huge_memory.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/kthread.h>
  18. #include <linux/khugepaged.h>
  19. #include <linux/freezer.h>
  20. #include <linux/mman.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/migrate.h>
  23. #include <linux/hashtable.h>
  24. #include <asm/tlb.h>
  25. #include <asm/pgalloc.h>
  26. #include "internal.h"
  27. /*
  28. * By default transparent hugepage support is disabled in order that avoid
  29. * to risk increase the memory footprint of applications without a guaranteed
  30. * benefit. When transparent hugepage support is enabled, is for all mappings,
  31. * and khugepaged scans all mappings.
  32. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  33. * for all hugepage allocations.
  34. */
  35. unsigned long transparent_hugepage_flags __read_mostly =
  36. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  37. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  38. #endif
  39. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  40. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  41. #endif
  42. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  43. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  44. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  45. /* default scan 8*512 pte (or vmas) every 30 second */
  46. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  47. static unsigned int khugepaged_pages_collapsed;
  48. static unsigned int khugepaged_full_scans;
  49. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  50. /* during fragmentation poll the hugepage allocator once every minute */
  51. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  52. static struct task_struct *khugepaged_thread __read_mostly;
  53. static DEFINE_MUTEX(khugepaged_mutex);
  54. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  55. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  56. /*
  57. * default collapse hugepages if there is at least one pte mapped like
  58. * it would have happened if the vma was large enough during page
  59. * fault.
  60. */
  61. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  62. static int khugepaged(void *none);
  63. static int khugepaged_slab_init(void);
  64. #define MM_SLOTS_HASH_BITS 10
  65. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  66. static struct kmem_cache *mm_slot_cache __read_mostly;
  67. /**
  68. * struct mm_slot - hash lookup from mm to mm_slot
  69. * @hash: hash collision list
  70. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  71. * @mm: the mm that this information is valid for
  72. */
  73. struct mm_slot {
  74. struct hlist_node hash;
  75. struct list_head mm_node;
  76. struct mm_struct *mm;
  77. };
  78. /**
  79. * struct khugepaged_scan - cursor for scanning
  80. * @mm_head: the head of the mm list to scan
  81. * @mm_slot: the current mm_slot we are scanning
  82. * @address: the next address inside that to be scanned
  83. *
  84. * There is only the one khugepaged_scan instance of this cursor structure.
  85. */
  86. struct khugepaged_scan {
  87. struct list_head mm_head;
  88. struct mm_slot *mm_slot;
  89. unsigned long address;
  90. };
  91. static struct khugepaged_scan khugepaged_scan = {
  92. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  93. };
  94. static int set_recommended_min_free_kbytes(void)
  95. {
  96. struct zone *zone;
  97. int nr_zones = 0;
  98. unsigned long recommended_min;
  99. if (!khugepaged_enabled())
  100. return 0;
  101. for_each_populated_zone(zone)
  102. nr_zones++;
  103. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  104. recommended_min = pageblock_nr_pages * nr_zones * 2;
  105. /*
  106. * Make sure that on average at least two pageblocks are almost free
  107. * of another type, one for a migratetype to fall back to and a
  108. * second to avoid subsequent fallbacks of other types There are 3
  109. * MIGRATE_TYPES we care about.
  110. */
  111. recommended_min += pageblock_nr_pages * nr_zones *
  112. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  113. /* don't ever allow to reserve more than 5% of the lowmem */
  114. recommended_min = min(recommended_min,
  115. (unsigned long) nr_free_buffer_pages() / 20);
  116. recommended_min <<= (PAGE_SHIFT-10);
  117. if (recommended_min > min_free_kbytes) {
  118. if (user_min_free_kbytes >= 0)
  119. pr_info("raising min_free_kbytes from %d to %lu "
  120. "to help transparent hugepage allocations\n",
  121. min_free_kbytes, recommended_min);
  122. min_free_kbytes = recommended_min;
  123. }
  124. setup_per_zone_wmarks();
  125. return 0;
  126. }
  127. late_initcall(set_recommended_min_free_kbytes);
  128. static int start_khugepaged(void)
  129. {
  130. int err = 0;
  131. if (khugepaged_enabled()) {
  132. if (!khugepaged_thread)
  133. khugepaged_thread = kthread_run(khugepaged, NULL,
  134. "khugepaged");
  135. if (unlikely(IS_ERR(khugepaged_thread))) {
  136. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  137. err = PTR_ERR(khugepaged_thread);
  138. khugepaged_thread = NULL;
  139. }
  140. if (!list_empty(&khugepaged_scan.mm_head))
  141. wake_up_interruptible(&khugepaged_wait);
  142. set_recommended_min_free_kbytes();
  143. } else if (khugepaged_thread) {
  144. kthread_stop(khugepaged_thread);
  145. khugepaged_thread = NULL;
  146. }
  147. return err;
  148. }
  149. static atomic_t huge_zero_refcount;
  150. static struct page *huge_zero_page __read_mostly;
  151. static inline bool is_huge_zero_page(struct page *page)
  152. {
  153. return ACCESS_ONCE(huge_zero_page) == page;
  154. }
  155. static inline bool is_huge_zero_pmd(pmd_t pmd)
  156. {
  157. return is_huge_zero_page(pmd_page(pmd));
  158. }
  159. static struct page *get_huge_zero_page(void)
  160. {
  161. struct page *zero_page;
  162. retry:
  163. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  164. return ACCESS_ONCE(huge_zero_page);
  165. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  166. HPAGE_PMD_ORDER);
  167. if (!zero_page) {
  168. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  169. return NULL;
  170. }
  171. count_vm_event(THP_ZERO_PAGE_ALLOC);
  172. preempt_disable();
  173. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  174. preempt_enable();
  175. __free_page(zero_page);
  176. goto retry;
  177. }
  178. /* We take additional reference here. It will be put back by shrinker */
  179. atomic_set(&huge_zero_refcount, 2);
  180. preempt_enable();
  181. return ACCESS_ONCE(huge_zero_page);
  182. }
  183. static void put_huge_zero_page(void)
  184. {
  185. /*
  186. * Counter should never go to zero here. Only shrinker can put
  187. * last reference.
  188. */
  189. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  190. }
  191. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  192. struct shrink_control *sc)
  193. {
  194. /* we can free zero page only if last reference remains */
  195. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  196. }
  197. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  198. struct shrink_control *sc)
  199. {
  200. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  201. struct page *zero_page = xchg(&huge_zero_page, NULL);
  202. BUG_ON(zero_page == NULL);
  203. __free_page(zero_page);
  204. return HPAGE_PMD_NR;
  205. }
  206. return 0;
  207. }
  208. static struct shrinker huge_zero_page_shrinker = {
  209. .count_objects = shrink_huge_zero_page_count,
  210. .scan_objects = shrink_huge_zero_page_scan,
  211. .seeks = DEFAULT_SEEKS,
  212. };
  213. #ifdef CONFIG_SYSFS
  214. static ssize_t double_flag_show(struct kobject *kobj,
  215. struct kobj_attribute *attr, char *buf,
  216. enum transparent_hugepage_flag enabled,
  217. enum transparent_hugepage_flag req_madv)
  218. {
  219. if (test_bit(enabled, &transparent_hugepage_flags)) {
  220. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  221. return sprintf(buf, "[always] madvise never\n");
  222. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  223. return sprintf(buf, "always [madvise] never\n");
  224. else
  225. return sprintf(buf, "always madvise [never]\n");
  226. }
  227. static ssize_t double_flag_store(struct kobject *kobj,
  228. struct kobj_attribute *attr,
  229. const char *buf, size_t count,
  230. enum transparent_hugepage_flag enabled,
  231. enum transparent_hugepage_flag req_madv)
  232. {
  233. if (!memcmp("always", buf,
  234. min(sizeof("always")-1, count))) {
  235. set_bit(enabled, &transparent_hugepage_flags);
  236. clear_bit(req_madv, &transparent_hugepage_flags);
  237. } else if (!memcmp("madvise", buf,
  238. min(sizeof("madvise")-1, count))) {
  239. clear_bit(enabled, &transparent_hugepage_flags);
  240. set_bit(req_madv, &transparent_hugepage_flags);
  241. } else if (!memcmp("never", buf,
  242. min(sizeof("never")-1, count))) {
  243. clear_bit(enabled, &transparent_hugepage_flags);
  244. clear_bit(req_madv, &transparent_hugepage_flags);
  245. } else
  246. return -EINVAL;
  247. return count;
  248. }
  249. static ssize_t enabled_show(struct kobject *kobj,
  250. struct kobj_attribute *attr, char *buf)
  251. {
  252. return double_flag_show(kobj, attr, buf,
  253. TRANSPARENT_HUGEPAGE_FLAG,
  254. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  255. }
  256. static ssize_t enabled_store(struct kobject *kobj,
  257. struct kobj_attribute *attr,
  258. const char *buf, size_t count)
  259. {
  260. ssize_t ret;
  261. ret = double_flag_store(kobj, attr, buf, count,
  262. TRANSPARENT_HUGEPAGE_FLAG,
  263. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  264. if (ret > 0) {
  265. int err;
  266. mutex_lock(&khugepaged_mutex);
  267. err = start_khugepaged();
  268. mutex_unlock(&khugepaged_mutex);
  269. if (err)
  270. ret = err;
  271. }
  272. return ret;
  273. }
  274. static struct kobj_attribute enabled_attr =
  275. __ATTR(enabled, 0644, enabled_show, enabled_store);
  276. static ssize_t single_flag_show(struct kobject *kobj,
  277. struct kobj_attribute *attr, char *buf,
  278. enum transparent_hugepage_flag flag)
  279. {
  280. return sprintf(buf, "%d\n",
  281. !!test_bit(flag, &transparent_hugepage_flags));
  282. }
  283. static ssize_t single_flag_store(struct kobject *kobj,
  284. struct kobj_attribute *attr,
  285. const char *buf, size_t count,
  286. enum transparent_hugepage_flag flag)
  287. {
  288. unsigned long value;
  289. int ret;
  290. ret = kstrtoul(buf, 10, &value);
  291. if (ret < 0)
  292. return ret;
  293. if (value > 1)
  294. return -EINVAL;
  295. if (value)
  296. set_bit(flag, &transparent_hugepage_flags);
  297. else
  298. clear_bit(flag, &transparent_hugepage_flags);
  299. return count;
  300. }
  301. /*
  302. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  303. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  304. * memory just to allocate one more hugepage.
