security.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/dcache.h>
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/security.h>
  19. #include <linux/integrity.h>
  20. #include <linux/ima.h>
  21. #include <linux/evm.h>
  22. #include <linux/fsnotify.h>
  23. #include <linux/mman.h>
  24. #include <linux/mount.h>
  25. #include <linux/personality.h>
  26. #include <linux/backing-dev.h>
  27. #include <net/flow.h>
  28. #define MAX_LSM_EVM_XATTR 2
  29. /* Boot-time LSM user choice */
  30. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  31. CONFIG_DEFAULT_SECURITY;
  32. static struct security_operations *security_ops;
  33. static struct security_operations default_security_ops = {
  34. .name = "default",
  35. };
  36. static inline int __init verify(struct security_operations *ops)
  37. {
  38. /* verify the security_operations structure exists */
  39. if (!ops)
  40. return -EINVAL;
  41. security_fixup_ops(ops);
  42. return 0;
  43. }
  44. static void __init do_security_initcalls(void)
  45. {
  46. initcall_t *call;
  47. call = __security_initcall_start;
  48. while (call < __security_initcall_end) {
  49. (*call) ();
  50. call++;
  51. }
  52. }
  53. /**
  54. * security_init - initializes the security framework
  55. *
  56. * This should be called early in the kernel initialization sequence.
  57. */
  58. int __init security_init(void)
  59. {
  60. printk(KERN_INFO "Security Framework initialized\n");
  61. security_fixup_ops(&default_security_ops);
  62. security_ops = &default_security_ops;
  63. do_security_initcalls();
  64. return 0;
  65. }
  66. void reset_security_ops(void)
  67. {
  68. security_ops = &default_security_ops;
  69. }
  70. /* Save user chosen LSM */
  71. static int __init choose_lsm(char *str)
  72. {
  73. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  74. return 1;
  75. }
  76. __setup("security=", choose_lsm);
  77. /**
  78. * security_module_enable - Load given security module on boot ?
  79. * @ops: a pointer to the struct security_operations that is to be checked.
  80. *
  81. * Each LSM must pass this method before registering its own operations
  82. * to avoid security registration races. This method may also be used
  83. * to check if your LSM is currently loaded during kernel initialization.
  84. *
  85. * Return true if:
  86. * -The passed LSM is the one chosen by user at boot time,
  87. * -or the passed LSM is configured as the default and the user did not
  88. * choose an alternate LSM at boot time.
  89. * Otherwise, return false.
  90. */
  91. int __init security_module_enable(struct security_operations *ops)
  92. {
  93. return !strcmp(ops->name, chosen_lsm);
  94. }
  95. /**
  96. * register_security - registers a security framework with the kernel
  97. * @ops: a pointer to the struct security_options that is to be registered
  98. *
  99. * This function allows a security module to register itself with the
  100. * kernel security subsystem. Some rudimentary checking is done on the @ops
  101. * value passed to this function. You'll need to check first if your LSM
  102. * is allowed to register its @ops by calling security_module_enable(@ops).
  103. *
  104. * If there is already a security module registered with the kernel,
  105. * an error will be returned. Otherwise %0 is returned on success.
  106. */
  107. int __init register_security(struct security_operations *ops)
  108. {
  109. if (verify(ops)) {
  110. printk(KERN_DEBUG "%s could not verify "
  111. "security_operations structure.\n", __func__);
  112. return -EINVAL;
  113. }
  114. if (security_ops != &default_security_ops)
  115. return -EAGAIN;
  116. security_ops = ops;
  117. return 0;
  118. }
  119. /* Security operations */
  120. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  121. {
  122. #ifdef CONFIG_SECURITY_YAMA_STACKED
  123. int rc;
  124. rc = yama_ptrace_access_check(child, mode);
  125. if (rc)
  126. return rc;
  127. #endif
  128. return security_ops->ptrace_access_check(child, mode);
  129. }
  130. int security_ptrace_traceme(struct task_struct *parent)
  131. {
  132. #ifdef CONFIG_SECURITY_YAMA_STACKED
  133. int rc;
  134. rc = yama_ptrace_traceme(parent);
  135. if (rc)
  136. return rc;
  137. #endif
  138. return security_ops->ptrace_traceme(parent);
  139. }
  140. int security_capget(struct task_struct *target,
  141. kernel_cap_t *effective,
  142. kernel_cap_t *inheritable,
  143. kernel_cap_t *permitted)
  144. {
  145. return security_ops->capget(target, effective, inheritable, permitted);
  146. }
  147. int security_capset(struct cred *new, const struct cred *old,
  148. const kernel_cap_t *effective,
  149. const kernel_cap_t *inheritable,
  150. const kernel_cap_t *permitted)
  151. {
  152. return security_ops->capset(new, old,
  153. effective, inheritable, permitted);
  154. }
  155. int security_capable(const struct cred *cred, struct user_namespace *ns,
  156. int cap)
  157. {
  158. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  159. }
  160. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  161. int cap)
  162. {
  163. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  164. }
