xhci-ring.c 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * xHCI host controller driver
  4. *
  5. * Copyright (C) 2008 Intel Corp.
  6. *
  7. * Author: Sarah Sharp
  8. * Some code borrowed from the Linux EHCI driver.
  9. */
  10. /*
  11. * Ring initialization rules:
  12. * 1. Each segment is initialized to zero, except for link TRBs.
  13. * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
  14. * Consumer Cycle State (CCS), depending on ring function.
  15. * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
  16. *
  17. * Ring behavior rules:
  18. * 1. A ring is empty if enqueue == dequeue. This means there will always be at
  19. * least one free TRB in the ring. This is useful if you want to turn that
  20. * into a link TRB and expand the ring.
  21. * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
  22. * link TRB, then load the pointer with the address in the link TRB. If the
  23. * link TRB had its toggle bit set, you may need to update the ring cycle
  24. * state (see cycle bit rules). You may have to do this multiple times
  25. * until you reach a non-link TRB.
  26. * 3. A ring is full if enqueue++ (for the definition of increment above)
  27. * equals the dequeue pointer.
  28. *
  29. * Cycle bit rules:
  30. * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
  31. * in a link TRB, it must toggle the ring cycle state.
  32. * 2. When a producer increments an enqueue pointer and encounters a toggle bit
  33. * in a link TRB, it must toggle the ring cycle state.
  34. *
  35. * Producer rules:
  36. * 1. Check if ring is full before you enqueue.
  37. * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
  38. * Update enqueue pointer between each write (which may update the ring
  39. * cycle state).
  40. * 3. Notify consumer. If SW is producer, it rings the doorbell for command
  41. * and endpoint rings. If HC is the producer for the event ring,
  42. * and it generates an interrupt according to interrupt modulation rules.
  43. *
  44. * Consumer rules:
  45. * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
  46. * the TRB is owned by the consumer.
  47. * 2. Update dequeue pointer (which may update the ring cycle state) and
  48. * continue processing TRBs until you reach a TRB which is not owned by you.
  49. * 3. Notify the producer. SW is the consumer for the event ring, and it
  50. * updates event ring dequeue pointer. HC is the consumer for the command and
  51. * endpoint rings; it generates events on the event ring for these.
  52. */
  53. #include <linux/scatterlist.h>
  54. #include <linux/slab.h>
  55. #include <linux/dma-mapping.h>
  56. #include "xhci.h"
  57. #include "xhci-trace.h"
  58. #include "xhci-mtk.h"
  59. /*
  60. * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
  61. * address of the TRB.
  62. */
  63. dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
  64. union xhci_trb *trb)
  65. {
  66. unsigned long segment_offset;
  67. if (!seg || !trb || trb < seg->trbs)
  68. return 0;
  69. /* offset in TRBs */
  70. segment_offset = trb - seg->trbs;
  71. if (segment_offset >= TRBS_PER_SEGMENT)
  72. return 0;
  73. return seg->dma + (segment_offset * sizeof(*trb));
  74. }
  75. static bool trb_is_noop(union xhci_trb *trb)
  76. {
  77. return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
  78. }
  79. static bool trb_is_link(union xhci_trb *trb)
  80. {
  81. return TRB_TYPE_LINK_LE32(trb->link.control);
  82. }
  83. static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
  84. {
  85. return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
  86. }
  87. static bool last_trb_on_ring(struct xhci_ring *ring,
  88. struct xhci_segment *seg, union xhci_trb *trb)
  89. {
  90. return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
  91. }
  92. static bool link_trb_toggles_cycle(union xhci_trb *trb)
  93. {
  94. return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
  95. }
  96. static bool last_td_in_urb(struct xhci_td *td)
  97. {
  98. struct urb_priv *urb_priv = td->urb->hcpriv;
  99. return urb_priv->num_tds_done == urb_priv->num_tds;
  100. }
  101. static void inc_td_cnt(struct urb *urb)
  102. {
  103. struct urb_priv *urb_priv = urb->hcpriv;
  104. urb_priv->num_tds_done++;
  105. }
  106. static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
  107. {
  108. if (trb_is_link(trb)) {
  109. /* unchain chained link TRBs */
  110. trb->link.control &= cpu_to_le32(~TRB_CHAIN);
  111. } else {
  112. trb->generic.field[0] = 0;
  113. trb->generic.field[1] = 0;
  114. trb->generic.field[2] = 0;
  115. /* Preserve only the cycle bit of this TRB */
  116. trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
  117. trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
  118. }
  119. }
  120. /* Updates trb to point to the next TRB in the ring, and updates seg if the next
  121. * TRB is in a new segment. This does not skip over link TRBs, and it does not
  122. * effect the ring dequeue or enqueue pointers.
  123. */
  124. static void next_trb(struct xhci_hcd *xhci,
  125. struct xhci_ring *ring,
  126. struct xhci_segment **seg,
  127. union xhci_trb **trb)
  128. {
  129. if (trb_is_link(*trb)) {
  130. *seg = (*seg)->next;
  131. *trb = ((*seg)->trbs);
  132. } else {
  133. (*trb)++;
  134. }
  135. }
  136. /*
  137. * See Cycle bit rules. SW is the consumer for the event ring only.
  138. * Don't make a ring full of link TRBs. That would be dumb and this would loop.
  139. */
  140. void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
  141. {
  142. /* event ring doesn't have link trbs, check for last trb */
  143. if (ring->type == TYPE_EVENT) {
  144. if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
  145. ring->dequeue++;
  146. goto out;
  147. }
  148. if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
  149. ring->cycle_state ^= 1;
  150. ring->deq_seg = ring->deq_seg->next;
  151. ring->dequeue = ring->deq_seg->trbs;
  152. goto out;
  153. }
  154. /* All other rings have link trbs */
  155. if (!trb_is_link(ring->dequeue)) {
  156. ring->dequeue++;
  157. ring->num_trbs_free++;
  158. }
  159. while (trb_is_link(ring->dequeue)) {
  160. ring->deq_seg = ring->deq_seg->next;
  161. ring->dequeue = ring->deq_seg->trbs;
  162. }
  163. out:
  164. trace_xhci_inc_deq(ring);
  165. return;
  166. }
  167. /*
  168. * See Cycle bit rules. SW is the consumer for the event ring only.
  169. * Don't make a ring full of link TRBs. That would be dumb and this would loop.
  170. *
  171. * If we've just enqueued a TRB that is in the middle of a TD (meaning the
  172. * chain bit is set), then set the chain bit in all the following link TRBs.
  173. * If we've enqueued the last TRB in a TD, make sure the following link TRBs
  174. * have their chain bit cleared (so that each Link TRB is a separate TD).
  175. *
  176. * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
  177. * set, but other sections talk about dealing with the chain bit set. This was
  178. * fixed in the 0.96 specification errata, but we have to assume that all 0.95
  179. * xHCI hardware can't handle the chain bit being cleared on a link TRB.
  180. *
  181. * @more_trbs_coming: Will you enqueue more TRBs before calling
  182. * prepare_transfer()?
  183. */
  184. static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
  185. bool more_trbs_coming)
  186. {
  187. u32 chain;
  188. union xhci_trb *next;
  189. chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
  190. /* If this is not event ring, there is one less usable TRB */
  191. if (!trb_is_link(ring->enqueue))
  192. ring->num_trbs_free--;
  193. next = ++(ring->enqueue);
  194. /* Update the dequeue pointer further if that was a link TRB */
  195. while (trb_is_link(next)) {
  196. /*
  197. * If the caller doesn't plan on enqueueing more TDs before
  198. * ringing the doorbell, then we don't want to give the link TRB
  199. * to the hardware just yet. We'll give the link TRB back in
  200. * prepare_ring() just before we enqueue the TD at the top of
  201. * the ring.
  202. */
  203. if (!chain && !more_trbs_coming)
  204. break;
  205. /* If we're not dealing with 0.95 hardware or isoc rings on
  206. * AMD 0.96 host, carry over the chain bit of the previous TRB
  207. * (which may mean the chain bit is cleared).
  208. */
  209. if (!(ring->type == TYPE_ISOC &&
  210. (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
  211. !xhci_link_trb_quirk(xhci)) {
  212. next->link.control &= cpu_to_le32(~TRB_CHAIN);
  213. next->link.control |= cpu_to_le32(chain);
  214. }
  215. /* Give this link TRB to the hardware */
  216. wmb();
  217. next->link.control ^= cpu_to_le32(TRB_CYCLE);
  218. /* Toggle the cycle bit after the last ring segment. */
  219. if (link_trb_toggles_cycle(next))
  220. ring->cycle_state ^= 1;
  221. ring->enq_seg = ring->enq_seg->next;
  222. ring->enqueue = ring->enq_seg->trbs;
  223. next = ring->enqueue;
  224. }
  225. trace_xhci_inc_enq(ring);
  226. }
  227. /*
  228. * Check to see if there's room to enqueue num_trbs on the ring and make sure
  229. * enqueue pointer will not advance into dequeue segment. See rules above.
  230. */
  231. static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
  232. unsigned int num_trbs)
  233. {
  234. int num_trbs_in_deq_seg;
  235. if (ring->num_trbs_free < num_trbs)
  236. return 0;
  237. if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
  238. num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
  239. if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
  240. return 0;
  241. }
  242. return 1;
  243. }
  244. /* Ring the host controller doorbell after placing a command on the ring */
  245. void xhci_ring_cmd_db(struct xhci_hcd *xhci)
  246. {
  247. if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
  248. return;
  249. xhci_dbg(xhci, "// Ding dong!\n");
  250. writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
  251. /* Flush PCI posted writes */
  252. readl(&xhci->dba->doorbell[0]);
  253. }
  254. static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
  255. {
  256. return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
  257. }
  258. static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
  259. {
  260. return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
  261. cmd_list);
  262. }
  263. /*
  264. * Turn all commands on command ring with status set to "aborted" to no-op trbs.
  265. * If there are other commands waiting then restart the ring and kick the timer.
  266. * This must be called with command ring stopped and xhci->lock held.
  267. */
  268. static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
  269. struct xhci_command *cur_cmd)
  270. {
  271. struct xhci_command *i_cmd;
  272. /* Turn all aborted commands in list to no-ops, then restart */
  273. list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
  274. if (i_cmd->status != COMP_COMMAND_ABORTED)
  275. continue;
  276. i_cmd->status = COMP_COMMAND_RING_STOPPED;
  277. xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
  278. i_cmd->command_trb);
  279. trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
  280. /*
  281. * caller waiting for completion is called when command
  282. * completion event is received for these no-op commands
  283. */
  284. }
  285. xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
  286. /* ring command ring doorbell to restart the command ring */
  287. if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
  288. !(xhci->xhc_state & XHCI_STATE_DYING)) {
  289. xhci->current_cmd = cur_cmd;
  290. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  291. xhci_ring_cmd_db(xhci);
  292. }
  293. }
  294. /* Must be called with xhci->lock held, releases and aquires lock back */
  295. static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
  296. {
  297. u64 temp_64;
  298. int ret;
  299. xhci_dbg(xhci, "Abort command ring\n");
  300. reinit_completion(&xhci->cmd_ring_stop_completion);
  301. temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  302. xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
  303. &xhci->op_regs->cmd_ring);
  304. /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
  305. * completion of the Command Abort operation. If CRR is not negated in 5
  306. * seconds then driver handles it as if host died (-ENODEV).
  307. * In the future we should distinguish between -ENODEV and -ETIMEDOUT
  308. * and try to recover a -ETIMEDOUT with a host controller reset.
  309. */
  310. ret = xhci_handshake(&xhci->op_regs->cmd_ring,
  311. CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
  312. if (ret < 0) {
  313. xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
  314. xhci_halt(xhci);
  315. xhci_hc_died(xhci);
  316. return ret;
  317. }
  318. /*
  319. * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
  320. * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
  321. * but the completion event in never sent. Wait 2 secs (arbitrary
  322. * number) to handle those cases after negation of CMD_RING_RUNNING.
  323. */
  324. spin_unlock_irqrestore(&xhci->lock, flags);
  325. ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
  326. msecs_to_jiffies(2000));
  327. spin_lock_irqsave(&xhci->lock, flags);
  328. if (!ret) {
  329. xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
  330. xhci_cleanup_command_queue(xhci);
  331. } else {
  332. xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
  333. }
  334. return 0;
  335. }
  336. void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
  337. unsigned int slot_id,
  338. unsigned int ep_index,
  339. unsigned int stream_id)
  340. {
  341. __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
  342. struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
  343. unsigned int ep_state = ep->ep_state;
  344. /* Don't ring the doorbell for this endpoint if there are pending
  345. * cancellations because we don't want to interrupt processing.
  346. * We don't want to restart any stream rings if there's a set dequeue
  347. * pointer command pending because the device can choose to start any
  348. * stream once the endpoint is on the HW schedule.
  349. */
  350. if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
  351. (ep_state & EP_HALTED))
  352. return;
  353. writel(DB_VALUE(ep_index, stream_id), db_addr);
  354. /* The CPU has better things to do at this point than wait for a
  355. * write-posting flush. It'll get there soon enough.
  356. */
  357. }
  358. /* Ring the doorbell for any rings with pending URBs */
  359. static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
  360. unsigned int slot_id,
  361. unsigned int ep_index)
  362. {
  363. unsigned int stream_id;
  364. struct xhci_virt_ep *ep;
  365. ep = &xhci->devs[slot_id]->eps[ep_index];
  366. /* A ring has pending URBs if its TD list is not empty */
  367. if (!(ep->ep_state & EP_HAS_STREAMS)) {
  368. if (ep->ring && !(list_empty(&ep->ring->td_list)))
  369. xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
  370. return;
  371. }
  372. for (stream_id = 1; stream_id < ep->stream_info->num_streams;
  373. stream_id++) {
  374. struct xhci_stream_info *stream_info = ep->stream_info;
  375. if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
  376. xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
  377. stream_id);
  378. }
  379. }
  380. /* Get the right ring for the given slot_id, ep_index and stream_id.
  381. * If the endpoint supports streams, boundary check the URB's stream ID.
  382. * If the endpoint doesn't support streams, return the singular endpoint ring.
  383. */
  384. struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
  385. unsigned int slot_id, unsigned int ep_index,
  386. unsigned int stream_id)
  387. {
  388. struct xhci_virt_ep *ep;
  389. ep = &xhci->devs[slot_id]->eps[ep_index];
  390. /* Common case: no streams */
  391. if (!(ep->ep_state & EP_HAS_STREAMS))
  392. return ep->ring;
  393. if (stream_id == 0) {
  394. xhci_warn(xhci,
  395. "WARN: Slot ID %u, ep index %u has streams, "
  396. "but URB has no stream ID.\n",
  397. slot_id, ep_index);
  398. return NULL;
  399. }
  400. if (stream_id < ep->stream_info->num_streams)
  401. return ep->stream_info->stream_rings[stream_id];
  402. xhci_warn(xhci,
  403. "WARN: Slot ID %u, ep index %u has "
  404. "stream IDs 1 to %u allocated, "
  405. "but stream ID %u is requested.\n",
  406. slot_id, ep_index,
  407. ep->stream_info->num_streams - 1,
  408. stream_id);
  409. return NULL;
  410. }
  411. /*
  412. * Get the hw dequeue pointer xHC stopped on, either directly from the
  413. * endpoint context, or if streams are in use from the stream context.
  414. * The returned hw_dequeue contains the lowest four bits with cycle state
  415. * and possbile stream context type.
  416. */
  417. static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
  418. unsigned int ep_index, unsigned int stream_id)
  419. {
  420. struct xhci_ep_ctx *ep_ctx;
  421. struct xhci_stream_ctx *st_ctx;
  422. struct xhci_virt_ep *ep;
  423. ep = &vdev->eps[ep_index];
  424. if (ep->ep_state & EP_HAS_STREAMS) {
  425. st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
  426. return le64_to_cpu(st_ctx->stream_ring);
  427. }
  428. ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
  429. return le64_to_cpu(ep_ctx->deq);
  430. }
  431. /*
  432. * Move the xHC's endpoint ring dequeue pointer past cur_td.
  433. * Record the new state of the xHC's endpoint ring dequeue segment,
  434. * dequeue pointer, stream id, and new consumer cycle state in state.
  435. * Update our internal representation of the ring's dequeue pointer.
  436. *
  437. * We do this in three jumps:
  438. * - First we update our new ring state to be the same as when the xHC stopped.
  439. * - Then we traverse the ring to find the segment that contains
  440. * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
  441. * any link TRBs with the toggle cycle bit set.
  442. * - Finally we move the dequeue state one TRB further, toggling the cycle bit
  443. * if we've moved it past a link TRB with the toggle cycle bit set.
  444. *
  445. * Some of the uses of xhci_generic_trb are grotty, but if they're done
  446. * with correct __le32 accesses they should work fine. Only users of this are
  447. * in here.
