fib_frontend.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * IPv4 Forwarding Information Base: FIB frontend.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. */
  15. #include <linux/module.h>
  16. #include <asm/uaccess.h>
  17. #include <linux/bitops.h>
  18. #include <linux/capability.h>
  19. #include <linux/types.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/string.h>
  23. #include <linux/socket.h>
  24. #include <linux/sockios.h>
  25. #include <linux/errno.h>
  26. #include <linux/in.h>
  27. #include <linux/inet.h>
  28. #include <linux/inetdevice.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/if_addr.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/cache.h>
  34. #include <linux/init.h>
  35. #include <linux/list.h>
  36. #include <linux/slab.h>
  37. #include <net/ip.h>
  38. #include <net/protocol.h>
  39. #include <net/route.h>
  40. #include <net/tcp.h>
  41. #include <net/sock.h>
  42. #include <net/arp.h>
  43. #include <net/ip_fib.h>
  44. #include <net/rtnetlink.h>
  45. #include <net/xfrm.h>
  46. #include <net/l3mdev.h>
  47. #include <trace/events/fib.h>
  48. #ifndef CONFIG_IP_MULTIPLE_TABLES
  49. static int __net_init fib4_rules_init(struct net *net)
  50. {
  51. struct fib_table *local_table, *main_table;
  52. main_table = fib_trie_table(RT_TABLE_MAIN, NULL);
  53. if (!main_table)
  54. return -ENOMEM;
  55. local_table = fib_trie_table(RT_TABLE_LOCAL, main_table);
  56. if (!local_table)
  57. goto fail;
  58. hlist_add_head_rcu(&local_table->tb_hlist,
  59. &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX]);
  60. hlist_add_head_rcu(&main_table->tb_hlist,
  61. &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]);
  62. return 0;
  63. fail:
  64. fib_free_table(main_table);
  65. return -ENOMEM;
  66. }
  67. #else
  68. struct fib_table *fib_new_table(struct net *net, u32 id)
  69. {
  70. struct fib_table *tb, *alias = NULL;
  71. unsigned int h;
  72. if (id == 0)
  73. id = RT_TABLE_MAIN;
  74. tb = fib_get_table(net, id);
  75. if (tb)
  76. return tb;
  77. if (id == RT_TABLE_LOCAL)
  78. alias = fib_new_table(net, RT_TABLE_MAIN);
  79. tb = fib_trie_table(id, alias);
  80. if (!tb)
  81. return NULL;
  82. switch (id) {
  83. case RT_TABLE_LOCAL:
  84. rcu_assign_pointer(net->ipv4.fib_local, tb);
  85. break;
  86. case RT_TABLE_MAIN:
  87. rcu_assign_pointer(net->ipv4.fib_main, tb);
  88. break;
  89. case RT_TABLE_DEFAULT:
  90. rcu_assign_pointer(net->ipv4.fib_default, tb);
  91. break;
  92. default:
  93. break;
  94. }
  95. h = id & (FIB_TABLE_HASHSZ - 1);
  96. hlist_add_head_rcu(&tb->tb_hlist, &net->ipv4.fib_table_hash[h]);
  97. return tb;
  98. }
  99. EXPORT_SYMBOL_GPL(fib_new_table);
  100. /* caller must hold either rtnl or rcu read lock */
  101. struct fib_table *fib_get_table(struct net *net, u32 id)
  102. {
  103. struct fib_table *tb;
  104. struct hlist_head *head;
  105. unsigned int h;
  106. if (id == 0)
  107. id = RT_TABLE_MAIN;
  108. h = id & (FIB_TABLE_HASHSZ - 1);
  109. head = &net->ipv4.fib_table_hash[h];
  110. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  111. if (tb->tb_id == id)
  112. return tb;
  113. }
  114. return NULL;
  115. }
  116. #endif /* CONFIG_IP_MULTIPLE_TABLES */
  117. static void fib_replace_table(struct net *net, struct fib_table *old,
  118. struct fib_table *new)
  119. {
  120. #ifdef CONFIG_IP_MULTIPLE_TABLES
  121. switch (new->tb_id) {
  122. case RT_TABLE_LOCAL:
  123. rcu_assign_pointer(net->ipv4.fib_local, new);
  124. break;
  125. case RT_TABLE_MAIN:
  126. rcu_assign_pointer(net->ipv4.fib_main, new);
  127. break;
  128. case RT_TABLE_DEFAULT:
  129. rcu_assign_pointer(net->ipv4.fib_default, new);
  130. break;
  131. default:
  132. break;
  133. }
  134. #endif
  135. /* replace the old table in the hlist */
  136. hlist_replace_rcu(&old->tb_hlist, &new->tb_hlist);
  137. }
  138. int fib_unmerge(struct net *net)
  139. {
  140. struct fib_table *old, *new;
  141. /* attempt to fetch local table if it has been allocated */
  142. old = fib_get_table(net, RT_TABLE_LOCAL);
  143. if (!old)
  144. return 0;
  145. new = fib_trie_unmerge(old);
  146. if (!new)
  147. return -ENOMEM;
  148. /* replace merged table with clean table */
  149. if (new != old) {
  150. fib_replace_table(net, old, new);
  151. fib_free_table(old);
  152. }
  153. return 0;
  154. }
  155. static void fib_flush(struct net *net)
  156. {
  157. int flushed = 0;
  158. unsigned int h;
  159. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  160. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  161. struct hlist_node *tmp;
  162. struct fib_table *tb;
  163. hlist_for_each_entry_safe(tb, tmp, head, tb_hlist)
  164. flushed += fib_table_flush(tb);
  165. }
  166. if (flushed)
  167. rt_cache_flush(net);
  168. }
  169. void fib_flush_external(struct net *net)
  170. {
  171. struct fib_table *tb;
  172. struct hlist_head *head;
  173. unsigned int h;
  174. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  175. head = &net->ipv4.fib_table_hash[h];
  176. hlist_for_each_entry(tb, head, tb_hlist)
  177. fib_table_flush_external(tb);
  178. }
  179. }
  180. /*
  181. * Find address type as if only "dev" was present in the system. If
  182. * on_dev is NULL then all interfaces are taken into consideration.