  165. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  166. {
  167. return security_ops->quotactl(cmds, type, id, sb);
  168. }
  169. int security_quota_on(struct dentry *dentry)
  170. {
  171. return security_ops->quota_on(dentry);
  172. }
  173. int security_syslog(int type)
  174. {
  175. return security_ops->syslog(type);
  176. }
  177. int security_settime(const struct timespec *ts, const struct timezone *tz)
  178. {
  179. return security_ops->settime(ts, tz);
  180. }
  181. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  182. {
  183. return security_ops->vm_enough_memory(mm, pages);
  184. }
  185. int security_bprm_set_creds(struct linux_binprm *bprm)
  186. {
  187. return security_ops->bprm_set_creds(bprm);
  188. }
  189. int security_bprm_check(struct linux_binprm *bprm)
  190. {
  191. int ret;
  192. ret = security_ops->bprm_check_security(bprm);
  193. if (ret)
  194. return ret;
  195. return ima_bprm_check(bprm);
  196. }
  197. void security_bprm_committing_creds(struct linux_binprm *bprm)
  198. {
  199. security_ops->bprm_committing_creds(bprm);
  200. }
  201. void security_bprm_committed_creds(struct linux_binprm *bprm)
  202. {
  203. security_ops->bprm_committed_creds(bprm);
  204. }
  205. int security_bprm_secureexec(struct linux_binprm *bprm)
  206. {
  207. return security_ops->bprm_secureexec(bprm);
  208. }
  209. int security_sb_alloc(struct super_block *sb)
  210. {
  211. return security_ops->sb_alloc_security(sb);
  212. }
  213. void security_sb_free(struct super_block *sb)
  214. {
  215. security_ops->sb_free_security(sb);
  216. }
  217. int security_sb_copy_data(char *orig, char *copy)
  218. {
  219. return security_ops->sb_copy_data(orig, copy);
  220. }
  221. EXPORT_SYMBOL(security_sb_copy_data);
  222. int security_sb_remount(struct super_block *sb, void *data)
  223. {
  224. return security_ops->sb_remount(sb, data);
  225. }
  226. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  227. {
  228. return security_ops->sb_kern_mount(sb, flags, data);
  229. }
  230. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  231. {
  232. return security_ops->sb_show_options(m, sb);
  233. }
  234. int security_sb_statfs(struct dentry *dentry)
  235. {
  236. return security_ops->sb_statfs(dentry);
  237. }
  238. int security_sb_mount(const char *dev_name, struct path *path,
  239. const char *type, unsigned long flags, void *data)
  240. {
  241. return security_ops->sb_mount(dev_name, path, type, flags, data);
  242. }
  243. int security_sb_umount(struct vfsmount *mnt, int flags)
  244. {
  245. return security_ops->sb_umount(mnt, flags);
  246. }
  247. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  248. {
  249. return security_ops->sb_pivotroot(old_path, new_path);
  250. }
  251. int security_sb_set_mnt_opts(struct super_block *sb,
  252. struct security_mnt_opts *opts,
  253. unsigned long kern_flags,
  254. unsigned long *set_kern_flags)
  255. {
  256. return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
  257. set_kern_flags);
  258. }
  259. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  260. int security_sb_clone_mnt_opts(const struct super_block *oldsb,
  261. struct super_block *newsb)
  262. {
  263. return security_ops->sb_clone_mnt_opts(oldsb, newsb);
  264. }
  265. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  266. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  267. {
  268. return security_ops->sb_parse_opts_str(options, opts);
  269. }
  270. EXPORT_SYMBOL(security_sb_parse_opts_str);
  271. int security_inode_alloc(struct inode *inode)
  272. {
  273. inode->i_security = NULL;
  274. return security_ops->inode_alloc_security(inode);
  275. }
  276. void security_inode_free(struct inode *inode)
  277. {
  278. integrity_inode_free(inode);
  279. security_ops->inode_free_security(inode);
  280. }
  281. int security_dentry_init_security(struct dentry *dentry, int mode,
  282. struct qstr *name, void **ctx,
  283. u32 *ctxlen)
  284. {
  285. return security_ops->dentry_init_security(dentry, mode, name,
  286. ctx, ctxlen);
  287. }
  288. EXPORT_SYMBOL(security_dentry_init_security);
  289. int security_inode_init_security(struct inode *inode, struct inode *dir,
  290. const struct qstr *qstr,
  291. const initxattrs initxattrs, void *fs_data)
  292. {
  293. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  294. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  295. int ret;
  296. if (unlikely(IS_PRIVATE(inode)))
  297. return 0;
  298. if (!initxattrs)
  299. return security_ops->inode_init_security(inode, dir, qstr,
  300. NULL, NULL, NULL);
  301. memset(new_xattrs, 0, sizeof(new_xattrs));
  302. lsm_xattr = new_xattrs;
  303. ret = security_ops->inode_init_security(inode, dir, qstr,
  304. &lsm_xattr->name,
  305. &lsm_xattr->value,
  306. &lsm_xattr->value_len);
  307. if (ret)
  308. goto out;
  309. evm_xattr = lsm_xattr + 1;
  310. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  311. if (ret)
  312. goto out;
  313. ret = initxattrs(inode, new_xattrs, fs_data);
  314. out:
  315. for (xattr = new_xattrs; xattr->value != NULL; xattr++)
  316. kfree(xattr->value);
