rm holds a ref while we're sending this message down
  196. * the connction. We can use this ref while holding the
  197. * send_sem.. rds_send_reset() is serialized with it.
  198. */
  199. if (!rm) {
  200. unsigned int len;
  201. batch_count++;
  202. /* we want to process as big a batch as we can, but
  203. * we also want to avoid softlockups. If we've been
  204. * through a lot of messages, lets back off and see
  205. * if anyone else jumps in
  206. */
  207. if (batch_count >= send_batch_count)
  208. goto over_batch;
  209. spin_lock_irqsave(&cp->cp_lock, flags);
  210. if (!list_empty(&cp->cp_send_queue)) {
  211. rm = list_entry(cp->cp_send_queue.next,
  212. struct rds_message,
  213. m_conn_item);
  214. rds_message_addref(rm);
  215. /*
  216. * Move the message from the send queue to the retransmit
  217. * list right away.
  218. */
  219. list_move_tail(&rm->m_conn_item,
  220. &cp->cp_retrans);
  221. }
  222. spin_unlock_irqrestore(&cp->cp_lock, flags);
  223. if (!rm)
  224. break;
  225. /* Unfortunately, the way Infiniband deals with
  226. * RDMA to a bad MR key is by moving the entire
  227. * queue pair to error state. We cold possibly
  228. * recover from that, but right now we drop the
  229. * connection.
  230. * Therefore, we never retransmit messages with RDMA ops.
  231. */
  232. if (rm->rdma.op_active &&
  233. test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
  234. spin_lock_irqsave(&cp->cp_lock, flags);
  235. if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
  236. list_move(&rm->m_conn_item, &to_be_dropped);
  237. spin_unlock_irqrestore(&cp->cp_lock, flags);
  238. continue;
  239. }
  240. /* Require an ACK every once in a while */
  241. len = ntohl(rm->m_inc.i_hdr.h_len);
  242. if (cp->cp_unacked_packets == 0 ||
  243. cp->cp_unacked_bytes < len) {
  244. __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
  245. cp->cp_unacked_packets =
  246. rds_sysctl_max_unacked_packets;
  247. cp->cp_unacked_bytes =
  248. rds_sysctl_max_unacked_bytes;
  249. rds_stats_inc(s_send_ack_required);
  250. } else {
  251. cp->cp_unacked_bytes -= len;
  252. cp->cp_unacked_packets--;
  253. }
  254. cp->cp_xmit_rm = rm;
  255. }
  256. /* The transport either sends the whole rdma or none of it */
  257. if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
  258. rm->m_final_op = &rm->rdma;
  259. /* The transport owns the mapped memory for now.
  260. * You can't unmap it while it's on the send queue
  261. */
  262. set_bit(RDS_MSG_MAPPED, &rm->m_flags);
  263. ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
  264. if (ret) {
  265. clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
  266. wake_up_interruptible(&rm->m_flush_wait);
  267. break;
  268. }
  269. cp->cp_xmit_rdma_sent = 1;
  270. }
  271. if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
  272. rm->m_final_op = &rm->atomic;
  273. /* The transport owns the mapped memory for now.
  274. * You can't unmap it while it's on the send queue
  275. */
  276. set_bit(RDS_MSG_MAPPED, &rm->m_flags);
  277. ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
  278. if (ret) {
  279. clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
  280. wake_up_interruptible(&rm->m_flush_wait);
  281. break;
  282. }
  283. cp->cp_xmit_atomic_sent = 1;
  284. }
  285. /*
  286. * A number of cases require an RDS header to be sent
  287. * even if there is no data.
  288. * We permit 0-byte sends; rds-ping depends on this.
  289. * However, if there are exclusively attached silent ops,
  290. * we skip the hdr/data send, to enable silent operation.