  448. */
  449. void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
  450. unsigned int slot_id, unsigned int ep_index,
  451. unsigned int stream_id, struct xhci_td *cur_td,
  452. struct xhci_dequeue_state *state)
  453. {
  454. struct xhci_virt_device *dev = xhci->devs[slot_id];
  455. struct xhci_virt_ep *ep = &dev->eps[ep_index];
  456. struct xhci_ring *ep_ring;
  457. struct xhci_segment *new_seg;
  458. union xhci_trb *new_deq;
  459. dma_addr_t addr;
  460. u64 hw_dequeue;
  461. bool cycle_found = false;
  462. bool td_last_trb_found = false;
  463. ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
  464. ep_index, stream_id);
  465. if (!ep_ring) {
  466. xhci_warn(xhci, "WARN can't find new dequeue state "
  467. "for invalid stream ID %u.\n",
  468. stream_id);
  469. return;
  470. }
  471. /* Dig out the cycle state saved by the xHC during the stop ep cmd */
  472. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  473. "Finding endpoint context");
  474. hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
  475. new_seg = ep_ring->deq_seg;
  476. new_deq = ep_ring->dequeue;
  477. state->new_cycle_state = hw_dequeue & 0x1;
  478. state->stream_id = stream_id;
  479. /*
  480. * We want to find the pointer, segment and cycle state of the new trb
  481. * (the one after current TD's last_trb). We know the cycle state at
  482. * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
  483. * found.
  484. */
  485. do {
  486. if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
  487. == (dma_addr_t)(hw_dequeue & ~0xf)) {
  488. cycle_found = true;
  489. if (td_last_trb_found)
  490. break;
  491. }
  492. if (new_deq == cur_td->last_trb)
  493. td_last_trb_found = true;
  494. if (cycle_found && trb_is_link(new_deq) &&
  495. link_trb_toggles_cycle(new_deq))
  496. state->new_cycle_state ^= 0x1;
  497. next_trb(xhci, ep_ring, &new_seg, &new_deq);
  498. /* Search wrapped around, bail out */
  499. if (new_deq == ep->ring->dequeue) {
  500. xhci_err(xhci, "Error: Failed finding new dequeue state\n");
  501. state->new_deq_seg = NULL;
  502. state->new_deq_ptr = NULL;
  503. return;
  504. }
  505. } while (!cycle_found || !td_last_trb_found);
  506. state->new_deq_seg = new_seg;
  507. state->new_deq_ptr = new_deq;
  508. /* Don't update the ring cycle state for the producer (us). */
  509. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  510. "Cycle state = 0x%x", state->new_cycle_state);
  511. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  512. "New dequeue segment = %p (virtual)",
  513. state->new_deq_seg);
  514. addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
  515. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  516. "New dequeue pointer = 0x%llx (DMA)",
  517. (unsigned long long) addr);
  518. }
  519. /* flip_cycle means flip the cycle bit of all but the first and last TRB.
  520. * (The last TRB actually points to the ring enqueue pointer, which is not part
  521. * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
  522. */
  523. static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
  524. struct xhci_td *td, bool flip_cycle)
  525. {
  526. struct xhci_segment *seg = td->start_seg;
  527. union xhci_trb *trb = td->first_trb;
  528. while (1) {
  529. trb_to_noop(trb, TRB_TR_NOOP);
  530. /* flip cycle if asked to */
  531. if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
  532. trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
  533. if (trb == td->last_trb)
  534. break;
  535. next_trb(xhci, ep_ring, &seg, &trb);
  536. }
  537. }
  538. static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
  539. struct xhci_virt_ep *ep)
  540. {
  541. ep->ep_state &= ~EP_STOP_CMD_PENDING;
  542. /* Can't del_timer_sync in interrupt */
  543. del_timer(&ep->stop_cmd_timer);
  544. }
  545. /*
  546. * Must be called with xhci->lock held in interrupt context,
  547. * releases and re-acquires xhci->lock
  548. */
  549. static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
  550. struct xhci_td *cur_td, int status)
  551. {
  552. struct urb *urb = cur_td->urb;
  553. struct urb_priv *urb_priv = urb->hcpriv;
  554. struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
  555. if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
  556. xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
  557. if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
  558. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  559. usb_amd_quirk_pll_enable();
  560. }
  561. }
  562. xhci_urb_free_priv(urb_priv);
  563. usb_hcd_unlink_urb_from_ep(hcd, urb);
  564. spin_unlock(&xhci->lock);
  565. trace_xhci_urb_giveback(urb);
  566. usb_hcd_giveback_urb(hcd, urb, status);
  567. spin_lock(&xhci->lock);
  568. }
  569. static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
  570. struct xhci_ring *ring, struct xhci_td *td)
  571. {
  572. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  573. struct xhci_segment *seg = td->bounce_seg;
  574. struct urb *urb = td->urb;
  575. if (!ring || !seg || !urb)
  576. return;
  577. if (usb_urb_dir_out(urb)) {
  578. dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
  579. DMA_TO_DEVICE);
  580. return;
  581. }
  582. /* for in tranfers we need to copy the data from bounce to sg */
  583. sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
  584. seg->bounce_len, seg->bounce_offs);
  585. dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
  586. DMA_FROM_DEVICE);
  587. seg->bounce_len = 0;
  588. seg->bounce_offs = 0;
  589. }
  590. /*
  591. * When we get a command completion for a Stop Endpoint Command, we need to
  592. * unlink any cancelled TDs from the ring. There are two ways to do that:
  593. *
  594. * 1. If the HW was in the middle of processing the TD that needs to be
  595. * cancelled, then we must move the ring's dequeue pointer past the last TRB
  596. * in the TD with a Set Dequeue Pointer Command.
  597. * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
  598. * bit cleared) so that the HW will skip over them.
  599. */
  600. static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
  601. union xhci_trb *trb, struct xhci_event_cmd *event)
  602. {
  603. unsigned int ep_index;
  604. struct xhci_ring *ep_ring;
  605. struct xhci_virt_ep *ep;
  606. struct xhci_td *cur_td = NULL;
  607. struct xhci_td *last_unlinked_td;
  608. struct xhci_ep_ctx *ep_ctx;
  609. struct xhci_virt_device *vdev;
  610. u64 hw_deq;
  611. struct xhci_dequeue_state deq_state;
  612. if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
  613. if (!xhci->devs[slot_id])
  614. xhci_warn(xhci, "Stop endpoint command "
  615. "completion for disabled slot %u\n",
  616. slot_id);
  617. return;
  618. }
  619. memset(&deq_state, 0, sizeof(deq_state));
  620. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  621. vdev = xhci->devs[slot_id];
  622. ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
  623. trace_xhci_handle_cmd_stop_ep(ep_ctx);
  624. ep = &xhci->devs[slot_id]->eps[ep_index];
  625. last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
  626. struct xhci_td, cancelled_td_list);
  627. if (list_empty(&ep->cancelled_td_list)) {
  628. xhci_stop_watchdog_timer_in_irq(xhci, ep);
  629. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  630. return;
  631. }
  632. /* Fix up the ep ring first, so HW stops executing cancelled TDs.
  633. * We have the xHCI lock, so nothing can modify this list until we drop
  634. * it. We're also in the event handler, so we can't get re-interrupted
  635. * if another Stop Endpoint command completes
  636. */
  637. list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
  638. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  639. "Removing canceled TD starting at 0x%llx (dma).",
  640. (unsigned long long)xhci_trb_virt_to_dma(
  641. cur_td->start_seg, cur_td->first_trb));
  642. ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
  643. if (!ep_ring) {
  644. /* This shouldn't happen unless a driver is mucking
  645. * with the stream ID after submission. This will
  646. * leave the TD on the hardware ring, and the hardware
  647. * will try to execute it, and may access a buffer
  648. * that has already been freed. In the best case, the
  649. * hardware will execute it, and the event handler will
  650. * ignore the completion event for that TD, since it was
  651. * removed from the td_list for that endpoint. In
  652. * short, don't muck with the stream ID after
  653. * submission.
  654. */
  655. xhci_warn(xhci, "WARN Cancelled URB %p "
  656. "has invalid stream ID %u.\n",
  657. cur_td->urb,
  658. cur_td->urb->stream_id);
  659. goto remove_finished_td;
  660. }
  661. /*
  662. * If we stopped on the TD we need to cancel, then we have to
  663. * move the xHC endpoint ring dequeue pointer past this TD.
  664. */
  665. hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
  666. cur_td->urb->stream_id);
  667. hw_deq &= ~0xf;
  668. if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
  669. cur_td->last_trb, hw_deq, false)) {
  670. xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
  671. cur_td->urb->stream_id,
  672. cur_td, &deq_state);
  673. } else {
  674. td_to_noop(xhci, ep_ring, cur_td, false);
  675. }
  676. remove_finished_td:
  677. /*
  678. * The event handler won't see a completion for this TD anymore,
  679. * so remove it from the endpoint ring's TD list. Keep it in
  680. * the cancelled TD list for URB completion later.
  681. */
  682. list_del_init(&cur_td->td_list);
  683. }
  684. xhci_stop_watchdog_timer_in_irq(xhci, ep);
  685. /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
  686. if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
  687. xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
  688. &deq_state);
  689. xhci_ring_cmd_db(xhci);
  690. } else {
  691. /* Otherwise ring the doorbell(s) to restart queued transfers */
  692. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  693. }
  694. /*
  695. * Drop the lock and complete the URBs in the cancelled TD list.
  696. * New TDs to be cancelled might be added to the end of the list before
  697. * we can complete all the URBs for the TDs we already unlinked.
  698. * So stop when we've completed the URB for the last TD we unlinked.
  699. */
  700. do {
  701. cur_td = list_first_entry(&ep->cancelled_td_list,
  702. struct xhci_td, cancelled_td_list);
  703. list_del_init(&cur_td->cancelled_td_list);
  704. /* Clean up the cancelled URB */
  705. /* Doesn't matter what we pass for status, since the core will
  706. * just overwrite it (because the URB has been unlinked).
  707. */
  708. ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
  709. xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
  710. inc_td_cnt(cur_td->urb);
  711. if (last_td_in_urb(cur_td))
  712. xhci_giveback_urb_in_irq(xhci, cur_td, 0);
  713. /* Stop processing the cancelled list if the watchdog timer is
  714. * running.
  715. */
  716. if (xhci->xhc_state & XHCI_STATE_DYING)
  717. return;
  718. } while (cur_td != last_unlinked_td);
  719. /* Return to the event handler with xhci->lock re-acquired */
  720. }
  721. static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
  722. {
  723. struct xhci_td *cur_td;
  724. struct xhci_td *tmp;
  725. list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
  726. list_del_init(&cur_td->td_list);
  727. if (!list_empty(&cur_td->cancelled_td_list))
  728. list_del_init(&cur_td->cancelled_td_list);
  729. xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
  730. inc_td_cnt(cur_td->urb);
  731. if (last_td_in_urb(cur_td))
  732. xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
  733. }
  734. }
  735. static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
  736. int slot_id, int ep_index)
  737. {
  738. struct xhci_td *cur_td;
  739. struct xhci_td *tmp;
  740. struct xhci_virt_ep *ep;
  741. struct xhci_ring *ring;
  742. ep = &xhci->devs[slot_id]->eps[ep_index];
  743. if ((ep->ep_state & EP_HAS_STREAMS) ||
  744. (ep->ep_state & EP_GETTING_NO_STREAMS)) {
  745. int stream_id;
  746. for (stream_id = 1; stream_id < ep->stream_info->num_streams;
  747. stream_id++) {
  748. ring = ep->stream_info->stream_rings[stream_id];
  749. if (!ring)
  750. continue;
  751. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  752. "Killing URBs for slot ID %u, ep index %u, stream %u",
  753. slot_id, ep_index, stream_id);
  754. xhci_kill_ring_urbs(xhci, ring);
  755. }
  756. } else {
  757. ring = ep->ring;
  758. if (!ring)
  759. return;
  760. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  761. "Killing URBs for slot ID %u, ep index %u",
  762. slot_id, ep_index);
  763. xhci_kill_ring_urbs(xhci, ring);
  764. }
  765. list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
  766. cancelled_td_list) {
  767. list_del_init(&cur_td->cancelled_td_list);
  768. inc_td_cnt(cur_td->urb);
  769. if (last_td_in_urb(cur_td))
  770. xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
  771. }
  772. }
  773. /*
  774. * host controller died, register read returns 0xffffffff
  775. * Complete pending commands, mark them ABORTED.
  776. * URBs need to be given back as usb core might be waiting with device locks
  777. * held for the URBs to finish during device disconnect, blocking host remove.
  778. *
  779. * Call with xhci->lock held.
  780. * lock is relased and re-acquired while giving back urb.
  781. */
  782. void xhci_hc_died(struct xhci_hcd *xhci)
  783. {
  784. int i, j;
  785. if (xhci->xhc_state & XHCI_STATE_DYING)
  786. return;
  787. xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
  788. xhci->xhc_state |= XHCI_STATE_DYING;
  789. xhci_cleanup_command_queue(xhci);
  790. /* return any pending urbs, remove may be waiting for them */
  791. for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
  792. if (!xhci->devs[i])
  793. continue;
  794. for (j = 0; j < 31; j++)
  795. xhci_kill_endpoint_urbs(xhci, i, j);
  796. }
  797. /* inform usb core hc died if PCI remove isn't already handling it */
  798. if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
  799. usb_hc_died(xhci_to_hcd(xhci));
  800. }
  801. /* Watchdog timer function for when a stop endpoint command fails to complete.
  802. * In this case, we assume the host controller is broken or dying or dead. The
  803. * host may still be completing some other events, so we have to be careful to
  804. * let the event ring handler and the URB dequeueing/enqueueing functions know
  805. * through xhci->state.
  806. *
  807. * The timer may also fire if the host takes a very long time to respond to the
  808. * command, and the stop endpoint command completion handler cannot delete the
  809. * timer before the timer function is called. Another endpoint cancellation may
  810. * sneak in before the timer function can grab the lock, and that may queue
  811. * another stop endpoint command and add the timer back. So we cannot use a
  812. * simple flag to say whether there is a pending stop endpoint command for a
  813. * particular endpoint.
  814. *
  815. * Instead we use a combination of that flag and checking if a new timer is
  816. * pending.
  817. */
  818. void xhci_stop_endpoint_command_watchdog(struct timer_list *t)
  819. {
  820. struct xhci_virt_ep *ep = from_timer(ep, t, stop_cmd_timer);
  821. struct xhci_hcd *xhci = ep->xhci;
  822. unsigned long flags;
  823. spin_lock_irqsave(&xhci->lock, flags);
  824. /* bail out if cmd completed but raced with stop ep watchdog timer.*/
  825. if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
  826. timer_pending(&ep->stop_cmd_timer)) {
  827. spin_unlock_irqrestore(&xhci->lock, flags);
  828. xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
  829. return;
  830. }
  831. xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
  832. ep->ep_state &= ~EP_STOP_CMD_PENDING;
  833. xhci_halt(xhci);
  834. /*
  835. * handle a stop endpoint cmd timeout as if host died (-ENODEV).
  836. * In the future we could distinguish between -ENODEV and -ETIMEDOUT
  837. * and try to recover a -ETIMEDOUT with a host controller reset
  838. */
  839. xhci_hc_died(xhci);
  840. spin_unlock_irqrestore(&xhci->lock, flags);
  841. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  842. "xHCI host controller is dead.");
  843. }
  844. static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
  845. struct xhci_virt_device *dev,
  846. struct xhci_ring *ep_ring,
  847. unsigned int ep_index)
  848. {
  849. union xhci_trb *dequeue_temp;
  850. int num_trbs_free_temp;
  851. bool revert = false;
  852. num_trbs_free_temp = ep_ring->num_trbs_free;
  853. dequeue_temp = ep_ring->dequeue;
  854. /* If we get two back-to-back stalls, and the first stalled transfer
  855. * ends just before a link TRB, the dequeue pointer will be left on
  856. * the link TRB by the code in the while loop. So we have to update
  857. * the dequeue pointer one segment further, or we'll jump off
  858. * the segment into la-la-land.
  859. */
  860. if (trb_is_link(ep_ring->dequeue)) {
  861. ep_ring->deq_seg = ep_ring->deq_seg->next;
  862. ep_ring->dequeue = ep_ring->deq_seg->trbs;
  863. }
  864. while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
  865. /* We have more usable TRBs */
  866. ep_ring->num_trbs_free++;
  867. ep_ring->dequeue++;
  868. if (trb_is_link(ep_ring->dequeue)) {
  869. if (ep_ring->dequeue ==
  870. dev->eps[ep_index].queued_deq_ptr)
  871. break;
  872. ep_ring->deq_seg = ep_ring->deq_seg->next;
  873. ep_ring->dequeue = ep_ring->deq_seg->trbs;
  874. }
  875. if (ep_ring->dequeue == dequeue_temp) {
  876. revert = true;
  877. break;
  878. }
  879. }
  880. if (revert) {
  881. xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
  882. ep_ring->num_trbs_free = num_trbs_free_temp;
  883. }
  884. }
  885. /*
  886. * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
  887. * we need to clear the set deq pending flag in the endpoint ring state, so that
  888. * the TD queueing code can ring the doorbell again. We also need to ring the
  889. * endpoint doorbell to restart the ring, but only if there aren't more
  890. * cancellations pending.