  305. */
  306. static ssize_t defrag_show(struct kobject *kobj,
  307. struct kobj_attribute *attr, char *buf)
  308. {
  309. return double_flag_show(kobj, attr, buf,
  310. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  311. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  312. }
  313. static ssize_t defrag_store(struct kobject *kobj,
  314. struct kobj_attribute *attr,
  315. const char *buf, size_t count)
  316. {
  317. return double_flag_store(kobj, attr, buf, count,
  318. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  319. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  320. }
  321. static struct kobj_attribute defrag_attr =
  322. __ATTR(defrag, 0644, defrag_show, defrag_store);
  323. static ssize_t use_zero_page_show(struct kobject *kobj,
  324. struct kobj_attribute *attr, char *buf)
  325. {
  326. return single_flag_show(kobj, attr, buf,
  327. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  328. }
  329. static ssize_t use_zero_page_store(struct kobject *kobj,
  330. struct kobj_attribute *attr, const char *buf, size_t count)
  331. {
  332. return single_flag_store(kobj, attr, buf, count,
  333. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  334. }
  335. static struct kobj_attribute use_zero_page_attr =
  336. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  337. #ifdef CONFIG_DEBUG_VM
  338. static ssize_t debug_cow_show(struct kobject *kobj,
  339. struct kobj_attribute *attr, char *buf)
  340. {
  341. return single_flag_show(kobj, attr, buf,
  342. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  343. }
  344. static ssize_t debug_cow_store(struct kobject *kobj,
  345. struct kobj_attribute *attr,
  346. const char *buf, size_t count)
  347. {
  348. return single_flag_store(kobj, attr, buf, count,
  349. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  350. }
  351. static struct kobj_attribute debug_cow_attr =
  352. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  353. #endif /* CONFIG_DEBUG_VM */
  354. static struct attribute *hugepage_attr[] = {
  355. &enabled_attr.attr,
  356. &defrag_attr.attr,
  357. &use_zero_page_attr.attr,
  358. #ifdef CONFIG_DEBUG_VM
  359. &debug_cow_attr.attr,
  360. #endif
  361. NULL,
  362. };
  363. static struct attribute_group hugepage_attr_group = {
  364. .attrs = hugepage_attr,
  365. };
  366. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. char *buf)
  369. {
  370. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  371. }
  372. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  373. struct kobj_attribute *attr,
  374. const char *buf, size_t count)
  375. {
  376. unsigned long msecs;
  377. int err;
  378. err = kstrtoul(buf, 10, &msecs);
  379. if (err || msecs > UINT_MAX)
  380. return -EINVAL;
  381. khugepaged_scan_sleep_millisecs = msecs;
  382. wake_up_interruptible(&khugepaged_wait);
  383. return count;
  384. }
  385. static struct kobj_attribute scan_sleep_millisecs_attr =
  386. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  387. scan_sleep_millisecs_store);
  388. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  389. struct kobj_attribute *attr,
  390. char *buf)
  391. {
  392. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  393. }
  394. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  395. struct kobj_attribute *attr,
  396. const char *buf, size_t count)
  397. {
  398. unsigned long msecs;
  399. int err;
  400. err = kstrtoul(buf, 10, &msecs);
  401. if (err || msecs > UINT_MAX)
  402. return -EINVAL;
  403. khugepaged_alloc_sleep_millisecs = msecs;
  404. wake_up_interruptible(&khugepaged_wait);
  405. return count;
  406. }
  407. static struct kobj_attribute alloc_sleep_millisecs_attr =
  408. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  409. alloc_sleep_millisecs_store);
  410. static ssize_t pages_to_scan_show(struct kobject *kobj,
  411. struct kobj_attribute *attr,
  412. char *buf)
  413. {
  414. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  415. }
  416. static ssize_t pages_to_scan_store(struct kobject *kobj,
  417. struct kobj_attribute *attr,
  418. const char *buf, size_t count)
  419. {
  420. int err;
  421. unsigned long pages;
  422. err = kstrtoul(buf, 10, &pages);
  423. if (err || !pages || pages > UINT_MAX)
  424. return -EINVAL;
  425. khugepaged_pages_to_scan = pages;
  426. return count;
  427. }
  428. static struct kobj_attribute pages_to_scan_attr =
  429. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  430. pages_to_scan_store);
  431. static ssize_t pages_collapsed_show(struct kobject *kobj,
  432. struct kobj_attribute *attr,
  433. char *buf)
  434. {
  435. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  436. }
  437. static struct kobj_attribute pages_collapsed_attr =
  438. __ATTR_RO(pages_collapsed);
  439. static ssize_t full_scans_show(struct kobject *kobj,
  440. struct kobj_attribute *attr,
  441. char *buf)
  442. {
  443. return sprintf(buf, "%u\n", khugepaged_full_scans);
  444. }
  445. static struct kobj_attribute full_scans_attr =
  446. __ATTR_RO(full_scans);
  447. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  448. struct kobj_attribute *attr, char *buf)
  449. {
  450. return single_flag_show(kobj, attr, buf,
  451. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  452. }
  453. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  454. struct kobj_attribute *attr,
  455. const char *buf, size_t count)
  456. {
  457. return single_flag_store(kobj, attr, buf, count,
  458. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  459. }
  460. static struct kobj_attribute khugepaged_defrag_attr =
  461. __ATTR(defrag, 0644, khugepaged_defrag_show,
  462. khugepaged_defrag_store);
  463. /*
  464. * max_ptes_none controls if khugepaged should collapse hugepages over
  465. * any unmapped ptes in turn potentially increasing the memory
  466. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  467. * reduce the available free memory in the system as it
  468. * runs. Increasing max_ptes_none will instead potentially reduce the
  469. * free memory in the system during the khugepaged scan.
  470. */
  471. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  472. struct kobj_attribute *attr,
  473. char *buf)
  474. {
  475. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  476. }
  477. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  478. struct kobj_attribute *attr,
  479. const char *buf, size_t count)
  480. {
  481. int err;
  482. unsigned long max_ptes_none;
  483. err = kstrtoul(buf, 10, &max_ptes_none);
  484. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  485. return -EINVAL;
  486. khugepaged_max_ptes_none = max_ptes_none;
  487. return count;
  488. }
  489. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  490. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  491. khugepaged_max_ptes_none_store);
  492. static struct attribute *khugepaged_attr[] = {
  493. &khugepaged_defrag_attr.attr,
  494. &khugepaged_max_ptes_none_attr.attr,
  495. &pages_to_scan_attr.attr,
  496. &pages_collapsed_attr.attr,
  497. &full_scans_attr.attr,
  498. &scan_sleep_millisecs_attr.attr,
  499. &alloc_sleep_millisecs_attr.attr,
  500. NULL,
  501. };
  502. static struct attribute_group khugepaged_attr_group = {
  503. .attrs = khugepaged_attr,
  504. .name = "khugepaged",
  505. };
  506. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  507. {
  508. int err;
  509. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  510. if (unlikely(!*hugepage_kobj)) {
  511. pr_err("failed to create transparent hugepage kobject\n");
  512. return -ENOMEM;
  513. }
  514. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  515. if (err) {
  516. pr_err("failed to register transparent hugepage group\n");
  517. goto delete_obj;
  518. }
  519. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  520. if (err) {
  521. pr_err("failed to register transparent hugepage group\n");
  522. goto remove_hp_group;
  523. }
  524. return 0;
  525. remove_hp_group:
  526. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  527. delete_obj:
  528. kobject_put(*hugepage_kobj);
  529. return err;
  530. }
  531. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  532. {
  533. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  534. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  535. kobject_put(hugepage_kobj);
  536. }
  537. #else
  538. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  539. {
  540. return 0;
  541. }
  542. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  543. {
  544. }
  545. #endif /* CONFIG_SYSFS */
  546. static int __init hugepage_init(void)
  547. {
  548. int err;
  549. struct kobject *hugepage_kobj;
  550. if (!has_transparent_hugepage()) {
  551. transparent_hugepage_flags = 0;
  552. return -EINVAL;
  553. }
  554. err = hugepage_init_sysfs(&hugepage_kobj);
  555. if (err)
  556. return err;
  557. err = khugepaged_slab_init();
  558. if (err)
  559. goto out;
  560. register_shrinker(&huge_zero_page_shrinker);
  561. /*
  562. * By default disable transparent hugepages on smaller systems,
  563. * where the extra memory used could hurt more than TLB overhead
  564. * is likely to save. The admin can still enable it through /sys.
  565. */
  566. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  567. transparent_hugepage_flags = 0;
  568. start_khugepaged();
  569. return 0;
  570. out:
  571. hugepage_exit_sysfs(hugepage_kobj);
  572. return err;
  573. }
  574. subsys_initcall(hugepage_init);
  575. static int __init setup_transparent_hugepage(char *str)
  576. {
  577. int ret = 0;
  578. if (!str)
  579. goto out;
  580. if (!strcmp(str, "always")) {
  581. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  582. &transparent_hugepage_flags);
  583. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  584. &transparent_hugepage_flags);
  585. ret = 1;
  586. } else if (!strcmp(str, "madvise")) {
  587. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  588. &transparent_hugepage_flags);
  589. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  590. &transparent_hugepage_flags);
  591. ret = 1;
  592. } else if (!strcmp(str, "never")) {
  593. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  594. &transparent_hugepage_flags);
  595. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  596. &transparent_hugepage_flags);
  597. ret = 1;
  598. }
  599. out:
  600. if (!ret)
  601. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  602. return ret;
  603. }
  604. __setup("transparent_hugepage=", setup_transparent_hugepage);
  605. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  606. {
  607. if (likely(vma->vm_flags & VM_WRITE))
  608. pmd = pmd_mkwrite(pmd);
  609. return pmd;
  610. }
  611. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  612. {
  613. pmd_t entry;
  614. entry = mk_pmd(page, prot);
  615. entry = pmd_mkhuge(entry);
  616. return entry;
  617. }
  618. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  619. struct vm_area_struct *vma,
  620. unsigned long haddr, pmd_t *pmd,
  621. struct page *page)
  622. {
  623. pgtable_t pgtable;
  624. spinlock_t *ptl;
  625. VM_BUG_ON_PAGE(!PageCompound(page), page);
  626. pgtable = pte_alloc_one(mm, haddr);
  627. if (unlikely(!pgtable))
  628. return VM_FAULT_OOM;
  629. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  630. /*
  631. * The memory barrier inside __SetPageUptodate makes sure that
  632. * clear_huge_page writes become visible before the set_pmd_at()
  633. * write.