  183. */
  184. static inline unsigned int __inet_dev_addr_type(struct net *net,
  185. const struct net_device *dev,
  186. __be32 addr, u32 tb_id)
  187. {
  188. struct flowi4 fl4 = { .daddr = addr };
  189. struct fib_result res;
  190. unsigned int ret = RTN_BROADCAST;
  191. struct fib_table *table;
  192. if (ipv4_is_zeronet(addr) || ipv4_is_lbcast(addr))
  193. return RTN_BROADCAST;
  194. if (ipv4_is_multicast(addr))
  195. return RTN_MULTICAST;
  196. rcu_read_lock();
  197. table = fib_get_table(net, tb_id);
  198. if (table) {
  199. ret = RTN_UNICAST;
  200. if (!fib_table_lookup(table, &fl4, &res, FIB_LOOKUP_NOREF)) {
  201. if (!dev || dev == res.fi->fib_dev)
  202. ret = res.type;
  203. }
  204. }
  205. rcu_read_unlock();
  206. return ret;
  207. }
  208. unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id)
  209. {
  210. return __inet_dev_addr_type(net, NULL, addr, tb_id);
  211. }
  212. EXPORT_SYMBOL(inet_addr_type_table);
  213. unsigned int inet_addr_type(struct net *net, __be32 addr)
  214. {
  215. return __inet_dev_addr_type(net, NULL, addr, RT_TABLE_LOCAL);
  216. }
  217. EXPORT_SYMBOL(inet_addr_type);
  218. unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
  219. __be32 addr)
  220. {
  221. u32 rt_table = l3mdev_fib_table(dev) ? : RT_TABLE_LOCAL;
  222. return __inet_dev_addr_type(net, dev, addr, rt_table);
  223. }
  224. EXPORT_SYMBOL(inet_dev_addr_type);
  225. /* inet_addr_type with dev == NULL but using the table from a dev
  226. * if one is associated
  227. */
  228. unsigned int inet_addr_type_dev_table(struct net *net,
  229. const struct net_device *dev,
  230. __be32 addr)
  231. {
  232. u32 rt_table = l3mdev_fib_table(dev) ? : RT_TABLE_LOCAL;
  233. return __inet_dev_addr_type(net, NULL, addr, rt_table);
  234. }
  235. EXPORT_SYMBOL(inet_addr_type_dev_table);
  236. __be32 fib_compute_spec_dst(struct sk_buff *skb)
  237. {
  238. struct net_device *dev = skb->dev;
  239. struct in_device *in_dev;
  240. struct fib_result res;
  241. struct rtable *rt;
  242. struct net *net;
  243. int scope;
  244. rt = skb_rtable(skb);
  245. if ((rt->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST | RTCF_LOCAL)) ==
  246. RTCF_LOCAL)
  247. return ip_hdr(skb)->daddr;
  248. in_dev = __in_dev_get_rcu(dev);
  249. BUG_ON(!in_dev);
  250. net = dev_net(dev);
  251. scope = RT_SCOPE_UNIVERSE;
  252. if (!ipv4_is_zeronet(ip_hdr(skb)->saddr)) {
  253. struct flowi4 fl4 = {
  254. .flowi4_iif = LOOPBACK_IFINDEX,
  255. .daddr = ip_hdr(skb)->saddr,
  256. .flowi4_tos = RT_TOS(ip_hdr(skb)->tos),
  257. .flowi4_scope = scope,
  258. .flowi4_mark = IN_DEV_SRC_VMARK(in_dev) ? skb->mark : 0,
  259. };
  260. if (!fib_lookup(net, &fl4, &res, 0))
  261. return FIB_RES_PREFSRC(net, res);
  262. } else {
  263. scope = RT_SCOPE_LINK;
  264. }
  265. return inet_select_addr(dev, ip_hdr(skb)->saddr, scope);
  266. }
  267. /* Given (packet source, input interface) and optional (dst, oif, tos):
  268. * - (main) check, that source is valid i.e. not broadcast or our local
  269. * address.
  270. * - figure out what "logical" interface this packet arrived
  271. * and calculate "specific destination" address.
  272. * - check, that packet arrived from expected physical interface.