  291. */
  292. if (rm->data.op_nents == 0) {
  293. int ops_present;
  294. int all_ops_are_silent = 1;
  295. ops_present = (rm->atomic.op_active || rm->rdma.op_active);
  296. if (rm->atomic.op_active && !rm->atomic.op_silent)
  297. all_ops_are_silent = 0;
  298. if (rm->rdma.op_active && !rm->rdma.op_silent)
  299. all_ops_are_silent = 0;
  300. if (ops_present && all_ops_are_silent
  301. && !rm->m_rdma_cookie)
  302. rm->data.op_active = 0;
  303. }
  304. if (rm->data.op_active && !cp->cp_xmit_data_sent) {
  305. rm->m_final_op = &rm->data;
  306. ret = conn->c_trans->xmit(conn, rm,
  307. cp->cp_xmit_hdr_off,
  308. cp->cp_xmit_sg,
  309. cp->cp_xmit_data_off);
  310. if (ret <= 0)
  311. break;
  312. if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
  313. tmp = min_t(int, ret,
  314. sizeof(struct rds_header) -
  315. cp->cp_xmit_hdr_off);
  316. cp->cp_xmit_hdr_off += tmp;
  317. ret -= tmp;
  318. }
  319. sg = &rm->data.op_sg[cp->cp_xmit_sg];
  320. while (ret) {
  321. tmp = min_t(int, ret, sg->length -
  322. cp->cp_xmit_data_off);
  323. cp->cp_xmit_data_off += tmp;
  324. ret -= tmp;
  325. if (cp->cp_xmit_data_off == sg->length) {
  326. cp->cp_xmit_data_off = 0;
  327. sg++;
  328. cp->cp_xmit_sg++;
  329. BUG_ON(ret != 0 && cp->cp_xmit_sg ==
  330. rm->data.op_nents);
  331. }
  332. }
  333. if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
  334. (cp->cp_xmit_sg == rm->data.op_nents))
  335. cp->cp_xmit_data_sent = 1;
  336. }
  337. /*
  338. * A rm will only take multiple times through this loop
  339. * if there is a data op. Thus, if the data is sent (or there was
  340. * none), then we're done with the rm.
  341. */
  342. if (!rm->data.op_active || cp->cp_xmit_data_sent) {
  343. cp->cp_xmit_rm = NULL;
  344. cp->cp_xmit_sg = 0;
  345. cp->cp_xmit_hdr_off = 0;
  346. cp->cp_xmit_data_off = 0;
  347. cp->cp_xmit_rdma_sent = 0;
  348. cp->cp_xmit_atomic_sent = 0;
  349. cp->cp_xmit_data_sent = 0;
  350. rds_message_put(rm);
  351. }
  352. }
  353. over_batch:
  354. if (conn->c_trans->xmit_path_complete)
  355. conn->c_trans->xmit_path_complete(cp);
  356. release_in_xmit(cp);
  357. /* Nuke any messages we decided not to retransmit. */
  358. if (!list_empty(&to_be_dropped)) {
  359. /* irqs on here, so we can put(), unlike above */
  360. list_for_each_entry(rm, &to_be_dropped, m_conn_item)
  361. rds_message_put(rm);
  362. rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
  363. }
  364. /*
  365. * Other senders can queue a message after we last test the send queue
  366. * but before we clear RDS_IN_XMIT. In that case they'd back off and
  367. * not try and send their newly queued message. We need to check the
  368. * send queue after having cleared RDS_IN_XMIT so that their message
  369. * doesn't get stuck on the send queue.
  370. *
  371. * If the transport cannot continue (i.e ret != 0), then it must
  372. * call us when more room is available, such as from the tx
  373. * completion handler.
  374. *
  375. * We have an extra generation check here so that if someone manages
  376. * to jump in after our release_in_xmit, we'll see that they have done
  377. * some work and we will skip our goto
  378. */
  379. if (ret == 0) {
  380. smp_mb();
  381. if ((test_bit(0, &conn->c_map_queued) ||
  382. !list_empty(&cp->cp_send_queue)) &&
  383. send_gen == cp->cp_send_gen) {
  384. rds_stats_inc(s_send_lock_queue_raced);
  385. if (batch_count < send_batch_count)
  386. goto restart;
  387. queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
  388. }
  389. }
  390. out:
  391. return ret;
  392. }
  393. EXPORT_SYMBOL_GPL(rds_send_xmit);
  394. static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
  395. {
  396. u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
  397. assert_spin_locked(&rs->rs_lock);
  398. BUG_ON(rs->rs_snd_bytes < len);
  399. rs->rs_snd_bytes -= len;
  400. if (rs->rs_snd_bytes == 0)
  401. rds_stats_inc(s_send_queue_empty);
  402. }
  403. static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
  404. is_acked_func is_acked)
  405. {
  406. if (is_acked)
  407. return is_acked(rm, ack);
  408. return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
  409. }
  410. /*
  411. * This is pretty similar to what happens below in the ACK
  412. * handling code - except that we call here as soon as we get
  413. * the IB send completion on the RDMA op and the accompanying
  414. * message.