  634. */
  635. __SetPageUptodate(page);
  636. ptl = pmd_lock(mm, pmd);
  637. if (unlikely(!pmd_none(*pmd))) {
  638. spin_unlock(ptl);
  639. mem_cgroup_uncharge_page(page);
  640. put_page(page);
  641. pte_free(mm, pgtable);
  642. } else {
  643. pmd_t entry;
  644. entry = mk_huge_pmd(page, vma->vm_page_prot);
  645. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  646. page_add_new_anon_rmap(page, vma, haddr);
  647. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  648. set_pmd_at(mm, haddr, pmd, entry);
  649. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  650. atomic_long_inc(&mm->nr_ptes);
  651. spin_unlock(ptl);
  652. }
  653. return 0;
  654. }
  655. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  656. {
  657. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  658. }
  659. static inline struct page *alloc_hugepage_vma(int defrag,
  660. struct vm_area_struct *vma,
  661. unsigned long haddr, int nd,
  662. gfp_t extra_gfp)
  663. {
  664. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  665. HPAGE_PMD_ORDER, vma, haddr, nd);
  666. }
  667. /* Caller must hold page table lock. */
  668. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  669. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  670. struct page *zero_page)
  671. {
  672. pmd_t entry;
  673. if (!pmd_none(*pmd))
  674. return false;
  675. entry = mk_pmd(zero_page, vma->vm_page_prot);
  676. entry = pmd_wrprotect(entry);
  677. entry = pmd_mkhuge(entry);
  678. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  679. set_pmd_at(mm, haddr, pmd, entry);
  680. atomic_long_inc(&mm->nr_ptes);
  681. return true;
  682. }
  683. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  684. unsigned long address, pmd_t *pmd,
  685. unsigned int flags)
  686. {
  687. struct page *page;
  688. unsigned long haddr = address & HPAGE_PMD_MASK;
  689. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  690. return VM_FAULT_FALLBACK;
  691. if (unlikely(anon_vma_prepare(vma)))
  692. return VM_FAULT_OOM;
  693. if (unlikely(khugepaged_enter(vma)))
  694. return VM_FAULT_OOM;
  695. if (!(flags & FAULT_FLAG_WRITE) &&
  696. transparent_hugepage_use_zero_page()) {
  697. spinlock_t *ptl;
  698. pgtable_t pgtable;
  699. struct page *zero_page;
  700. bool set;
  701. pgtable = pte_alloc_one(mm, haddr);
  702. if (unlikely(!pgtable))
  703. return VM_FAULT_OOM;
  704. zero_page = get_huge_zero_page();
  705. if (unlikely(!zero_page)) {
  706. pte_free(mm, pgtable);
  707. count_vm_event(THP_FAULT_FALLBACK);
  708. return VM_FAULT_FALLBACK;
  709. }
  710. ptl = pmd_lock(mm, pmd);
  711. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  712. zero_page);
  713. spin_unlock(ptl);
  714. if (!set) {
  715. pte_free(mm, pgtable);
  716. put_huge_zero_page();
  717. }
  718. return 0;
  719. }
  720. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  721. vma, haddr, numa_node_id(), 0);
  722. if (unlikely(!page)) {
  723. count_vm_event(THP_FAULT_FALLBACK);
  724. return VM_FAULT_FALLBACK;
  725. }
  726. if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
  727. put_page(page);
  728. count_vm_event(THP_FAULT_FALLBACK);
  729. return VM_FAULT_FALLBACK;
  730. }
  731. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
  732. mem_cgroup_uncharge_page(page);
  733. put_page(page);
  734. count_vm_event(THP_FAULT_FALLBACK);
  735. return VM_FAULT_FALLBACK;
  736. }
  737. count_vm_event(THP_FAULT_ALLOC);
  738. return 0;
  739. }
  740. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  741. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  742. struct vm_area_struct *vma)
  743. {
  744. spinlock_t *dst_ptl, *src_ptl;
  745. struct page *src_page;
  746. pmd_t pmd;
  747. pgtable_t pgtable;
  748. int ret;
  749. ret = -ENOMEM;
  750. pgtable = pte_alloc_one(dst_mm, addr);
  751. if (unlikely(!pgtable))
  752. goto out;
  753. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  754. src_ptl = pmd_lockptr(src_mm, src_pmd);
  755. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  756. ret = -EAGAIN;
  757. pmd = *src_pmd;
  758. if (unlikely(!pmd_trans_huge(pmd))) {
  759. pte_free(dst_mm, pgtable);
  760. goto out_unlock;
  761. }
  762. /*
  763. * When page table lock is held, the huge zero pmd should not be
  764. * under splitting since we don't split the page itself, only pmd to
  765. * a page table.
  766. */
  767. if (is_huge_zero_pmd(pmd)) {
  768. struct page *zero_page;
  769. bool set;
  770. /*
  771. * get_huge_zero_page() will never allocate a new page here,
  772. * since we already have a zero page to copy. It just takes a
  773. * reference.
  774. */
  775. zero_page = get_huge_zero_page();
  776. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  777. zero_page);
  778. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  779. ret = 0;
  780. goto out_unlock;
  781. }
  782. if (unlikely(pmd_trans_splitting(pmd))) {
  783. /* split huge page running from under us */
  784. spin_unlock(src_ptl);
  785. spin_unlock(dst_ptl);
  786. pte_free(dst_mm, pgtable);
  787. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  788. goto out;
  789. }
  790. src_page = pmd_page(pmd);
  791. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  792. get_page(src_page);
  793. page_dup_rmap(src_page);
  794. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  795. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  796. pmd = pmd_mkold(pmd_wrprotect(pmd));
  797. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  798. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  799. atomic_long_inc(&dst_mm->nr_ptes);
  800. ret = 0;
  801. out_unlock:
  802. spin_unlock(src_ptl);
  803. spin_unlock(dst_ptl);
  804. out:
  805. return ret;
  806. }
  807. void huge_pmd_set_accessed(struct mm_struct *mm,
  808. struct vm_area_struct *vma,
  809. unsigned long address,
  810. pmd_t *pmd, pmd_t orig_pmd,
  811. int dirty)
  812. {
  813. spinlock_t *ptl;
  814. pmd_t entry;
  815. unsigned long haddr;
  816. ptl = pmd_lock(mm, pmd);
  817. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  818. goto unlock;
  819. entry = pmd_mkyoung(orig_pmd);
  820. haddr = address & HPAGE_PMD_MASK;
  821. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  822. update_mmu_cache_pmd(vma, address, pmd);
  823. unlock:
  824. spin_unlock(ptl);
  825. }
  826. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  827. struct vm_area_struct *vma,
  828. unsigned long address,
  829. pmd_t *pmd, pmd_t orig_pmd,
  830. struct page *page,
  831. unsigned long haddr)
  832. {
  833. spinlock_t *ptl;
  834. pgtable_t pgtable;
  835. pmd_t _pmd;
  836. int ret = 0, i;
  837. struct page **pages;
  838. unsigned long mmun_start; /* For mmu_notifiers */
  839. unsigned long mmun_end; /* For mmu_notifiers */
  840. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  841. GFP_KERNEL);
  842. if (unlikely(!pages)) {
  843. ret |= VM_FAULT_OOM;
  844. goto out;
  845. }
  846. for (i = 0; i < HPAGE_PMD_NR; i++) {
  847. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  848. __GFP_OTHER_NODE,
  849. vma, address, page_to_nid(page));
  850. if (unlikely(!pages[i] ||
  851. mem_cgroup_charge_anon(pages[i], mm,
  852. GFP_KERNEL))) {
  853. if (pages[i])
  854. put_page(pages[i]);
  855. mem_cgroup_uncharge_start();
  856. while (--i >= 0) {
  857. mem_cgroup_uncharge_page(pages[i]);
  858. put_page(pages[i]);
  859. }
  860. mem_cgroup_uncharge_end();
  861. kfree(pages);
  862. ret |= VM_FAULT_OOM;
  863. goto out;
  864. }
  865. }
  866. for (i = 0; i < HPAGE_PMD_NR; i++) {
  867. copy_user_highpage(pages[i], page + i,
  868. haddr + PAGE_SIZE * i, vma);
  869. __SetPageUptodate(pages[i]);
  870. cond_resched();
  871. }
  872. mmun_start = haddr;
  873. mmun_end = haddr + HPAGE_PMD_SIZE;
  874. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  875. ptl = pmd_lock(mm, pmd);
  876. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  877. goto out_free_pages;
  878. VM_BUG_ON_PAGE(!PageHead(page), page);
  879. pmdp_clear_flush(vma, haddr, pmd);
  880. /* leave pmd empty until pte is filled */
  881. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  882. pmd_populate(mm, &_pmd, pgtable);
  883. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  884. pte_t *pte, entry;
  885. entry = mk_pte(pages[i], vma->vm_page_prot);
  886. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  887. page_add_new_anon_rmap(pages[i], vma, haddr);
  888. pte = pte_offset_map(&_pmd, haddr);
  889. VM_BUG_ON(!pte_none(*pte));
  890. set_pte_at(mm, haddr, pte, entry);
  891. pte_unmap(pte);
  892. }
  893. kfree(pages);
  894. smp_wmb(); /* make pte visible before pmd */
  895. pmd_populate(mm, pmd, pgtable);
  896. page_remove_rmap(page);
  897. spin_unlock(ptl);
  898. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  899. ret |= VM_FAULT_WRITE;
  900. put_page(page);
  901. out:
  902. return ret;
  903. out_free_pages:
  904. spin_unlock(ptl);
  905. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  906. mem_cgroup_uncharge_start();
  907. for (i = 0; i < HPAGE_PMD_NR; i++) {
  908. mem_cgroup_uncharge_page(pages[i]);
  909. put_page(pages[i]);
  910. }
  911. mem_cgroup_uncharge_end();
  912. kfree(pages);
  913. goto out;
  914. }
  915. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  916. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  917. {
  918. spinlock_t *ptl;
  919. int ret = 0;
  920. struct page *page = NULL, *new_page;
  921. unsigned long haddr;
  922. unsigned long mmun_start; /* For mmu_notifiers */
  923. unsigned long mmun_end; /* For mmu_notifiers */
  924. ptl = pmd_lockptr(mm, pmd);
  925. VM_BUG_ON(!vma->anon_vma);
  926. haddr = address & HPAGE_PMD_MASK;
  927. if (is_huge_zero_pmd(orig_pmd))
  928. goto alloc;
  929. spin_lock(ptl);
  930. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  931. goto out_unlock;
  932. page = pmd_page(orig_pmd);
  933. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  934. if (page_mapcount(page) == 1) {
  935. pmd_t entry;
  936. entry = pmd_mkyoung(orig_pmd);
  937. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  938. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  939. update_mmu_cache_pmd(vma, address, pmd);
  940. ret |= VM_FAULT_WRITE;
  941. goto out_unlock;
  942. }
  943. get_page(page);
  944. spin_unlock(ptl);
  945. alloc:
  946. if (transparent_hugepage_enabled(vma) &&
  947. !transparent_hugepage_debug_cow())
  948. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  949. vma, haddr, numa_node_id(), 0);
  950. else
  951. new_page = NULL;
  952. if (unlikely(!new_page)) {
  953. if (!page) {
  954. split_huge_page_pmd(vma, address, pmd);
  955. ret |= VM_FAULT_FALLBACK;
  956. } else {
  957. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  958. pmd, orig_pmd, page, haddr);
  959. if (ret & VM_FAULT_OOM) {
  960. split_huge_page(page);
  961. ret |= VM_FAULT_FALLBACK;
  962. }
  963. put_page(page);
  964. }
  965. count_vm_event(THP_FAULT_FALLBACK);
  966. goto out;
  967. }
  968. if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
  969. put_page(new_page);
  970. if (page) {
  971. split_huge_page(page);
  972. put_page(page);
  973. } else
  974. split_huge_page_pmd(vma, address, pmd);
  975. ret |= VM_FAULT_FALLBACK;
  976. count_vm_event(THP_FAULT_FALLBACK);
  977. goto out;
  978. }
  979. count_vm_event(THP_FAULT_ALLOC);
  980. if (!page)
  981. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  982. else
  983. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  984. __SetPageUptodate(new_page);
  985. mmun_start = haddr;
  986. mmun_end = haddr + HPAGE_PMD_SIZE;
  987. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  988. spin_lock(ptl);
  989. if (page)
  990. put_page(page);
  991. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  992. spin_unlock(ptl);
  993. mem_cgroup_uncharge_page(new_page);
  994. put_page(new_page);
  995. goto out_mn;
  996. } else {
  997. pmd_t entry;
  998. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  999. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1000. pmdp_clear_flush(vma, haddr, pmd);
  1001. page_add_new_anon_rmap(new_page, vma, haddr);
  1002. set_pmd_at(mm, haddr, pmd, entry);
  1003. update_mmu_cache_pmd(vma, address, pmd);
  1004. if (!page) {
  1005. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1006. put_huge_zero_page();
  1007. } else {
  1008. VM_BUG_ON_PAGE(!PageHead(page), page);
  1009. page_remove_rmap(page);
  1010. put_page(page);
  1011. }
  1012. ret |= VM_FAULT_WRITE;
  1013. }
  1014. spin_unlock(ptl);
  1015. out_mn:
  1016. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1017. out:
  1018. return ret;
  1019. out_unlock:
  1020. spin_unlock(ptl);
  1021. return ret;
  1022. }
  1023. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1024. unsigned long addr,
  1025. pmd_t *pmd,
  1026. unsigned int flags)
  1027. {
  1028. struct mm_struct *mm = vma->vm_mm;
  1029. struct page *page = NULL;
  1030. assert_spin_locked(pmd_lockptr(mm, pmd));
  1031. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1032. goto out;
  1033. /* Avoid dumping huge zero page */
  1034. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1035. return ERR_PTR(-EFAULT);
  1036. /* Full NUMA hinting faults to serialise migration in fault paths */
  1037. if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
  1038. goto out;
  1039. page = pmd_page(*pmd);
  1040. VM_BUG_ON_PAGE(!PageHead(page), page);
  1041. if (flags & FOLL_TOUCH) {
  1042. pmd_t _pmd;
  1043. /*
  1044. * We should set the dirty bit only for FOLL_WRITE but
  1045. * for now the dirty bit in the pmd is meaningless.