  273. * called with rcu_read_lock()
  274. */
  275. static int __fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
  276. u8 tos, int oif, struct net_device *dev,
  277. int rpf, struct in_device *idev, u32 *itag)
  278. {
  279. int ret, no_addr;
  280. struct fib_result res;
  281. struct flowi4 fl4;
  282. struct net *net;
  283. bool dev_match;
  284. fl4.flowi4_oif = 0;
  285. fl4.flowi4_iif = l3mdev_master_ifindex_rcu(dev);
  286. if (!fl4.flowi4_iif)
  287. fl4.flowi4_iif = oif ? : LOOPBACK_IFINDEX;
  288. fl4.daddr = src;
  289. fl4.saddr = dst;
  290. fl4.flowi4_tos = tos;
  291. fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
  292. fl4.flowi4_tun_key.tun_id = 0;
  293. fl4.flowi4_flags = 0;
  294. no_addr = idev->ifa_list == NULL;
  295. fl4.flowi4_mark = IN_DEV_SRC_VMARK(idev) ? skb->mark : 0;
  296. trace_fib_validate_source(dev, &fl4);
  297. net = dev_net(dev);
  298. if (fib_lookup(net, &fl4, &res, 0))
  299. goto last_resort;
  300. if (res.type != RTN_UNICAST &&
  301. (res.type != RTN_LOCAL || !IN_DEV_ACCEPT_LOCAL(idev)))
  302. goto e_inval;
  303. if (!rpf && !fib_num_tclassid_users(dev_net(dev)) &&
  304. (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev)))
  305. goto last_resort;
  306. fib_combine_itag(itag, &res);
  307. dev_match = false;
  308. #ifdef CONFIG_IP_ROUTE_MULTIPATH
  309. for (ret = 0; ret < res.fi->fib_nhs; ret++) {
  310. struct fib_nh *nh = &res.fi->fib_nh[ret];
  311. if (nh->nh_dev == dev) {
  312. dev_match = true;
  313. break;
  314. } else if (l3mdev_master_ifindex_rcu(nh->nh_dev) == dev->ifindex) {
  315. dev_match = true;
  316. break;
  317. }
  318. }
  319. #else
  320. if (FIB_RES_DEV(res) == dev)
  321. dev_match = true;
  322. #endif
  323. if (dev_match) {
  324. ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
  325. return ret;
  326. }
  327. if (no_addr)
  328. goto last_resort;
  329. if (rpf == 1)
  330. goto e_rpf;
  331. fl4.flowi4_oif = dev->ifindex;
  332. ret = 0;
  333. if (fib_lookup(net, &fl4, &res, FIB_LOOKUP_IGNORE_LINKSTATE) == 0) {
  334. if (res.type == RTN_UNICAST)
  335. ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
  336. }
  337. return ret;
  338. last_resort:
  339. if (rpf)
  340. goto e_rpf;
  341. *itag = 0;
  342. return 0;
  343. e_inval:
  344. return -EINVAL;
  345. e_rpf:
  346. return -EXDEV;
  347. }
  348. /* Ignore rp_filter for packets protected by IPsec. */
  349. int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
  350. u8 tos, int oif, struct net_device *dev,
  351. struct in_device *idev, u32 *itag)
  352. {
  353. int r = secpath_exists(skb) ? 0 : IN_DEV_RPFILTER(idev);
  354. if (!r && !fib_num_tclassid_users(dev_net(dev)) &&
  355. IN_DEV_ACCEPT_LOCAL(idev) &&
  356. (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev))) {
  357. *itag = 0;
  358. return 0;
  359. }
  360. return __fib_validate_source(skb, src, dst, tos, oif, dev, r, idev, itag);
  361. }
  362. static inline __be32 sk_extract_addr(struct sockaddr *addr)
  363. {
  364. return ((struct sockaddr_in *) addr)->sin_addr.s_addr;
  365. }
  366. static int put_rtax(struct nlattr *mx, int len, int type, u32 value)
  367. {
  368. struct nlattr *nla;
  369. nla = (struct nlattr *) ((char *) mx + len);
  370. nla->nla_type = type;
  371. nla->nla_len = nla_attr_size(4);
  372. *(u32 *) nla_data(nla) = value;
  373. return len + nla_total_size(4);
  374. }
  375. static int rtentry_to_fib_config(struct net *net, int cmd, struct rtentry *rt,
  376. struct fib_config *cfg)
  377. {
  378. __be32 addr;
  379. int plen;
  380. memset(cfg, 0, sizeof(*cfg));
  381. cfg->fc_nlinfo.nl_net = net;
  382. if (rt->rt_dst.sa_family != AF_INET)
  383. return -EAFNOSUPPORT;
  384. /*
  385. * Check mask for validity:
  386. * a) it must be contiguous.
  387. * b) destination must have all host bits clear.
  388. * c) if application forgot to set correct family (AF_INET),
  389. * reject request unless it is absolutely clear i.e.
  390. * both family and mask are zero.
  391. */
  392. plen = 32;
  393. addr = sk_extract_addr(&rt->rt_dst);
  394. if (!(rt->rt_flags & RTF_HOST)) {
  395. __be32 mask = sk_extract_addr(&rt->rt_genmask);
  396. if (rt->rt_genmask.sa_family != AF_INET) {
  397. if (mask || rt->rt_genmask.sa_family)
  398. return -EAFNOSUPPORT;
  399. }
  400. if (bad_mask(mask, addr))
  401. return -EINVAL;
  402. plen = inet_mask_len(mask);
  403. }
  404. cfg->fc_dst_len = plen;
  405. cfg->fc_dst = addr;
  406. if (cmd != SIOCDELRT) {
  407. cfg->fc_nlflags = NLM_F_CREATE;
  408. cfg->fc_protocol = RTPROT_BOOT;
  409. }
  410. if (rt->rt_metric)
  411. cfg->fc_priority = rt->rt_metric - 1;
  412. if (rt->rt_flags & RTF_REJECT) {
  413. cfg->fc_scope = RT_SCOPE_HOST;
  414. cfg->fc_type = RTN_UNREACHABLE;
  415. return 0;
  416. }
  417. cfg->fc_scope = RT_SCOPE_NOWHERE;
  418. cfg->fc_type = RTN_UNICAST;
  419. if (rt->rt_dev) {
  420. char *colon;
  421. struct net_device *dev;
  422. char devname[IFNAMSIZ];
  423. if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1))
  424. return -EFAULT;
  425. devname[IFNAMSIZ-1] = 0;
  426. colon = strchr(devname, ':');
  427. if (colon)
  428. *colon = 0;
  429. dev = __dev_get_by_name(net, devname);
  430. if (!dev)
  431. return -ENODEV;
  432. cfg->fc_oif = dev->ifindex;
  433. cfg->fc_table = l3mdev_fib_table(dev);
  434. if (colon) {
  435. struct in_ifaddr *ifa;
  436. struct in_device *in_dev = __in_dev_get_rtnl(dev);
  437. if (!in_dev)
  438. return -ENODEV;
  439. *colon = ':';
  440. for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
  441. if (strcmp(ifa->ifa_label, devname) == 0)
  442. break;
  443. if (!ifa)
  444. return -ENODEV;
  445. cfg->fc_prefsrc = ifa->ifa_local;
  446. }
  447. }
  448. addr = sk_extract_addr(&rt->rt_gateway);
  449. if (rt->rt_gateway.sa_family == AF_INET && addr) {
  450. unsigned int addr_type;
  451. cfg->fc_gw = addr;
  452. addr_type = inet_addr_type_table(net, addr, cfg->fc_table);
  453. if (rt->rt_flags & RTF_GATEWAY &&
  454. addr_type == RTN_UNICAST)
  455. cfg->fc_scope = RT_SCOPE_UNIVERSE;
  456. }
  457. if (cmd == SIOCDELRT)
  458. return 0;
  459. if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw)
  460. return -EINVAL;
  461. if (cfg->fc_scope == RT_SCOPE_NOWHERE)
  462. cfg->fc_scope = RT_SCOPE_LINK;
  463. if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) {
  464. struct nlattr *mx;
  465. int len = 0;
  466. mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL);
  467. if (!mx)
  468. return -ENOMEM;
  469. if (rt->rt_flags & RTF_MTU)
  470. len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40);
  471. if (rt->rt_flags & RTF_WINDOW)
  472. len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window);
  473. if (rt->rt_flags & RTF_IRTT)
  474. len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3);
  475. cfg->fc_mx = mx;
  476. cfg->fc_mx_len = len;
  477. }
  478. return 0;
  479. }
  480. /*
  481. * Handle IP routing ioctl calls.