  891. */
  892. static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
  893. union xhci_trb *trb, u32 cmd_comp_code)
  894. {
  895. unsigned int ep_index;
  896. unsigned int stream_id;
  897. struct xhci_ring *ep_ring;
  898. struct xhci_virt_device *dev;
  899. struct xhci_virt_ep *ep;
  900. struct xhci_ep_ctx *ep_ctx;
  901. struct xhci_slot_ctx *slot_ctx;
  902. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  903. stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
  904. dev = xhci->devs[slot_id];
  905. ep = &dev->eps[ep_index];
  906. ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
  907. if (!ep_ring) {
  908. xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
  909. stream_id);
  910. /* XXX: Harmless??? */
  911. goto cleanup;
  912. }
  913. ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
  914. slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
  915. trace_xhci_handle_cmd_set_deq(slot_ctx);
  916. trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
  917. if (cmd_comp_code != COMP_SUCCESS) {
  918. unsigned int ep_state;
  919. unsigned int slot_state;
  920. switch (cmd_comp_code) {
  921. case COMP_TRB_ERROR:
  922. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
  923. break;
  924. case COMP_CONTEXT_STATE_ERROR:
  925. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
  926. ep_state = GET_EP_CTX_STATE(ep_ctx);
  927. slot_state = le32_to_cpu(slot_ctx->dev_state);
  928. slot_state = GET_SLOT_STATE(slot_state);
  929. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  930. "Slot state = %u, EP state = %u",
  931. slot_state, ep_state);
  932. break;
  933. case COMP_SLOT_NOT_ENABLED_ERROR:
  934. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
  935. slot_id);
  936. break;
  937. default:
  938. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
  939. cmd_comp_code);
  940. break;
  941. }
  942. /* OK what do we do now? The endpoint state is hosed, and we
  943. * should never get to this point if the synchronization between
  944. * queueing, and endpoint state are correct. This might happen
  945. * if the device gets disconnected after we've finished
  946. * cancelling URBs, which might not be an error...
  947. */
  948. } else {
  949. u64 deq;
  950. /* 4.6.10 deq ptr is written to the stream ctx for streams */
  951. if (ep->ep_state & EP_HAS_STREAMS) {
  952. struct xhci_stream_ctx *ctx =
  953. &ep->stream_info->stream_ctx_array[stream_id];
  954. deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
  955. } else {
  956. deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
  957. }
  958. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  959. "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
  960. if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
  961. ep->queued_deq_ptr) == deq) {
  962. /* Update the ring's dequeue segment and dequeue pointer
  963. * to reflect the new position.
  964. */
  965. update_ring_for_set_deq_completion(xhci, dev,
  966. ep_ring, ep_index);
  967. } else {
  968. xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
  969. xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
  970. ep->queued_deq_seg, ep->queued_deq_ptr);
  971. }
  972. }
  973. cleanup:
  974. dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
  975. dev->eps[ep_index].queued_deq_seg = NULL;
  976. dev->eps[ep_index].queued_deq_ptr = NULL;
  977. /* Restart any rings with pending URBs */
  978. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  979. }
  980. static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
  981. union xhci_trb *trb, u32 cmd_comp_code)
  982. {
  983. struct xhci_virt_device *vdev;
  984. struct xhci_ep_ctx *ep_ctx;
  985. unsigned int ep_index;
  986. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  987. vdev = xhci->devs[slot_id];
  988. ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
  989. trace_xhci_handle_cmd_reset_ep(ep_ctx);
  990. /* This command will only fail if the endpoint wasn't halted,
  991. * but we don't care.
  992. */
  993. xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
  994. "Ignoring reset ep completion code of %u", cmd_comp_code);
  995. /* HW with the reset endpoint quirk needs to have a configure endpoint
  996. * command complete before the endpoint can be used. Queue that here
  997. * because the HW can't handle two commands being queued in a row.
  998. */
  999. if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
  1000. struct xhci_command *command;
  1001. command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
  1002. if (!command)
  1003. return;
  1004. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1005. "Queueing configure endpoint command");
  1006. xhci_queue_configure_endpoint(xhci, command,
  1007. xhci->devs[slot_id]->in_ctx->dma, slot_id,
  1008. false);
  1009. xhci_ring_cmd_db(xhci);
  1010. } else {
  1011. /* Clear our internal halted state */
  1012. xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
  1013. }
  1014. }
  1015. static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
  1016. struct xhci_command *command, u32 cmd_comp_code)
  1017. {
  1018. if (cmd_comp_code == COMP_SUCCESS)
  1019. command->slot_id = slot_id;
  1020. else
  1021. command->slot_id = 0;
  1022. }
  1023. static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
  1024. {
  1025. struct xhci_virt_device *virt_dev;
  1026. struct xhci_slot_ctx *slot_ctx;
  1027. virt_dev = xhci->devs[slot_id];
  1028. if (!virt_dev)
  1029. return;
  1030. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  1031. trace_xhci_handle_cmd_disable_slot(slot_ctx);
  1032. if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
  1033. /* Delete default control endpoint resources */
  1034. xhci_free_device_endpoint_resources(xhci, virt_dev, true);
  1035. xhci_free_virt_device(xhci, slot_id);
  1036. }
  1037. static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
  1038. struct xhci_event_cmd *event, u32 cmd_comp_code)
  1039. {
  1040. struct xhci_virt_device *virt_dev;
  1041. struct xhci_input_control_ctx *ctrl_ctx;
  1042. struct xhci_ep_ctx *ep_ctx;
  1043. unsigned int ep_index;
  1044. unsigned int ep_state;
  1045. u32 add_flags, drop_flags;
  1046. /*
  1047. * Configure endpoint commands can come from the USB core
  1048. * configuration or alt setting changes, or because the HW
  1049. * needed an extra configure endpoint command after a reset
  1050. * endpoint command or streams were being configured.
  1051. * If the command was for a halted endpoint, the xHCI driver
  1052. * is not waiting on the configure endpoint command.
  1053. */
  1054. virt_dev = xhci->devs[slot_id];
  1055. ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
  1056. if (!ctrl_ctx) {
  1057. xhci_warn(xhci, "Could not get input context, bad type.\n");
  1058. return;
  1059. }
  1060. add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1061. drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1062. /* Input ctx add_flags are the endpoint index plus one */
  1063. ep_index = xhci_last_valid_endpoint(add_flags) - 1;
  1064. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
  1065. trace_xhci_handle_cmd_config_ep(ep_ctx);
  1066. /* A usb_set_interface() call directly after clearing a halted
  1067. * condition may race on this quirky hardware. Not worth
  1068. * worrying about, since this is prototype hardware. Not sure
  1069. * if this will work for streams, but streams support was
  1070. * untested on this prototype.
  1071. */
  1072. if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
  1073. ep_index != (unsigned int) -1 &&
  1074. add_flags - SLOT_FLAG == drop_flags) {
  1075. ep_state = virt_dev->eps[ep_index].ep_state;
  1076. if (!(ep_state & EP_HALTED))
  1077. return;
  1078. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1079. "Completed config ep cmd - "
  1080. "last ep index = %d, state = %d",
  1081. ep_index, ep_state);
  1082. /* Clear internal halted state and restart ring(s) */
  1083. virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
  1084. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  1085. return;
  1086. }
  1087. return;
  1088. }
  1089. static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
  1090. {
  1091. struct xhci_virt_device *vdev;
  1092. struct xhci_slot_ctx *slot_ctx;
  1093. vdev = xhci->devs[slot_id];
  1094. slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
  1095. trace_xhci_handle_cmd_addr_dev(slot_ctx);
  1096. }
  1097. static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
  1098. struct xhci_event_cmd *event)
  1099. {
  1100. struct xhci_virt_device *vdev;
  1101. struct xhci_slot_ctx *slot_ctx;
  1102. vdev = xhci->devs[slot_id];
  1103. slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
  1104. trace_xhci_handle_cmd_reset_dev(slot_ctx);
  1105. xhci_dbg(xhci, "Completed reset device command.\n");
  1106. if (!xhci->devs[slot_id])
  1107. xhci_warn(xhci, "Reset device command completion "
  1108. "for disabled slot %u\n", slot_id);
  1109. }
  1110. static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
  1111. struct xhci_event_cmd *event)
  1112. {
  1113. if (!(xhci->quirks & XHCI_NEC_HOST)) {
  1114. xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
  1115. return;
  1116. }
  1117. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1118. "NEC firmware version %2x.%02x",
  1119. NEC_FW_MAJOR(le32_to_cpu(event->status)),
  1120. NEC_FW_MINOR(le32_to_cpu(event->status)));
  1121. }
  1122. static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
  1123. {
  1124. list_del(&cmd->cmd_list);
  1125. if (cmd->completion) {
  1126. cmd->status = status;
  1127. complete(cmd->completion);
  1128. } else {
  1129. kfree(cmd);
  1130. }
  1131. }
  1132. void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
  1133. {
  1134. struct xhci_command *cur_cmd, *tmp_cmd;
  1135. xhci->current_cmd = NULL;
  1136. list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
  1137. xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
  1138. }
  1139. void xhci_handle_command_timeout(struct work_struct *work)
  1140. {
  1141. struct xhci_hcd *xhci;
  1142. unsigned long flags;
  1143. u64 hw_ring_state;
  1144. xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
  1145. spin_lock_irqsave(&xhci->lock, flags);
  1146. /*
  1147. * If timeout work is pending, or current_cmd is NULL, it means we
  1148. * raced with command completion. Command is handled so just return.
  1149. */
  1150. if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
  1151. spin_unlock_irqrestore(&xhci->lock, flags);
  1152. return;
  1153. }
  1154. /* mark this command to be cancelled */
  1155. xhci->current_cmd->status = COMP_COMMAND_ABORTED;
  1156. /* Make sure command ring is running before aborting it */
  1157. hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  1158. if (hw_ring_state == ~(u64)0) {
  1159. xhci_hc_died(xhci);
  1160. goto time_out_completed;
  1161. }
  1162. if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
  1163. (hw_ring_state & CMD_RING_RUNNING)) {
  1164. /* Prevent new doorbell, and start command abort */
  1165. xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
  1166. xhci_dbg(xhci, "Command timeout\n");
  1167. xhci_abort_cmd_ring(xhci, flags);
  1168. goto time_out_completed;
  1169. }
  1170. /* host removed. Bail out */
  1171. if (xhci->xhc_state & XHCI_STATE_REMOVING) {
  1172. xhci_dbg(xhci, "host removed, ring start fail?\n");
  1173. xhci_cleanup_command_queue(xhci);
  1174. goto time_out_completed;
  1175. }
  1176. /* command timeout on stopped ring, ring can't be aborted */
  1177. xhci_dbg(xhci, "Command timeout on stopped ring\n");
  1178. xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
  1179. time_out_completed:
  1180. spin_unlock_irqrestore(&xhci->lock, flags);
  1181. return;
  1182. }
  1183. static void handle_cmd_completion(struct xhci_hcd *xhci,
  1184. struct xhci_event_cmd *event)
  1185. {
  1186. int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1187. u64 cmd_dma;
  1188. dma_addr_t cmd_dequeue_dma;
  1189. u32 cmd_comp_code;
  1190. union xhci_trb *cmd_trb;
  1191. struct xhci_command *cmd;
  1192. u32 cmd_type;
  1193. cmd_dma = le64_to_cpu(event->cmd_trb);
  1194. cmd_trb = xhci->cmd_ring->dequeue;
  1195. trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
  1196. cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  1197. cmd_trb);
  1198. /*
  1199. * Check whether the completion event is for our internal kept
  1200. * command.
  1201. */
  1202. if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
  1203. xhci_warn(xhci,
  1204. "ERROR mismatched command completion event\n");
  1205. return;
  1206. }
  1207. cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
  1208. cancel_delayed_work(&xhci->cmd_timer);
  1209. cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
  1210. /* If CMD ring stopped we own the trbs between enqueue and dequeue */
  1211. if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
  1212. complete_all(&xhci->cmd_ring_stop_completion);
  1213. return;
  1214. }
  1215. if (cmd->command_trb != xhci->cmd_ring->dequeue) {
  1216. xhci_err(xhci,
  1217. "Command completion event does not match command\n");
  1218. return;
  1219. }
  1220. /*
  1221. * Host aborted the command ring, check if the current command was
  1222. * supposed to be aborted, otherwise continue normally.
  1223. * The command ring is stopped now, but the xHC will issue a Command
  1224. * Ring Stopped event which will cause us to restart it.
  1225. */
  1226. if (cmd_comp_code == COMP_COMMAND_ABORTED) {
  1227. xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
  1228. if (cmd->status == COMP_COMMAND_ABORTED) {
  1229. if (xhci->current_cmd == cmd)
  1230. xhci->current_cmd = NULL;
  1231. goto event_handled;
  1232. }
  1233. }
  1234. cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
  1235. switch (cmd_type) {
  1236. case TRB_ENABLE_SLOT:
  1237. xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
  1238. break;
  1239. case TRB_DISABLE_SLOT:
  1240. xhci_handle_cmd_disable_slot(xhci, slot_id);
  1241. break;
  1242. case TRB_CONFIG_EP:
  1243. if (!cmd->completion)
  1244. xhci_handle_cmd_config_ep(xhci, slot_id, event,
  1245. cmd_comp_code);
  1246. break;
  1247. case TRB_EVAL_CONTEXT:
  1248. break;
  1249. case TRB_ADDR_DEV:
  1250. xhci_handle_cmd_addr_dev(xhci, slot_id);
  1251. break;
  1252. case TRB_STOP_RING:
  1253. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1254. le32_to_cpu(cmd_trb->generic.field[3])));
  1255. if (!cmd->completion)
  1256. xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
  1257. break;
  1258. case TRB_SET_DEQ:
  1259. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1260. le32_to_cpu(cmd_trb->generic.field[3])));
  1261. xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
  1262. break;
  1263. case TRB_CMD_NOOP:
  1264. /* Is this an aborted command turned to NO-OP? */
  1265. if (cmd->status == COMP_COMMAND_RING_STOPPED)
  1266. cmd_comp_code = COMP_COMMAND_RING_STOPPED;
  1267. break;
  1268. case TRB_RESET_EP:
  1269. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1270. le32_to_cpu(cmd_trb->generic.field[3])));
  1271. xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
  1272. break;
  1273. case TRB_RESET_DEV:
  1274. /* SLOT_ID field in reset device cmd completion event TRB is 0.
