mtdpart.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include "mtdcore.h"
  33. /* Our partition linked list */
  34. static LIST_HEAD(mtd_partitions);
  35. static DEFINE_MUTEX(mtd_partitions_mutex);
  36. /* Our partition node structure */
  37. struct mtd_part {
  38. struct mtd_info mtd;
  39. struct mtd_info *master;
  40. uint64_t offset;
  41. struct list_head list;
  42. };
  43. /*
  44. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  45. * the pointer to that structure with this macro.
  46. */
  47. #define PART(x) ((struct mtd_part *)(x))
  48. /*
  49. * MTD methods which simply translate the effective address and pass through
  50. * to the _real_ device.
  51. */
  52. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  53. size_t *retlen, u_char *buf)
  54. {
  55. struct mtd_part *part = PART(mtd);
  56. struct mtd_ecc_stats stats;
  57. int res;
  58. stats = part->master->ecc_stats;
  59. res = part->master->_read(part->master, from + part->offset, len,
  60. retlen, buf);
  61. if (unlikely(mtd_is_eccerr(res)))
  62. mtd->ecc_stats.failed +=
  63. part->master->ecc_stats.failed - stats.failed;
  64. else
  65. mtd->ecc_stats.corrected +=
  66. part->master->ecc_stats.corrected - stats.corrected;
  67. return res;
  68. }
  69. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  70. size_t *retlen, void **virt, resource_size_t *phys)
  71. {
  72. struct mtd_part *part = PART(mtd);
  73. return part->master->_point(part->master, from + part->offset, len,
  74. retlen, virt, phys);
  75. }
  76. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  77. {
  78. struct mtd_part *part = PART(mtd);
  79. return part->master->_unpoint(part->master, from + part->offset, len);
  80. }
  81. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  82. unsigned long len,
  83. unsigned long offset,
  84. unsigned long flags)
  85. {
  86. struct mtd_part *part = PART(mtd);
  87. offset += part->offset;
  88. return part->master->_get_unmapped_area(part->master, len, offset,
  89. flags);
  90. }
  91. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  92. struct mtd_oob_ops *ops)
  93. {
  94. struct mtd_part *part = PART(mtd);
  95. int res;
  96. if (from >= mtd->size)
  97. return -EINVAL;
  98. if (ops->datbuf && from + ops->len > mtd->size)
  99. return -EINVAL;
  100. /*
  101. * If OOB is also requested, make sure that we do not read past the end
  102. * of this partition.
  103. */
  104. if (ops->oobbuf) {
  105. size_t len, pages;
  106. if (ops->mode == MTD_OPS_AUTO_OOB)
  107. len = mtd->oobavail;
  108. else
  109. len = mtd->oobsize;
  110. pages = mtd_div_by_ws(mtd->size, mtd);
  111. pages -= mtd_div_by_ws(from, mtd);
  112. if (ops->ooboffs + ops->ooblen > pages * len)
  113. return -EINVAL;
  114. }
  115. res = part->master->_read_oob(part->master, from + part->offset, ops);
  116. if (unlikely(res)) {
  117. if (mtd_is_bitflip(res))
  118. mtd->ecc_stats.corrected++;
  119. if (mtd_is_eccerr(res))
  120. mtd->ecc_stats.failed++;
  121. }
  122. return res;
  123. }
  124. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  125. size_t len, size_t *retlen, u_char *buf)
  126. {
  127. struct mtd_part *part = PART(mtd);
  128. return part->master->_read_user_prot_reg(part->master, from, len,
  129. retlen, buf);
  130. }
  131. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  132. size_t *retlen, struct otp_info *buf)
  133. {
  134. struct mtd_part *part = PART(mtd);
  135. return part->master->_get_user_prot_info(part->master, len, retlen,
  136. buf);
  137. }
  138. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  139. size_t len, size_t *retlen, u_char *buf)
  140. {
  141. struct mtd_part *part = PART(mtd);
  142. return part->master->_read_fact_prot_reg(part->master, from, len,
  143. retlen, buf);
  144. }
  145. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  146. size_t *retlen, struct otp_info *buf)
  147. {
  148. struct mtd_part *part = PART(mtd);
  149. return part->master->_get_fact_prot_info(part->master, len, retlen,
  150. buf);
  151. }
  152. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  153. size_t *retlen, const u_char *buf)
  154. {
  155. struct mtd_part *part = PART(mtd);
  156. return part->master->_write(part->master, to + part->offset, len,