  317. return (ret == -EOPNOTSUPP) ? 0 : ret;
  318. }
  319. EXPORT_SYMBOL(security_inode_init_security);
  320. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  321. const struct qstr *qstr, const char **name,
  322. void **value, size_t *len)
  323. {
  324. if (unlikely(IS_PRIVATE(inode)))
  325. return -EOPNOTSUPP;
  326. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  327. len);
  328. }
  329. EXPORT_SYMBOL(security_old_inode_init_security);
  330. #ifdef CONFIG_SECURITY_PATH
  331. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  332. unsigned int dev)
  333. {
  334. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  335. return 0;
  336. return security_ops->path_mknod(dir, dentry, mode, dev);
  337. }
  338. EXPORT_SYMBOL(security_path_mknod);
  339. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  340. {
  341. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  342. return 0;
  343. return security_ops->path_mkdir(dir, dentry, mode);
  344. }
  345. EXPORT_SYMBOL(security_path_mkdir);
  346. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  347. {
  348. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  349. return 0;
  350. return security_ops->path_rmdir(dir, dentry);
  351. }
  352. int security_path_unlink(struct path *dir, struct dentry *dentry)
  353. {
  354. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  355. return 0;
  356. return security_ops->path_unlink(dir, dentry);
  357. }
  358. EXPORT_SYMBOL(security_path_unlink);
  359. int security_path_symlink(struct path *dir, struct dentry *dentry,
  360. const char *old_name)
  361. {
  362. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  363. return 0;
  364. return security_ops->path_symlink(dir, dentry, old_name);
  365. }
  366. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  367. struct dentry *new_dentry)
  368. {
  369. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  370. return 0;
  371. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  372. }
  373. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  374. struct path *new_dir, struct dentry *new_dentry,
  375. unsigned int flags)
  376. {
  377. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  378. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  379. return 0;
  380. if (flags & RENAME_EXCHANGE) {
  381. int err = security_ops->path_rename(new_dir, new_dentry,
  382. old_dir, old_dentry);
  383. if (err)
  384. return err;
  385. }
  386. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  387. new_dentry);
  388. }
  389. EXPORT_SYMBOL(security_path_rename);
  390. int security_path_truncate(struct path *path)
  391. {
  392. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  393. return 0;
  394. return security_ops->path_truncate(path);
  395. }
  396. int security_path_chmod(struct path *path, umode_t mode)
  397. {
  398. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  399. return 0;
  400. return security_ops->path_chmod(path, mode);
  401. }
  402. int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
  403. {
  404. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  405. return 0;
  406. return security_ops->path_chown(path, uid, gid);
  407. }
  408. int security_path_chroot(struct path *path)
  409. {
  410. return security_ops->path_chroot(path);
  411. }
  412. #endif
  413. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  414. {
  415. if (unlikely(IS_PRIVATE(dir)))
  416. return 0;
  417. return security_ops->inode_create(dir, dentry, mode);
  418. }
  419. EXPORT_SYMBOL_GPL(security_inode_create);
  420. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  421. struct dentry *new_dentry)
  422. {
  423. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  424. return 0;
  425. return security_ops->inode_link(old_dentry, dir, new_dentry);
  426. }
  427. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  428. {
  429. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  430. return 0;
  431. return security_ops->inode_unlink(dir, dentry);
  432. }
  433. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  434. const char *old_name)
  435. {
  436. if (unlikely(IS_PRIVATE(dir)))
  437. return 0;
  438. return security_ops->inode_symlink(dir, dentry, old_name);
  439. }
  440. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  441. {
  442. if (unlikely(IS_PRIVATE(dir)))
  443. return 0;
  444. return security_ops->inode_mkdir(dir, dentry, mode);
  445. }
  446. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  447. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  448. {
  449. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  450. return 0;
  451. return security_ops->inode_rmdir(dir, dentry);
  452. }
  453. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  454. {
  455. if (unlikely(IS_PRIVATE(dir)))
  456. return 0;
  457. return security_ops->inode_mknod(dir, dentry, mode, dev);
  458. }
  459. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  460. struct inode *new_dir, struct dentry *new_dentry,
  461. unsigned int flags)
  462. {
  463. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  464. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  465. return 0;