  482. * These are used to manipulate the routing tables
  483. */
  484. int ip_rt_ioctl(struct net *net, unsigned int cmd, void __user *arg)
  485. {
  486. struct fib_config cfg;
  487. struct rtentry rt;
  488. int err;
  489. switch (cmd) {
  490. case SIOCADDRT: /* Add a route */
  491. case SIOCDELRT: /* Delete a route */
  492. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  493. return -EPERM;
  494. if (copy_from_user(&rt, arg, sizeof(rt)))
  495. return -EFAULT;
  496. rtnl_lock();
  497. err = rtentry_to_fib_config(net, cmd, &rt, &cfg);
  498. if (err == 0) {
  499. struct fib_table *tb;
  500. if (cmd == SIOCDELRT) {
  501. tb = fib_get_table(net, cfg.fc_table);
  502. if (tb)
  503. err = fib_table_delete(tb, &cfg);
  504. else
  505. err = -ESRCH;
  506. } else {
  507. tb = fib_new_table(net, cfg.fc_table);
  508. if (tb)
  509. err = fib_table_insert(tb, &cfg);
  510. else
  511. err = -ENOBUFS;
  512. }
  513. /* allocated by rtentry_to_fib_config() */
  514. kfree(cfg.fc_mx);
  515. }
  516. rtnl_unlock();
  517. return err;
  518. }
  519. return -EINVAL;
  520. }
  521. const struct nla_policy rtm_ipv4_policy[RTA_MAX + 1] = {
  522. [RTA_DST] = { .type = NLA_U32 },
  523. [RTA_SRC] = { .type = NLA_U32 },
  524. [RTA_IIF] = { .type = NLA_U32 },
  525. [RTA_OIF] = { .type = NLA_U32 },
  526. [RTA_GATEWAY] = { .type = NLA_U32 },
  527. [RTA_PRIORITY] = { .type = NLA_U32 },
  528. [RTA_PREFSRC] = { .type = NLA_U32 },
  529. [RTA_METRICS] = { .type = NLA_NESTED },
  530. [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
  531. [RTA_FLOW] = { .type = NLA_U32 },
  532. [RTA_ENCAP_TYPE] = { .type = NLA_U16 },
  533. [RTA_ENCAP] = { .type = NLA_NESTED },
  534. };
  535. static int rtm_to_fib_config(struct net *net, struct sk_buff *skb,
  536. struct nlmsghdr *nlh, struct fib_config *cfg)
  537. {
  538. struct nlattr *attr;
  539. int err, remaining;
  540. struct rtmsg *rtm;
  541. err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy);
  542. if (err < 0)
  543. goto errout;
  544. memset(cfg, 0, sizeof(*cfg));
  545. rtm = nlmsg_data(nlh);
  546. cfg->fc_dst_len = rtm->rtm_dst_len;
  547. cfg->fc_tos = rtm->rtm_tos;
  548. cfg->fc_table = rtm->rtm_table;
  549. cfg->fc_protocol = rtm->rtm_protocol;
  550. cfg->fc_scope = rtm->rtm_scope;
  551. cfg->fc_type = rtm->rtm_type;
  552. cfg->fc_flags = rtm->rtm_flags;
  553. cfg->fc_nlflags = nlh->nlmsg_flags;
  554. cfg->fc_nlinfo.portid = NETLINK_CB(skb).portid;
  555. cfg->fc_nlinfo.nlh = nlh;
  556. cfg->fc_nlinfo.nl_net = net;
  557. if (cfg->fc_type > RTN_MAX) {
  558. err = -EINVAL;
  559. goto errout;
  560. }
  561. nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) {
  562. switch (nla_type(attr)) {
  563. case RTA_DST:
  564. cfg->fc_dst = nla_get_be32(attr);
  565. break;
  566. case RTA_OIF:
  567. cfg->fc_oif = nla_get_u32(attr);
  568. break;
  569. case RTA_GATEWAY:
  570. cfg->fc_gw = nla_get_be32(attr);
  571. break;
  572. case RTA_PRIORITY:
  573. cfg->fc_priority = nla_get_u32(attr);
  574. break;
  575. case RTA_PREFSRC:
  576. cfg->fc_prefsrc = nla_get_be32(attr);
  577. break;
  578. case RTA_METRICS:
  579. cfg->fc_mx = nla_data(attr);
  580. cfg->fc_mx_len = nla_len(attr);
  581. break;
  582. case RTA_MULTIPATH:
  583. cfg->fc_mp = nla_data(attr);
  584. cfg->fc_mp_len = nla_len(attr);
  585. break;
  586. case RTA_FLOW:
  587. cfg->fc_flow = nla_get_u32(attr);
  588. break;
  589. case RTA_TABLE:
  590. cfg->fc_table = nla_get_u32(attr);
  591. break;
  592. case RTA_ENCAP:
  593. cfg->fc_encap = attr;
  594. break;
  595. case RTA_ENCAP_TYPE:
  596. cfg->fc_encap_type = nla_get_u16(attr);
  597. break;
  598. }
  599. }
  600. return 0;
  601. errout:
  602. return err;
  603. }
  604. static int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh)
  605. {
  606. struct net *net = sock_net(skb->sk);
  607. struct fib_config cfg;
  608. struct fib_table *tb;
  609. int err;
  610. err = rtm_to_fib_config(net, skb, nlh, &cfg);
  611. if (err < 0)
  612. goto errout;
  613. tb = fib_get_table(net, cfg.fc_table);
  614. if (!tb) {
  615. err = -ESRCH;
  616. goto errout;
  617. }
  618. err = fib_table_delete(tb, &cfg);
  619. errout:
  620. return err;
  621. }
  622. static int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh)