  157. retlen, buf);
  158. }
  159. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  160. size_t *retlen, const u_char *buf)
  161. {
  162. struct mtd_part *part = PART(mtd);
  163. return part->master->_panic_write(part->master, to + part->offset, len,
  164. retlen, buf);
  165. }
  166. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  167. struct mtd_oob_ops *ops)
  168. {
  169. struct mtd_part *part = PART(mtd);
  170. if (to >= mtd->size)
  171. return -EINVAL;
  172. if (ops->datbuf && to + ops->len > mtd->size)
  173. return -EINVAL;
  174. return part->master->_write_oob(part->master, to + part->offset, ops);
  175. }
  176. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  177. size_t len, size_t *retlen, u_char *buf)
  178. {
  179. struct mtd_part *part = PART(mtd);
  180. return part->master->_write_user_prot_reg(part->master, from, len,
  181. retlen, buf);
  182. }
  183. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  184. size_t len)
  185. {
  186. struct mtd_part *part = PART(mtd);
  187. return part->master->_lock_user_prot_reg(part->master, from, len);
  188. }
  189. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  190. unsigned long count, loff_t to, size_t *retlen)
  191. {
  192. struct mtd_part *part = PART(mtd);
  193. return part->master->_writev(part->master, vecs, count,
  194. to + part->offset, retlen);
  195. }
  196. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  197. {
  198. struct mtd_part *part = PART(mtd);
  199. int ret;
  200. instr->addr += part->offset;
  201. ret = part->master->_erase(part->master, instr);
  202. if (ret) {
  203. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  204. instr->fail_addr -= part->offset;
  205. instr->addr -= part->offset;
  206. }
  207. return ret;
  208. }
  209. void mtd_erase_callback(struct erase_info *instr)
  210. {
  211. if (instr->mtd->_erase == part_erase) {
  212. struct mtd_part *part = PART(instr->mtd);
  213. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  214. instr->fail_addr -= part->offset;
  215. instr->addr -= part->offset;
  216. }
  217. if (instr->callback)
  218. instr->callback(instr);
  219. }
  220. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  221. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  222. {
  223. struct mtd_part *part = PART(mtd);
  224. return part->master->_lock(part->master, ofs + part->offset, len);
  225. }
  226. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  227. {
  228. struct mtd_part *part = PART(mtd);
  229. return part->master->_unlock(part->master, ofs + part->offset, len);
  230. }
  231. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  232. {
  233. struct mtd_part *part = PART(mtd);
  234. return part->master->_is_locked(part->master, ofs + part->offset, len);
  235. }
  236. static void part_sync(struct mtd_info *mtd)
  237. {
  238. struct mtd_part *part = PART(mtd);
  239. part->master->_sync(part->master);
  240. }
  241. static int part_suspend(struct mtd_info *mtd)
  242. {
  243. struct mtd_part *part = PART(mtd);
  244. return part->master->_suspend(part->master);
  245. }
  246. static void part_resume(struct mtd_info *mtd)
  247. {
  248. struct mtd_part *part = PART(mtd);
  249. part->master->_resume(part->master);
  250. }
  251. static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  252. {
  253. struct mtd_part *part = PART(mtd);
  254. ofs += part->offset;
  255. return part->master->_block_isreserved(part->master, ofs);
  256. }
  257. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  258. {
  259. struct mtd_part *part = PART(mtd);
  260. ofs += part->offset;
  261. return part->master->_block_isbad(part->master, ofs);
  262. }
  263. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  264. {
  265. struct mtd_part *part = PART(mtd);
  266. int res;
  267. ofs += part->offset;
  268. res = part->master->_block_markbad(part->master, ofs);
  269. if (!res)
  270. mtd->ecc_stats.badblocks++;
  271. return res;
  272. }
  273. static inline void free_partition(struct mtd_part *p)
  274. {
  275. kfree(p->mtd.name);
  276. kfree(p);
  277. }
  278. /*
  279. * This function unregisters and destroy all slave MTD objects which are
  280. * attached to the given master MTD object.