  466. if (flags & RENAME_EXCHANGE) {
  467. int err = security_ops->inode_rename(new_dir, new_dentry,
  468. old_dir, old_dentry);
  469. if (err)
  470. return err;
  471. }
  472. return security_ops->inode_rename(old_dir, old_dentry,
  473. new_dir, new_dentry);
  474. }
  475. int security_inode_readlink(struct dentry *dentry)
  476. {
  477. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  478. return 0;
  479. return security_ops->inode_readlink(dentry);
  480. }
  481. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  482. {
  483. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  484. return 0;
  485. return security_ops->inode_follow_link(dentry, nd);
  486. }
  487. int security_inode_permission(struct inode *inode, int mask)
  488. {
  489. if (unlikely(IS_PRIVATE(inode)))
  490. return 0;
  491. return security_ops->inode_permission(inode, mask);
  492. }
  493. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  494. {
  495. int ret;
  496. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  497. return 0;
  498. ret = security_ops->inode_setattr(dentry, attr);
  499. if (ret)
  500. return ret;
  501. return evm_inode_setattr(dentry, attr);
  502. }
  503. EXPORT_SYMBOL_GPL(security_inode_setattr);
  504. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  505. {
  506. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  507. return 0;
  508. return security_ops->inode_getattr(mnt, dentry);
  509. }
  510. int security_inode_setxattr(struct dentry *dentry, const char *name,
  511. const void *value, size_t size, int flags)
  512. {
  513. int ret;
  514. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  515. return 0;
  516. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  517. if (ret)
  518. return ret;
  519. ret = ima_inode_setxattr(dentry, name, value, size);
  520. if (ret)
  521. return ret;
  522. return evm_inode_setxattr(dentry, name, value, size);
  523. }
  524. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  525. const void *value, size_t size, int flags)
  526. {
  527. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  528. return;
  529. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  530. evm_inode_post_setxattr(dentry, name, value, size);
  531. }
  532. int security_inode_getxattr(struct dentry *dentry, const char *name)
  533. {
  534. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  535. return 0;
  536. return security_ops->inode_getxattr(dentry, name);
  537. }
  538. int security_inode_listxattr(struct dentry *dentry)
  539. {
  540. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  541. return 0;
  542. return security_ops->inode_listxattr(dentry);
  543. }
  544. int security_inode_removexattr(struct dentry *dentry, const char *name)
  545. {
  546. int ret;
  547. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  548. return 0;
  549. ret = security_ops->inode_removexattr(dentry, name);
  550. if (ret)
  551. return ret;
  552. ret = ima_inode_removexattr(dentry, name);
  553. if (ret)
  554. return ret;
  555. return evm_inode_removexattr(dentry, name);
  556. }
  557. int security_inode_need_killpriv(struct dentry *dentry)
  558. {
  559. return security_ops->inode_need_killpriv(dentry);
  560. }
  561. int security_inode_killpriv(struct dentry *dentry)
  562. {
  563. return security_ops->inode_killpriv(dentry);
  564. }
  565. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  566. {
  567. if (unlikely(IS_PRIVATE(inode)))
  568. return -EOPNOTSUPP;
  569. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  570. }
  571. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  572. {
  573. if (unlikely(IS_PRIVATE(inode)))
  574. return -EOPNOTSUPP;
  575. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  576. }
  577. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  578. {
  579. if (unlikely(IS_PRIVATE(inode)))
  580. return 0;
  581. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  582. }
  583. EXPORT_SYMBOL(security_inode_listsecurity);
  584. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  585. {
  586. security_ops->inode_getsecid(inode, secid);
  587. }
  588. int security_file_permission(struct file *file, int mask)
  589. {
  590. int ret;
  591. ret = security_ops->file_permission(file, mask);
  592. if (ret)
  593. return ret;
  594. return fsnotify_perm(file, mask);
  595. }
  596. int security_file_alloc(struct file *file)
  597. {
  598. return security_ops->file_alloc_security(file);
  599. }
  600. void security_file_free(struct file *file)
  601. {
  602. security_ops->file_free_security(file);
  603. }
  604. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  605. {
  606. return security_ops->file_ioctl(file, cmd, arg);
  607. }
  608. static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
  609. {
  610. /*
  611. * Does we have PROT_READ and does the application expect
  612. * it to imply PROT_EXEC? If not, nothing to talk about...
  613. */
  614. if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
  615. return prot;
  616. if (!(current->personality & READ_IMPLIES_EXEC))
  617. return prot;
  618. /*
  619. * if that's an anonymous mapping, let it.