  1275. * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
  1276. */
  1277. slot_id = TRB_TO_SLOT_ID(
  1278. le32_to_cpu(cmd_trb->generic.field[3]));
  1279. xhci_handle_cmd_reset_dev(xhci, slot_id, event);
  1280. break;
  1281. case TRB_NEC_GET_FW:
  1282. xhci_handle_cmd_nec_get_fw(xhci, event);
  1283. break;
  1284. default:
  1285. /* Skip over unknown commands on the event ring */
  1286. xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
  1287. break;
  1288. }
  1289. /* restart timer if this wasn't the last command */
  1290. if (!list_is_singular(&xhci->cmd_list)) {
  1291. xhci->current_cmd = list_first_entry(&cmd->cmd_list,
  1292. struct xhci_command, cmd_list);
  1293. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  1294. } else if (xhci->current_cmd == cmd) {
  1295. xhci->current_cmd = NULL;
  1296. }
  1297. event_handled:
  1298. xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
  1299. inc_deq(xhci, xhci->cmd_ring);
  1300. }
  1301. static void handle_vendor_event(struct xhci_hcd *xhci,
  1302. union xhci_trb *event)
  1303. {
  1304. u32 trb_type;
  1305. trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
  1306. xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
  1307. if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
  1308. handle_cmd_completion(xhci, &event->event_cmd);
  1309. }
  1310. static void handle_device_notification(struct xhci_hcd *xhci,
  1311. union xhci_trb *event)
  1312. {
  1313. u32 slot_id;
  1314. struct usb_device *udev;
  1315. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
  1316. if (!xhci->devs[slot_id]) {
  1317. xhci_warn(xhci, "Device Notification event for "
  1318. "unused slot %u\n", slot_id);
  1319. return;
  1320. }
  1321. xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
  1322. slot_id);
  1323. udev = xhci->devs[slot_id]->udev;
  1324. if (udev && udev->parent)
  1325. usb_wakeup_notification(udev->parent, udev->portnum);
  1326. }
  1327. static void handle_port_status(struct xhci_hcd *xhci,
  1328. union xhci_trb *event)
  1329. {
  1330. struct usb_hcd *hcd;
  1331. u32 port_id;
  1332. u32 portsc, cmd_reg;
  1333. int max_ports;
  1334. int slot_id;
  1335. unsigned int hcd_portnum;
  1336. struct xhci_bus_state *bus_state;
  1337. bool bogus_port_status = false;
  1338. struct xhci_port *port;
  1339. /* Port status change events always have a successful completion code */
  1340. if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
  1341. xhci_warn(xhci,
  1342. "WARN: xHC returned failed port status event\n");
  1343. port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
  1344. xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
  1345. max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
  1346. if ((port_id <= 0) || (port_id > max_ports)) {
  1347. xhci_warn(xhci, "Invalid port id %d\n", port_id);
  1348. inc_deq(xhci, xhci->event_ring);
  1349. return;
  1350. }
  1351. port = &xhci->hw_ports[port_id - 1];
  1352. if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) {
  1353. xhci_warn(xhci, "Event for invalid port %u\n", port_id);
  1354. bogus_port_status = true;
  1355. goto cleanup;
  1356. }
  1357. hcd = port->rhub->hcd;
  1358. bus_state = &xhci->bus_state[hcd_index(hcd)];
  1359. hcd_portnum = port->hcd_portnum;
  1360. portsc = readl(port->addr);
  1361. trace_xhci_handle_port_status(hcd_portnum, portsc);
  1362. if (hcd->state == HC_STATE_SUSPENDED) {
  1363. xhci_dbg(xhci, "resume root hub\n");
  1364. usb_hcd_resume_root_hub(hcd);
  1365. }
  1366. if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE)
  1367. bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
  1368. if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
  1369. xhci_dbg(xhci, "port resume event for port %d\n", port_id);
  1370. cmd_reg = readl(&xhci->op_regs->command);
  1371. if (!(cmd_reg & CMD_RUN)) {
  1372. xhci_warn(xhci, "xHC is not running.\n");
  1373. goto cleanup;
  1374. }
  1375. if (DEV_SUPERSPEED_ANY(portsc)) {
  1376. xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
  1377. /* Set a flag to say the port signaled remote wakeup,
  1378. * so we can tell the difference between the end of
  1379. * device and host initiated resume.
  1380. */
  1381. bus_state->port_remote_wakeup |= 1 << hcd_portnum;
  1382. xhci_test_and_clear_bit(xhci, port, PORT_PLC);
  1383. xhci_set_link_state(xhci, port, XDEV_U0);
  1384. /* Need to wait until the next link state change
  1385. * indicates the device is actually in U0.
  1386. */
  1387. bogus_port_status = true;
  1388. goto cleanup;
  1389. } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) {
  1390. xhci_dbg(xhci, "resume HS port %d\n", port_id);
  1391. bus_state->resume_done[hcd_portnum] = jiffies +
  1392. msecs_to_jiffies(USB_RESUME_TIMEOUT);
  1393. set_bit(hcd_portnum, &bus_state->resuming_ports);
  1394. /* Do the rest in GetPortStatus after resume time delay.
  1395. * Avoid polling roothub status before that so that a
  1396. * usb device auto-resume latency around ~40ms.
  1397. */
  1398. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  1399. mod_timer(&hcd->rh_timer,
  1400. bus_state->resume_done[hcd_portnum]);
  1401. bogus_port_status = true;
  1402. }
  1403. }
  1404. if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 &&
  1405. DEV_SUPERSPEED_ANY(portsc)) {
  1406. xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
  1407. /* We've just brought the device into U0 through either the
  1408. * Resume state after a device remote wakeup, or through the
  1409. * U3Exit state after a host-initiated resume. If it's a device
  1410. * initiated remote wake, don't pass up the link state change,
  1411. * so the roothub behavior is consistent with external
  1412. * USB 3.0 hub behavior.
  1413. */
  1414. slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
  1415. if (slot_id && xhci->devs[slot_id])
  1416. xhci_ring_device(xhci, slot_id);
  1417. if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) {
  1418. bus_state->port_remote_wakeup &= ~(1 << hcd_portnum);
  1419. xhci_test_and_clear_bit(xhci, port, PORT_PLC);
  1420. usb_wakeup_notification(hcd->self.root_hub,
  1421. hcd_portnum + 1);
  1422. bogus_port_status = true;
  1423. goto cleanup;
  1424. }
  1425. }
  1426. /*
  1427. * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
  1428. * RExit to a disconnect state). If so, let the the driver know it's
  1429. * out of the RExit state.
  1430. */
  1431. if (!DEV_SUPERSPEED_ANY(portsc) &&
  1432. test_and_clear_bit(hcd_portnum,
  1433. &bus_state->rexit_ports)) {
  1434. complete(&bus_state->rexit_done[hcd_portnum]);
  1435. bogus_port_status = true;
  1436. goto cleanup;
  1437. }
  1438. if (hcd->speed < HCD_USB3)
  1439. xhci_test_and_clear_bit(xhci, port, PORT_PLC);
  1440. cleanup:
  1441. /* Update event ring dequeue pointer before dropping the lock */
  1442. inc_deq(xhci, xhci->event_ring);
  1443. /* Don't make the USB core poll the roothub if we got a bad port status
  1444. * change event. Besides, at that point we can't tell which roothub
  1445. * (USB 2.0 or USB 3.0) to kick.
  1446. */
  1447. if (bogus_port_status)
  1448. return;
  1449. /*
  1450. * xHCI port-status-change events occur when the "or" of all the
  1451. * status-change bits in the portsc register changes from 0 to 1.
  1452. * New status changes won't cause an event if any other change
  1453. * bits are still set. When an event occurs, switch over to
  1454. * polling to avoid losing status changes.
  1455. */
  1456. xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
  1457. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  1458. spin_unlock(&xhci->lock);
  1459. /* Pass this up to the core */
  1460. usb_hcd_poll_rh_status(hcd);
  1461. spin_lock(&xhci->lock);
  1462. }
  1463. /*
  1464. * This TD is defined by the TRBs starting at start_trb in start_seg and ending
  1465. * at end_trb, which may be in another segment. If the suspect DMA address is a
  1466. * TRB in this TD, this function returns that TRB's segment. Otherwise it
  1467. * returns 0.
  1468. */
  1469. struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
  1470. struct xhci_segment *start_seg,
  1471. union xhci_trb *start_trb,
  1472. union xhci_trb *end_trb,
  1473. dma_addr_t suspect_dma,
  1474. bool debug)
  1475. {
  1476. dma_addr_t start_dma;
  1477. dma_addr_t end_seg_dma;
  1478. dma_addr_t end_trb_dma;
  1479. struct xhci_segment *cur_seg;
  1480. start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
  1481. cur_seg = start_seg;
  1482. do {
  1483. if (start_dma == 0)
  1484. return NULL;
  1485. /* We may get an event for a Link TRB in the middle of a TD */
  1486. end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
  1487. &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
  1488. /* If the end TRB isn't in this segment, this is set to 0 */
  1489. end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
  1490. if (debug)
  1491. xhci_warn(xhci,
  1492. "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
  1493. (unsigned long long)suspect_dma,
  1494. (unsigned long long)start_dma,
  1495. (unsigned long long)end_trb_dma,
  1496. (unsigned long long)cur_seg->dma,
  1497. (unsigned long long)end_seg_dma);
  1498. if (end_trb_dma > 0) {
  1499. /* The end TRB is in this segment, so suspect should be here */
  1500. if (start_dma <= end_trb_dma) {
  1501. if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
  1502. return cur_seg;
  1503. } else {
  1504. /* Case for one segment with
  1505. * a TD wrapped around to the top
  1506. */
  1507. if ((suspect_dma >= start_dma &&
  1508. suspect_dma <= end_seg_dma) ||
  1509. (suspect_dma >= cur_seg->dma &&
  1510. suspect_dma <= end_trb_dma))
  1511. return cur_seg;
  1512. }
  1513. return NULL;
  1514. } else {
  1515. /* Might still be somewhere in this segment */
  1516. if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
  1517. return cur_seg;
  1518. }
  1519. cur_seg = cur_seg->next;
  1520. start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
  1521. } while (cur_seg != start_seg);
  1522. return NULL;
  1523. }
  1524. static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
  1525. unsigned int slot_id, unsigned int ep_index,
  1526. unsigned int stream_id, struct xhci_td *td,
  1527. enum xhci_ep_reset_type reset_type)
  1528. {
  1529. struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
  1530. struct xhci_command *command;
  1531. command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
  1532. if (!command)
  1533. return;
  1534. ep->ep_state |= EP_HALTED;
  1535. xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
  1536. if (reset_type == EP_HARD_RESET) {
  1537. ep->ep_state |= EP_HARD_CLEAR_TOGGLE;
  1538. xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
  1539. }
  1540. xhci_ring_cmd_db(xhci);
  1541. }
  1542. /* Check if an error has halted the endpoint ring. The class driver will
  1543. * cleanup the halt for a non-default control endpoint if we indicate a stall.
  1544. * However, a babble and other errors also halt the endpoint ring, and the class
  1545. * driver won't clear the halt in that case, so we need to issue a Set Transfer
  1546. * Ring Dequeue Pointer command manually.
  1547. */
  1548. static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
  1549. struct xhci_ep_ctx *ep_ctx,
  1550. unsigned int trb_comp_code)
  1551. {
  1552. /* TRB completion codes that may require a manual halt cleanup */
  1553. if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
  1554. trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
  1555. trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
  1556. /* The 0.95 spec says a babbling control endpoint
  1557. * is not halted. The 0.96 spec says it is. Some HW
  1558. * claims to be 0.95 compliant, but it halts the control
  1559. * endpoint anyway. Check if a babble halted the
  1560. * endpoint.
  1561. */
  1562. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
  1563. return 1;
  1564. return 0;
  1565. }
  1566. int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
  1567. {
  1568. if (trb_comp_code >= 224 && trb_comp_code <= 255) {
  1569. /* Vendor defined "informational" completion code,
  1570. * treat as not-an-error.
  1571. */
  1572. xhci_dbg(xhci, "Vendor defined info completion code %u\n",
  1573. trb_comp_code);
  1574. xhci_dbg(xhci, "Treating code as success.\n");
  1575. return 1;
  1576. }
  1577. return 0;
  1578. }
  1579. static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
  1580. struct xhci_ring *ep_ring, int *status)
  1581. {
  1582. struct urb *urb = NULL;
  1583. /* Clean up the endpoint's TD list */
  1584. urb = td->urb;
  1585. /* if a bounce buffer was used to align this td then unmap it */
  1586. xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
  1587. /* Do one last check of the actual transfer length.
  1588. * If the host controller said we transferred more data than the buffer
  1589. * length, urb->actual_length will be a very big number (since it's
  1590. * unsigned). Play it safe and say we didn't transfer anything.
  1591. */
  1592. if (urb->actual_length > urb->transfer_buffer_length) {
  1593. xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
  1594. urb->transfer_buffer_length, urb->actual_length);
  1595. urb->actual_length = 0;
  1596. *status = 0;
  1597. }
  1598. list_del_init(&td->td_list);
  1599. /* Was this TD slated to be cancelled but completed anyway? */
  1600. if (!list_empty(&td->cancelled_td_list))
  1601. list_del_init(&td->cancelled_td_list);
  1602. inc_td_cnt(urb);
  1603. /* Giveback the urb when all the tds are completed */
  1604. if (last_td_in_urb(td)) {
  1605. if ((urb->actual_length != urb->transfer_buffer_length &&
  1606. (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
  1607. (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
  1608. xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
  1609. urb, urb->actual_length,
  1610. urb->transfer_buffer_length, *status);
  1611. /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
  1612. if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
  1613. *status = 0;
  1614. xhci_giveback_urb_in_irq(xhci, td, *status);
  1615. }
  1616. return 0;
  1617. }
  1618. static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1619. struct xhci_transfer_event *event,
  1620. struct xhci_virt_ep *ep, int *status)
  1621. {
  1622. struct xhci_virt_device *xdev;
  1623. struct xhci_ep_ctx *ep_ctx;
  1624. struct xhci_ring *ep_ring;
  1625. unsigned int slot_id;
  1626. u32 trb_comp_code;
  1627. int ep_index;
  1628. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1629. xdev = xhci->devs[slot_id];
  1630. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  1631. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1632. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  1633. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1634. if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
  1635. trb_comp_code == COMP_STOPPED ||
  1636. trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
  1637. /* The Endpoint Stop Command completion will take care of any
  1638. * stopped TDs. A stopped TD may be restarted, so don't update
  1639. * the ring dequeue pointer or take this TD off any lists yet.
  1640. */
  1641. return 0;
  1642. }
  1643. if (trb_comp_code == COMP_STALL_ERROR ||
  1644. xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
  1645. trb_comp_code)) {
  1646. /* Issue a reset endpoint command to clear the host side
  1647. * halt, followed by a set dequeue command to move the
  1648. * dequeue pointer past the TD.
  1649. * The class driver clears the device side halt later.
  1650. */
  1651. xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
  1652. ep_ring->stream_id, td, EP_HARD_RESET);
  1653. } else {
  1654. /* Update ring dequeue pointer */
  1655. while (ep_ring->dequeue != td->last_trb)
  1656. inc_deq(xhci, ep_ring);
  1657. inc_deq(xhci, ep_ring);
  1658. }
  1659. return xhci_td_cleanup(xhci, td, ep_ring, status);
  1660. }
  1661. /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
  1662. static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
  1663. union xhci_trb *stop_trb)
  1664. {
  1665. u32 sum;
  1666. union xhci_trb *trb = ring->dequeue;
  1667. struct xhci_segment *seg = ring->deq_seg;
  1668. for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
  1669. if (!trb_is_noop(trb) && !trb_is_link(trb))
  1670. sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
  1671. }
  1672. return sum;
  1673. }
  1674. /*
  1675. * Process control tds, update urb status and actual_length.
  1676. */
  1677. static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1678. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1679. struct xhci_virt_ep *ep, int *status)
  1680. {
  1681. struct xhci_virt_device *xdev;
  1682. unsigned int slot_id;
  1683. int ep_index;
  1684. struct xhci_ep_ctx *ep_ctx;
  1685. u32 trb_comp_code;
  1686. u32 remaining, requested;
  1687. u32 trb_type;
  1688. trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
  1689. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1690. xdev = xhci->devs[slot_id];
  1691. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  1692. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  1693. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1694. requested = td->urb->transfer_buffer_length;
  1695. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1696. switch (trb_comp_code) {
  1697. case COMP_SUCCESS:
  1698. if (trb_type != TRB_STATUS) {
  1699. xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
  1700. (trb_type == TRB_DATA) ? "data" : "setup");
  1701. *status = -ESHUTDOWN;
  1702. break;
  1703. }
  1704. *status = 0;
  1705. break;
  1706. case COMP_SHORT_PACKET:
  1707. *status = 0;
  1708. break;
  1709. case COMP_STOPPED_SHORT_PACKET:
  1710. if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
  1711. td->urb->actual_length = remaining;
  1712. else
  1713. xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
  1714. goto finish_td;
  1715. case COMP_STOPPED:
  1716. switch (trb_type) {
  1717. case TRB_SETUP:
  1718. td->urb->actual_length = 0;
  1719. goto finish_td;
  1720. case TRB_DATA:
  1721. case TRB_NORMAL:
  1722. td->urb->actual_length = requested - remaining;
  1723. goto finish_td;
  1724. case TRB_STATUS:
  1725. td->urb->actual_length = requested;
  1726. goto finish_td;
  1727. default:
  1728. xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
  1729. trb_type);
  1730. goto finish_td;
  1731. }
  1732. case COMP_STOPPED_LENGTH_INVALID:
  1733. goto finish_td;
  1734. default:
  1735. if (!xhci_requires_manual_halt_cleanup(xhci,
  1736. ep_ctx, trb_comp_code))
  1737. break;
  1738. xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
  1739. trb_comp_code, ep_index);
  1740. /* else fall through */
  1741. case COMP_STALL_ERROR:
  1742. /* Did we transfer part of the data (middle) phase? */
  1743. if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
  1744. td->urb->actual_length = requested - remaining;
  1745. else if (!td->urb_length_set)
  1746. td->urb->actual_length = 0;
  1747. goto finish_td;
  1748. }
  1749. /* stopped at setup stage, no data transferred */
  1750. if (trb_type == TRB_SETUP)
  1751. goto finish_td;
  1752. /*
  1753. * if on data stage then update the actual_length of the URB and flag it
  1754. * as set, so it won't be overwritten in the event for the last TRB.