  415. */
  416. void rds_rdma_send_complete(struct rds_message *rm, int status)
  417. {
  418. struct rds_sock *rs = NULL;
  419. struct rm_rdma_op *ro;
  420. struct rds_notifier *notifier;
  421. unsigned long flags;
  422. spin_lock_irqsave(&rm->m_rs_lock, flags);
  423. ro = &rm->rdma;
  424. if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
  425. ro->op_active && ro->op_notify && ro->op_notifier) {
  426. notifier = ro->op_notifier;
  427. rs = rm->m_rs;
  428. sock_hold(rds_rs_to_sk(rs));
  429. notifier->n_status = status;
  430. spin_lock(&rs->rs_lock);
  431. list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
  432. spin_unlock(&rs->rs_lock);
  433. ro->op_notifier = NULL;
  434. }
  435. spin_unlock_irqrestore(&rm->m_rs_lock, flags);
  436. if (rs) {
  437. rds_wake_sk_sleep(rs);
  438. sock_put(rds_rs_to_sk(rs));
  439. }
  440. }
  441. EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
  442. /*
  443. * Just like above, except looks at atomic op
  444. */
  445. void rds_atomic_send_complete(struct rds_message *rm, int status)
  446. {
  447. struct rds_sock *rs = NULL;
  448. struct rm_atomic_op *ao;
  449. struct rds_notifier *notifier;
  450. unsigned long flags;
  451. spin_lock_irqsave(&rm->m_rs_lock, flags);
  452. ao = &rm->atomic;
  453. if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
  454. && ao->op_active && ao->op_notify && ao->op_notifier) {
  455. notifier = ao->op_notifier;
  456. rs = rm->m_rs;
  457. sock_hold(rds_rs_to_sk(rs));
  458. notifier->n_status = status;
  459. spin_lock(&rs->rs_lock);
  460. list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
  461. spin_unlock(&rs->rs_lock);
  462. ao->op_notifier = NULL;
  463. }
  464. spin_unlock_irqrestore(&rm->m_rs_lock, flags);
  465. if (rs) {
  466. rds_wake_sk_sleep(rs);
  467. sock_put(rds_rs_to_sk(rs));
  468. }
  469. }
  470. EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
  471. /*
  472. * This is the same as rds_rdma_send_complete except we
  473. * don't do any locking - we have all the ingredients (message,
  474. * socket, socket lock) and can just move the notifier.
  475. */
  476. static inline void
  477. __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
  478. {
  479. struct rm_rdma_op *ro;
  480. struct rm_atomic_op *ao;
  481. ro = &rm->rdma;
  482. if (ro->op_active && ro->op_notify && ro->op_notifier) {
  483. ro->op_notifier->n_status = status;
  484. list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
  485. ro->op_notifier = NULL;
  486. }
  487. ao = &rm->atomic;
  488. if (ao->op_active && ao->op_notify && ao->op_notifier) {
  489. ao->op_notifier->n_status = status;
  490. list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
  491. ao->op_notifier = NULL;
  492. }
  493. /* No need to wake the app - caller does this */
  494. }
  495. /*
  496. * This removes messages from the socket's list if they're on it. The list
  497. * argument must be private to the caller, we must be able to modify it
  498. * without locks. The messages must have a reference held for their
  499. * position on the list. This function will drop that reference after
  500. * removing the messages from the 'messages' list regardless of if it found
  501. * the messages on the socket list or not.
  502. */
  503. static void rds_send_remove_from_sock(struct list_head *messages, int status)
  504. {
  505. unsigned long flags;
  506. struct rds_sock *rs = NULL;
  507. struct rds_message *rm;
  508. while (!list_empty(messages)) {
  509. int was_on_sock = 0;
  510. rm = list_entry(messages->next, struct rds_message,
  511. m_conn_item);
  512. list_del_init(&rm->m_conn_item);
  513. /*
  514. * If we see this flag cleared then we're *sure* that someone
  515. * else beat us to removing it from the sock. If we race
  516. * with their flag update we'll get the lock and then really
  517. * see that the flag has been cleared.