  620. */
  621. if (!file)
  622. return prot | PROT_EXEC;
  623. /*
  624. * ditto if it's not on noexec mount, except that on !MMU we need
  625. * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
  626. */
  627. if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
  628. #ifndef CONFIG_MMU
  629. if (file->f_op->mmap_capabilities) {
  630. unsigned caps = file->f_op->mmap_capabilities(file);
  631. if (!(caps & NOMMU_MAP_EXEC))
  632. return prot;
  633. }
  634. #endif
  635. return prot | PROT_EXEC;
  636. }
  637. /* anything on noexec mount won't get PROT_EXEC */
  638. return prot;
  639. }
  640. int security_mmap_file(struct file *file, unsigned long prot,
  641. unsigned long flags)
  642. {
  643. int ret;
  644. ret = security_ops->mmap_file(file, prot,
  645. mmap_prot(file, prot), flags);
  646. if (ret)
  647. return ret;
  648. return ima_file_mmap(file, prot);
  649. }
  650. int security_mmap_addr(unsigned long addr)
  651. {
  652. return security_ops->mmap_addr(addr);
  653. }
  654. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  655. unsigned long prot)
  656. {
  657. return security_ops->file_mprotect(vma, reqprot, prot);
  658. }
  659. int security_file_lock(struct file *file, unsigned int cmd)
  660. {
  661. return security_ops->file_lock(file, cmd);
  662. }
  663. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  664. {
  665. return security_ops->file_fcntl(file, cmd, arg);
  666. }
  667. void security_file_set_fowner(struct file *file)
  668. {
  669. security_ops->file_set_fowner(file);
  670. }
  671. int security_file_send_sigiotask(struct task_struct *tsk,
  672. struct fown_struct *fown, int sig)
  673. {
  674. return security_ops->file_send_sigiotask(tsk, fown, sig);
  675. }
  676. int security_file_receive(struct file *file)
  677. {
  678. return security_ops->file_receive(file);
  679. }
  680. int security_file_open(struct file *file, const struct cred *cred)
  681. {
  682. int ret;
  683. ret = security_ops->file_open(file, cred);
  684. if (ret)
  685. return ret;
  686. return fsnotify_perm(file, MAY_OPEN);
  687. }
  688. int security_task_create(unsigned long clone_flags)
  689. {
  690. return security_ops->task_create(clone_flags);
  691. }
  692. void security_task_free(struct task_struct *task)
  693. {
  694. #ifdef CONFIG_SECURITY_YAMA_STACKED
  695. yama_task_free(task);
  696. #endif
  697. security_ops->task_free(task);
  698. }
  699. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  700. {
  701. return security_ops->cred_alloc_blank(cred, gfp);
  702. }
  703. void security_cred_free(struct cred *cred)
  704. {
  705. security_ops->cred_free(cred);
  706. }
  707. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  708. {
  709. return security_ops->cred_prepare(new, old, gfp);
  710. }
  711. void security_transfer_creds(struct cred *new, const struct cred *old)
  712. {
  713. security_ops->cred_transfer(new, old);
  714. }
  715. int security_kernel_act_as(struct cred *new, u32 secid)
  716. {
  717. return security_ops->kernel_act_as(new, secid);
  718. }
  719. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  720. {
  721. return security_ops->kernel_create_files_as(new, inode);
  722. }
  723. int security_kernel_fw_from_file(struct file *file, char *buf, size_t size)
  724. {
  725. int ret;
  726. ret = security_ops->kernel_fw_from_file(file, buf, size);
  727. if (ret)
  728. return ret;
  729. return ima_fw_from_file(file, buf, size);
  730. }
  731. EXPORT_SYMBOL_GPL(security_kernel_fw_from_file);
  732. int security_kernel_module_request(char *kmod_name)
  733. {
  734. return security_ops->kernel_module_request(kmod_name);
  735. }
  736. int security_kernel_module_from_file(struct file *file)
  737. {
  738. int ret;
  739. ret = security_ops->kernel_module_from_file(file);
  740. if (ret)
  741. return ret;
  742. return ima_module_check(file);
  743. }
  744. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  745. int flags)
  746. {
  747. return security_ops->task_fix_setuid(new, old, flags);
  748. }
  749. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  750. {
  751. return security_ops->task_setpgid(p, pgid);
  752. }
  753. int security_task_getpgid(struct task_struct *p)
  754. {
  755. return security_ops->task_getpgid(p);
  756. }
  757. int security_task_getsid(struct task_struct *p)
  758. {
  759. return security_ops->task_getsid(p);
  760. }
  761. void security_task_getsecid(struct task_struct *p, u32 *secid)
  762. {
  763. security_ops->task_getsecid(p, secid);
  764. }
  765. EXPORT_SYMBOL(security_task_getsecid);
  766. int security_task_setnice(struct task_struct *p, int nice)
  767. {
  768. return security_ops->task_setnice(p, nice);
  769. }
  770. int security_task_setioprio(struct task_struct *p, int ioprio)
  771. {
  772. return security_ops->task_setioprio(p, ioprio);
  773. }
  774. int security_task_getioprio(struct task_struct *p)
  775. {
  776. return security_ops->task_getioprio(p);
  777. }
  778. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  779. struct rlimit *new_rlim)
  780. {
  781. return security_ops->task_setrlimit(p, resource, new_rlim);
  782. }
  783. int security_task_setscheduler(struct task_struct *p)