  1755. */
  1756. if (trb_type == TRB_DATA ||
  1757. trb_type == TRB_NORMAL) {
  1758. td->urb_length_set = true;
  1759. td->urb->actual_length = requested - remaining;
  1760. xhci_dbg(xhci, "Waiting for status stage event\n");
  1761. return 0;
  1762. }
  1763. /* at status stage */
  1764. if (!td->urb_length_set)
  1765. td->urb->actual_length = requested;
  1766. finish_td:
  1767. return finish_td(xhci, td, event, ep, status);
  1768. }
  1769. /*
  1770. * Process isochronous tds, update urb packet status and actual_length.
  1771. */
  1772. static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1773. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1774. struct xhci_virt_ep *ep, int *status)
  1775. {
  1776. struct xhci_ring *ep_ring;
  1777. struct urb_priv *urb_priv;
  1778. int idx;
  1779. struct usb_iso_packet_descriptor *frame;
  1780. u32 trb_comp_code;
  1781. bool sum_trbs_for_length = false;
  1782. u32 remaining, requested, ep_trb_len;
  1783. int short_framestatus;
  1784. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1785. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1786. urb_priv = td->urb->hcpriv;
  1787. idx = urb_priv->num_tds_done;
  1788. frame = &td->urb->iso_frame_desc[idx];
  1789. requested = frame->length;
  1790. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1791. ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
  1792. short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
  1793. -EREMOTEIO : 0;
  1794. /* handle completion code */
  1795. switch (trb_comp_code) {
  1796. case COMP_SUCCESS:
  1797. if (remaining) {
  1798. frame->status = short_framestatus;
  1799. if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
  1800. sum_trbs_for_length = true;
  1801. break;
  1802. }
  1803. frame->status = 0;
  1804. break;
  1805. case COMP_SHORT_PACKET:
  1806. frame->status = short_framestatus;
  1807. sum_trbs_for_length = true;
  1808. break;
  1809. case COMP_BANDWIDTH_OVERRUN_ERROR:
  1810. frame->status = -ECOMM;
  1811. break;
  1812. case COMP_ISOCH_BUFFER_OVERRUN:
  1813. case COMP_BABBLE_DETECTED_ERROR:
  1814. frame->status = -EOVERFLOW;
  1815. break;
  1816. case COMP_INCOMPATIBLE_DEVICE_ERROR:
  1817. case COMP_STALL_ERROR:
  1818. frame->status = -EPROTO;
  1819. break;
  1820. case COMP_USB_TRANSACTION_ERROR:
  1821. frame->status = -EPROTO;
  1822. if (ep_trb != td->last_trb)
  1823. return 0;
  1824. break;
  1825. case COMP_STOPPED:
  1826. sum_trbs_for_length = true;
  1827. break;
  1828. case COMP_STOPPED_SHORT_PACKET:
  1829. /* field normally containing residue now contains tranferred */
  1830. frame->status = short_framestatus;
  1831. requested = remaining;
  1832. break;
  1833. case COMP_STOPPED_LENGTH_INVALID:
  1834. requested = 0;
  1835. remaining = 0;
  1836. break;
  1837. default:
  1838. sum_trbs_for_length = true;
  1839. frame->status = -1;
  1840. break;
  1841. }
  1842. if (sum_trbs_for_length)
  1843. frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
  1844. ep_trb_len - remaining;
  1845. else
  1846. frame->actual_length = requested;
  1847. td->urb->actual_length += frame->actual_length;
  1848. return finish_td(xhci, td, event, ep, status);
  1849. }
  1850. static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1851. struct xhci_transfer_event *event,
  1852. struct xhci_virt_ep *ep, int *status)
  1853. {
  1854. struct xhci_ring *ep_ring;
  1855. struct urb_priv *urb_priv;
  1856. struct usb_iso_packet_descriptor *frame;
  1857. int idx;
  1858. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1859. urb_priv = td->urb->hcpriv;
  1860. idx = urb_priv->num_tds_done;
  1861. frame = &td->urb->iso_frame_desc[idx];
  1862. /* The transfer is partly done. */
  1863. frame->status = -EXDEV;
  1864. /* calc actual length */
  1865. frame->actual_length = 0;
  1866. /* Update ring dequeue pointer */
  1867. while (ep_ring->dequeue != td->last_trb)
  1868. inc_deq(xhci, ep_ring);
  1869. inc_deq(xhci, ep_ring);
  1870. return xhci_td_cleanup(xhci, td, ep_ring, status);
  1871. }
  1872. /*
  1873. * Process bulk and interrupt tds, update urb status and actual_length.
  1874. */
  1875. static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1876. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1877. struct xhci_virt_ep *ep, int *status)
  1878. {
  1879. struct xhci_ring *ep_ring;
  1880. u32 trb_comp_code;
  1881. u32 remaining, requested, ep_trb_len;
  1882. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1883. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1884. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1885. ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
  1886. requested = td->urb->transfer_buffer_length;
  1887. switch (trb_comp_code) {
  1888. case COMP_SUCCESS:
  1889. /* handle success with untransferred data as short packet */
  1890. if (ep_trb != td->last_trb || remaining) {
  1891. xhci_warn(xhci, "WARN Successful completion on short TX\n");
  1892. xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
  1893. td->urb->ep->desc.bEndpointAddress,
  1894. requested, remaining);
  1895. }
  1896. *status = 0;
  1897. break;
  1898. case COMP_SHORT_PACKET:
  1899. xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
  1900. td->urb->ep->desc.bEndpointAddress,
  1901. requested, remaining);
  1902. *status = 0;
  1903. break;
  1904. case COMP_STOPPED_SHORT_PACKET:
  1905. td->urb->actual_length = remaining;
  1906. goto finish_td;
  1907. case COMP_STOPPED_LENGTH_INVALID:
  1908. /* stopped on ep trb with invalid length, exclude it */
  1909. ep_trb_len = 0;
  1910. remaining = 0;
  1911. break;
  1912. default:
  1913. /* do nothing */
  1914. break;
  1915. }
  1916. if (ep_trb == td->last_trb)
  1917. td->urb->actual_length = requested - remaining;
  1918. else
  1919. td->urb->actual_length =
  1920. sum_trb_lengths(xhci, ep_ring, ep_trb) +
  1921. ep_trb_len - remaining;
  1922. finish_td:
  1923. if (remaining > requested) {
  1924. xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
  1925. remaining);
  1926. td->urb->actual_length = 0;
  1927. }
  1928. return finish_td(xhci, td, event, ep, status);
  1929. }
  1930. /*
  1931. * If this function returns an error condition, it means it got a Transfer
  1932. * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
  1933. * At this point, the host controller is probably hosed and should be reset.
  1934. */
  1935. static int handle_tx_event(struct xhci_hcd *xhci,
  1936. struct xhci_transfer_event *event)
  1937. {
  1938. struct xhci_virt_device *xdev;
  1939. struct xhci_virt_ep *ep;
  1940. struct xhci_ring *ep_ring;
  1941. unsigned int slot_id;
  1942. int ep_index;
  1943. struct xhci_td *td = NULL;
  1944. dma_addr_t ep_trb_dma;
  1945. struct xhci_segment *ep_seg;
  1946. union xhci_trb *ep_trb;
  1947. int status = -EINPROGRESS;
  1948. struct xhci_ep_ctx *ep_ctx;
  1949. struct list_head *tmp;
  1950. u32 trb_comp_code;
  1951. int td_num = 0;
  1952. bool handling_skipped_tds = false;
  1953. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1954. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  1955. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1956. ep_trb_dma = le64_to_cpu(event->buffer);
  1957. xdev = xhci->devs[slot_id];
  1958. if (!xdev) {
  1959. xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
  1960. slot_id);
  1961. goto err_out;
  1962. }
  1963. ep = &xdev->eps[ep_index];
  1964. ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
  1965. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  1966. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
  1967. xhci_err(xhci,
  1968. "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
  1969. slot_id, ep_index);
  1970. goto err_out;
  1971. }
  1972. /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
  1973. if (!ep_ring) {
  1974. switch (trb_comp_code) {
  1975. case COMP_STALL_ERROR:
  1976. case COMP_USB_TRANSACTION_ERROR:
  1977. case COMP_INVALID_STREAM_TYPE_ERROR:
  1978. case COMP_INVALID_STREAM_ID_ERROR:
  1979. xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
  1980. NULL, EP_SOFT_RESET);
  1981. goto cleanup;
  1982. case COMP_RING_UNDERRUN:
  1983. case COMP_RING_OVERRUN:
  1984. goto cleanup;
  1985. default:
  1986. xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
  1987. slot_id, ep_index);
  1988. goto err_out;
  1989. }
  1990. }
  1991. /* Count current td numbers if ep->skip is set */
  1992. if (ep->skip) {
  1993. list_for_each(tmp, &ep_ring->td_list)
  1994. td_num++;
  1995. }
  1996. /* Look for common error cases */
  1997. switch (trb_comp_code) {
  1998. /* Skip codes that require special handling depending on
  1999. * transfer type
  2000. */
  2001. case COMP_SUCCESS:
  2002. if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
  2003. break;
  2004. if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
  2005. trb_comp_code = COMP_SHORT_PACKET;
  2006. else
  2007. xhci_warn_ratelimited(xhci,
  2008. "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
  2009. slot_id, ep_index);
  2010. case COMP_SHORT_PACKET:
  2011. break;
  2012. /* Completion codes for endpoint stopped state */
  2013. case COMP_STOPPED:
  2014. xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
  2015. slot_id, ep_index);
  2016. break;
  2017. case COMP_STOPPED_LENGTH_INVALID:
  2018. xhci_dbg(xhci,
  2019. "Stopped on No-op or Link TRB for slot %u ep %u\n",
  2020. slot_id, ep_index);
  2021. break;
  2022. case COMP_STOPPED_SHORT_PACKET:
  2023. xhci_dbg(xhci,
  2024. "Stopped with short packet transfer detected for slot %u ep %u\n",
  2025. slot_id, ep_index);
  2026. break;
  2027. /* Completion codes for endpoint halted state */
  2028. case COMP_STALL_ERROR:
  2029. xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
  2030. ep_index);
  2031. ep->ep_state |= EP_HALTED;
  2032. status = -EPIPE;
  2033. break;
  2034. case COMP_SPLIT_TRANSACTION_ERROR:
  2035. case COMP_USB_TRANSACTION_ERROR:
  2036. xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
  2037. slot_id, ep_index);
  2038. status = -EPROTO;
  2039. break;
  2040. case COMP_BABBLE_DETECTED_ERROR:
  2041. xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
  2042. slot_id, ep_index);
  2043. status = -EOVERFLOW;
  2044. break;
  2045. /* Completion codes for endpoint error state */
  2046. case COMP_TRB_ERROR:
  2047. xhci_warn(xhci,
  2048. "WARN: TRB error for slot %u ep %u on endpoint\n",
  2049. slot_id, ep_index);
  2050. status = -EILSEQ;
  2051. break;
  2052. /* completion codes not indicating endpoint state change */
  2053. case COMP_DATA_BUFFER_ERROR:
  2054. xhci_warn(xhci,
  2055. "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
  2056. slot_id, ep_index);
  2057. status = -ENOSR;
  2058. break;
  2059. case COMP_BANDWIDTH_OVERRUN_ERROR:
  2060. xhci_warn(xhci,
  2061. "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
  2062. slot_id, ep_index);
  2063. break;
  2064. case COMP_ISOCH_BUFFER_OVERRUN:
  2065. xhci_warn(xhci,
  2066. "WARN: buffer overrun event for slot %u ep %u on endpoint",
  2067. slot_id, ep_index);
  2068. break;
  2069. case COMP_RING_UNDERRUN:
  2070. /*
  2071. * When the Isoch ring is empty, the xHC will generate
  2072. * a Ring Overrun Event for IN Isoch endpoint or Ring
  2073. * Underrun Event for OUT Isoch endpoint.
  2074. */
  2075. xhci_dbg(xhci, "underrun event on endpoint\n");
  2076. if (!list_empty(&ep_ring->td_list))
  2077. xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
  2078. "still with TDs queued?\n",
  2079. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2080. ep_index);
  2081. goto cleanup;
  2082. case COMP_RING_OVERRUN:
  2083. xhci_dbg(xhci, "overrun event on endpoint\n");
  2084. if (!list_empty(&ep_ring->td_list))
  2085. xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
  2086. "still with TDs queued?\n",
  2087. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2088. ep_index);
  2089. goto cleanup;
  2090. case COMP_MISSED_SERVICE_ERROR:
  2091. /*
  2092. * When encounter missed service error, one or more isoc tds
  2093. * may be missed by xHC.
  2094. * Set skip flag of the ep_ring; Complete the missed tds as
  2095. * short transfer when process the ep_ring next time.
  2096. */
  2097. ep->skip = true;
  2098. xhci_dbg(xhci,
  2099. "Miss service interval error for slot %u ep %u, set skip flag\n",
  2100. slot_id, ep_index);
  2101. goto cleanup;
  2102. case COMP_NO_PING_RESPONSE_ERROR:
  2103. ep->skip = true;
  2104. xhci_dbg(xhci,
  2105. "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
  2106. slot_id, ep_index);
  2107. goto cleanup;
  2108. case COMP_INCOMPATIBLE_DEVICE_ERROR:
  2109. /* needs disable slot command to recover */
  2110. xhci_warn(xhci,
  2111. "WARN: detect an incompatible device for slot %u ep %u",
  2112. slot_id, ep_index);
  2113. status = -EPROTO;
  2114. break;
  2115. default:
  2116. if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
  2117. status = 0;
  2118. break;
  2119. }
  2120. xhci_warn(xhci,
  2121. "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
  2122. trb_comp_code, slot_id, ep_index);
  2123. goto cleanup;
  2124. }
  2125. do {
  2126. /* This TRB should be in the TD at the head of this ring's
  2127. * TD list.
  2128. */
  2129. if (list_empty(&ep_ring->td_list)) {
  2130. /*
  2131. * Don't print wanings if it's due to a stopped endpoint
  2132. * generating an extra completion event if the device
  2133. * was suspended. Or, a event for the last TRB of a
  2134. * short TD we already got a short event for.
  2135. * The short TD is already removed from the TD list.
  2136. */
  2137. if (!(trb_comp_code == COMP_STOPPED ||
  2138. trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
  2139. ep_ring->last_td_was_short)) {
  2140. xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
  2141. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2142. ep_index);
  2143. }
  2144. if (ep->skip) {
  2145. ep->skip = false;
  2146. xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
  2147. slot_id, ep_index);
  2148. }
  2149. goto cleanup;
  2150. }
  2151. /* We've skipped all the TDs on the ep ring when ep->skip set */
  2152. if (ep->skip && td_num == 0) {
  2153. ep->skip = false;
  2154. xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
  2155. slot_id, ep_index);
  2156. goto cleanup;
  2157. }
  2158. td = list_first_entry(&ep_ring->td_list, struct xhci_td,
  2159. td_list);
  2160. if (ep->skip)
  2161. td_num--;
  2162. /* Is this a TRB in the currently executing TD? */
  2163. ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
  2164. td->last_trb, ep_trb_dma, false);
  2165. /*
  2166. * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
  2167. * is not in the current TD pointed by ep_ring->dequeue because
  2168. * that the hardware dequeue pointer still at the previous TRB
  2169. * of the current TD. The previous TRB maybe a Link TD or the
  2170. * last TRB of the previous TD. The command completion handle
  2171. * will take care the rest.
  2172. */
  2173. if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
  2174. trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
  2175. goto cleanup;
  2176. }
  2177. if (!ep_seg) {
  2178. if (!ep->skip ||
  2179. !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
  2180. /* Some host controllers give a spurious
  2181. * successful event after a short transfer.
  2182. * Ignore it.
  2183. */
  2184. if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
  2185. ep_ring->last_td_was_short) {
  2186. ep_ring->last_td_was_short = false;
  2187. goto cleanup;
  2188. }
  2189. /* HC is busted, give up! */
  2190. xhci_err(xhci,
  2191. "ERROR Transfer event TRB DMA ptr not "
  2192. "part of current TD ep_index %d "
  2193. "comp_code %u\n", ep_index,
  2194. trb_comp_code);
  2195. trb_in_td(xhci, ep_ring->deq_seg,
  2196. ep_ring->dequeue, td->last_trb,
  2197. ep_trb_dma, true);
  2198. return -ESHUTDOWN;
  2199. }
  2200. skip_isoc_td(xhci, td, event, ep, &status);
  2201. goto cleanup;
  2202. }
  2203. if (trb_comp_code == COMP_SHORT_PACKET)
  2204. ep_ring->last_td_was_short = true;
  2205. else
  2206. ep_ring->last_td_was_short = false;
  2207. if (ep->skip) {
  2208. xhci_dbg(xhci,
  2209. "Found td. Clear skip flag for slot %u ep %u.\n",
  2210. slot_id, ep_index);
  2211. ep->skip = false;
  2212. }
  2213. ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
  2214. sizeof(*ep_trb)];
  2215. trace_xhci_handle_transfer(ep_ring,
  2216. (struct xhci_generic_trb *) ep_trb);
  2217. /*
  2218. * No-op TRB could trigger interrupts in a case where
  2219. * a URB was killed and a STALL_ERROR happens right
  2220. * after the endpoint ring stopped. Reset the halted
  2221. * endpoint. Otherwise, the endpoint remains stalled
  2222. * indefinitely.