  1046. * And if the dirty bit will become meaningful and
  1047. * we'll only set it with FOLL_WRITE, an atomic
  1048. * set_bit will be required on the pmd to set the
  1049. * young bit, instead of the current set_pmd_at.
  1050. */
  1051. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1052. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1053. pmd, _pmd, 1))
  1054. update_mmu_cache_pmd(vma, addr, pmd);
  1055. }
  1056. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1057. if (page->mapping && trylock_page(page)) {
  1058. lru_add_drain();
  1059. if (page->mapping)
  1060. mlock_vma_page(page);
  1061. unlock_page(page);
  1062. }
  1063. }
  1064. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1065. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1066. if (flags & FOLL_GET)
  1067. get_page_foll(page);
  1068. out:
  1069. return page;
  1070. }
  1071. /* NUMA hinting page fault entry point for trans huge pmds */
  1072. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1073. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1074. {
  1075. spinlock_t *ptl;
  1076. struct anon_vma *anon_vma = NULL;
  1077. struct page *page;
  1078. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1079. int page_nid = -1, this_nid = numa_node_id();
  1080. int target_nid, last_cpupid = -1;
  1081. bool page_locked;
  1082. bool migrated = false;
  1083. int flags = 0;
  1084. ptl = pmd_lock(mm, pmdp);
  1085. if (unlikely(!pmd_same(pmd, *pmdp)))
  1086. goto out_unlock;
  1087. /*
  1088. * If there are potential migrations, wait for completion and retry
  1089. * without disrupting NUMA hinting information. Do not relock and
  1090. * check_same as the page may no longer be mapped.
  1091. */
  1092. if (unlikely(pmd_trans_migrating(*pmdp))) {
  1093. spin_unlock(ptl);
  1094. wait_migrate_huge_page(vma->anon_vma, pmdp);
  1095. goto out;
  1096. }
  1097. page = pmd_page(pmd);
  1098. BUG_ON(is_huge_zero_page(page));
  1099. page_nid = page_to_nid(page);
  1100. last_cpupid = page_cpupid_last(page);
  1101. count_vm_numa_event(NUMA_HINT_FAULTS);
  1102. if (page_nid == this_nid) {
  1103. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1104. flags |= TNF_FAULT_LOCAL;
  1105. }
  1106. /*
  1107. * Avoid grouping on DSO/COW pages in specific and RO pages
  1108. * in general, RO pages shouldn't hurt as much anyway since
  1109. * they can be in shared cache state.
  1110. */
  1111. if (!pmd_write(pmd))
  1112. flags |= TNF_NO_GROUP;
  1113. /*
  1114. * Acquire the page lock to serialise THP migrations but avoid dropping
  1115. * page_table_lock if at all possible
  1116. */
  1117. page_locked = trylock_page(page);
  1118. target_nid = mpol_misplaced(page, vma, haddr);
  1119. if (target_nid == -1) {
  1120. /* If the page was locked, there are no parallel migrations */
  1121. if (page_locked)
  1122. goto clear_pmdnuma;
  1123. }
  1124. /* Migration could have started since the pmd_trans_migrating check */
  1125. if (!page_locked) {
  1126. spin_unlock(ptl);
  1127. wait_on_page_locked(page);
  1128. page_nid = -1;
  1129. goto out;
  1130. }
  1131. /*
  1132. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1133. * to serialises splits
  1134. */
  1135. get_page(page);
  1136. spin_unlock(ptl);
  1137. anon_vma = page_lock_anon_vma_read(page);
  1138. /* Confirm the PMD did not change while page_table_lock was released */
  1139. spin_lock(ptl);
  1140. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1141. unlock_page(page);
  1142. put_page(page);
  1143. page_nid = -1;
  1144. goto out_unlock;
  1145. }
  1146. /* Bail if we fail to protect against THP splits for any reason */
  1147. if (unlikely(!anon_vma)) {
  1148. put_page(page);
  1149. page_nid = -1;
  1150. goto clear_pmdnuma;
  1151. }
  1152. /*
  1153. * Migrate the THP to the requested node, returns with page unlocked
  1154. * and pmd_numa cleared.
  1155. */
  1156. spin_unlock(ptl);
  1157. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1158. pmdp, pmd, addr, page, target_nid);
  1159. if (migrated) {
  1160. flags |= TNF_MIGRATED;
  1161. page_nid = target_nid;
  1162. }
  1163. goto out;
  1164. clear_pmdnuma:
  1165. BUG_ON(!PageLocked(page));
  1166. pmd = pmd_mknonnuma(pmd);
  1167. set_pmd_at(mm, haddr, pmdp, pmd);
  1168. VM_BUG_ON(pmd_numa(*pmdp));
  1169. update_mmu_cache_pmd(vma, addr, pmdp);
  1170. unlock_page(page);
  1171. out_unlock:
  1172. spin_unlock(ptl);
  1173. out:
  1174. if (anon_vma)
  1175. page_unlock_anon_vma_read(anon_vma);
  1176. if (page_nid != -1)
  1177. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1178. return 0;
  1179. }
  1180. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1181. pmd_t *pmd, unsigned long addr)
  1182. {
  1183. spinlock_t *ptl;
  1184. int ret = 0;
  1185. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1186. struct page *page;
  1187. pgtable_t pgtable;
  1188. pmd_t orig_pmd;
  1189. /*
  1190. * For architectures like ppc64 we look at deposited pgtable
  1191. * when calling pmdp_get_and_clear. So do the
  1192. * pgtable_trans_huge_withdraw after finishing pmdp related
  1193. * operations.
  1194. */
  1195. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1196. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1197. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1198. if (is_huge_zero_pmd(orig_pmd)) {
  1199. atomic_long_dec(&tlb->mm->nr_ptes);
  1200. spin_unlock(ptl);
  1201. put_huge_zero_page();
  1202. } else {
  1203. page = pmd_page(orig_pmd);
  1204. page_remove_rmap(page);
  1205. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1206. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1207. VM_BUG_ON_PAGE(!PageHead(page), page);
  1208. atomic_long_dec(&tlb->mm->nr_ptes);
  1209. spin_unlock(ptl);
  1210. tlb_remove_page(tlb, page);
  1211. }
  1212. pte_free(tlb->mm, pgtable);
  1213. ret = 1;
  1214. }
  1215. return ret;
  1216. }
  1217. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1218. unsigned long addr, unsigned long end,
  1219. unsigned char *vec)
  1220. {
  1221. spinlock_t *ptl;
  1222. int ret = 0;
  1223. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1224. /*
  1225. * All logical pages in the range are present
  1226. * if backed by a huge page.
  1227. */
  1228. spin_unlock(ptl);
  1229. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1230. ret = 1;
  1231. }
  1232. return ret;
  1233. }
  1234. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1235. unsigned long old_addr,
  1236. unsigned long new_addr, unsigned long old_end,
  1237. pmd_t *old_pmd, pmd_t *new_pmd)
  1238. {
  1239. spinlock_t *old_ptl, *new_ptl;
  1240. int ret = 0;
  1241. pmd_t pmd;
  1242. struct mm_struct *mm = vma->vm_mm;
  1243. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1244. (new_addr & ~HPAGE_PMD_MASK) ||
  1245. old_end - old_addr < HPAGE_PMD_SIZE ||
  1246. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1247. goto out;
  1248. /*
  1249. * The destination pmd shouldn't be established, free_pgtables()
  1250. * should have release it.
  1251. */
  1252. if (WARN_ON(!pmd_none(*new_pmd))) {
  1253. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1254. goto out;
  1255. }
  1256. /*
  1257. * We don't have to worry about the ordering of src and dst
  1258. * ptlocks because exclusive mmap_sem prevents deadlock.
  1259. */
  1260. ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
  1261. if (ret == 1) {
  1262. new_ptl = pmd_lockptr(mm, new_pmd);
  1263. if (new_ptl != old_ptl)
  1264. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1265. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1266. VM_BUG_ON(!pmd_none(*new_pmd));
  1267. if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
  1268. pgtable_t pgtable;
  1269. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1270. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1271. }
  1272. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1273. if (new_ptl != old_ptl)
  1274. spin_unlock(new_ptl);
  1275. spin_unlock(old_ptl);
  1276. }
  1277. out:
  1278. return ret;
  1279. }
  1280. /*
  1281. * Returns
  1282. * - 0 if PMD could not be locked
  1283. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1284. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1285. */
  1286. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1287. unsigned long addr, pgprot_t newprot, int prot_numa)
  1288. {
  1289. struct mm_struct *mm = vma->vm_mm;
  1290. spinlock_t *ptl;
  1291. int ret = 0;
  1292. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1293. pmd_t entry;
  1294. ret = 1;
  1295. if (!prot_numa) {
  1296. entry = pmdp_get_and_clear(mm, addr, pmd);
  1297. if (pmd_numa(entry))
  1298. entry = pmd_mknonnuma(entry);
  1299. entry = pmd_modify(entry, newprot);
  1300. ret = HPAGE_PMD_NR;
  1301. set_pmd_at(mm, addr, pmd, entry);
  1302. BUG_ON(pmd_write(entry));
  1303. } else {
  1304. struct page *page = pmd_page(*pmd);
  1305. /*
  1306. * Do not trap faults against the zero page. The
  1307. * read-only data is likely to be read-cached on the
  1308. * local CPU cache and it is less useful to know about
  1309. * local vs remote hits on the zero page.
  1310. */
  1311. if (!is_huge_zero_page(page) &&
  1312. !pmd_numa(*pmd)) {
  1313. pmdp_set_numa(mm, addr, pmd);
  1314. ret = HPAGE_PMD_NR;
  1315. }
  1316. }
  1317. spin_unlock(ptl);
  1318. }
  1319. return ret;
  1320. }
  1321. /*
  1322. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1323. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1324. *
  1325. * Note that if it returns 1, this routine returns without unlocking page
  1326. * table locks. So callers must unlock them.