  784. {
  785. return security_ops->task_setscheduler(p);
  786. }
  787. int security_task_getscheduler(struct task_struct *p)
  788. {
  789. return security_ops->task_getscheduler(p);
  790. }
  791. int security_task_movememory(struct task_struct *p)
  792. {
  793. return security_ops->task_movememory(p);
  794. }
  795. int security_task_kill(struct task_struct *p, struct siginfo *info,
  796. int sig, u32 secid)
  797. {
  798. return security_ops->task_kill(p, info, sig, secid);
  799. }
  800. int security_task_wait(struct task_struct *p)
  801. {
  802. return security_ops->task_wait(p);
  803. }
  804. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  805. unsigned long arg4, unsigned long arg5)
  806. {
  807. #ifdef CONFIG_SECURITY_YAMA_STACKED
  808. int rc;
  809. rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
  810. if (rc != -ENOSYS)
  811. return rc;
  812. #endif
  813. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  814. }
  815. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  816. {
  817. security_ops->task_to_inode(p, inode);
  818. }
  819. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  820. {
  821. return security_ops->ipc_permission(ipcp, flag);
  822. }
  823. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  824. {
  825. security_ops->ipc_getsecid(ipcp, secid);
  826. }
  827. int security_msg_msg_alloc(struct msg_msg *msg)
  828. {
  829. return security_ops->msg_msg_alloc_security(msg);
  830. }
  831. void security_msg_msg_free(struct msg_msg *msg)
  832. {
  833. security_ops->msg_msg_free_security(msg);
  834. }
  835. int security_msg_queue_alloc(struct msg_queue *msq)
  836. {
  837. return security_ops->msg_queue_alloc_security(msq);
  838. }
  839. void security_msg_queue_free(struct msg_queue *msq)
  840. {
  841. security_ops->msg_queue_free_security(msq);
  842. }
  843. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  844. {
  845. return security_ops->msg_queue_associate(msq, msqflg);
  846. }
  847. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  848. {
  849. return security_ops->msg_queue_msgctl(msq, cmd);
  850. }
  851. int security_msg_queue_msgsnd(struct msg_queue *msq,
  852. struct msg_msg *msg, int msqflg)
  853. {
  854. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  855. }
  856. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  857. struct task_struct *target, long type, int mode)
  858. {
  859. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  860. }
  861. int security_shm_alloc(struct shmid_kernel *shp)
  862. {
  863. return security_ops->shm_alloc_security(shp);
  864. }
  865. void security_shm_free(struct shmid_kernel *shp)
  866. {
  867. security_ops->shm_free_security(shp);
  868. }
  869. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  870. {
  871. return security_ops->shm_associate(shp, shmflg);
  872. }
  873. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  874. {
  875. return security_ops->shm_shmctl(shp, cmd);
  876. }
  877. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  878. {
  879. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  880. }
  881. int security_sem_alloc(struct sem_array *sma)
  882. {
  883. return security_ops->sem_alloc_security(sma);
  884. }
  885. void security_sem_free(struct sem_array *sma)
  886. {
  887. security_ops->sem_free_security(sma);
  888. }
  889. int security_sem_associate(struct sem_array *sma, int semflg)
  890. {
  891. return security_ops->sem_associate(sma, semflg);
  892. }
  893. int security_sem_semctl(struct sem_array *sma, int cmd)
  894. {
  895. return security_ops->sem_semctl(sma, cmd);
  896. }
  897. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  898. unsigned nsops, int alter)
  899. {
  900. return security_ops->sem_semop(sma, sops, nsops, alter);
  901. }
  902. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  903. {
  904. if (unlikely(inode && IS_PRIVATE(inode)))
  905. return;
  906. security_ops->d_instantiate(dentry, inode);
  907. }
  908. EXPORT_SYMBOL(security_d_instantiate);
  909. int security_getprocattr(struct task_struct *p, char *name, char **value)
  910. {
  911. return security_ops->getprocattr(p, name, value);
  912. }
  913. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  914. {
  915. return security_ops->setprocattr(p, name, value, size);
  916. }
  917. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  918. {
  919. return security_ops->netlink_send(sk, skb);
  920. }
  921. int security_ismaclabel(const char *name)
  922. {
  923. return security_ops->ismaclabel(name);
  924. }
  925. EXPORT_SYMBOL(security_ismaclabel);
  926. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  927. {
  928. return security_ops->secid_to_secctx(secid, secdata, seclen);
  929. }
  930. EXPORT_SYMBOL(security_secid_to_secctx);
  931. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  932. {
  933. return security_ops->secctx_to_secid(secdata, seclen, secid);
  934. }
  935. EXPORT_SYMBOL(security_secctx_to_secid);
  936. void security_release_secctx(char *secdata, u32 seclen)
  937. {
  938. security_ops->release_secctx(secdata, seclen);
  939. }
  940. EXPORT_SYMBOL(security_release_secctx);