  623. {
  624. struct net *net = sock_net(skb->sk);
  625. struct fib_config cfg;
  626. struct fib_table *tb;
  627. int err;
  628. err = rtm_to_fib_config(net, skb, nlh, &cfg);
  629. if (err < 0)
  630. goto errout;
  631. tb = fib_new_table(net, cfg.fc_table);
  632. if (!tb) {
  633. err = -ENOBUFS;
  634. goto errout;
  635. }
  636. err = fib_table_insert(tb, &cfg);
  637. errout:
  638. return err;
  639. }
  640. static int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
  641. {
  642. struct net *net = sock_net(skb->sk);
  643. unsigned int h, s_h;
  644. unsigned int e = 0, s_e;
  645. struct fib_table *tb;
  646. struct hlist_head *head;
  647. int dumped = 0;
  648. if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
  649. ((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED)
  650. return skb->len;
  651. s_h = cb->args[0];
  652. s_e = cb->args[1];
  653. rcu_read_lock();
  654. for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
  655. e = 0;
  656. head = &net->ipv4.fib_table_hash[h];
  657. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  658. if (e < s_e)
  659. goto next;
  660. if (dumped)
  661. memset(&cb->args[2], 0, sizeof(cb->args) -
  662. 2 * sizeof(cb->args[0]));
  663. if (fib_table_dump(tb, skb, cb) < 0)
  664. goto out;
  665. dumped = 1;
  666. next:
  667. e++;
  668. }
  669. }
  670. out:
  671. rcu_read_unlock();
  672. cb->args[1] = e;
  673. cb->args[0] = h;
  674. return skb->len;
  675. }
  676. /* Prepare and feed intra-kernel routing request.
  677. * Really, it should be netlink message, but :-( netlink
  678. * can be not configured, so that we feed it directly
  679. * to fib engine. It is legal, because all events occur
  680. * only when netlink is already locked.
  681. */
  682. static void fib_magic(int cmd, int type, __be32 dst, int dst_len, struct in_ifaddr *ifa)
  683. {
  684. struct net *net = dev_net(ifa->ifa_dev->dev);
  685. u32 tb_id = l3mdev_fib_table(ifa->ifa_dev->dev);
  686. struct fib_table *tb;
  687. struct fib_config cfg = {
  688. .fc_protocol = RTPROT_KERNEL,
  689. .fc_type = type,
  690. .fc_dst = dst,
  691. .fc_dst_len = dst_len,
  692. .fc_prefsrc = ifa->ifa_local,
  693. .fc_oif = ifa->ifa_dev->dev->ifindex,
  694. .fc_nlflags = NLM_F_CREATE | NLM_F_APPEND,
  695. .fc_nlinfo = {
  696. .nl_net = net,
  697. },
  698. };
  699. if (!tb_id)
  700. tb_id = (type == RTN_UNICAST) ? RT_TABLE_MAIN : RT_TABLE_LOCAL;
  701. tb = fib_new_table(net, tb_id);
  702. if (!tb)
  703. return;
  704. cfg.fc_table = tb->tb_id;
  705. if (type != RTN_LOCAL)
  706. cfg.fc_scope = RT_SCOPE_LINK;
  707. else
  708. cfg.fc_scope = RT_SCOPE_HOST;
  709. if (cmd == RTM_NEWROUTE)
  710. fib_table_insert(tb, &cfg);
  711. else
  712. fib_table_delete(tb, &cfg);
  713. }
  714. void fib_add_ifaddr(struct in_ifaddr *ifa)
  715. {
  716. struct in_device *in_dev = ifa->ifa_dev;
  717. struct net_device *dev = in_dev->dev;
  718. struct in_ifaddr *prim = ifa;
  719. __be32 mask = ifa->ifa_mask;
  720. __be32 addr = ifa->ifa_local;
  721. __be32 prefix = ifa->ifa_address & mask;
  722. if (ifa->ifa_flags & IFA_F_SECONDARY) {
  723. prim = inet_ifa_byprefix(in_dev, prefix, mask);
  724. if (!prim) {
  725. pr_warn("%s: bug: prim == NULL\n", __func__);
  726. return;
  727. }
  728. }
  729. fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
  730. if (!(dev->flags & IFF_UP))
  731. return;
  732. /* Add broadcast address, if it is explicitly assigned. */
  733. if (ifa->ifa_broadcast && ifa->ifa_broadcast != htonl(0xFFFFFFFF))
  734. fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
  735. if (!ipv4_is_zeronet(prefix) && !(ifa->ifa_flags & IFA_F_SECONDARY) &&
  736. (prefix != addr || ifa->ifa_prefixlen < 32)) {
  737. if (!(ifa->ifa_flags & IFA_F_NOPREFIXROUTE))
  738. fib_magic(RTM_NEWROUTE,
  739. dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
  740. prefix, ifa->ifa_prefixlen, prim);
  741. /* Add network specific broadcasts, when it takes a sense */
  742. if (ifa->ifa_prefixlen < 31) {
  743. fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
  744. fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix | ~mask,
  745. 32, prim);
  746. }
  747. }
  748. }
  749. /* Delete primary or secondary address.