  2223. */
  2224. if (trb_is_noop(ep_trb)) {
  2225. if (trb_comp_code == COMP_STALL_ERROR ||
  2226. xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
  2227. trb_comp_code))
  2228. xhci_cleanup_halted_endpoint(xhci, slot_id,
  2229. ep_index,
  2230. ep_ring->stream_id,
  2231. td, EP_HARD_RESET);
  2232. goto cleanup;
  2233. }
  2234. /* update the urb's actual_length and give back to the core */
  2235. if (usb_endpoint_xfer_control(&td->urb->ep->desc))
  2236. process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
  2237. else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
  2238. process_isoc_td(xhci, td, ep_trb, event, ep, &status);
  2239. else
  2240. process_bulk_intr_td(xhci, td, ep_trb, event, ep,
  2241. &status);
  2242. cleanup:
  2243. handling_skipped_tds = ep->skip &&
  2244. trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
  2245. trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
  2246. /*
  2247. * Do not update event ring dequeue pointer if we're in a loop
  2248. * processing missed tds.
  2249. */
  2250. if (!handling_skipped_tds)
  2251. inc_deq(xhci, xhci->event_ring);
  2252. /*
  2253. * If ep->skip is set, it means there are missed tds on the
  2254. * endpoint ring need to take care of.
  2255. * Process them as short transfer until reach the td pointed by
  2256. * the event.
  2257. */
  2258. } while (handling_skipped_tds);
  2259. return 0;
  2260. err_out:
  2261. xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
  2262. (unsigned long long) xhci_trb_virt_to_dma(
  2263. xhci->event_ring->deq_seg,
  2264. xhci->event_ring->dequeue),
  2265. lower_32_bits(le64_to_cpu(event->buffer)),
  2266. upper_32_bits(le64_to_cpu(event->buffer)),
  2267. le32_to_cpu(event->transfer_len),
  2268. le32_to_cpu(event->flags));
  2269. return -ENODEV;
  2270. }
  2271. /*
  2272. * This function handles all OS-owned events on the event ring. It may drop
  2273. * xhci->lock between event processing (e.g. to pass up port status changes).
  2274. * Returns >0 for "possibly more events to process" (caller should call again),
  2275. * otherwise 0 if done. In future, <0 returns should indicate error code.
  2276. */
  2277. static int xhci_handle_event(struct xhci_hcd *xhci)
  2278. {
  2279. union xhci_trb *event;
  2280. int update_ptrs = 1;
  2281. int ret;
  2282. /* Event ring hasn't been allocated yet. */
  2283. if (!xhci->event_ring || !xhci->event_ring->dequeue) {
  2284. xhci_err(xhci, "ERROR event ring not ready\n");
  2285. return -ENOMEM;
  2286. }
  2287. event = xhci->event_ring->dequeue;
  2288. /* Does the HC or OS own the TRB? */
  2289. if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
  2290. xhci->event_ring->cycle_state)
  2291. return 0;
  2292. trace_xhci_handle_event(xhci->event_ring, &event->generic);
  2293. /*
  2294. * Barrier between reading the TRB_CYCLE (valid) flag above and any
  2295. * speculative reads of the event's flags/data below.
  2296. */
  2297. rmb();
  2298. /* FIXME: Handle more event types. */
  2299. switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
  2300. case TRB_TYPE(TRB_COMPLETION):
  2301. handle_cmd_completion(xhci, &event->event_cmd);
  2302. break;
  2303. case TRB_TYPE(TRB_PORT_STATUS):
  2304. handle_port_status(xhci, event);
  2305. update_ptrs = 0;
  2306. break;
  2307. case TRB_TYPE(TRB_TRANSFER):
  2308. ret = handle_tx_event(xhci, &event->trans_event);
  2309. if (ret >= 0)
  2310. update_ptrs = 0;
  2311. break;
  2312. case TRB_TYPE(TRB_DEV_NOTE):
  2313. handle_device_notification(xhci, event);
  2314. break;
  2315. default:
  2316. if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
  2317. TRB_TYPE(48))
  2318. handle_vendor_event(xhci, event);
  2319. else
  2320. xhci_warn(xhci, "ERROR unknown event type %d\n",
  2321. TRB_FIELD_TO_TYPE(
  2322. le32_to_cpu(event->event_cmd.flags)));
  2323. }
  2324. /* Any of the above functions may drop and re-acquire the lock, so check
  2325. * to make sure a watchdog timer didn't mark the host as non-responsive.
  2326. */
  2327. if (xhci->xhc_state & XHCI_STATE_DYING) {
  2328. xhci_dbg(xhci, "xHCI host dying, returning from "
  2329. "event handler.\n");
  2330. return 0;
  2331. }
  2332. if (update_ptrs)
  2333. /* Update SW event ring dequeue pointer */
  2334. inc_deq(xhci, xhci->event_ring);
  2335. /* Are there more items on the event ring? Caller will call us again to
  2336. * check.
  2337. */
  2338. return 1;
  2339. }
  2340. /*
  2341. * xHCI spec says we can get an interrupt, and if the HC has an error condition,
  2342. * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
  2343. * indicators of an event TRB error, but we check the status *first* to be safe.
  2344. */
  2345. irqreturn_t xhci_irq(struct usb_hcd *hcd)
  2346. {
  2347. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  2348. union xhci_trb *event_ring_deq;
  2349. irqreturn_t ret = IRQ_NONE;
  2350. unsigned long flags;
  2351. dma_addr_t deq;
  2352. u64 temp_64;
  2353. u32 status;
  2354. spin_lock_irqsave(&xhci->lock, flags);
  2355. /* Check if the xHC generated the interrupt, or the irq is shared */
  2356. status = readl(&xhci->op_regs->status);
  2357. if (status == ~(u32)0) {
  2358. xhci_hc_died(xhci);
  2359. ret = IRQ_HANDLED;
  2360. goto out;
  2361. }
  2362. if (!(status & STS_EINT))
  2363. goto out;
  2364. if (status & STS_FATAL) {
  2365. xhci_warn(xhci, "WARNING: Host System Error\n");
  2366. xhci_halt(xhci);
  2367. ret = IRQ_HANDLED;
  2368. goto out;
  2369. }
  2370. /*
  2371. * Clear the op reg interrupt status first,
  2372. * so we can receive interrupts from other MSI-X interrupters.
  2373. * Write 1 to clear the interrupt status.
  2374. */
  2375. status |= STS_EINT;
  2376. writel(status, &xhci->op_regs->status);
  2377. if (!hcd->msi_enabled) {
  2378. u32 irq_pending;
  2379. irq_pending = readl(&xhci->ir_set->irq_pending);
  2380. irq_pending |= IMAN_IP;
  2381. writel(irq_pending, &xhci->ir_set->irq_pending);
  2382. }
  2383. if (xhci->xhc_state & XHCI_STATE_DYING ||
  2384. xhci->xhc_state & XHCI_STATE_HALTED) {
  2385. xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
  2386. "Shouldn't IRQs be disabled?\n");
  2387. /* Clear the event handler busy flag (RW1C);
  2388. * the event ring should be empty.
  2389. */
  2390. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  2391. xhci_write_64(xhci, temp_64 | ERST_EHB,
  2392. &xhci->ir_set->erst_dequeue);
  2393. ret = IRQ_HANDLED;
  2394. goto out;
  2395. }
  2396. event_ring_deq = xhci->event_ring->dequeue;
  2397. /* FIXME this should be a delayed service routine
  2398. * that clears the EHB.
  2399. */
  2400. while (xhci_handle_event(xhci) > 0) {}
  2401. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  2402. /* If necessary, update the HW's version of the event ring deq ptr. */
  2403. if (event_ring_deq != xhci->event_ring->dequeue) {
  2404. deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
  2405. xhci->event_ring->dequeue);
  2406. if (deq == 0)
  2407. xhci_warn(xhci, "WARN something wrong with SW event "
  2408. "ring dequeue ptr.\n");
  2409. /* Update HC event ring dequeue pointer */
  2410. temp_64 &= ERST_PTR_MASK;
  2411. temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
  2412. }
  2413. /* Clear the event handler busy flag (RW1C); event ring is empty. */
  2414. temp_64 |= ERST_EHB;
  2415. xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
  2416. ret = IRQ_HANDLED;
  2417. out:
  2418. spin_unlock_irqrestore(&xhci->lock, flags);
  2419. return ret;
  2420. }
  2421. irqreturn_t xhci_msi_irq(int irq, void *hcd)
  2422. {
  2423. return xhci_irq(hcd);
  2424. }
  2425. /**** Endpoint Ring Operations ****/
  2426. /*
  2427. * Generic function for queueing a TRB on a ring.
  2428. * The caller must have checked to make sure there's room on the ring.
  2429. *
  2430. * @more_trbs_coming: Will you enqueue more TRBs before calling
  2431. * prepare_transfer()?
  2432. */
  2433. static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
  2434. bool more_trbs_coming,
  2435. u32 field1, u32 field2, u32 field3, u32 field4)
  2436. {
  2437. struct xhci_generic_trb *trb;
  2438. trb = &ring->enqueue->generic;
  2439. trb->field[0] = cpu_to_le32(field1);
  2440. trb->field[1] = cpu_to_le32(field2);
  2441. trb->field[2] = cpu_to_le32(field3);
  2442. trb->field[3] = cpu_to_le32(field4);
  2443. trace_xhci_queue_trb(ring, trb);
  2444. inc_enq(xhci, ring, more_trbs_coming);
  2445. }
  2446. /*
  2447. * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
  2448. * FIXME allocate segments if the ring is full.
  2449. */
  2450. static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
  2451. u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
  2452. {
  2453. unsigned int num_trbs_needed;
  2454. /* Make sure the endpoint has been added to xHC schedule */
  2455. switch (ep_state) {
  2456. case EP_STATE_DISABLED:
  2457. /*
  2458. * USB core changed config/interfaces without notifying us,
  2459. * or hardware is reporting the wrong state.
  2460. */
  2461. xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
  2462. return -ENOENT;
  2463. case EP_STATE_ERROR:
  2464. xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
  2465. /* FIXME event handling code for error needs to clear it */
  2466. /* XXX not sure if this should be -ENOENT or not */
  2467. return -EINVAL;
  2468. case EP_STATE_HALTED:
  2469. xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
  2470. case EP_STATE_STOPPED:
  2471. case EP_STATE_RUNNING:
  2472. break;
  2473. default:
  2474. xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
  2475. /*
  2476. * FIXME issue Configure Endpoint command to try to get the HC
  2477. * back into a known state.
  2478. */
  2479. return -EINVAL;
  2480. }
  2481. while (1) {
  2482. if (room_on_ring(xhci, ep_ring, num_trbs))
  2483. break;
  2484. if (ep_ring == xhci->cmd_ring) {
  2485. xhci_err(xhci, "Do not support expand command ring\n");
  2486. return -ENOMEM;
  2487. }
  2488. xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
  2489. "ERROR no room on ep ring, try ring expansion");
  2490. num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
  2491. if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
  2492. mem_flags)) {
  2493. xhci_err(xhci, "Ring expansion failed\n");
  2494. return -ENOMEM;
  2495. }
  2496. }
  2497. while (trb_is_link(ep_ring->enqueue)) {
  2498. /* If we're not dealing with 0.95 hardware or isoc rings
  2499. * on AMD 0.96 host, clear the chain bit.
  2500. */
  2501. if (!xhci_link_trb_quirk(xhci) &&
  2502. !(ep_ring->type == TYPE_ISOC &&
  2503. (xhci->quirks & XHCI_AMD_0x96_HOST)))
  2504. ep_ring->enqueue->link.control &=
  2505. cpu_to_le32(~TRB_CHAIN);
  2506. else
  2507. ep_ring->enqueue->link.control |=
  2508. cpu_to_le32(TRB_CHAIN);
  2509. wmb();
  2510. ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
  2511. /* Toggle the cycle bit after the last ring segment. */
  2512. if (link_trb_toggles_cycle(ep_ring->enqueue))
  2513. ep_ring->cycle_state ^= 1;
  2514. ep_ring->enq_seg = ep_ring->enq_seg->next;
  2515. ep_ring->enqueue = ep_ring->enq_seg->trbs;
  2516. }
  2517. return 0;
  2518. }
  2519. static int prepare_transfer(struct xhci_hcd *xhci,
  2520. struct xhci_virt_device *xdev,
  2521. unsigned int ep_index,
  2522. unsigned int stream_id,
  2523. unsigned int num_trbs,
  2524. struct urb *urb,
  2525. unsigned int td_index,
  2526. gfp_t mem_flags)
  2527. {
  2528. int ret;
  2529. struct urb_priv *urb_priv;
  2530. struct xhci_td *td;
  2531. struct xhci_ring *ep_ring;
  2532. struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  2533. ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
  2534. if (!ep_ring) {
  2535. xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
  2536. stream_id);
  2537. return -EINVAL;
  2538. }
  2539. ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
  2540. num_trbs, mem_flags);
  2541. if (ret)
  2542. return ret;
  2543. urb_priv = urb->hcpriv;
  2544. td = &urb_priv->td[td_index];
  2545. INIT_LIST_HEAD(&td->td_list);
  2546. INIT_LIST_HEAD(&td->cancelled_td_list);
  2547. if (td_index == 0) {
  2548. ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
  2549. if (unlikely(ret))
  2550. return ret;
  2551. }
  2552. td->urb = urb;
  2553. /* Add this TD to the tail of the endpoint ring's TD list */
  2554. list_add_tail(&td->td_list, &ep_ring->td_list);
  2555. td->start_seg = ep_ring->enq_seg;
  2556. td->first_trb = ep_ring->enqueue;
  2557. return 0;
  2558. }
  2559. unsigned int count_trbs(u64 addr, u64 len)
  2560. {
  2561. unsigned int num_trbs;
  2562. num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
  2563. TRB_MAX_BUFF_SIZE);
  2564. if (num_trbs == 0)
  2565. num_trbs++;
  2566. return num_trbs;
  2567. }
  2568. static inline unsigned int count_trbs_needed(struct urb *urb)
  2569. {
  2570. return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
  2571. }
  2572. static unsigned int count_sg_trbs_needed(struct urb *urb)
  2573. {
  2574. struct scatterlist *sg;
  2575. unsigned int i, len, full_len, num_trbs = 0;
  2576. full_len = urb->transfer_buffer_length;
  2577. for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
  2578. len = sg_dma_len(sg);
  2579. num_trbs += count_trbs(sg_dma_address(sg), len);
  2580. len = min_t(unsigned int, len, full_len);
  2581. full_len -= len;
  2582. if (full_len == 0)
  2583. break;
  2584. }
  2585. return num_trbs;
  2586. }
  2587. static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
  2588. {
  2589. u64 addr, len;
  2590. addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
  2591. len = urb->iso_frame_desc[i].length;
  2592. return count_trbs(addr, len);
  2593. }
  2594. static void check_trb_math(struct urb *urb, int running_total)
  2595. {
  2596. if (unlikely(running_total != urb->transfer_buffer_length))
  2597. dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
  2598. "queued %#x (%d), asked for %#x (%d)\n",
  2599. __func__,
  2600. urb->ep->desc.bEndpointAddress,
  2601. running_total, running_total,
  2602. urb->transfer_buffer_length,
  2603. urb->transfer_buffer_length);
  2604. }
  2605. static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
  2606. unsigned int ep_index, unsigned int stream_id, int start_cycle,
  2607. struct xhci_generic_trb *start_trb)
  2608. {
  2609. /*
  2610. * Pass all the TRBs to the hardware at once and make sure this write
  2611. * isn't reordered.
  2612. */
  2613. wmb();
  2614. if (start_cycle)
  2615. start_trb->field[3] |= cpu_to_le32(start_cycle);
  2616. else
  2617. start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
  2618. xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
  2619. }
  2620. static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
  2621. struct xhci_ep_ctx *ep_ctx)
  2622. {
  2623. int xhci_interval;
  2624. int ep_interval;
  2625. xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
  2626. ep_interval = urb->interval;
  2627. /* Convert to microframes */
  2628. if (urb->dev->speed == USB_SPEED_LOW ||
  2629. urb->dev->speed == USB_SPEED_FULL)
  2630. ep_interval *= 8;
  2631. /* FIXME change this to a warning and a suggestion to use the new API
  2632. * to set the polling interval (once the API is added).