  1327. */
  1328. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
  1329. spinlock_t **ptl)
  1330. {
  1331. *ptl = pmd_lock(vma->vm_mm, pmd);
  1332. if (likely(pmd_trans_huge(*pmd))) {
  1333. if (unlikely(pmd_trans_splitting(*pmd))) {
  1334. spin_unlock(*ptl);
  1335. wait_split_huge_page(vma->anon_vma, pmd);
  1336. return -1;
  1337. } else {
  1338. /* Thp mapped by 'pmd' is stable, so we can
  1339. * handle it as it is. */
  1340. return 1;
  1341. }
  1342. }
  1343. spin_unlock(*ptl);
  1344. return 0;
  1345. }
  1346. /*
  1347. * This function returns whether a given @page is mapped onto the @address
  1348. * in the virtual space of @mm.
  1349. *
  1350. * When it's true, this function returns *pmd with holding the page table lock
  1351. * and passing it back to the caller via @ptl.
  1352. * If it's false, returns NULL without holding the page table lock.
  1353. */
  1354. pmd_t *page_check_address_pmd(struct page *page,
  1355. struct mm_struct *mm,
  1356. unsigned long address,
  1357. enum page_check_address_pmd_flag flag,
  1358. spinlock_t **ptl)
  1359. {
  1360. pgd_t *pgd;
  1361. pud_t *pud;
  1362. pmd_t *pmd;
  1363. if (address & ~HPAGE_PMD_MASK)
  1364. return NULL;
  1365. pgd = pgd_offset(mm, address);
  1366. if (!pgd_present(*pgd))
  1367. return NULL;
  1368. pud = pud_offset(pgd, address);
  1369. if (!pud_present(*pud))
  1370. return NULL;
  1371. pmd = pmd_offset(pud, address);
  1372. *ptl = pmd_lock(mm, pmd);
  1373. if (!pmd_present(*pmd))
  1374. goto unlock;
  1375. if (pmd_page(*pmd) != page)
  1376. goto unlock;
  1377. /*
  1378. * split_vma() may create temporary aliased mappings. There is
  1379. * no risk as long as all huge pmd are found and have their
  1380. * splitting bit set before __split_huge_page_refcount
  1381. * runs. Finding the same huge pmd more than once during the
  1382. * same rmap walk is not a problem.
  1383. */
  1384. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1385. pmd_trans_splitting(*pmd))
  1386. goto unlock;
  1387. if (pmd_trans_huge(*pmd)) {
  1388. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1389. !pmd_trans_splitting(*pmd));
  1390. return pmd;
  1391. }
  1392. unlock:
  1393. spin_unlock(*ptl);
  1394. return NULL;
  1395. }
  1396. static int __split_huge_page_splitting(struct page *page,
  1397. struct vm_area_struct *vma,
  1398. unsigned long address)
  1399. {
  1400. struct mm_struct *mm = vma->vm_mm;
  1401. spinlock_t *ptl;
  1402. pmd_t *pmd;
  1403. int ret = 0;
  1404. /* For mmu_notifiers */
  1405. const unsigned long mmun_start = address;
  1406. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1407. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1408. pmd = page_check_address_pmd(page, mm, address,
  1409. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
  1410. if (pmd) {
  1411. /*
  1412. * We can't temporarily set the pmd to null in order
  1413. * to split it, the pmd must remain marked huge at all
  1414. * times or the VM won't take the pmd_trans_huge paths
  1415. * and it won't wait on the anon_vma->root->rwsem to
  1416. * serialize against split_huge_page*.
  1417. */
  1418. pmdp_splitting_flush(vma, address, pmd);
  1419. ret = 1;
  1420. spin_unlock(ptl);
  1421. }
  1422. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1423. return ret;
  1424. }
  1425. static void __split_huge_page_refcount(struct page *page,
  1426. struct list_head *list)
  1427. {
  1428. int i;
  1429. struct zone *zone = page_zone(page);
  1430. struct lruvec *lruvec;
  1431. int tail_count = 0;
  1432. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1433. spin_lock_irq(&zone->lru_lock);
  1434. lruvec = mem_cgroup_page_lruvec(page, zone);
  1435. compound_lock(page);
  1436. /* complete memcg works before add pages to LRU */
  1437. mem_cgroup_split_huge_fixup(page);
  1438. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1439. struct page *page_tail = page + i;
  1440. /* tail_page->_mapcount cannot change */
  1441. BUG_ON(page_mapcount(page_tail) < 0);
  1442. tail_count += page_mapcount(page_tail);
  1443. /* check for overflow */
  1444. BUG_ON(tail_count < 0);
  1445. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1446. /*
  1447. * tail_page->_count is zero and not changing from
  1448. * under us. But get_page_unless_zero() may be running
  1449. * from under us on the tail_page. If we used
  1450. * atomic_set() below instead of atomic_add(), we
  1451. * would then run atomic_set() concurrently with
  1452. * get_page_unless_zero(), and atomic_set() is
  1453. * implemented in C not using locked ops. spin_unlock
  1454. * on x86 sometime uses locked ops because of PPro
  1455. * errata 66, 92, so unless somebody can guarantee
  1456. * atomic_set() here would be safe on all archs (and
  1457. * not only on x86), it's safer to use atomic_add().
  1458. */
  1459. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1460. &page_tail->_count);
  1461. /* after clearing PageTail the gup refcount can be released */
  1462. smp_mb();
  1463. /*
  1464. * retain hwpoison flag of the poisoned tail page:
  1465. * fix for the unsuitable process killed on Guest Machine(KVM)
  1466. * by the memory-failure.
  1467. */
  1468. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1469. page_tail->flags |= (page->flags &
  1470. ((1L << PG_referenced) |
  1471. (1L << PG_swapbacked) |
  1472. (1L << PG_mlocked) |
  1473. (1L << PG_uptodate) |
  1474. (1L << PG_active) |
  1475. (1L << PG_unevictable)));
  1476. page_tail->flags |= (1L << PG_dirty);
  1477. /* clear PageTail before overwriting first_page */
  1478. smp_wmb();
  1479. /*
  1480. * __split_huge_page_splitting() already set the
  1481. * splitting bit in all pmd that could map this
  1482. * hugepage, that will ensure no CPU can alter the
  1483. * mapcount on the head page. The mapcount is only
  1484. * accounted in the head page and it has to be
  1485. * transferred to all tail pages in the below code. So
  1486. * for this code to be safe, the split the mapcount
  1487. * can't change. But that doesn't mean userland can't
  1488. * keep changing and reading the page contents while
  1489. * we transfer the mapcount, so the pmd splitting
  1490. * status is achieved setting a reserved bit in the
  1491. * pmd, not by clearing the present bit.
  1492. */
  1493. page_tail->_mapcount = page->_mapcount;
  1494. BUG_ON(page_tail->mapping);
  1495. page_tail->mapping = page->mapping;
  1496. page_tail->index = page->index + i;
  1497. page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
  1498. BUG_ON(!PageAnon(page_tail));
  1499. BUG_ON(!PageUptodate(page_tail));
  1500. BUG_ON(!PageDirty(page_tail));
  1501. BUG_ON(!PageSwapBacked(page_tail));
  1502. lru_add_page_tail(page, page_tail, lruvec, list);
  1503. }
  1504. atomic_sub(tail_count, &page->_count);
  1505. BUG_ON(atomic_read(&page->_count) <= 0);
  1506. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1507. ClearPageCompound(page);
  1508. compound_unlock(page);
  1509. spin_unlock_irq(&zone->lru_lock);
  1510. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1511. struct page *page_tail = page + i;
  1512. BUG_ON(page_count(page_tail) <= 0);
  1513. /*
  1514. * Tail pages may be freed if there wasn't any mapping
  1515. * like if add_to_swap() is running on a lru page that
  1516. * had its mapping zapped. And freeing these pages
  1517. * requires taking the lru_lock so we do the put_page
  1518. * of the tail pages after the split is complete.
  1519. */
  1520. put_page(page_tail);
  1521. }
  1522. /*
  1523. * Only the head page (now become a regular page) is required
  1524. * to be pinned by the caller.
  1525. */
  1526. BUG_ON(page_count(page) <= 0);
  1527. }
  1528. static int __split_huge_page_map(struct page *page,
  1529. struct vm_area_struct *vma,
  1530. unsigned long address)
  1531. {
  1532. struct mm_struct *mm = vma->vm_mm;
  1533. spinlock_t *ptl;
  1534. pmd_t *pmd, _pmd;
  1535. int ret = 0, i;
  1536. pgtable_t pgtable;
  1537. unsigned long haddr;
  1538. pmd = page_check_address_pmd(page, mm, address,
  1539. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
  1540. if (pmd) {
  1541. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1542. pmd_populate(mm, &_pmd, pgtable);
  1543. haddr = address;
  1544. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1545. pte_t *pte, entry;
  1546. BUG_ON(PageCompound(page+i));
  1547. entry = mk_pte(page + i, vma->vm_page_prot);
  1548. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1549. if (!pmd_write(*pmd))
  1550. entry = pte_wrprotect(entry);
  1551. else
  1552. BUG_ON(page_mapcount(page) != 1);
  1553. if (!pmd_young(*pmd))
  1554. entry = pte_mkold(entry);
  1555. if (pmd_numa(*pmd))
  1556. entry = pte_mknuma(entry);
  1557. pte = pte_offset_map(&_pmd, haddr);
  1558. BUG_ON(!pte_none(*pte));
  1559. set_pte_at(mm, haddr, pte, entry);
  1560. pte_unmap(pte);
  1561. }
  1562. smp_wmb(); /* make pte visible before pmd */
  1563. /*
  1564. * Up to this point the pmd is present and huge and
  1565. * userland has the whole access to the hugepage
  1566. * during the split (which happens in place). If we
  1567. * overwrite the pmd with the not-huge version
  1568. * pointing to the pte here (which of course we could
  1569. * if all CPUs were bug free), userland could trigger
  1570. * a small page size TLB miss on the small sized TLB
  1571. * while the hugepage TLB entry is still established
  1572. * in the huge TLB. Some CPU doesn't like that. See
  1573. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1574. * Erratum 383 on page 93. Intel should be safe but is
  1575. * also warns that it's only safe if the permission
  1576. * and cache attributes of the two entries loaded in
  1577. * the two TLB is identical (which should be the case
  1578. * here). But it is generally safer to never allow
  1579. * small and huge TLB entries for the same virtual
  1580. * address to be loaded simultaneously. So instead of
  1581. * doing "pmd_populate(); flush_tlb_range();" we first
  1582. * mark the current pmd notpresent (atomically because
  1583. * here the pmd_trans_huge and pmd_trans_splitting
  1584. * must remain set at all times on the pmd until the
  1585. * split is complete for this pmd), then we flush the
  1586. * SMP TLB and finally we write the non-huge version
  1587. * of the pmd entry with pmd_populate.