  750. * Optionally, on secondary address promotion consider the addresses
  751. * from subnet iprim as deleted, even if they are in device list.
  752. * In this case the secondary ifa can be in device list.
  753. */
  754. void fib_del_ifaddr(struct in_ifaddr *ifa, struct in_ifaddr *iprim)
  755. {
  756. struct in_device *in_dev = ifa->ifa_dev;
  757. struct net_device *dev = in_dev->dev;
  758. struct in_ifaddr *ifa1;
  759. struct in_ifaddr *prim = ifa, *prim1 = NULL;
  760. __be32 brd = ifa->ifa_address | ~ifa->ifa_mask;
  761. __be32 any = ifa->ifa_address & ifa->ifa_mask;
  762. #define LOCAL_OK 1
  763. #define BRD_OK 2
  764. #define BRD0_OK 4
  765. #define BRD1_OK 8
  766. unsigned int ok = 0;
  767. int subnet = 0; /* Primary network */
  768. int gone = 1; /* Address is missing */
  769. int same_prefsrc = 0; /* Another primary with same IP */
  770. if (ifa->ifa_flags & IFA_F_SECONDARY) {
  771. prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask);
  772. if (!prim) {
  773. /* if the device has been deleted, we don't perform
  774. * address promotion
  775. */
  776. if (!in_dev->dead)
  777. pr_warn("%s: bug: prim == NULL\n", __func__);
  778. return;
  779. }
  780. if (iprim && iprim != prim) {
  781. pr_warn("%s: bug: iprim != prim\n", __func__);
  782. return;
  783. }
  784. } else if (!ipv4_is_zeronet(any) &&
  785. (any != ifa->ifa_local || ifa->ifa_prefixlen < 32)) {
  786. if (!(ifa->ifa_flags & IFA_F_NOPREFIXROUTE))
  787. fib_magic(RTM_DELROUTE,
  788. dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
  789. any, ifa->ifa_prefixlen, prim);
  790. subnet = 1;
  791. }
  792. if (in_dev->dead)
  793. goto no_promotions;
  794. /* Deletion is more complicated than add.
  795. * We should take care of not to delete too much :-)
  796. *
  797. * Scan address list to be sure that addresses are really gone.
  798. */
  799. for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
  800. if (ifa1 == ifa) {
  801. /* promotion, keep the IP */
  802. gone = 0;
  803. continue;
  804. }
  805. /* Ignore IFAs from our subnet */
  806. if (iprim && ifa1->ifa_mask == iprim->ifa_mask &&
  807. inet_ifa_match(ifa1->ifa_address, iprim))
  808. continue;
  809. /* Ignore ifa1 if it uses different primary IP (prefsrc) */
  810. if (ifa1->ifa_flags & IFA_F_SECONDARY) {
  811. /* Another address from our subnet? */
  812. if (ifa1->ifa_mask == prim->ifa_mask &&
  813. inet_ifa_match(ifa1->ifa_address, prim))
  814. prim1 = prim;
  815. else {
  816. /* We reached the secondaries, so
  817. * same_prefsrc should be determined.
  818. */
  819. if (!same_prefsrc)
  820. continue;
  821. /* Search new prim1 if ifa1 is not
  822. * using the current prim1
  823. */
  824. if (!prim1 ||
  825. ifa1->ifa_mask != prim1->ifa_mask ||
  826. !inet_ifa_match(ifa1->ifa_address, prim1))
  827. prim1 = inet_ifa_byprefix(in_dev,
  828. ifa1->ifa_address,
  829. ifa1->ifa_mask);
  830. if (!prim1)
  831. continue;
  832. if (prim1->ifa_local != prim->ifa_local)
  833. continue;
  834. }
  835. } else {
  836. if (prim->ifa_local != ifa1->ifa_local)
  837. continue;
  838. prim1 = ifa1;
  839. if (prim != prim1)
  840. same_prefsrc = 1;
  841. }
  842. if (ifa->ifa_local == ifa1->ifa_local)
  843. ok |= LOCAL_OK;
  844. if (ifa->ifa_broadcast == ifa1->ifa_broadcast)
  845. ok |= BRD_OK;
  846. if (brd == ifa1->ifa_broadcast)
  847. ok |= BRD1_OK;
  848. if (any == ifa1->ifa_broadcast)
  849. ok |= BRD0_OK;
  850. /* primary has network specific broadcasts */
  851. if (prim1 == ifa1 && ifa1->ifa_prefixlen < 31) {
  852. __be32 brd1 = ifa1->ifa_address | ~ifa1->ifa_mask;
  853. __be32 any1 = ifa1->ifa_address & ifa1->ifa_mask;
  854. if (!ipv4_is_zeronet(any1)) {
  855. if (ifa->ifa_broadcast == brd1 ||
  856. ifa->ifa_broadcast == any1)
  857. ok |= BRD_OK;
  858. if (brd == brd1 || brd == any1)
  859. ok |= BRD1_OK;
  860. if (any == brd1 || any == any1)
  861. ok |= BRD0_OK;
  862. }
  863. }
  864. }
  865. no_promotions:
  866. if (!(ok & BRD_OK))
  867. fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
  868. if (subnet && ifa->ifa_prefixlen < 31) {
  869. if (!(ok & BRD1_OK))
  870. fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim);
  871. if (!(ok & BRD0_OK))
  872. fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim);
  873. }
  874. if (!(ok & LOCAL_OK)) {
  875. unsigned int addr_type;
  876. fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim);
  877. /* Check, that this local address finally disappeared. */
  878. addr_type = inet_addr_type_dev_table(dev_net(dev), dev,
  879. ifa->ifa_local);
  880. if (gone && addr_type != RTN_LOCAL) {
  881. /* And the last, but not the least thing.