  2633. */
  2634. if (xhci_interval != ep_interval) {
  2635. dev_dbg_ratelimited(&urb->dev->dev,
  2636. "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
  2637. ep_interval, ep_interval == 1 ? "" : "s",
  2638. xhci_interval, xhci_interval == 1 ? "" : "s");
  2639. urb->interval = xhci_interval;
  2640. /* Convert back to frames for LS/FS devices */
  2641. if (urb->dev->speed == USB_SPEED_LOW ||
  2642. urb->dev->speed == USB_SPEED_FULL)
  2643. urb->interval /= 8;
  2644. }
  2645. }
  2646. /*
  2647. * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
  2648. * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
  2649. * (comprised of sg list entries) can take several service intervals to
  2650. * transmit.
  2651. */
  2652. int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2653. struct urb *urb, int slot_id, unsigned int ep_index)
  2654. {
  2655. struct xhci_ep_ctx *ep_ctx;
  2656. ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
  2657. check_interval(xhci, urb, ep_ctx);
  2658. return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
  2659. }
  2660. /*
  2661. * For xHCI 1.0 host controllers, TD size is the number of max packet sized
  2662. * packets remaining in the TD (*not* including this TRB).
  2663. *
  2664. * Total TD packet count = total_packet_count =
  2665. * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
  2666. *
  2667. * Packets transferred up to and including this TRB = packets_transferred =
  2668. * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
  2669. *
  2670. * TD size = total_packet_count - packets_transferred
  2671. *
  2672. * For xHCI 0.96 and older, TD size field should be the remaining bytes
  2673. * including this TRB, right shifted by 10
  2674. *
  2675. * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
  2676. * This is taken care of in the TRB_TD_SIZE() macro
  2677. *
  2678. * The last TRB in a TD must have the TD size set to zero.
  2679. */
  2680. static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
  2681. int trb_buff_len, unsigned int td_total_len,
  2682. struct urb *urb, bool more_trbs_coming)
  2683. {
  2684. u32 maxp, total_packet_count;
  2685. /* MTK xHCI 0.96 contains some features from 1.0 */
  2686. if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
  2687. return ((td_total_len - transferred) >> 10);
  2688. /* One TRB with a zero-length data packet. */
  2689. if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
  2690. trb_buff_len == td_total_len)
  2691. return 0;
  2692. /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
  2693. if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
  2694. trb_buff_len = 0;
  2695. maxp = usb_endpoint_maxp(&urb->ep->desc);
  2696. total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
  2697. /* Queueing functions don't count the current TRB into transferred */
  2698. return (total_packet_count - ((transferred + trb_buff_len) / maxp));
  2699. }
  2700. static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
  2701. u32 *trb_buff_len, struct xhci_segment *seg)
  2702. {
  2703. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  2704. unsigned int unalign;
  2705. unsigned int max_pkt;
  2706. u32 new_buff_len;
  2707. max_pkt = usb_endpoint_maxp(&urb->ep->desc);
  2708. unalign = (enqd_len + *trb_buff_len) % max_pkt;
  2709. /* we got lucky, last normal TRB data on segment is packet aligned */
  2710. if (unalign == 0)
  2711. return 0;
  2712. xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
  2713. unalign, *trb_buff_len);
  2714. /* is the last nornal TRB alignable by splitting it */
  2715. if (*trb_buff_len > unalign) {
  2716. *trb_buff_len -= unalign;
  2717. xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
  2718. return 0;
  2719. }
  2720. /*
  2721. * We want enqd_len + trb_buff_len to sum up to a number aligned to
  2722. * number which is divisible by the endpoint's wMaxPacketSize. IOW:
  2723. * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
  2724. */
  2725. new_buff_len = max_pkt - (enqd_len % max_pkt);
  2726. if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
  2727. new_buff_len = (urb->transfer_buffer_length - enqd_len);
  2728. /* create a max max_pkt sized bounce buffer pointed to by last trb */
  2729. if (usb_urb_dir_out(urb)) {
  2730. sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
  2731. seg->bounce_buf, new_buff_len, enqd_len);
  2732. seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
  2733. max_pkt, DMA_TO_DEVICE);
  2734. } else {
  2735. seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
  2736. max_pkt, DMA_FROM_DEVICE);
  2737. }
  2738. if (dma_mapping_error(dev, seg->bounce_dma)) {
  2739. /* try without aligning. Some host controllers survive */
  2740. xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
  2741. return 0;
  2742. }
  2743. *trb_buff_len = new_buff_len;
  2744. seg->bounce_len = new_buff_len;
  2745. seg->bounce_offs = enqd_len;
  2746. xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
  2747. return 1;
  2748. }
  2749. /* This is very similar to what ehci-q.c qtd_fill() does */
  2750. int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2751. struct urb *urb, int slot_id, unsigned int ep_index)
  2752. {
  2753. struct xhci_ring *ring;
  2754. struct urb_priv *urb_priv;
  2755. struct xhci_td *td;
  2756. struct xhci_generic_trb *start_trb;
  2757. struct scatterlist *sg = NULL;
  2758. bool more_trbs_coming = true;
  2759. bool need_zero_pkt = false;
  2760. bool first_trb = true;
  2761. unsigned int num_trbs;
  2762. unsigned int start_cycle, num_sgs = 0;
  2763. unsigned int enqd_len, block_len, trb_buff_len, full_len;
  2764. int sent_len, ret;
  2765. u32 field, length_field, remainder;
  2766. u64 addr, send_addr;
  2767. ring = xhci_urb_to_transfer_ring(xhci, urb);
  2768. if (!ring)
  2769. return -EINVAL;
  2770. full_len = urb->transfer_buffer_length;
  2771. /* If we have scatter/gather list, we use it. */
  2772. if (urb->num_sgs) {
  2773. num_sgs = urb->num_mapped_sgs;
  2774. sg = urb->sg;
  2775. addr = (u64) sg_dma_address(sg);
  2776. block_len = sg_dma_len(sg);
  2777. num_trbs = count_sg_trbs_needed(urb);
  2778. } else {
  2779. num_trbs = count_trbs_needed(urb);
  2780. addr = (u64) urb->transfer_dma;
  2781. block_len = full_len;
  2782. }
  2783. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2784. ep_index, urb->stream_id,
  2785. num_trbs, urb, 0, mem_flags);
  2786. if (unlikely(ret < 0))
  2787. return ret;
  2788. urb_priv = urb->hcpriv;
  2789. /* Deal with URB_ZERO_PACKET - need one more td/trb */
  2790. if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
  2791. need_zero_pkt = true;
  2792. td = &urb_priv->td[0];
  2793. /*
  2794. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  2795. * until we've finished creating all the other TRBs. The ring's cycle
  2796. * state may change as we enqueue the other TRBs, so save it too.
  2797. */
  2798. start_trb = &ring->enqueue->generic;
  2799. start_cycle = ring->cycle_state;
  2800. send_addr = addr;
  2801. /* Queue the TRBs, even if they are zero-length */
  2802. for (enqd_len = 0; first_trb || enqd_len < full_len;
  2803. enqd_len += trb_buff_len) {
  2804. field = TRB_TYPE(TRB_NORMAL);
  2805. /* TRB buffer should not cross 64KB boundaries */
  2806. trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
  2807. trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
  2808. if (enqd_len + trb_buff_len > full_len)
  2809. trb_buff_len = full_len - enqd_len;
  2810. /* Don't change the cycle bit of the first TRB until later */
  2811. if (first_trb) {
  2812. first_trb = false;
  2813. if (start_cycle == 0)
  2814. field |= TRB_CYCLE;
  2815. } else
  2816. field |= ring->cycle_state;
  2817. /* Chain all the TRBs together; clear the chain bit in the last
  2818. * TRB to indicate it's the last TRB in the chain.
  2819. */
  2820. if (enqd_len + trb_buff_len < full_len) {
  2821. field |= TRB_CHAIN;
  2822. if (trb_is_link(ring->enqueue + 1)) {
  2823. if (xhci_align_td(xhci, urb, enqd_len,
  2824. &trb_buff_len,
  2825. ring->enq_seg)) {
  2826. send_addr = ring->enq_seg->bounce_dma;
  2827. /* assuming TD won't span 2 segs */
  2828. td->bounce_seg = ring->enq_seg;
  2829. }
  2830. }
  2831. }
  2832. if (enqd_len + trb_buff_len >= full_len) {
  2833. field &= ~TRB_CHAIN;
  2834. field |= TRB_IOC;
  2835. more_trbs_coming = false;
  2836. td->last_trb = ring->enqueue;
  2837. }
  2838. /* Only set interrupt on short packet for IN endpoints */
  2839. if (usb_urb_dir_in(urb))
  2840. field |= TRB_ISP;
  2841. /* Set the TRB length, TD size, and interrupter fields. */
  2842. remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
  2843. full_len, urb, more_trbs_coming);
  2844. length_field = TRB_LEN(trb_buff_len) |
  2845. TRB_TD_SIZE(remainder) |
  2846. TRB_INTR_TARGET(0);
  2847. queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
  2848. lower_32_bits(send_addr),
  2849. upper_32_bits(send_addr),
  2850. length_field,
  2851. field);
  2852. addr += trb_buff_len;
  2853. sent_len = trb_buff_len;
  2854. while (sg && sent_len >= block_len) {
  2855. /* New sg entry */
  2856. --num_sgs;
  2857. sent_len -= block_len;
  2858. if (num_sgs != 0) {
  2859. sg = sg_next(sg);
  2860. block_len = sg_dma_len(sg);
  2861. addr = (u64) sg_dma_address(sg);
  2862. addr += sent_len;
  2863. }
  2864. }
  2865. block_len -= sent_len;
  2866. send_addr = addr;
  2867. }
  2868. if (need_zero_pkt) {
  2869. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2870. ep_index, urb->stream_id,
  2871. 1, urb, 1, mem_flags);
  2872. urb_priv->td[1].last_trb = ring->enqueue;
  2873. field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
  2874. queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
  2875. }
  2876. check_trb_math(urb, enqd_len);
  2877. giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
  2878. start_cycle, start_trb);
  2879. return 0;
  2880. }
  2881. /* Caller must have locked xhci->lock */
  2882. int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2883. struct urb *urb, int slot_id, unsigned int ep_index)
  2884. {
  2885. struct xhci_ring *ep_ring;
  2886. int num_trbs;
  2887. int ret;
  2888. struct usb_ctrlrequest *setup;
  2889. struct xhci_generic_trb *start_trb;
  2890. int start_cycle;
  2891. u32 field;
  2892. struct urb_priv *urb_priv;
  2893. struct xhci_td *td;
  2894. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  2895. if (!ep_ring)
  2896. return -EINVAL;
  2897. /*
  2898. * Need to copy setup packet into setup TRB, so we can't use the setup
  2899. * DMA address.
  2900. */
  2901. if (!urb->setup_packet)
  2902. return -EINVAL;
  2903. /* 1 TRB for setup, 1 for status */
  2904. num_trbs = 2;
  2905. /*
  2906. * Don't need to check if we need additional event data and normal TRBs,
  2907. * since data in control transfers will never get bigger than 16MB
  2908. * XXX: can we get a buffer that crosses 64KB boundaries?
  2909. */
  2910. if (urb->transfer_buffer_length > 0)
  2911. num_trbs++;
  2912. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2913. ep_index, urb->stream_id,
  2914. num_trbs, urb, 0, mem_flags);
  2915. if (ret < 0)
  2916. return ret;
  2917. urb_priv = urb->hcpriv;
  2918. td = &urb_priv->td[0];
  2919. /*
  2920. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  2921. * until we've finished creating all the other TRBs. The ring's cycle
  2922. * state may change as we enqueue the other TRBs, so save it too.
  2923. */
  2924. start_trb = &ep_ring->enqueue->generic;
  2925. start_cycle = ep_ring->cycle_state;
  2926. /* Queue setup TRB - see section 6.4.1.2.1 */
  2927. /* FIXME better way to translate setup_packet into two u32 fields? */
  2928. setup = (struct usb_ctrlrequest *) urb->setup_packet;
  2929. field = 0;
  2930. field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
  2931. if (start_cycle == 0)
  2932. field |= 0x1;
  2933. /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
  2934. if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
  2935. if (urb->transfer_buffer_length > 0) {
  2936. if (setup->bRequestType & USB_DIR_IN)
  2937. field |= TRB_TX_TYPE(TRB_DATA_IN);
  2938. else
  2939. field |= TRB_TX_TYPE(TRB_DATA_OUT);
  2940. }
  2941. }
  2942. queue_trb(xhci, ep_ring, true,
  2943. setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
  2944. le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
  2945. TRB_LEN(8) | TRB_INTR_TARGET(0),
  2946. /* Immediate data in pointer */
  2947. field);
  2948. /* If there's data, queue data TRBs */
  2949. /* Only set interrupt on short packet for IN endpoints */
  2950. if (usb_urb_dir_in(urb))
  2951. field = TRB_ISP | TRB_TYPE(TRB_DATA);
  2952. else
  2953. field = TRB_TYPE(TRB_DATA);
  2954. if (urb->transfer_buffer_length > 0) {
  2955. u32 length_field, remainder;
  2956. remainder = xhci_td_remainder(xhci, 0,
  2957. urb->transfer_buffer_length,
  2958. urb->transfer_buffer_length,
  2959. urb, 1);
  2960. length_field = TRB_LEN(urb->transfer_buffer_length) |
  2961. TRB_TD_SIZE(remainder) |
  2962. TRB_INTR_TARGET(0);
  2963. if (setup->bRequestType & USB_DIR_IN)
  2964. field |= TRB_DIR_IN;
  2965. queue_trb(xhci, ep_ring, true,
  2966. lower_32_bits(urb->transfer_dma),
  2967. upper_32_bits(urb->transfer_dma),
  2968. length_field,
  2969. field | ep_ring->cycle_state);
  2970. }
  2971. /* Save the DMA address of the last TRB in the TD */
  2972. td->last_trb = ep_ring->enqueue;
  2973. /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
  2974. /* If the device sent data, the status stage is an OUT transfer */
  2975. if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
  2976. field = 0;
  2977. else
  2978. field = TRB_DIR_IN;
  2979. queue_trb(xhci, ep_ring, false,
  2980. 0,
  2981. 0,
  2982. TRB_INTR_TARGET(0),
  2983. /* Event on completion */
  2984. field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
  2985. giveback_first_trb(xhci, slot_id, ep_index, 0,
  2986. start_cycle, start_trb);
  2987. return 0;
  2988. }
  2989. /*
  2990. * The transfer burst count field of the isochronous TRB defines the number of
  2991. * bursts that are required to move all packets in this TD. Only SuperSpeed
  2992. * devices can burst up to bMaxBurst number of packets per service interval.
  2993. * This field is zero based, meaning a value of zero in the field means one
  2994. * burst. Basically, for everything but SuperSpeed devices, this field will be
  2995. * zero. Only xHCI 1.0 host controllers support this field.
  2996. */
  2997. static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
  2998. struct urb *urb, unsigned int total_packet_count)
  2999. {
  3000. unsigned int max_burst;
  3001. if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
  3002. return 0;
  3003. max_burst = urb->ep->ss_ep_comp.bMaxBurst;
  3004. return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
  3005. }
  3006. /*
  3007. * Returns the number of packets in the last "burst" of packets. This field is
  3008. * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
  3009. * the last burst packet count is equal to the total number of packets in the
  3010. * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
  3011. * must contain (bMaxBurst + 1) number of packets, but the last burst can
  3012. * contain 1 to (bMaxBurst + 1) packets.
  3013. */
  3014. static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
  3015. struct urb *urb, unsigned int total_packet_count)
  3016. {
  3017. unsigned int max_burst;
  3018. unsigned int residue;
  3019. if (xhci->hci_version < 0x100)
  3020. return 0;
  3021. if (urb->dev->speed >= USB_SPEED_SUPER) {
  3022. /* bMaxBurst is zero based: 0 means 1 packet per burst */
  3023. max_burst = urb->ep->ss_ep_comp.bMaxBurst;
  3024. residue = total_packet_count % (max_burst + 1);
  3025. /* If residue is zero, the last burst contains (max_burst + 1)
  3026. * number of packets, but the TLBPC field is zero-based.
  3027. */
  3028. if (residue == 0)
  3029. return max_burst;
  3030. return residue - 1;
  3031. }
  3032. if (total_packet_count == 0)
  3033. return 0;
  3034. return total_packet_count - 1;
  3035. }
  3036. /*
  3037. * Calculates Frame ID field of the isochronous TRB identifies the
  3038. * target frame that the Interval associated with this Isochronous
  3039. * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
  3040. *
  3041. * Returns actual frame id on success, negative value on error.