  518. *
  519. * The message spinlock makes sure nobody clears rm->m_rs
  520. * while we're messing with it. It does not prevent the
  521. * message from being removed from the socket, though.
  522. */
  523. spin_lock_irqsave(&rm->m_rs_lock, flags);
  524. if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
  525. goto unlock_and_drop;
  526. if (rs != rm->m_rs) {
  527. if (rs) {
  528. rds_wake_sk_sleep(rs);
  529. sock_put(rds_rs_to_sk(rs));
  530. }
  531. rs = rm->m_rs;
  532. if (rs)
  533. sock_hold(rds_rs_to_sk(rs));
  534. }
  535. if (!rs)
  536. goto unlock_and_drop;
  537. spin_lock(&rs->rs_lock);
  538. if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
  539. struct rm_rdma_op *ro = &rm->rdma;
  540. struct rds_notifier *notifier;
  541. list_del_init(&rm->m_sock_item);
  542. rds_send_sndbuf_remove(rs, rm);
  543. if (ro->op_active && ro->op_notifier &&
  544. (ro->op_notify || (ro->op_recverr && status))) {
  545. notifier = ro->op_notifier;
  546. list_add_tail(&notifier->n_list,
  547. &rs->rs_notify_queue);
  548. if (!notifier->n_status)
  549. notifier->n_status = status;
  550. rm->rdma.op_notifier = NULL;
  551. }
  552. was_on_sock = 1;
  553. rm->m_rs = NULL;
  554. }
  555. spin_unlock(&rs->rs_lock);
  556. unlock_and_drop:
  557. spin_unlock_irqrestore(&rm->m_rs_lock, flags);
  558. rds_message_put(rm);
  559. if (was_on_sock)
  560. rds_message_put(rm);
  561. }
  562. if (rs) {
  563. rds_wake_sk_sleep(rs);
  564. sock_put(rds_rs_to_sk(rs));
  565. }
  566. }
  567. /*
  568. * Transports call here when they've determined that the receiver queued
  569. * messages up to, and including, the given sequence number. Messages are
  570. * moved to the retrans queue when rds_send_xmit picks them off the send
  571. * queue. This means that in the TCP case, the message may not have been
  572. * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
  573. * checks the RDS_MSG_HAS_ACK_SEQ bit.
  574. */
  575. void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
  576. is_acked_func is_acked)
  577. {
  578. struct rds_message *rm, *tmp;
  579. unsigned long flags;
  580. LIST_HEAD(list);
  581. spin_lock_irqsave(&cp->cp_lock, flags);
  582. list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
  583. if (!rds_send_is_acked(rm, ack, is_acked))
  584. break;
  585. list_move(&rm->m_conn_item, &list);
  586. clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
  587. }
  588. /* order flag updates with spin locks */
  589. if (!list_empty(&list))
  590. smp_mb__after_atomic();
  591. spin_unlock_irqrestore(&cp->cp_lock, flags);
  592. /* now remove the messages from the sock list as needed */
  593. rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
  594. }
  595. EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
  596. void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
  597. is_acked_func is_acked)
  598. {
  599. WARN_ON(conn->c_trans->t_mp_capable);
  600. rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
  601. }
  602. EXPORT_SYMBOL_GPL(rds_send_drop_acked);
  603. void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
  604. {
  605. struct rds_message *rm, *tmp;
  606. struct rds_connection *conn;
  607. struct rds_conn_path *cp;
  608. unsigned long flags;
  609. LIST_HEAD(list);
  610. /* get all the messages we're dropping under the rs lock */
  611. spin_lock_irqsave(&rs->rs_lock, flags);
  612. list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
  613. if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
  614. dest->sin_port != rm->m_inc.i_hdr.h_dport))
  615. continue;
  616. list_move(&rm->m_sock_item, &list);
  617. rds_send_sndbuf_remove(rs, rm);
  618. clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
  619. }
  620. /* order flag updates with the rs lock */
  621. smp_mb__after_atomic();
  622. spin_unlock_irqrestore(&rs->rs_lock, flags);
  623. if (list_empty(&list))
  624. return;
  625. /* Remove the messages from the conn */
  626. list_for_each_entry(rm, &list, m_sock_item) {
  627. conn = rm->m_inc.i_conn;
  628. if (conn->c_trans->t_mp_capable)
  629. cp = rm->m_inc.i_conn_path;
  630. else
  631. cp = &conn->c_path[0];
  632. spin_lock_irqsave(&cp->cp_lock, flags);
  633. /*
  634. * Maybe someone else beat us to removing rm from the conn.