  941. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  942. {
  943. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  944. }
  945. EXPORT_SYMBOL(security_inode_notifysecctx);
  946. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  947. {
  948. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  949. }
  950. EXPORT_SYMBOL(security_inode_setsecctx);
  951. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  952. {
  953. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  954. }
  955. EXPORT_SYMBOL(security_inode_getsecctx);
  956. #ifdef CONFIG_SECURITY_NETWORK
  957. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  958. {
  959. return security_ops->unix_stream_connect(sock, other, newsk);
  960. }
  961. EXPORT_SYMBOL(security_unix_stream_connect);
  962. int security_unix_may_send(struct socket *sock, struct socket *other)
  963. {
  964. return security_ops->unix_may_send(sock, other);
  965. }
  966. EXPORT_SYMBOL(security_unix_may_send);
  967. int security_socket_create(int family, int type, int protocol, int kern)
  968. {
  969. return security_ops->socket_create(family, type, protocol, kern);
  970. }
  971. int security_socket_post_create(struct socket *sock, int family,
  972. int type, int protocol, int kern)
  973. {
  974. return security_ops->socket_post_create(sock, family, type,
  975. protocol, kern);
  976. }
  977. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  978. {
  979. return security_ops->socket_bind(sock, address, addrlen);
  980. }
  981. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  982. {
  983. return security_ops->socket_connect(sock, address, addrlen);
  984. }
  985. int security_socket_listen(struct socket *sock, int backlog)
  986. {
  987. return security_ops->socket_listen(sock, backlog);
  988. }
  989. int security_socket_accept(struct socket *sock, struct socket *newsock)
  990. {
  991. return security_ops->socket_accept(sock, newsock);
  992. }
  993. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  994. {
  995. return security_ops->socket_sendmsg(sock, msg, size);
  996. }
  997. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  998. int size, int flags)
  999. {
  1000. return security_ops->socket_recvmsg(sock, msg, size, flags);
  1001. }
  1002. int security_socket_getsockname(struct socket *sock)
  1003. {
  1004. return security_ops->socket_getsockname(sock);
  1005. }
  1006. int security_socket_getpeername(struct socket *sock)
  1007. {
  1008. return security_ops->socket_getpeername(sock);
  1009. }
  1010. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  1011. {
  1012. return security_ops->socket_getsockopt(sock, level, optname);
  1013. }
  1014. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  1015. {
  1016. return security_ops->socket_setsockopt(sock, level, optname);
  1017. }
  1018. int security_socket_shutdown(struct socket *sock, int how)
  1019. {
  1020. return security_ops->socket_shutdown(sock, how);
  1021. }
  1022. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1023. {
  1024. return security_ops->socket_sock_rcv_skb(sk, skb);
  1025. }
  1026. EXPORT_SYMBOL(security_sock_rcv_skb);
  1027. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  1028. int __user *optlen, unsigned len)
  1029. {
  1030. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  1031. }
  1032. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  1033. {
  1034. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  1035. }
  1036. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  1037. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  1038. {
  1039. return security_ops->sk_alloc_security(sk, family, priority);
  1040. }
  1041. void security_sk_free(struct sock *sk)
  1042. {
  1043. security_ops->sk_free_security(sk);
  1044. }
  1045. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  1046. {
  1047. security_ops->sk_clone_security(sk, newsk);
  1048. }
  1049. EXPORT_SYMBOL(security_sk_clone);
  1050. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  1051. {
  1052. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  1053. }
  1054. EXPORT_SYMBOL(security_sk_classify_flow);
  1055. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  1056. {
  1057. security_ops->req_classify_flow(req, fl);
  1058. }
  1059. EXPORT_SYMBOL(security_req_classify_flow);
  1060. void security_sock_graft(struct sock *sk, struct socket *parent)
  1061. {
  1062. security_ops->sock_graft(sk, parent);
  1063. }
  1064. EXPORT_SYMBOL(security_sock_graft);
  1065. int security_inet_conn_request(struct sock *sk,
  1066. struct sk_buff *skb, struct request_sock *req)
  1067. {
  1068. return security_ops->inet_conn_request(sk, skb, req);
  1069. }
  1070. EXPORT_SYMBOL(security_inet_conn_request);
  1071. void security_inet_csk_clone(struct sock *newsk,
  1072. const struct request_sock *req)
  1073. {
  1074. security_ops->inet_csk_clone(newsk, req);
  1075. }
  1076. void security_inet_conn_established(struct sock *sk,
  1077. struct sk_buff *skb)
  1078. {
  1079. security_ops->inet_conn_established(sk, skb);
  1080. }
  1081. int security_secmark_relabel_packet(u32 secid)
  1082. {
  1083. return security_ops->secmark_relabel_packet(secid);
  1084. }
  1085. EXPORT_SYMBOL(security_secmark_relabel_packet);