  281. */
  282. int del_mtd_partitions(struct mtd_info *master)
  283. {
  284. struct mtd_part *slave, *next;
  285. int ret, err = 0;
  286. mutex_lock(&mtd_partitions_mutex);
  287. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  288. if (slave->master == master) {
  289. ret = del_mtd_device(&slave->mtd);
  290. if (ret < 0) {
  291. err = ret;
  292. continue;
  293. }
  294. list_del(&slave->list);
  295. free_partition(slave);
  296. }
  297. mutex_unlock(&mtd_partitions_mutex);
  298. return err;
  299. }
  300. static struct mtd_part *allocate_partition(struct mtd_info *master,
  301. const struct mtd_partition *part, int partno,
  302. uint64_t cur_offset)
  303. {
  304. struct mtd_part *slave;
  305. char *name;
  306. /* allocate the partition structure */
  307. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  308. name = kstrdup(part->name, GFP_KERNEL);
  309. if (!name || !slave) {
  310. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  311. master->name);
  312. kfree(name);
  313. kfree(slave);
  314. return ERR_PTR(-ENOMEM);
  315. }
  316. /* set up the MTD object for this partition */
  317. slave->mtd.type = master->type;
  318. slave->mtd.flags = master->flags & ~part->mask_flags;
  319. slave->mtd.size = part->size;
  320. slave->mtd.writesize = master->writesize;
  321. slave->mtd.writebufsize = master->writebufsize;
  322. slave->mtd.oobsize = master->oobsize;
  323. slave->mtd.oobavail = master->oobavail;
  324. slave->mtd.subpage_sft = master->subpage_sft;
  325. slave->mtd.name = name;
  326. slave->mtd.owner = master->owner;
  327. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  328. * to have the same data be in two different partitions.
  329. */
  330. slave->mtd.dev.parent = master->dev.parent;
  331. slave->mtd._read = part_read;
  332. slave->mtd._write = part_write;
  333. if (master->_panic_write)
  334. slave->mtd._panic_write = part_panic_write;
  335. if (master->_point && master->_unpoint) {
  336. slave->mtd._point = part_point;
  337. slave->mtd._unpoint = part_unpoint;
  338. }
  339. if (master->_get_unmapped_area)
  340. slave->mtd._get_unmapped_area = part_get_unmapped_area;
  341. if (master->_read_oob)
  342. slave->mtd._read_oob = part_read_oob;
  343. if (master->_write_oob)
  344. slave->mtd._write_oob = part_write_oob;
  345. if (master->_read_user_prot_reg)
  346. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  347. if (master->_read_fact_prot_reg)
  348. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  349. if (master->_write_user_prot_reg)
  350. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  351. if (master->_lock_user_prot_reg)
  352. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  353. if (master->_get_user_prot_info)
  354. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  355. if (master->_get_fact_prot_info)
  356. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  357. if (master->_sync)
  358. slave->mtd._sync = part_sync;
  359. if (!partno && !master->dev.class && master->_suspend &&
  360. master->_resume) {
  361. slave->mtd._suspend = part_suspend;
  362. slave->mtd._resume = part_resume;
  363. }
  364. if (master->_writev)
  365. slave->mtd._writev = part_writev;
  366. if (master->_lock)
  367. slave->mtd._lock = part_lock;
  368. if (master->_unlock)
  369. slave->mtd._unlock = part_unlock;