  882. * We must flush stray FIB entries.
  883. *
  884. * First of all, we scan fib_info list searching
  885. * for stray nexthop entries, then ignite fib_flush.
  886. */
  887. if (fib_sync_down_addr(dev, ifa->ifa_local))
  888. fib_flush(dev_net(dev));
  889. }
  890. }
  891. #undef LOCAL_OK
  892. #undef BRD_OK
  893. #undef BRD0_OK
  894. #undef BRD1_OK
  895. }
  896. static void nl_fib_lookup(struct net *net, struct fib_result_nl *frn)
  897. {
  898. struct fib_result res;
  899. struct flowi4 fl4 = {
  900. .flowi4_mark = frn->fl_mark,
  901. .daddr = frn->fl_addr,
  902. .flowi4_tos = frn->fl_tos,
  903. .flowi4_scope = frn->fl_scope,
  904. };
  905. struct fib_table *tb;
  906. rcu_read_lock();
  907. tb = fib_get_table(net, frn->tb_id_in);
  908. frn->err = -ENOENT;
  909. if (tb) {
  910. local_bh_disable();
  911. frn->tb_id = tb->tb_id;
  912. frn->err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
  913. if (!frn->err) {
  914. frn->prefixlen = res.prefixlen;
  915. frn->nh_sel = res.nh_sel;
  916. frn->type = res.type;
  917. frn->scope = res.scope;
  918. }
  919. local_bh_enable();
  920. }
  921. rcu_read_unlock();
  922. }
  923. static void nl_fib_input(struct sk_buff *skb)
  924. {
  925. struct net *net;
  926. struct fib_result_nl *frn;
  927. struct nlmsghdr *nlh;
  928. u32 portid;
  929. net = sock_net(skb->sk);
  930. nlh = nlmsg_hdr(skb);
  931. if (skb->len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len ||
  932. nlmsg_len(nlh) < sizeof(*frn))
  933. return;
  934. skb = netlink_skb_clone(skb, GFP_KERNEL);
  935. if (!skb)
  936. return;
  937. nlh = nlmsg_hdr(skb);
  938. frn = (struct fib_result_nl *) nlmsg_data(nlh);
  939. nl_fib_lookup(net, frn);
  940. portid = NETLINK_CB(skb).portid; /* netlink portid */
  941. NETLINK_CB(skb).portid = 0; /* from kernel */
  942. NETLINK_CB(skb).dst_group = 0; /* unicast */
  943. netlink_unicast(net->ipv4.fibnl, skb, portid, MSG_DONTWAIT);
  944. }
  945. static int __net_init nl_fib_lookup_init(struct net *net)
  946. {
  947. struct sock *sk;
  948. struct netlink_kernel_cfg cfg = {
  949. .input = nl_fib_input,
  950. };
  951. sk = netlink_kernel_create(net, NETLINK_FIB_LOOKUP, &cfg);
  952. if (!sk)
  953. return -EAFNOSUPPORT;
  954. net->ipv4.fibnl = sk;
  955. return 0;
  956. }
  957. static void nl_fib_lookup_exit(struct net *net)
  958. {
  959. netlink_kernel_release(net->ipv4.fibnl);
  960. net->ipv4.fibnl = NULL;
  961. }
  962. static void fib_disable_ip(struct net_device *dev, unsigned long event,
  963. bool force)
  964. {
  965. if (fib_sync_down_dev(dev, event, force))
  966. fib_flush(dev_net(dev));
  967. rt_cache_flush(dev_net(dev));
  968. arp_ifdown(dev);
  969. }
  970. static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
  971. {
  972. struct in_ifaddr *ifa = (struct in_ifaddr *)ptr;
  973. struct net_device *dev = ifa->ifa_dev->dev;
  974. struct net *net = dev_net(dev);
  975. switch (event) {
  976. case NETDEV_UP:
  977. fib_add_ifaddr(ifa);
  978. #ifdef CONFIG_IP_ROUTE_MULTIPATH
  979. fib_sync_up(dev, RTNH_F_DEAD);
  980. #endif
  981. atomic_inc(&net->ipv4.dev_addr_genid);
  982. rt_cache_flush(dev_net(dev));
  983. break;
  984. case NETDEV_DOWN:
  985. fib_del_ifaddr(ifa, NULL);
  986. atomic_inc(&net->ipv4.dev_addr_genid);
  987. if (!ifa->ifa_dev->ifa_list) {
  988. /* Last address was deleted from this interface.
  989. * Disable IP.