  1588. */
  1589. pmdp_invalidate(vma, address, pmd);
  1590. pmd_populate(mm, pmd, pgtable);
  1591. ret = 1;
  1592. spin_unlock(ptl);
  1593. }
  1594. return ret;
  1595. }
  1596. /* must be called with anon_vma->root->rwsem held */
  1597. static void __split_huge_page(struct page *page,
  1598. struct anon_vma *anon_vma,
  1599. struct list_head *list)
  1600. {
  1601. int mapcount, mapcount2;
  1602. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1603. struct anon_vma_chain *avc;
  1604. BUG_ON(!PageHead(page));
  1605. BUG_ON(PageTail(page));
  1606. mapcount = 0;
  1607. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1608. struct vm_area_struct *vma = avc->vma;
  1609. unsigned long addr = vma_address(page, vma);
  1610. BUG_ON(is_vma_temporary_stack(vma));
  1611. mapcount += __split_huge_page_splitting(page, vma, addr);
  1612. }
  1613. /*
  1614. * It is critical that new vmas are added to the tail of the
  1615. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1616. * and establishes a child pmd before
  1617. * __split_huge_page_splitting() freezes the parent pmd (so if
  1618. * we fail to prevent copy_huge_pmd() from running until the
  1619. * whole __split_huge_page() is complete), we will still see
  1620. * the newly established pmd of the child later during the
  1621. * walk, to be able to set it as pmd_trans_splitting too.
  1622. */
  1623. if (mapcount != page_mapcount(page)) {
  1624. pr_err("mapcount %d page_mapcount %d\n",
  1625. mapcount, page_mapcount(page));
  1626. BUG();
  1627. }
  1628. __split_huge_page_refcount(page, list);
  1629. mapcount2 = 0;
  1630. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1631. struct vm_area_struct *vma = avc->vma;
  1632. unsigned long addr = vma_address(page, vma);
  1633. BUG_ON(is_vma_temporary_stack(vma));
  1634. mapcount2 += __split_huge_page_map(page, vma, addr);
  1635. }
  1636. if (mapcount != mapcount2) {
  1637. pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
  1638. mapcount, mapcount2, page_mapcount(page));
  1639. BUG();
  1640. }
  1641. }
  1642. /*
  1643. * Split a hugepage into normal pages. This doesn't change the position of head
  1644. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1645. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1646. * from the hugepage.
  1647. * Return 0 if the hugepage is split successfully otherwise return 1.
  1648. */
  1649. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1650. {
  1651. struct anon_vma *anon_vma;
  1652. int ret = 1;
  1653. BUG_ON(is_huge_zero_page(page));
  1654. BUG_ON(!PageAnon(page));
  1655. /*
  1656. * The caller does not necessarily hold an mmap_sem that would prevent
  1657. * the anon_vma disappearing so we first we take a reference to it
  1658. * and then lock the anon_vma for write. This is similar to
  1659. * page_lock_anon_vma_read except the write lock is taken to serialise
  1660. * against parallel split or collapse operations.
  1661. */
  1662. anon_vma = page_get_anon_vma(page);
  1663. if (!anon_vma)
  1664. goto out;
  1665. anon_vma_lock_write(anon_vma);
  1666. ret = 0;
  1667. if (!PageCompound(page))
  1668. goto out_unlock;
  1669. BUG_ON(!PageSwapBacked(page));
  1670. __split_huge_page(page, anon_vma, list);
  1671. count_vm_event(THP_SPLIT);
  1672. BUG_ON(PageCompound(page));
  1673. out_unlock:
  1674. anon_vma_unlock_write(anon_vma);
  1675. put_anon_vma(anon_vma);
  1676. out:
  1677. return ret;
  1678. }
  1679. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1680. int hugepage_madvise(struct vm_area_struct *vma,
  1681. unsigned long *vm_flags, int advice)
  1682. {
  1683. switch (advice) {
  1684. case MADV_HUGEPAGE:
  1685. #ifdef CONFIG_S390
  1686. /*
  1687. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  1688. * can't handle this properly after s390_enable_sie, so we simply
  1689. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  1690. */
  1691. if (mm_has_pgste(vma->vm_mm))
  1692. return 0;
  1693. #endif
  1694. /*
  1695. * Be somewhat over-protective like KSM for now!
  1696. */
  1697. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1698. return -EINVAL;
  1699. *vm_flags &= ~VM_NOHUGEPAGE;
  1700. *vm_flags |= VM_HUGEPAGE;
  1701. /*
  1702. * If the vma become good for khugepaged to scan,
  1703. * register it here without waiting a page fault that
  1704. * may not happen any time soon.
  1705. */
  1706. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1707. return -ENOMEM;
  1708. break;
  1709. case MADV_NOHUGEPAGE:
  1710. /*
  1711. * Be somewhat over-protective like KSM for now!
  1712. */
  1713. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1714. return -EINVAL;
  1715. *vm_flags &= ~VM_HUGEPAGE;
  1716. *vm_flags |= VM_NOHUGEPAGE;
  1717. /*
  1718. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1719. * this vma even if we leave the mm registered in khugepaged if
  1720. * it got registered before VM_NOHUGEPAGE was set.
  1721. */
  1722. break;
  1723. }
  1724. return 0;
  1725. }
  1726. static int __init khugepaged_slab_init(void)
  1727. {
  1728. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1729. sizeof(struct mm_slot),
  1730. __alignof__(struct mm_slot), 0, NULL);
  1731. if (!mm_slot_cache)
  1732. return -ENOMEM;
  1733. return 0;
  1734. }
  1735. static inline struct mm_slot *alloc_mm_slot(void)
  1736. {
  1737. if (!mm_slot_cache) /* initialization failed */
  1738. return NULL;
  1739. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1740. }
  1741. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1742. {
  1743. kmem_cache_free(mm_slot_cache, mm_slot);
  1744. }
  1745. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1746. {
  1747. struct mm_slot *mm_slot;
  1748. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1749. if (mm == mm_slot->mm)
  1750. return mm_slot;
  1751. return NULL;
  1752. }
  1753. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1754. struct mm_slot *mm_slot)
  1755. {
  1756. mm_slot->mm = mm;
  1757. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1758. }
  1759. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1760. {
  1761. return atomic_read(&mm->mm_users) == 0;
  1762. }
  1763. int __khugepaged_enter(struct mm_struct *mm)
  1764. {
  1765. struct mm_slot *mm_slot;
  1766. int wakeup;
  1767. mm_slot = alloc_mm_slot();
  1768. if (!mm_slot)
  1769. return -ENOMEM;
  1770. /* __khugepaged_exit() must not run from under us */
  1771. VM_BUG_ON(khugepaged_test_exit(mm));
  1772. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1773. free_mm_slot(mm_slot);
  1774. return 0;
  1775. }
  1776. spin_lock(&khugepaged_mm_lock);
  1777. insert_to_mm_slots_hash(mm, mm_slot);
  1778. /*
  1779. * Insert just behind the scanning cursor, to let the area settle
  1780. * down a little.
  1781. */
  1782. wakeup = list_empty(&khugepaged_scan.mm_head);
  1783. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1784. spin_unlock(&khugepaged_mm_lock);
  1785. atomic_inc(&mm->mm_count);
  1786. if (wakeup)
  1787. wake_up_interruptible(&khugepaged_wait);
  1788. return 0;
  1789. }
  1790. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1791. {
  1792. unsigned long hstart, hend;
  1793. if (!vma->anon_vma)
  1794. /*
  1795. * Not yet faulted in so we will register later in the
  1796. * page fault if needed.
  1797. */
  1798. return 0;
  1799. if (vma->vm_ops)
  1800. /* khugepaged not yet working on file or special mappings */
  1801. return 0;
  1802. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1803. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1804. hend = vma->vm_end & HPAGE_PMD_MASK;
  1805. if (hstart < hend)
  1806. return khugepaged_enter(vma);
  1807. return 0;
  1808. }
  1809. void __khugepaged_exit(struct mm_struct *mm)
  1810. {
  1811. struct mm_slot *mm_slot;
  1812. int free = 0;
  1813. spin_lock(&khugepaged_mm_lock);
  1814. mm_slot = get_mm_slot(mm);
  1815. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1816. hash_del(&mm_slot->hash);
  1817. list_del(&mm_slot->mm_node);
  1818. free = 1;
  1819. }
  1820. spin_unlock(&khugepaged_mm_lock);
  1821. if (free) {
  1822. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1823. free_mm_slot(mm_slot);
  1824. mmdrop(mm);
  1825. } else if (mm_slot) {
  1826. /*
  1827. * This is required to serialize against
  1828. * khugepaged_test_exit() (which is guaranteed to run
  1829. * under mmap sem read mode). Stop here (after we
  1830. * return all pagetables will be destroyed) until
  1831. * khugepaged has finished working on the pagetables
  1832. * under the mmap_sem.
  1833. */
  1834. down_write(&mm->mmap_sem);
  1835. up_write(&mm->mmap_sem);
  1836. }
  1837. }
  1838. static void release_pte_page(struct page *page)
  1839. {
  1840. /* 0 stands for page_is_file_cache(page) == false */
  1841. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1842. unlock_page(page);
  1843. putback_lru_page(page);
  1844. }
  1845. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1846. {
  1847. while (--_pte >= pte) {
  1848. pte_t pteval = *_pte;
  1849. if (!pte_none(pteval))
  1850. release_pte_page(pte_page(pteval));
  1851. }
  1852. }
  1853. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1854. unsigned long address,
  1855. pte_t *pte)
  1856. {
  1857. struct page *page;
  1858. pte_t *_pte;
  1859. int referenced = 0, none = 0;
  1860. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1861. _pte++, address += PAGE_SIZE) {
  1862. pte_t pteval = *_pte;
  1863. if (pte_none(pteval)) {
  1864. if (++none <= khugepaged_max_ptes_none)
  1865. continue;
  1866. else
  1867. goto out;
  1868. }
  1869. if (!pte_present(pteval) || !pte_write(pteval))
  1870. goto out;
  1871. page = vm_normal_page(vma, address, pteval);
  1872. if (unlikely(!page))
  1873. goto out;
  1874. VM_BUG_ON_PAGE(PageCompound(page), page);
  1875. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1876. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1877. /* cannot use mapcount: can't collapse if there's a gup pin */
  1878. if (page_count(page) != 1)
  1879. goto out;
  1880. /*
  1881. * We can do it before isolate_lru_page because the
  1882. * page can't be freed from under us. NOTE: PG_lock
  1883. * is needed to serialize against split_huge_page
  1884. * when invoked from the VM.
  1885. */
  1886. if (!trylock_page(page))
  1887. goto out;
  1888. /*
  1889. * Isolate the page to avoid collapsing an hugepage
  1890. * currently in use by the VM.
  1891. */
  1892. if (isolate_lru_page(page)) {
  1893. unlock_page(page);
  1894. goto out;
  1895. }
  1896. /* 0 stands for page_is_file_cache(page) == false */
  1897. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1898. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1899. VM_BUG_ON_PAGE(PageLRU(page), page);
  1900. /* If there is no mapped pte young don't collapse the page */
  1901. if (pte_young(pteval) || PageReferenced(page) ||
  1902. mmu_notifier_test_young(vma->vm_mm, address))
  1903. referenced = 1;
  1904. }
  1905. if (likely(referenced))
  1906. return 1;
  1907. out:
  1908. release_pte_pages(pte, _pte);
  1909. return 0;
  1910. }
  1911. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1912. struct vm_area_struct *vma,
  1913. unsigned long address,
  1914. spinlock_t *ptl)
  1915. {
  1916. pte_t *_pte;
  1917. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1918. pte_t pteval = *_pte;
  1919. struct page *src_page;
  1920. if (pte_none(pteval)) {
  1921. clear_user_highpage(page, address);
  1922. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1923. } else {
  1924. src_page = pte_page(pteval);
  1925. copy_user_highpage(page, src_page, address, vma);
  1926. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  1927. release_pte_page(src_page);
  1928. /*
  1929. * ptl mostly unnecessary, but preempt has to
  1930. * be disabled to update the per-cpu stats
  1931. * inside page_remove_rmap().