  370. if (master->_is_locked)
  371. slave->mtd._is_locked = part_is_locked;
  372. if (master->_block_isreserved)
  373. slave->mtd._block_isreserved = part_block_isreserved;
  374. if (master->_block_isbad)
  375. slave->mtd._block_isbad = part_block_isbad;
  376. if (master->_block_markbad)
  377. slave->mtd._block_markbad = part_block_markbad;
  378. slave->mtd._erase = part_erase;
  379. slave->master = master;
  380. slave->offset = part->offset;
  381. if (slave->offset == MTDPART_OFS_APPEND)
  382. slave->offset = cur_offset;
  383. if (slave->offset == MTDPART_OFS_NXTBLK) {
  384. slave->offset = cur_offset;
  385. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  386. /* Round up to next erasesize */
  387. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  388. printk(KERN_NOTICE "Moving partition %d: "
  389. "0x%012llx -> 0x%012llx\n", partno,
  390. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  391. }
  392. }
  393. if (slave->offset == MTDPART_OFS_RETAIN) {
  394. slave->offset = cur_offset;
  395. if (master->size - slave->offset >= slave->mtd.size) {
  396. slave->mtd.size = master->size - slave->offset
  397. - slave->mtd.size;
  398. } else {
  399. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  400. part->name, master->size - slave->offset,
  401. slave->mtd.size);
  402. /* register to preserve ordering */
  403. goto out_register;
  404. }
  405. }
  406. if (slave->mtd.size == MTDPART_SIZ_FULL)
  407. slave->mtd.size = master->size - slave->offset;
  408. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  409. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  410. /* let's do some sanity checks */
  411. if (slave->offset >= master->size) {
  412. /* let's register it anyway to preserve ordering */
  413. slave->offset = 0;
  414. slave->mtd.size = 0;
  415. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  416. part->name);
  417. goto out_register;
  418. }
  419. if (slave->offset + slave->mtd.size > master->size) {
  420. slave->mtd.size = master->size - slave->offset;
  421. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  422. part->name, master->name, (unsigned long long)slave->mtd.size);
  423. }
  424. if (master->numeraseregions > 1) {
  425. /* Deal with variable erase size stuff */
  426. int i, max = master->numeraseregions;
  427. u64 end = slave->offset + slave->mtd.size;
  428. struct mtd_erase_region_info *regions = master->eraseregions;
  429. /* Find the first erase regions which is part of this
  430. * partition. */
  431. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  432. ;
  433. /* The loop searched for the region _behind_ the first one */
  434. if (i > 0)
  435. i--;
  436. /* Pick biggest erasesize */
  437. for (; i < max && regions[i].offset < end; i++) {
  438. if (slave->mtd.erasesize < regions[i].erasesize) {
  439. slave->mtd.erasesize = regions[i].erasesize;
  440. }
  441. }
  442. BUG_ON(slave->mtd.erasesize == 0);
  443. } else {
  444. /* Single erase size */
  445. slave->mtd.erasesize = master->erasesize;
  446. }
  447. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  448. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  449. /* Doesn't start on a boundary of major erase size */
  450. /* FIXME: Let it be writable if it is on a boundary of
  451. * _minor_ erase size though */
  452. slave->mtd.flags &= ~MTD_WRITEABLE;