  990. */
  991. fib_disable_ip(dev, event, true);
  992. } else {
  993. rt_cache_flush(dev_net(dev));
  994. }
  995. break;
  996. }
  997. return NOTIFY_DONE;
  998. }
  999. static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
  1000. {
  1001. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1002. struct netdev_notifier_changeupper_info *info;
  1003. struct in_device *in_dev;
  1004. struct net *net = dev_net(dev);
  1005. unsigned int flags;
  1006. if (event == NETDEV_UNREGISTER) {
  1007. fib_disable_ip(dev, event, true);
  1008. rt_flush_dev(dev);
  1009. return NOTIFY_DONE;
  1010. }
  1011. in_dev = __in_dev_get_rtnl(dev);
  1012. if (!in_dev)
  1013. return NOTIFY_DONE;
  1014. switch (event) {
  1015. case NETDEV_UP:
  1016. for_ifa(in_dev) {
  1017. fib_add_ifaddr(ifa);
  1018. } endfor_ifa(in_dev);
  1019. #ifdef CONFIG_IP_ROUTE_MULTIPATH
  1020. fib_sync_up(dev, RTNH_F_DEAD);
  1021. #endif
  1022. atomic_inc(&net->ipv4.dev_addr_genid);
  1023. rt_cache_flush(net);
  1024. break;
  1025. case NETDEV_DOWN:
  1026. fib_disable_ip(dev, event, false);
  1027. break;
  1028. case NETDEV_CHANGE:
  1029. flags = dev_get_flags(dev);
  1030. if (flags & (IFF_RUNNING | IFF_LOWER_UP))
  1031. fib_sync_up(dev, RTNH_F_LINKDOWN);
  1032. else
  1033. fib_sync_down_dev(dev, event, false);
  1034. /* fall through */
  1035. case NETDEV_CHANGEMTU:
  1036. rt_cache_flush(net);
  1037. break;
  1038. case NETDEV_CHANGEUPPER:
  1039. info = ptr;
  1040. /* flush all routes if dev is linked to or unlinked from
  1041. * an L3 master device (e.g., VRF)
  1042. */
  1043. if (info->upper_dev && netif_is_l3_master(info->upper_dev))
  1044. fib_disable_ip(dev, NETDEV_DOWN, true);
  1045. break;
  1046. }
  1047. return NOTIFY_DONE;
  1048. }
  1049. static struct notifier_block fib_inetaddr_notifier = {
  1050. .notifier_call = fib_inetaddr_event,
  1051. };
  1052. static struct notifier_block fib_netdev_notifier = {
  1053. .notifier_call = fib_netdev_event,
  1054. };
  1055. static int __net_init ip_fib_net_init(struct net *net)
  1056. {
  1057. int err;
  1058. size_t size = sizeof(struct hlist_head) * FIB_TABLE_HASHSZ;
  1059. /* Avoid false sharing : Use at least a full cache line */
  1060. size = max_t(size_t, size, L1_CACHE_BYTES);
  1061. net->ipv4.fib_table_hash = kzalloc(size, GFP_KERNEL);
  1062. if (!net->ipv4.fib_table_hash)
  1063. return -ENOMEM;
  1064. err = fib4_rules_init(net);
  1065. if (err < 0)
  1066. goto fail;
  1067. return 0;
  1068. fail:
  1069. kfree(net->ipv4.fib_table_hash);
  1070. return err;
  1071. }
  1072. static void ip_fib_net_exit(struct net *net)
  1073. {
  1074. unsigned int i;
  1075. rtnl_lock();
  1076. #ifdef CONFIG_IP_MULTIPLE_TABLES
  1077. RCU_INIT_POINTER(net->ipv4.fib_local, NULL);
  1078. RCU_INIT_POINTER(net->ipv4.fib_main, NULL);
  1079. RCU_INIT_POINTER(net->ipv4.fib_default, NULL);
  1080. #endif
  1081. for (i = 0; i < FIB_TABLE_HASHSZ; i++) {
  1082. struct hlist_head *head = &net->ipv4.fib_table_hash[i];
  1083. struct hlist_node *tmp;
  1084. struct fib_table *tb;
  1085. hlist_for_each_entry_safe(tb, tmp, head, tb_hlist) {
  1086. hlist_del(&tb->tb_hlist);
  1087. fib_table_flush(tb);
  1088. fib_free_table(tb);
  1089. }
  1090. }
  1091. #ifdef CONFIG_IP_MULTIPLE_TABLES
  1092. fib4_rules_exit(net);
  1093. #endif
  1094. rtnl_unlock();
  1095. kfree(net->ipv4.fib_table_hash);
  1096. }
  1097. static int __net_init fib_net_init(struct net *net)
  1098. {
  1099. int error;
  1100. #ifdef CONFIG_IP_ROUTE_CLASSID
  1101. net->ipv4.fib_num_tclassid_users = 0;
  1102. #endif
  1103. error = ip_fib_net_init(net);
  1104. if (error < 0)
  1105. goto out;
  1106. error = nl_fib_lookup_init(net);
  1107. if (error < 0)
  1108. goto out_nlfl;
  1109. error = fib_proc_init(net);
  1110. if (error < 0)
  1111. goto out_proc;
  1112. out:
  1113. return error;
  1114. out_proc:
  1115. nl_fib_lookup_exit(net);
  1116. out_nlfl:
  1117. ip_fib_net_exit(net);
  1118. goto out;
  1119. }
  1120. static void __net_exit fib_net_exit(struct net *net)
  1121. {
  1122. fib_proc_exit(net);
  1123. nl_fib_lookup_exit(net);
  1124. ip_fib_net_exit(net);
  1125. }
  1126. static struct pernet_operations fib_net_ops = {
  1127. .init = fib_net_init,
  1128. .exit = fib_net_exit,
  1129. };
  1130. void __init ip_fib_init(void)
  1131. {
  1132. rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute, NULL, NULL);
  1133. rtnl_register(PF_INET, RTM_DELROUTE, inet_rtm_delroute, NULL, NULL);
  1134. rtnl_register(PF_INET, RTM_GETROUTE, NULL, inet_dump_fib, NULL);
  1135. register_pernet_subsys(&fib_net_ops);
  1136. register_netdevice_notifier(&fib_netdev_notifier);
  1137. register_inetaddr_notifier(&fib_inetaddr_notifier);
  1138. fib_trie_init();
  1139. }