  635. * If we race with their flag update we'll get the lock and
  636. * then really see that the flag has been cleared.
  637. */
  638. if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
  639. spin_unlock_irqrestore(&cp->cp_lock, flags);
  640. spin_lock_irqsave(&rm->m_rs_lock, flags);
  641. rm->m_rs = NULL;
  642. spin_unlock_irqrestore(&rm->m_rs_lock, flags);
  643. continue;
  644. }
  645. list_del_init(&rm->m_conn_item);
  646. spin_unlock_irqrestore(&cp->cp_lock, flags);
  647. /*
  648. * Couldn't grab m_rs_lock in top loop (lock ordering),
  649. * but we can now.
  650. */
  651. spin_lock_irqsave(&rm->m_rs_lock, flags);
  652. spin_lock(&rs->rs_lock);
  653. __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
  654. spin_unlock(&rs->rs_lock);
  655. rm->m_rs = NULL;
  656. spin_unlock_irqrestore(&rm->m_rs_lock, flags);
  657. rds_message_put(rm);
  658. }
  659. rds_wake_sk_sleep(rs);
  660. while (!list_empty(&list)) {
  661. rm = list_entry(list.next, struct rds_message, m_sock_item);
  662. list_del_init(&rm->m_sock_item);
  663. rds_message_wait(rm);
  664. /* just in case the code above skipped this message
  665. * because RDS_MSG_ON_CONN wasn't set, run it again here
  666. * taking m_rs_lock is the only thing that keeps us
  667. * from racing with ack processing.
  668. */
  669. spin_lock_irqsave(&rm->m_rs_lock, flags);
  670. spin_lock(&rs->rs_lock);
  671. __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
  672. spin_unlock(&rs->rs_lock);
  673. rm->m_rs = NULL;
  674. spin_unlock_irqrestore(&rm->m_rs_lock, flags);
  675. rds_message_put(rm);
  676. }
  677. }
  678. /*
  679. * we only want this to fire once so we use the callers 'queued'. It's
  680. * possible that another thread can race with us and remove the
  681. * message from the flow with RDS_CANCEL_SENT_TO.
  682. */
  683. static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
  684. struct rds_conn_path *cp,
  685. struct rds_message *rm, __be16 sport,
  686. __be16 dport, int *queued)
  687. {
  688. unsigned long flags;
  689. u32 len;
  690. if (*queued)
  691. goto out;
  692. len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
  693. /* this is the only place which holds both the socket's rs_lock
  694. * and the connection's c_lock */
  695. spin_lock_irqsave(&rs->rs_lock, flags);
  696. /*
  697. * If there is a little space in sndbuf, we don't queue anything,
  698. * and userspace gets -EAGAIN. But poll() indicates there's send
  699. * room. This can lead to bad behavior (spinning) if snd_bytes isn't
  700. * freed up by incoming acks. So we check the *old* value of
  701. * rs_snd_bytes here to allow the last msg to exceed the buffer,
  702. * and poll() now knows no more data can be sent.
  703. */
  704. if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
  705. rs->rs_snd_bytes += len;
  706. /* let recv side know we are close to send space exhaustion.
  707. * This is probably not the optimal way to do it, as this
  708. * means we set the flag on *all* messages as soon as our
  709. * throughput hits a certain threshold.