  453. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  454. part->name);
  455. }
  456. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  457. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  458. slave->mtd.flags &= ~MTD_WRITEABLE;
  459. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  460. part->name);
  461. }
  462. slave->mtd.ecclayout = master->ecclayout;
  463. slave->mtd.ecc_step_size = master->ecc_step_size;
  464. slave->mtd.ecc_strength = master->ecc_strength;
  465. slave->mtd.bitflip_threshold = master->bitflip_threshold;
  466. if (master->_block_isbad) {
  467. uint64_t offs = 0;
  468. while (offs < slave->mtd.size) {
  469. if (mtd_block_isreserved(master, offs + slave->offset))
  470. slave->mtd.ecc_stats.bbtblocks++;
  471. else if (mtd_block_isbad(master, offs + slave->offset))
  472. slave->mtd.ecc_stats.badblocks++;
  473. offs += slave->mtd.erasesize;
  474. }
  475. }
  476. out_register:
  477. return slave;
  478. }
  479. int mtd_add_partition(struct mtd_info *master, const char *name,
  480. long long offset, long long length)
  481. {
  482. struct mtd_partition part;
  483. struct mtd_part *p, *new;
  484. uint64_t start, end;
  485. int ret = 0;
  486. /* the direct offset is expected */
  487. if (offset == MTDPART_OFS_APPEND ||
  488. offset == MTDPART_OFS_NXTBLK)
  489. return -EINVAL;
  490. if (length == MTDPART_SIZ_FULL)
  491. length = master->size - offset;
  492. if (length <= 0)
  493. return -EINVAL;
  494. part.name = name;
  495. part.size = length;
  496. part.offset = offset;
  497. part.mask_flags = 0;
  498. part.ecclayout = NULL;
  499. new = allocate_partition(master, &part, -1, offset);
  500. if (IS_ERR(new))
  501. return PTR_ERR(new);
  502. start = offset;
  503. end = offset + length;
  504. mutex_lock(&mtd_partitions_mutex);
  505. list_for_each_entry(p, &mtd_partitions, list)
  506. if (p->master == master) {
  507. if ((start >= p->offset) &&
  508. (start < (p->offset + p->mtd.size)))
  509. goto err_inv;
  510. if ((end >= p->offset) &&
  511. (end < (p->offset + p->mtd.size)))
  512. goto err_inv;
  513. }
  514. list_add(&new->list, &mtd_partitions);
  515. mutex_unlock(&mtd_partitions_mutex);
  516. add_mtd_device(&new->mtd);
  517. return ret;
  518. err_inv:
  519. mutex_unlock(&mtd_partitions_mutex);
  520. free_partition(new);
  521. return -EINVAL;
  522. }
  523. EXPORT_SYMBOL_GPL(mtd_add_partition);
  524. int mtd_del_partition(struct mtd_info *master, int partno)
  525. {
  526. struct mtd_part *slave, *next;
  527. int ret = -EINVAL;
  528. mutex_lock(&mtd_partitions_mutex);
  529. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  530. if ((slave->master == master) &&
  531. (slave->mtd.index == partno)) {
  532. ret = del_mtd_device(&slave->mtd);
  533. if (ret < 0)
  534. break;
  535. list_del(&slave->list);
  536. free_partition(slave);
  537. break;
  538. }
  539. mutex_unlock(&mtd_partitions_mutex);
  540. return ret;
  541. }
  542. EXPORT_SYMBOL_GPL(mtd_del_partition);
  543. /*
  544. * This function, given a master MTD object and a partition table, creates
  545. * and registers slave MTD objects which are bound to the master according to
  546. * the partition definitions.
  547. *
  548. * We don't register the master, or expect the caller to have done so,
  549. * for reasons of data integrity.