  1932. */
  1933. spin_lock(ptl);
  1934. /*
  1935. * paravirt calls inside pte_clear here are
  1936. * superfluous.
  1937. */
  1938. pte_clear(vma->vm_mm, address, _pte);
  1939. page_remove_rmap(src_page);
  1940. spin_unlock(ptl);
  1941. free_page_and_swap_cache(src_page);
  1942. }
  1943. address += PAGE_SIZE;
  1944. page++;
  1945. }
  1946. }
  1947. static void khugepaged_alloc_sleep(void)
  1948. {
  1949. wait_event_freezable_timeout(khugepaged_wait, false,
  1950. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1951. }
  1952. static int khugepaged_node_load[MAX_NUMNODES];
  1953. #ifdef CONFIG_NUMA
  1954. static int khugepaged_find_target_node(void)
  1955. {
  1956. static int last_khugepaged_target_node = NUMA_NO_NODE;
  1957. int nid, target_node = 0, max_value = 0;
  1958. /* find first node with max normal pages hit */
  1959. for (nid = 0; nid < MAX_NUMNODES; nid++)
  1960. if (khugepaged_node_load[nid] > max_value) {
  1961. max_value = khugepaged_node_load[nid];
  1962. target_node = nid;
  1963. }
  1964. /* do some balance if several nodes have the same hit record */
  1965. if (target_node <= last_khugepaged_target_node)
  1966. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  1967. nid++)
  1968. if (max_value == khugepaged_node_load[nid]) {
  1969. target_node = nid;
  1970. break;
  1971. }
  1972. last_khugepaged_target_node = target_node;
  1973. return target_node;
  1974. }
  1975. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1976. {
  1977. if (IS_ERR(*hpage)) {
  1978. if (!*wait)
  1979. return false;
  1980. *wait = false;
  1981. *hpage = NULL;
  1982. khugepaged_alloc_sleep();
  1983. } else if (*hpage) {
  1984. put_page(*hpage);
  1985. *hpage = NULL;
  1986. }
  1987. return true;
  1988. }
  1989. static struct page
  1990. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1991. struct vm_area_struct *vma, unsigned long address,
  1992. int node)
  1993. {
  1994. VM_BUG_ON_PAGE(*hpage, *hpage);
  1995. /*
  1996. * Allocate the page while the vma is still valid and under
  1997. * the mmap_sem read mode so there is no memory allocation
  1998. * later when we take the mmap_sem in write mode. This is more
  1999. * friendly behavior (OTOH it may actually hide bugs) to
  2000. * filesystems in userland with daemons allocating memory in
  2001. * the userland I/O paths. Allocating memory with the
  2002. * mmap_sem in read mode is good idea also to allow greater
  2003. * scalability.
  2004. */
  2005. *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
  2006. khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
  2007. /*
  2008. * After allocating the hugepage, release the mmap_sem read lock in
  2009. * preparation for taking it in write mode.
  2010. */
  2011. up_read(&mm->mmap_sem);
  2012. if (unlikely(!*hpage)) {
  2013. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2014. *hpage = ERR_PTR(-ENOMEM);
  2015. return NULL;
  2016. }
  2017. count_vm_event(THP_COLLAPSE_ALLOC);
  2018. return *hpage;
  2019. }
  2020. #else
  2021. static int khugepaged_find_target_node(void)
  2022. {
  2023. return 0;
  2024. }
  2025. static inline struct page *alloc_hugepage(int defrag)
  2026. {
  2027. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  2028. HPAGE_PMD_ORDER);
  2029. }
  2030. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2031. {
  2032. struct page *hpage;
  2033. do {
  2034. hpage = alloc_hugepage(khugepaged_defrag());
  2035. if (!hpage) {
  2036. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2037. if (!*wait)
  2038. return NULL;
  2039. *wait = false;
  2040. khugepaged_alloc_sleep();
  2041. } else
  2042. count_vm_event(THP_COLLAPSE_ALLOC);
  2043. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2044. return hpage;
  2045. }
  2046. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2047. {
  2048. if (!*hpage)
  2049. *hpage = khugepaged_alloc_hugepage(wait);
  2050. if (unlikely(!*hpage))
  2051. return false;
  2052. return true;
  2053. }
  2054. static struct page
  2055. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  2056. struct vm_area_struct *vma, unsigned long address,
  2057. int node)
  2058. {
  2059. up_read(&mm->mmap_sem);
  2060. VM_BUG_ON(!*hpage);
  2061. return *hpage;
  2062. }
  2063. #endif
  2064. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2065. {
  2066. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2067. (vma->vm_flags & VM_NOHUGEPAGE))
  2068. return false;
  2069. if (!vma->anon_vma || vma->vm_ops)
  2070. return false;
  2071. if (is_vma_temporary_stack(vma))
  2072. return false;
  2073. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  2074. return true;
  2075. }
  2076. static void collapse_huge_page(struct mm_struct *mm,
  2077. unsigned long address,
  2078. struct page **hpage,
  2079. struct vm_area_struct *vma,
  2080. int node)
  2081. {
  2082. pmd_t *pmd, _pmd;
  2083. pte_t *pte;
  2084. pgtable_t pgtable;
  2085. struct page *new_page;
  2086. spinlock_t *pmd_ptl, *pte_ptl;
  2087. int isolated;
  2088. unsigned long hstart, hend;
  2089. unsigned long mmun_start; /* For mmu_notifiers */
  2090. unsigned long mmun_end; /* For mmu_notifiers */
  2091. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2092. /* release the mmap_sem read lock. */
  2093. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  2094. if (!new_page)
  2095. return;
  2096. if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
  2097. return;
  2098. /*
  2099. * Prevent all access to pagetables with the exception of
  2100. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2101. * handled by the anon_vma lock + PG_lock.
  2102. */
  2103. down_write(&mm->mmap_sem);
  2104. if (unlikely(khugepaged_test_exit(mm)))
  2105. goto out;
  2106. vma = find_vma(mm, address);
  2107. if (!vma)
  2108. goto out;
  2109. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2110. hend = vma->vm_end & HPAGE_PMD_MASK;
  2111. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2112. goto out;
  2113. if (!hugepage_vma_check(vma))
  2114. goto out;
  2115. pmd = mm_find_pmd(mm, address);
  2116. if (!pmd)
  2117. goto out;
  2118. if (pmd_trans_huge(*pmd))
  2119. goto out;
  2120. anon_vma_lock_write(vma->anon_vma);
  2121. pte = pte_offset_map(pmd, address);
  2122. pte_ptl = pte_lockptr(mm, pmd);
  2123. mmun_start = address;
  2124. mmun_end = address + HPAGE_PMD_SIZE;
  2125. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2126. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2127. /*
  2128. * After this gup_fast can't run anymore. This also removes
  2129. * any huge TLB entry from the CPU so we won't allow
  2130. * huge and small TLB entries for the same virtual address
  2131. * to avoid the risk of CPU bugs in that area.
  2132. */
  2133. _pmd = pmdp_clear_flush(vma, address, pmd);
  2134. spin_unlock(pmd_ptl);
  2135. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2136. spin_lock(pte_ptl);
  2137. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2138. spin_unlock(pte_ptl);
  2139. if (unlikely(!isolated)) {
  2140. pte_unmap(pte);
  2141. spin_lock(pmd_ptl);
  2142. BUG_ON(!pmd_none(*pmd));
  2143. /*
  2144. * We can only use set_pmd_at when establishing
  2145. * hugepmds and never for establishing regular pmds that
  2146. * points to regular pagetables. Use pmd_populate for that
  2147. */
  2148. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2149. spin_unlock(pmd_ptl);
  2150. anon_vma_unlock_write(vma->anon_vma);
  2151. goto out;
  2152. }
  2153. /*
  2154. * All pages are isolated and locked so anon_vma rmap
  2155. * can't run anymore.
  2156. */
  2157. anon_vma_unlock_write(vma->anon_vma);
  2158. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2159. pte_unmap(pte);
  2160. __SetPageUptodate(new_page);
  2161. pgtable = pmd_pgtable(_pmd);
  2162. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2163. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2164. /*
  2165. * spin_lock() below is not the equivalent of smp_wmb(), so
  2166. * this is needed to avoid the copy_huge_page writes to become
  2167. * visible after the set_pmd_at() write.
  2168. */
  2169. smp_wmb();
  2170. spin_lock(pmd_ptl);
  2171. BUG_ON(!pmd_none(*pmd));
  2172. page_add_new_anon_rmap(new_page, vma, address);
  2173. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2174. set_pmd_at(mm, address, pmd, _pmd);
  2175. update_mmu_cache_pmd(vma, address, pmd);
  2176. spin_unlock(pmd_ptl);
  2177. *hpage = NULL;
  2178. khugepaged_pages_collapsed++;
  2179. out_up_write:
  2180. up_write(&mm->mmap_sem);
  2181. return;
  2182. out:
  2183. mem_cgroup_uncharge_page(new_page);
  2184. goto out_up_write;
  2185. }
  2186. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2187. struct vm_area_struct *vma,
  2188. unsigned long address,
  2189. struct page **hpage)
  2190. {
  2191. pmd_t *pmd;
  2192. pte_t *pte, *_pte;
  2193. int ret = 0, referenced = 0, none = 0;
  2194. struct page *page;
  2195. unsigned long _address;
  2196. spinlock_t *ptl;
  2197. int node = NUMA_NO_NODE;
  2198. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2199. pmd = mm_find_pmd(mm, address);
  2200. if (!pmd)
  2201. goto out;
  2202. if (pmd_trans_huge(*pmd))
  2203. goto out;
  2204. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2205. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2206. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2207. _pte++, _address += PAGE_SIZE) {
  2208. pte_t pteval = *_pte;
  2209. if (pte_none(pteval)) {
  2210. if (++none <= khugepaged_max_ptes_none)
  2211. continue;
  2212. else
  2213. goto out_unmap;
  2214. }
  2215. if (!pte_present(pteval) || !pte_write(pteval))
  2216. goto out_unmap;
  2217. page = vm_normal_page(vma, _address, pteval);
  2218. if (unlikely(!page))
  2219. goto out_unmap;
  2220. /*
  2221. * Record which node the original page is from and save this
  2222. * information to khugepaged_node_load[].
  2223. * Khupaged will allocate hugepage from the node has the max
  2224. * hit record.
  2225. */
  2226. node = page_to_nid(page);
  2227. khugepaged_node_load[node]++;
  2228. VM_BUG_ON_PAGE(PageCompound(page), page);
  2229. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2230. goto out_unmap;
  2231. /* cannot use mapcount: can't collapse if there's a gup pin */
  2232. if (page_count(page) != 1)
  2233. goto out_unmap;
  2234. if (pte_young(pteval) || PageReferenced(page) ||
  2235. mmu_notifier_test_young(vma->vm_mm, address))
  2236. referenced = 1;
  2237. }
  2238. if (referenced)
  2239. ret = 1;
  2240. out_unmap:
  2241. pte_unmap_unlock(pte, ptl);
  2242. if (ret) {
  2243. node = khugepaged_find_target_node();
  2244. /* collapse_huge_page will return with the mmap_sem released */
  2245. collapse_huge_page(mm, address, hpage, vma, node);
  2246. }
  2247. out:
  2248. return ret;
  2249. }
  2250. static void collect_mm_slot(struct mm_slot *mm_slot)
  2251. {
  2252. struct mm_struct *mm = mm_slot->mm;
  2253. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2254. if (khugepaged_test_exit(mm)) {
  2255. /* free mm_slot */
  2256. hash_del(&mm_slot->hash);
  2257. list_del(&mm_slot->mm_node);
  2258. /*
  2259. * Not strictly needed because the mm exited already.