  710. */
  711. if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
  712. __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
  713. list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
  714. set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
  715. rds_message_addref(rm);
  716. rm->m_rs = rs;
  717. /* The code ordering is a little weird, but we're
  718. trying to minimize the time we hold c_lock */
  719. rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
  720. rm->m_inc.i_conn = conn;
  721. rm->m_inc.i_conn_path = cp;
  722. rds_message_addref(rm);
  723. spin_lock(&cp->cp_lock);
  724. rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
  725. list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
  726. set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
  727. spin_unlock(&cp->cp_lock);
  728. rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
  729. rm, len, rs, rs->rs_snd_bytes,
  730. (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
  731. *queued = 1;
  732. }
  733. spin_unlock_irqrestore(&rs->rs_lock, flags);
  734. out:
  735. return *queued;
  736. }
  737. /*
  738. * rds_message is getting to be quite complicated, and we'd like to allocate
  739. * it all in one go. This figures out how big it needs to be up front.
  740. */
  741. static int rds_rm_size(struct msghdr *msg, int data_len)
  742. {
  743. struct cmsghdr *cmsg;
  744. int size = 0;
  745. int cmsg_groups = 0;
  746. int retval;
  747. for_each_cmsghdr(cmsg, msg) {
  748. if (!CMSG_OK(msg, cmsg))
  749. return -EINVAL;
  750. if (cmsg->cmsg_level != SOL_RDS)
  751. continue;
  752. switch (cmsg->cmsg_type) {
  753. case RDS_CMSG_RDMA_ARGS:
  754. cmsg_groups |= 1;
  755. retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
  756. if (retval < 0)
  757. return retval;
  758. size += retval;
  759. break;
  760. case RDS_CMSG_RDMA_DEST:
  761. case RDS_CMSG_RDMA_MAP:
  762. cmsg_groups |= 2;
  763. /* these are valid but do no add any size */
  764. break;
  765. case RDS_CMSG_ATOMIC_CSWP:
  766. case RDS_CMSG_ATOMIC_FADD:
  767. case RDS_CMSG_MASKED_ATOMIC_CSWP:
  768. case RDS_CMSG_MASKED_ATOMIC_FADD:
  769. cmsg_groups |= 1;
  770. size += sizeof(struct scatterlist);
  771. break;
  772. default:
  773. return -EINVAL;
  774. }
  775. }
  776. size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
  777. /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
  778. if (cmsg_groups == 3)
  779. return -EINVAL;
  780. return size;
  781. }
  782. static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
  783. struct msghdr *msg, int *allocated_mr)
  784. {
  785. struct cmsghdr *cmsg;
  786. int ret = 0;
  787. for_each_cmsghdr(cmsg, msg) {
  788. if (!CMSG_OK(msg, cmsg))
  789. return -EINVAL;
  790. if (cmsg->cmsg_level != SOL_RDS)
  791. continue;
  792. /* As a side effect, RDMA_DEST and RDMA_MAP will set
  793. * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
  794. */
  795. switch (cmsg->cmsg_type) {
  796. case RDS_CMSG_RDMA_ARGS:
  797. ret = rds_cmsg_rdma_args(rs, rm, cmsg);
  798. break;
  799. case RDS_CMSG_RDMA_DEST:
  800. ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
  801. break;
  802. case RDS_CMSG_RDMA_MAP:
  803. ret = rds_cmsg_rdma_map(rs, rm, cmsg);
  804. if (!ret)
  805. *allocated_mr = 1;
  806. break;
  807. case RDS_CMSG_ATOMIC_CSWP:
  808. case RDS_CMSG_ATOMIC_FADD:
  809. case RDS_CMSG_MASKED_ATOMIC_CSWP:
  810. case RDS_CMSG_MASKED_ATOMIC_FADD:
  811. ret = rds_cmsg_atomic(rs, rm, cmsg);
  812. break;
  813. default:
  814. return -EINVAL;
  815. }
  816. if (ret)
  817. break;
  818. }
  819. return ret;
  820. }
  821. static void rds_send_ping(struct rds_connection *conn);
  822. static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn)
  823. {
  824. int hash;
  825. if (conn->c_npaths == 0)
  826. hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
  827. else
  828. hash = RDS_MPATH_HASH(rs, conn->c_npaths);
  829. if (conn->c_npaths == 0 && hash != 0) {
  830. rds_send_ping(conn);
  831. if (conn->c_npaths == 0) {
  832. wait_event_interruptible(conn->c_hs_waitq,
  833. (conn->c_npaths != 0));
  834. }
  835. if (conn->c_npaths == 1)
  836. hash = 0;
  837. }
  838. return hash;
  839. }
  840. int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