  550. */
  551. int add_mtd_partitions(struct mtd_info *master,
  552. const struct mtd_partition *parts,
  553. int nbparts)
  554. {
  555. struct mtd_part *slave;
  556. uint64_t cur_offset = 0;
  557. int i;
  558. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  559. for (i = 0; i < nbparts; i++) {
  560. slave = allocate_partition(master, parts + i, i, cur_offset);
  561. if (IS_ERR(slave))
  562. return PTR_ERR(slave);
  563. mutex_lock(&mtd_partitions_mutex);
  564. list_add(&slave->list, &mtd_partitions);
  565. mutex_unlock(&mtd_partitions_mutex);
  566. add_mtd_device(&slave->mtd);
  567. cur_offset = slave->offset + slave->mtd.size;
  568. }
  569. return 0;
  570. }
  571. static DEFINE_SPINLOCK(part_parser_lock);
  572. static LIST_HEAD(part_parsers);
  573. static struct mtd_part_parser *get_partition_parser(const char *name)
  574. {
  575. struct mtd_part_parser *p, *ret = NULL;
  576. spin_lock(&part_parser_lock);
  577. list_for_each_entry(p, &part_parsers, list)
  578. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  579. ret = p;
  580. break;
  581. }
  582. spin_unlock(&part_parser_lock);
  583. return ret;
  584. }
  585. #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
  586. void register_mtd_parser(struct mtd_part_parser *p)
  587. {
  588. spin_lock(&part_parser_lock);
  589. list_add(&p->list, &part_parsers);
  590. spin_unlock(&part_parser_lock);
  591. }
  592. EXPORT_SYMBOL_GPL(register_mtd_parser);
  593. void deregister_mtd_parser(struct mtd_part_parser *p)
  594. {
  595. spin_lock(&part_parser_lock);
  596. list_del(&p->list);
  597. spin_unlock(&part_parser_lock);
  598. }
  599. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  600. /*
  601. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  602. * are changing this array!
  603. */
  604. static const char * const default_mtd_part_types[] = {
  605. "cmdlinepart",
  606. "ofpart",
  607. NULL
  608. };
  609. /**
  610. * parse_mtd_partitions - parse MTD partitions
  611. * @master: the master partition (describes whole MTD device)
  612. * @types: names of partition parsers to try or %NULL
  613. * @pparts: array of partitions found is returned here
  614. * @data: MTD partition parser-specific data
  615. *
  616. * This function tries to find partition on MTD device @master. It uses MTD
  617. * partition parsers, specified in @types. However, if @types is %NULL, then
  618. * the default list of parsers is used. The default list contains only the
  619. * "cmdlinepart" and "ofpart" parsers ATM.
  620. * Note: If there are more then one parser in @types, the kernel only takes the
  621. * partitions parsed out by the first parser.
  622. *
  623. * This function may return:
  624. * o a negative error code in case of failure
  625. * o zero if no partitions were found
  626. * o a positive number of found partitions, in which case on exit @pparts will
  627. * point to an array containing this number of &struct mtd_info objects.
  628. */
  629. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  630. struct mtd_partition **pparts,
  631. struct mtd_part_parser_data *data)
  632. {
  633. struct mtd_part_parser *parser;
  634. int ret = 0;
  635. if (!types)
  636. types = default_mtd_part_types;
  637. for ( ; ret <= 0 && *types; types++) {
  638. parser = get_partition_parser(*types);
  639. if (!parser && !request_module("%s", *types))
  640. parser = get_partition_parser(*types);
  641. if (!parser)
  642. continue;
  643. ret = (*parser->parse_fn)(master, pparts, data);
  644. put_partition_parser(parser);
  645. if (ret > 0) {
  646. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  647. ret, parser->name, master->name);
  648. break;
  649. }
  650. }
  651. return ret;
  652. }
  653. int mtd_is_partition(const struct mtd_info *mtd)
  654. {
  655. struct mtd_part *part;
  656. int ispart = 0;
  657. mutex_lock(&mtd_partitions_mutex);
  658. list_for_each_entry(part, &mtd_partitions, list)
  659. if (&part->mtd == mtd) {
  660. ispart = 1;
  661. break;
  662. }
  663. mutex_unlock(&mtd_partitions_mutex);
  664. return ispart;
  665. }
  666. EXPORT_SYMBOL_GPL(mtd_is_partition);
  667. /* Returns the size of the entire flash chip */
  668. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  669. {
  670. if (!mtd_is_partition(mtd))
  671. return mtd->size;
  672. return PART(mtd)->master->size;
  673. }
  674. EXPORT_SYMBOL_GPL(mtd_get_device_size);