  2260. *
  2261. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2262. */
  2263. /* khugepaged_mm_lock actually not necessary for the below */
  2264. free_mm_slot(mm_slot);
  2265. mmdrop(mm);
  2266. }
  2267. }
  2268. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2269. struct page **hpage)
  2270. __releases(&khugepaged_mm_lock)
  2271. __acquires(&khugepaged_mm_lock)
  2272. {
  2273. struct mm_slot *mm_slot;
  2274. struct mm_struct *mm;
  2275. struct vm_area_struct *vma;
  2276. int progress = 0;
  2277. VM_BUG_ON(!pages);
  2278. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2279. if (khugepaged_scan.mm_slot)
  2280. mm_slot = khugepaged_scan.mm_slot;
  2281. else {
  2282. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2283. struct mm_slot, mm_node);
  2284. khugepaged_scan.address = 0;
  2285. khugepaged_scan.mm_slot = mm_slot;
  2286. }
  2287. spin_unlock(&khugepaged_mm_lock);
  2288. mm = mm_slot->mm;
  2289. down_read(&mm->mmap_sem);
  2290. if (unlikely(khugepaged_test_exit(mm)))
  2291. vma = NULL;
  2292. else
  2293. vma = find_vma(mm, khugepaged_scan.address);
  2294. progress++;
  2295. for (; vma; vma = vma->vm_next) {
  2296. unsigned long hstart, hend;
  2297. cond_resched();
  2298. if (unlikely(khugepaged_test_exit(mm))) {
  2299. progress++;
  2300. break;
  2301. }
  2302. if (!hugepage_vma_check(vma)) {
  2303. skip:
  2304. progress++;
  2305. continue;
  2306. }
  2307. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2308. hend = vma->vm_end & HPAGE_PMD_MASK;
  2309. if (hstart >= hend)
  2310. goto skip;
  2311. if (khugepaged_scan.address > hend)
  2312. goto skip;
  2313. if (khugepaged_scan.address < hstart)
  2314. khugepaged_scan.address = hstart;
  2315. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2316. while (khugepaged_scan.address < hend) {
  2317. int ret;
  2318. cond_resched();
  2319. if (unlikely(khugepaged_test_exit(mm)))
  2320. goto breakouterloop;
  2321. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2322. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2323. hend);
  2324. ret = khugepaged_scan_pmd(mm, vma,
  2325. khugepaged_scan.address,
  2326. hpage);
  2327. /* move to next address */
  2328. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2329. progress += HPAGE_PMD_NR;
  2330. if (ret)
  2331. /* we released mmap_sem so break loop */
  2332. goto breakouterloop_mmap_sem;
  2333. if (progress >= pages)
  2334. goto breakouterloop;
  2335. }
  2336. }
  2337. breakouterloop:
  2338. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2339. breakouterloop_mmap_sem:
  2340. spin_lock(&khugepaged_mm_lock);
  2341. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2342. /*
  2343. * Release the current mm_slot if this mm is about to die, or
  2344. * if we scanned all vmas of this mm.
  2345. */
  2346. if (khugepaged_test_exit(mm) || !vma) {
  2347. /*
  2348. * Make sure that if mm_users is reaching zero while
  2349. * khugepaged runs here, khugepaged_exit will find
  2350. * mm_slot not pointing to the exiting mm.
  2351. */
  2352. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2353. khugepaged_scan.mm_slot = list_entry(
  2354. mm_slot->mm_node.next,
  2355. struct mm_slot, mm_node);
  2356. khugepaged_scan.address = 0;
  2357. } else {
  2358. khugepaged_scan.mm_slot = NULL;
  2359. khugepaged_full_scans++;
  2360. }
  2361. collect_mm_slot(mm_slot);
  2362. }
  2363. return progress;
  2364. }
  2365. static int khugepaged_has_work(void)
  2366. {
  2367. return !list_empty(&khugepaged_scan.mm_head) &&
  2368. khugepaged_enabled();
  2369. }
  2370. static int khugepaged_wait_event(void)
  2371. {
  2372. return !list_empty(&khugepaged_scan.mm_head) ||
  2373. kthread_should_stop();
  2374. }
  2375. static void khugepaged_do_scan(void)
  2376. {
  2377. struct page *hpage = NULL;
  2378. unsigned int progress = 0, pass_through_head = 0;
  2379. unsigned int pages = khugepaged_pages_to_scan;
  2380. bool wait = true;
  2381. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2382. while (progress < pages) {
  2383. if (!khugepaged_prealloc_page(&hpage, &wait))
  2384. break;
  2385. cond_resched();
  2386. if (unlikely(kthread_should_stop() || freezing(current)))
  2387. break;
  2388. spin_lock(&khugepaged_mm_lock);
  2389. if (!khugepaged_scan.mm_slot)
  2390. pass_through_head++;
  2391. if (khugepaged_has_work() &&
  2392. pass_through_head < 2)
  2393. progress += khugepaged_scan_mm_slot(pages - progress,
  2394. &hpage);
  2395. else
  2396. progress = pages;
  2397. spin_unlock(&khugepaged_mm_lock);
  2398. }
  2399. if (!IS_ERR_OR_NULL(hpage))
  2400. put_page(hpage);
  2401. }
  2402. static void khugepaged_wait_work(void)
  2403. {
  2404. try_to_freeze();
  2405. if (khugepaged_has_work()) {
  2406. if (!khugepaged_scan_sleep_millisecs)
  2407. return;
  2408. wait_event_freezable_timeout(khugepaged_wait,
  2409. kthread_should_stop(),
  2410. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2411. return;
  2412. }
  2413. if (khugepaged_enabled())
  2414. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2415. }
  2416. static int khugepaged(void *none)
  2417. {
  2418. struct mm_slot *mm_slot;
  2419. set_freezable();
  2420. set_user_nice(current, MAX_NICE);
  2421. while (!kthread_should_stop()) {
  2422. khugepaged_do_scan();
  2423. khugepaged_wait_work();
  2424. }
  2425. spin_lock(&khugepaged_mm_lock);
  2426. mm_slot = khugepaged_scan.mm_slot;
  2427. khugepaged_scan.mm_slot = NULL;
  2428. if (mm_slot)
  2429. collect_mm_slot(mm_slot);
  2430. spin_unlock(&khugepaged_mm_lock);
  2431. return 0;
  2432. }
  2433. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2434. unsigned long haddr, pmd_t *pmd)
  2435. {
  2436. struct mm_struct *mm = vma->vm_mm;
  2437. pgtable_t pgtable;
  2438. pmd_t _pmd;
  2439. int i;
  2440. pmdp_clear_flush(vma, haddr, pmd);
  2441. /* leave pmd empty until pte is filled */
  2442. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2443. pmd_populate(mm, &_pmd, pgtable);
  2444. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2445. pte_t *pte, entry;
  2446. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2447. entry = pte_mkspecial(entry);
  2448. pte = pte_offset_map(&_pmd, haddr);
  2449. VM_BUG_ON(!pte_none(*pte));
  2450. set_pte_at(mm, haddr, pte, entry);
  2451. pte_unmap(pte);
  2452. }
  2453. smp_wmb(); /* make pte visible before pmd */
  2454. pmd_populate(mm, pmd, pgtable);
  2455. put_huge_zero_page();
  2456. }
  2457. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2458. pmd_t *pmd)
  2459. {
  2460. spinlock_t *ptl;
  2461. struct page *page;
  2462. struct mm_struct *mm = vma->vm_mm;
  2463. unsigned long haddr = address & HPAGE_PMD_MASK;
  2464. unsigned long mmun_start; /* For mmu_notifiers */
  2465. unsigned long mmun_end; /* For mmu_notifiers */
  2466. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2467. mmun_start = haddr;
  2468. mmun_end = haddr + HPAGE_PMD_SIZE;
  2469. again:
  2470. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2471. ptl = pmd_lock(mm, pmd);
  2472. if (unlikely(!pmd_trans_huge(*pmd))) {
  2473. spin_unlock(ptl);
  2474. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2475. return;
  2476. }
  2477. if (is_huge_zero_pmd(*pmd)) {
  2478. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2479. spin_unlock(ptl);
  2480. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2481. return;
  2482. }
  2483. page = pmd_page(*pmd);
  2484. VM_BUG_ON_PAGE(!page_count(page), page);
  2485. get_page(page);
  2486. spin_unlock(ptl);
  2487. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2488. split_huge_page(page);
  2489. put_page(page);
  2490. /*
  2491. * We don't always have down_write of mmap_sem here: a racing
  2492. * do_huge_pmd_wp_page() might have copied-on-write to another
  2493. * huge page before our split_huge_page() got the anon_vma lock.
  2494. */
  2495. if (unlikely(pmd_trans_huge(*pmd)))
  2496. goto again;
  2497. }
  2498. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2499. pmd_t *pmd)
  2500. {
  2501. struct vm_area_struct *vma;
  2502. vma = find_vma(mm, address);
  2503. BUG_ON(vma == NULL);
  2504. split_huge_page_pmd(vma, address, pmd);
  2505. }
  2506. static void split_huge_page_address(struct mm_struct *mm,
  2507. unsigned long address)
  2508. {
  2509. pmd_t *pmd;
  2510. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2511. pmd = mm_find_pmd(mm, address);
  2512. if (!pmd)
  2513. return;
  2514. /*
  2515. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2516. * materialize from under us.
  2517. */
  2518. split_huge_page_pmd_mm(mm, address, pmd);
  2519. }
  2520. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2521. unsigned long start,
  2522. unsigned long end,
  2523. long adjust_next)
  2524. {
  2525. /*
  2526. * If the new start address isn't hpage aligned and it could
  2527. * previously contain an hugepage: check if we need to split
  2528. * an huge pmd.
  2529. */
  2530. if (start & ~HPAGE_PMD_MASK &&
  2531. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2532. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2533. split_huge_page_address(vma->vm_mm, start);
  2534. /*
  2535. * If the new end address isn't hpage aligned and it could
  2536. * previously contain an hugepage: check if we need to split
  2537. * an huge pmd.
  2538. */
  2539. if (end & ~HPAGE_PMD_MASK &&
  2540. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2541. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2542. split_huge_page_address(vma->vm_mm, end);
  2543. /*
  2544. * If we're also updating the vma->vm_next->vm_start, if the new
  2545. * vm_next->vm_start isn't page aligned and it could previously
  2546. * contain an hugepage: check if we need to split an huge pmd.
  2547. */
  2548. if (adjust_next > 0) {
  2549. struct vm_area_struct *next = vma->vm_next;
  2550. unsigned long nstart = next->vm_start;
  2551. nstart += adjust_next << PAGE_SHIFT;
  2552. if (nstart & ~HPAGE_PMD_MASK &&
  2553. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2554. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2555. split_huge_page_address(next->vm_mm, nstart);
  2556. }
  2557. }