  841. {
  842. struct sock *sk = sock->sk;
  843. struct rds_sock *rs = rds_sk_to_rs(sk);
  844. DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
  845. __be32 daddr;
  846. __be16 dport;
  847. struct rds_message *rm = NULL;
  848. struct rds_connection *conn;
  849. int ret = 0;
  850. int queued = 0, allocated_mr = 0;
  851. int nonblock = msg->msg_flags & MSG_DONTWAIT;
  852. long timeo = sock_sndtimeo(sk, nonblock);
  853. struct rds_conn_path *cpath;
  854. /* Mirror Linux UDP mirror of BSD error message compatibility */
  855. /* XXX: Perhaps MSG_MORE someday */
  856. if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
  857. ret = -EOPNOTSUPP;
  858. goto out;
  859. }
  860. if (msg->msg_namelen) {
  861. /* XXX fail non-unicast destination IPs? */
  862. if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
  863. ret = -EINVAL;
  864. goto out;
  865. }
  866. daddr = usin->sin_addr.s_addr;
  867. dport = usin->sin_port;
  868. } else {
  869. /* We only care about consistency with ->connect() */
  870. lock_sock(sk);
  871. daddr = rs->rs_conn_addr;
  872. dport = rs->rs_conn_port;
  873. release_sock(sk);
  874. }
  875. lock_sock(sk);
  876. if (daddr == 0 || rs->rs_bound_addr == 0) {
  877. release_sock(sk);
  878. ret = -ENOTCONN; /* XXX not a great errno */
  879. goto out;
  880. }
  881. release_sock(sk);
  882. if (payload_len > rds_sk_sndbuf(rs)) {
  883. ret = -EMSGSIZE;
  884. goto out;
  885. }
  886. /* size of rm including all sgs */
  887. ret = rds_rm_size(msg, payload_len);
  888. if (ret < 0)
  889. goto out;
  890. rm = rds_message_alloc(ret, GFP_KERNEL);
  891. if (!rm) {
  892. ret = -ENOMEM;
  893. goto out;
  894. }
  895. /* Attach data to the rm */
  896. if (payload_len) {
  897. rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
  898. if (!rm->data.op_sg) {
  899. ret = -ENOMEM;
  900. goto out;
  901. }
  902. ret = rds_message_copy_from_user(rm, &msg->msg_iter);
  903. if (ret)
  904. goto out;
  905. }
  906. rm->data.op_active = 1;
  907. rm->m_daddr = daddr;
  908. /* rds_conn_create has a spinlock that runs with IRQ off.
  909. * Caching the conn in the socket helps a lot. */
  910. if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
  911. conn = rs->rs_conn;
  912. else {
  913. conn = rds_conn_create_outgoing(sock_net(sock->sk),
  914. rs->rs_bound_addr, daddr,
  915. rs->rs_transport,
  916. sock->sk->sk_allocation);
  917. if (IS_ERR(conn)) {
  918. ret = PTR_ERR(conn);
  919. goto out;
  920. }
  921. rs->rs_conn = conn;
  922. }
  923. /* Parse any control messages the user may have included. */
  924. ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
  925. if (ret)
  926. goto out;
  927. if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
  928. printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
  929. &rm->rdma, conn->c_trans->xmit_rdma);
  930. ret = -EOPNOTSUPP;
  931. goto out;
  932. }
  933. if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
  934. printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
  935. &rm->atomic, conn->c_trans->xmit_atomic);
  936. ret = -EOPNOTSUPP;
  937. goto out;
  938. }
  939. if (conn->c_trans->t_mp_capable)
  940. cpath = &conn->c_path[rds_send_mprds_hash(rs, conn)];
  941. else
  942. cpath = &conn->c_path[0];
  943. rds_conn_path_connect_if_down(cpath);
  944. ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
  945. if (ret) {
  946. rs->rs_seen_congestion = 1;
  947. goto out;
  948. }
  949. while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
  950. dport, &queued)) {
  951. rds_stats_inc(s_send_queue_full);
  952. if (nonblock) {
  953. ret = -EAGAIN;
  954. goto out;
  955. }
  956. timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
  957. rds_send_queue_rm(rs, conn, cpath, rm,
  958. rs->rs_bound_port,
  959. dport,
  960. &queued),
  961. timeo);
  962. rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
  963. if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
  964. continue;
  965. ret = timeo;
  966. if (ret == 0)
  967. ret = -ETIMEDOUT;
  968. goto out;
  969. }
  970. /*
  971. * By now we've committed to the send. We reuse rds_send_worker()
  972. * to retry sends in the rds thread if the transport asks us to.