  1086. void security_secmark_refcount_inc(void)
  1087. {
  1088. security_ops->secmark_refcount_inc();
  1089. }
  1090. EXPORT_SYMBOL(security_secmark_refcount_inc);
  1091. void security_secmark_refcount_dec(void)
  1092. {
  1093. security_ops->secmark_refcount_dec();
  1094. }
  1095. EXPORT_SYMBOL(security_secmark_refcount_dec);
  1096. int security_tun_dev_alloc_security(void **security)
  1097. {
  1098. return security_ops->tun_dev_alloc_security(security);
  1099. }
  1100. EXPORT_SYMBOL(security_tun_dev_alloc_security);
  1101. void security_tun_dev_free_security(void *security)
  1102. {
  1103. security_ops->tun_dev_free_security(security);
  1104. }
  1105. EXPORT_SYMBOL(security_tun_dev_free_security);
  1106. int security_tun_dev_create(void)
  1107. {
  1108. return security_ops->tun_dev_create();
  1109. }
  1110. EXPORT_SYMBOL(security_tun_dev_create);
  1111. int security_tun_dev_attach_queue(void *security)
  1112. {
  1113. return security_ops->tun_dev_attach_queue(security);
  1114. }
  1115. EXPORT_SYMBOL(security_tun_dev_attach_queue);
  1116. int security_tun_dev_attach(struct sock *sk, void *security)
  1117. {
  1118. return security_ops->tun_dev_attach(sk, security);
  1119. }
  1120. EXPORT_SYMBOL(security_tun_dev_attach);
  1121. int security_tun_dev_open(void *security)
  1122. {
  1123. return security_ops->tun_dev_open(security);
  1124. }
  1125. EXPORT_SYMBOL(security_tun_dev_open);
  1126. void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
  1127. {
  1128. security_ops->skb_owned_by(skb, sk);
  1129. }
  1130. #endif /* CONFIG_SECURITY_NETWORK */
  1131. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1132. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
  1133. struct xfrm_user_sec_ctx *sec_ctx,
  1134. gfp_t gfp)
  1135. {
  1136. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
  1137. }
  1138. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1139. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1140. struct xfrm_sec_ctx **new_ctxp)
  1141. {
  1142. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1143. }
  1144. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1145. {
  1146. security_ops->xfrm_policy_free_security(ctx);
  1147. }
  1148. EXPORT_SYMBOL(security_xfrm_policy_free);
  1149. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1150. {
  1151. return security_ops->xfrm_policy_delete_security(ctx);
  1152. }
  1153. int security_xfrm_state_alloc(struct xfrm_state *x,
  1154. struct xfrm_user_sec_ctx *sec_ctx)
  1155. {
  1156. return security_ops->xfrm_state_alloc(x, sec_ctx);
  1157. }
  1158. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1159. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1160. struct xfrm_sec_ctx *polsec, u32 secid)
  1161. {
  1162. return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
  1163. }
  1164. int security_xfrm_state_delete(struct xfrm_state *x)
  1165. {
  1166. return security_ops->xfrm_state_delete_security(x);
  1167. }
  1168. EXPORT_SYMBOL(security_xfrm_state_delete);
  1169. void security_xfrm_state_free(struct xfrm_state *x)
  1170. {
  1171. security_ops->xfrm_state_free_security(x);
  1172. }
  1173. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1174. {
  1175. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1176. }
  1177. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1178. struct xfrm_policy *xp,
  1179. const struct flowi *fl)
  1180. {
  1181. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1182. }
  1183. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1184. {
  1185. return security_ops->xfrm_decode_session(skb, secid, 1);
  1186. }
  1187. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1188. {
  1189. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1190. BUG_ON(rc);
  1191. }
  1192. EXPORT_SYMBOL(security_skb_classify_flow);
  1193. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1194. #ifdef CONFIG_KEYS
  1195. int security_key_alloc(struct key *key, const struct cred *cred,
  1196. unsigned long flags)
  1197. {
  1198. return security_ops->key_alloc(key, cred, flags);
  1199. }
  1200. void security_key_free(struct key *key)
  1201. {
  1202. security_ops->key_free(key);
  1203. }
  1204. int security_key_permission(key_ref_t key_ref,
  1205. const struct cred *cred, unsigned perm)
  1206. {
  1207. return security_ops->key_permission(key_ref, cred, perm);
  1208. }
  1209. int security_key_getsecurity(struct key *key, char **_buffer)
  1210. {
  1211. return security_ops->key_getsecurity(key, _buffer);
  1212. }
  1213. #endif /* CONFIG_KEYS */
  1214. #ifdef CONFIG_AUDIT
  1215. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1216. {
  1217. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1218. }
  1219. int security_audit_rule_known(struct audit_krule *krule)
  1220. {
  1221. return security_ops->audit_rule_known(krule);
  1222. }
  1223. void security_audit_rule_free(void *lsmrule)
  1224. {
  1225. security_ops->audit_rule_free(lsmrule);
  1226. }
  1227. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1228. struct audit_context *actx)
  1229. {
  1230. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1231. }
  1232. #endif /* CONFIG_AUDIT */