  973. */
  974. rds_stats_inc(s_send_queued);
  975. ret = rds_send_xmit(cpath);
  976. if (ret == -ENOMEM || ret == -EAGAIN)
  977. queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
  978. rds_message_put(rm);
  979. return payload_len;
  980. out:
  981. /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
  982. * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
  983. * or in any other way, we need to destroy the MR again */
  984. if (allocated_mr)
  985. rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
  986. if (rm)
  987. rds_message_put(rm);
  988. return ret;
  989. }
  990. /*
  991. * send out a probe. Can be shared by rds_send_ping,
  992. * rds_send_pong, rds_send_hb.
  993. * rds_send_hb should use h_flags
  994. * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
  995. * or
  996. * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
  997. */
  998. int
  999. rds_send_probe(struct rds_conn_path *cp, __be16 sport,
  1000. __be16 dport, u8 h_flags)
  1001. {
  1002. struct rds_message *rm;
  1003. unsigned long flags;
  1004. int ret = 0;
  1005. rm = rds_message_alloc(0, GFP_ATOMIC);
  1006. if (!rm) {
  1007. ret = -ENOMEM;
  1008. goto out;
  1009. }
  1010. rm->m_daddr = cp->cp_conn->c_faddr;
  1011. rm->data.op_active = 1;
  1012. rds_conn_path_connect_if_down(cp);
  1013. ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
  1014. if (ret)
  1015. goto out;
  1016. spin_lock_irqsave(&cp->cp_lock, flags);
  1017. list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
  1018. set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
  1019. rds_message_addref(rm);
  1020. rm->m_inc.i_conn = cp->cp_conn;
  1021. rm->m_inc.i_conn_path = cp;
  1022. rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
  1023. cp->cp_next_tx_seq);
  1024. rm->m_inc.i_hdr.h_flags |= h_flags;
  1025. cp->cp_next_tx_seq++;
  1026. if (RDS_HS_PROBE(sport, dport) && cp->cp_conn->c_trans->t_mp_capable) {
  1027. u16 npaths = RDS_MPATH_WORKERS;
  1028. rds_message_add_extension(&rm->m_inc.i_hdr,
  1029. RDS_EXTHDR_NPATHS, &npaths,
  1030. sizeof(npaths));
  1031. }
  1032. spin_unlock_irqrestore(&cp->cp_lock, flags);
  1033. rds_stats_inc(s_send_queued);
  1034. rds_stats_inc(s_send_pong);
  1035. /* schedule the send work on rds_wq */
  1036. queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
  1037. rds_message_put(rm);
  1038. return 0;
  1039. out:
  1040. if (rm)
  1041. rds_message_put(rm);
  1042. return ret;
  1043. }
  1044. int
  1045. rds_send_pong(struct rds_conn_path *cp, __be16 dport)
  1046. {
  1047. return rds_send_probe(cp, 0, dport, 0);
  1048. }
  1049. void
  1050. rds_send_ping(struct rds_connection *conn)
  1051. {
  1052. unsigned long flags;
  1053. struct rds_conn_path *cp = &conn->c_path[0];
  1054. spin_lock_irqsave(&cp->cp_lock, flags);
  1055. if (conn->c_ping_triggered) {
  1056. spin_unlock_irqrestore(&cp->cp_lock, flags);
  1057. return;
  1058. }
  1059. conn->c_ping_triggered = 1;
  1060. spin_unlock_irqrestore(&cp->cp_lock, flags);
  1061. rds_send_probe(&conn->c_path[0], RDS_FLAG_PROBE_PORT, 0, 0);
  1062. }