  3042. */
  3043. static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
  3044. struct urb *urb, int index)
  3045. {
  3046. int start_frame, ist, ret = 0;
  3047. int start_frame_id, end_frame_id, current_frame_id;
  3048. if (urb->dev->speed == USB_SPEED_LOW ||
  3049. urb->dev->speed == USB_SPEED_FULL)
  3050. start_frame = urb->start_frame + index * urb->interval;
  3051. else
  3052. start_frame = (urb->start_frame + index * urb->interval) >> 3;
  3053. /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
  3054. *
  3055. * If bit [3] of IST is cleared to '0', software can add a TRB no
  3056. * later than IST[2:0] Microframes before that TRB is scheduled to
  3057. * be executed.
  3058. * If bit [3] of IST is set to '1', software can add a TRB no later
  3059. * than IST[2:0] Frames before that TRB is scheduled to be executed.
  3060. */
  3061. ist = HCS_IST(xhci->hcs_params2) & 0x7;
  3062. if (HCS_IST(xhci->hcs_params2) & (1 << 3))
  3063. ist <<= 3;
  3064. /* Software shall not schedule an Isoch TD with a Frame ID value that
  3065. * is less than the Start Frame ID or greater than the End Frame ID,
  3066. * where:
  3067. *
  3068. * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
  3069. * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
  3070. *
  3071. * Both the End Frame ID and Start Frame ID values are calculated
  3072. * in microframes. When software determines the valid Frame ID value;
  3073. * The End Frame ID value should be rounded down to the nearest Frame
  3074. * boundary, and the Start Frame ID value should be rounded up to the
  3075. * nearest Frame boundary.
  3076. */
  3077. current_frame_id = readl(&xhci->run_regs->microframe_index);
  3078. start_frame_id = roundup(current_frame_id + ist + 1, 8);
  3079. end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
  3080. start_frame &= 0x7ff;
  3081. start_frame_id = (start_frame_id >> 3) & 0x7ff;
  3082. end_frame_id = (end_frame_id >> 3) & 0x7ff;
  3083. xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
  3084. __func__, index, readl(&xhci->run_regs->microframe_index),
  3085. start_frame_id, end_frame_id, start_frame);
  3086. if (start_frame_id < end_frame_id) {
  3087. if (start_frame > end_frame_id ||
  3088. start_frame < start_frame_id)
  3089. ret = -EINVAL;
  3090. } else if (start_frame_id > end_frame_id) {
  3091. if ((start_frame > end_frame_id &&
  3092. start_frame < start_frame_id))
  3093. ret = -EINVAL;
  3094. } else {
  3095. ret = -EINVAL;
  3096. }
  3097. if (index == 0) {
  3098. if (ret == -EINVAL || start_frame == start_frame_id) {
  3099. start_frame = start_frame_id + 1;
  3100. if (urb->dev->speed == USB_SPEED_LOW ||
  3101. urb->dev->speed == USB_SPEED_FULL)
  3102. urb->start_frame = start_frame;
  3103. else
  3104. urb->start_frame = start_frame << 3;
  3105. ret = 0;
  3106. }
  3107. }
  3108. if (ret) {
  3109. xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
  3110. start_frame, current_frame_id, index,
  3111. start_frame_id, end_frame_id);
  3112. xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
  3113. return ret;
  3114. }
  3115. return start_frame;
  3116. }
  3117. /* This is for isoc transfer */
  3118. static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  3119. struct urb *urb, int slot_id, unsigned int ep_index)
  3120. {
  3121. struct xhci_ring *ep_ring;
  3122. struct urb_priv *urb_priv;
  3123. struct xhci_td *td;
  3124. int num_tds, trbs_per_td;
  3125. struct xhci_generic_trb *start_trb;
  3126. bool first_trb;
  3127. int start_cycle;
  3128. u32 field, length_field;
  3129. int running_total, trb_buff_len, td_len, td_remain_len, ret;
  3130. u64 start_addr, addr;
  3131. int i, j;
  3132. bool more_trbs_coming;
  3133. struct xhci_virt_ep *xep;
  3134. int frame_id;
  3135. xep = &xhci->devs[slot_id]->eps[ep_index];
  3136. ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
  3137. num_tds = urb->number_of_packets;
  3138. if (num_tds < 1) {
  3139. xhci_dbg(xhci, "Isoc URB with zero packets?\n");
  3140. return -EINVAL;
  3141. }
  3142. start_addr = (u64) urb->transfer_dma;
  3143. start_trb = &ep_ring->enqueue->generic;
  3144. start_cycle = ep_ring->cycle_state;
  3145. urb_priv = urb->hcpriv;
  3146. /* Queue the TRBs for each TD, even if they are zero-length */
  3147. for (i = 0; i < num_tds; i++) {
  3148. unsigned int total_pkt_count, max_pkt;
  3149. unsigned int burst_count, last_burst_pkt_count;
  3150. u32 sia_frame_id;
  3151. first_trb = true;
  3152. running_total = 0;
  3153. addr = start_addr + urb->iso_frame_desc[i].offset;
  3154. td_len = urb->iso_frame_desc[i].length;
  3155. td_remain_len = td_len;
  3156. max_pkt = usb_endpoint_maxp(&urb->ep->desc);
  3157. total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
  3158. /* A zero-length transfer still involves at least one packet. */
  3159. if (total_pkt_count == 0)
  3160. total_pkt_count++;
  3161. burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
  3162. last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
  3163. urb, total_pkt_count);
  3164. trbs_per_td = count_isoc_trbs_needed(urb, i);
  3165. ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
  3166. urb->stream_id, trbs_per_td, urb, i, mem_flags);
  3167. if (ret < 0) {
  3168. if (i == 0)
  3169. return ret;
  3170. goto cleanup;
  3171. }
  3172. td = &urb_priv->td[i];
  3173. /* use SIA as default, if frame id is used overwrite it */
  3174. sia_frame_id = TRB_SIA;
  3175. if (!(urb->transfer_flags & URB_ISO_ASAP) &&
  3176. HCC_CFC(xhci->hcc_params)) {
  3177. frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
  3178. if (frame_id >= 0)
  3179. sia_frame_id = TRB_FRAME_ID(frame_id);
  3180. }
  3181. /*
  3182. * Set isoc specific data for the first TRB in a TD.
  3183. * Prevent HW from getting the TRBs by keeping the cycle state
  3184. * inverted in the first TDs isoc TRB.
  3185. */
  3186. field = TRB_TYPE(TRB_ISOC) |
  3187. TRB_TLBPC(last_burst_pkt_count) |
  3188. sia_frame_id |
  3189. (i ? ep_ring->cycle_state : !start_cycle);
  3190. /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
  3191. if (!xep->use_extended_tbc)
  3192. field |= TRB_TBC(burst_count);
  3193. /* fill the rest of the TRB fields, and remaining normal TRBs */
  3194. for (j = 0; j < trbs_per_td; j++) {
  3195. u32 remainder = 0;
  3196. /* only first TRB is isoc, overwrite otherwise */
  3197. if (!first_trb)
  3198. field = TRB_TYPE(TRB_NORMAL) |
  3199. ep_ring->cycle_state;
  3200. /* Only set interrupt on short packet for IN EPs */
  3201. if (usb_urb_dir_in(urb))
  3202. field |= TRB_ISP;
  3203. /* Set the chain bit for all except the last TRB */
  3204. if (j < trbs_per_td - 1) {
  3205. more_trbs_coming = true;
  3206. field |= TRB_CHAIN;
  3207. } else {
  3208. more_trbs_coming = false;
  3209. td->last_trb = ep_ring->enqueue;
  3210. field |= TRB_IOC;
  3211. /* set BEI, except for the last TD */
  3212. if (xhci->hci_version >= 0x100 &&
  3213. !(xhci->quirks & XHCI_AVOID_BEI) &&
  3214. i < num_tds - 1)
  3215. field |= TRB_BEI;
  3216. }
  3217. /* Calculate TRB length */
  3218. trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
  3219. if (trb_buff_len > td_remain_len)
  3220. trb_buff_len = td_remain_len;
  3221. /* Set the TRB length, TD size, & interrupter fields. */
  3222. remainder = xhci_td_remainder(xhci, running_total,
  3223. trb_buff_len, td_len,
  3224. urb, more_trbs_coming);
  3225. length_field = TRB_LEN(trb_buff_len) |
  3226. TRB_INTR_TARGET(0);
  3227. /* xhci 1.1 with ETE uses TD Size field for TBC */
  3228. if (first_trb && xep->use_extended_tbc)
  3229. length_field |= TRB_TD_SIZE_TBC(burst_count);
  3230. else
  3231. length_field |= TRB_TD_SIZE(remainder);
  3232. first_trb = false;
  3233. queue_trb(xhci, ep_ring, more_trbs_coming,
  3234. lower_32_bits(addr),
  3235. upper_32_bits(addr),
  3236. length_field,
  3237. field);
  3238. running_total += trb_buff_len;
  3239. addr += trb_buff_len;
  3240. td_remain_len -= trb_buff_len;
  3241. }
  3242. /* Check TD length */
  3243. if (running_total != td_len) {
  3244. xhci_err(xhci, "ISOC TD length unmatch\n");
  3245. ret = -EINVAL;
  3246. goto cleanup;
  3247. }
  3248. }
  3249. /* store the next frame id */
  3250. if (HCC_CFC(xhci->hcc_params))
  3251. xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
  3252. if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
  3253. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  3254. usb_amd_quirk_pll_disable();
  3255. }
  3256. xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
  3257. giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
  3258. start_cycle, start_trb);
  3259. return 0;
  3260. cleanup:
  3261. /* Clean up a partially enqueued isoc transfer. */
  3262. for (i--; i >= 0; i--)
  3263. list_del_init(&urb_priv->td[i].td_list);
  3264. /* Use the first TD as a temporary variable to turn the TDs we've queued
  3265. * into No-ops with a software-owned cycle bit. That way the hardware
  3266. * won't accidentally start executing bogus TDs when we partially
  3267. * overwrite them. td->first_trb and td->start_seg are already set.
  3268. */
  3269. urb_priv->td[0].last_trb = ep_ring->enqueue;
  3270. /* Every TRB except the first & last will have its cycle bit flipped. */
  3271. td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
  3272. /* Reset the ring enqueue back to the first TRB and its cycle bit. */
  3273. ep_ring->enqueue = urb_priv->td[0].first_trb;
  3274. ep_ring->enq_seg = urb_priv->td[0].start_seg;
  3275. ep_ring->cycle_state = start_cycle;
  3276. ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
  3277. usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
  3278. return ret;
  3279. }
  3280. /*
  3281. * Check transfer ring to guarantee there is enough room for the urb.
  3282. * Update ISO URB start_frame and interval.
  3283. * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
  3284. * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
  3285. * Contiguous Frame ID is not supported by HC.
  3286. */
  3287. int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
  3288. struct urb *urb, int slot_id, unsigned int ep_index)
  3289. {
  3290. struct xhci_virt_device *xdev;
  3291. struct xhci_ring *ep_ring;
  3292. struct xhci_ep_ctx *ep_ctx;
  3293. int start_frame;
  3294. int num_tds, num_trbs, i;
  3295. int ret;
  3296. struct xhci_virt_ep *xep;
  3297. int ist;
  3298. xdev = xhci->devs[slot_id];
  3299. xep = &xhci->devs[slot_id]->eps[ep_index];
  3300. ep_ring = xdev->eps[ep_index].ring;
  3301. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  3302. num_trbs = 0;
  3303. num_tds = urb->number_of_packets;
  3304. for (i = 0; i < num_tds; i++)
  3305. num_trbs += count_isoc_trbs_needed(urb, i);
  3306. /* Check the ring to guarantee there is enough room for the whole urb.
  3307. * Do not insert any td of the urb to the ring if the check failed.
  3308. */
  3309. ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
  3310. num_trbs, mem_flags);
  3311. if (ret)
  3312. return ret;
  3313. /*
  3314. * Check interval value. This should be done before we start to
  3315. * calculate the start frame value.
  3316. */
  3317. check_interval(xhci, urb, ep_ctx);
  3318. /* Calculate the start frame and put it in urb->start_frame. */
  3319. if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
  3320. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
  3321. urb->start_frame = xep->next_frame_id;
  3322. goto skip_start_over;
  3323. }
  3324. }
  3325. start_frame = readl(&xhci->run_regs->microframe_index);
  3326. start_frame &= 0x3fff;
  3327. /*
  3328. * Round up to the next frame and consider the time before trb really
  3329. * gets scheduled by hardare.
  3330. */
  3331. ist = HCS_IST(xhci->hcs_params2) & 0x7;
  3332. if (HCS_IST(xhci->hcs_params2) & (1 << 3))
  3333. ist <<= 3;
  3334. start_frame += ist + XHCI_CFC_DELAY;
  3335. start_frame = roundup(start_frame, 8);
  3336. /*
  3337. * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
  3338. * is greate than 8 microframes.
  3339. */
  3340. if (urb->dev->speed == USB_SPEED_LOW ||
  3341. urb->dev->speed == USB_SPEED_FULL) {
  3342. start_frame = roundup(start_frame, urb->interval << 3);
  3343. urb->start_frame = start_frame >> 3;
  3344. } else {
  3345. start_frame = roundup(start_frame, urb->interval);
  3346. urb->start_frame = start_frame;
  3347. }
  3348. skip_start_over:
  3349. ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
  3350. return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
  3351. }
  3352. /**** Command Ring Operations ****/
  3353. /* Generic function for queueing a command TRB on the command ring.
  3354. * Check to make sure there's room on the command ring for one command TRB.
  3355. * Also check that there's room reserved for commands that must not fail.
  3356. * If this is a command that must not fail, meaning command_must_succeed = TRUE,
  3357. * then only check for the number of reserved spots.
  3358. * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
  3359. * because the command event handler may want to resubmit a failed command.
  3360. */
  3361. static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3362. u32 field1, u32 field2,
  3363. u32 field3, u32 field4, bool command_must_succeed)
  3364. {
  3365. int reserved_trbs = xhci->cmd_ring_reserved_trbs;
  3366. int ret;
  3367. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  3368. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3369. xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
  3370. return -ESHUTDOWN;
  3371. }
  3372. if (!command_must_succeed)
  3373. reserved_trbs++;
  3374. ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
  3375. reserved_trbs, GFP_ATOMIC);
  3376. if (ret < 0) {
  3377. xhci_err(xhci, "ERR: No room for command on command ring\n");
  3378. if (command_must_succeed)
  3379. xhci_err(xhci, "ERR: Reserved TRB counting for "
  3380. "unfailable commands failed.\n");
  3381. return ret;
  3382. }
  3383. cmd->command_trb = xhci->cmd_ring->enqueue;
  3384. /* if there are no other commands queued we start the timeout timer */
  3385. if (list_empty(&xhci->cmd_list)) {
  3386. xhci->current_cmd = cmd;
  3387. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  3388. }
  3389. list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
  3390. queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
  3391. field4 | xhci->cmd_ring->cycle_state);
  3392. return 0;
  3393. }
  3394. /* Queue a slot enable or disable request on the command ring */
  3395. int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3396. u32 trb_type, u32 slot_id)
  3397. {
  3398. return queue_command(xhci, cmd, 0, 0, 0,
  3399. TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
  3400. }
  3401. /* Queue an address device command TRB */
  3402. int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3403. dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
  3404. {
  3405. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3406. upper_32_bits(in_ctx_ptr), 0,
  3407. TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
  3408. | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
  3409. }
  3410. int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3411. u32 field1, u32 field2, u32 field3, u32 field4)
  3412. {
  3413. return queue_command(xhci, cmd, field1, field2, field3, field4, false);
  3414. }
  3415. /* Queue a reset device command TRB */
  3416. int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3417. u32 slot_id)
  3418. {
  3419. return queue_command(xhci, cmd, 0, 0, 0,
  3420. TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
  3421. false);
  3422. }
  3423. /* Queue a configure endpoint command TRB */
  3424. int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
  3425. struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
  3426. u32 slot_id, bool command_must_succeed)
  3427. {
  3428. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3429. upper_32_bits(in_ctx_ptr), 0,
  3430. TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
  3431. command_must_succeed);
  3432. }
  3433. /* Queue an evaluate context command TRB */
  3434. int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3435. dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
  3436. {
  3437. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3438. upper_32_bits(in_ctx_ptr), 0,
  3439. TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
  3440. command_must_succeed);
  3441. }
  3442. /*
  3443. * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
  3444. * activity on an endpoint that is about to be suspended.
  3445. */
  3446. int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3447. int slot_id, unsigned int ep_index, int suspend)
  3448. {
  3449. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3450. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3451. u32 type = TRB_TYPE(TRB_STOP_RING);
  3452. u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
  3453. return queue_command(xhci, cmd, 0, 0, 0,
  3454. trb_slot_id | trb_ep_index | type | trb_suspend, false);
  3455. }
  3456. /* Set Transfer Ring Dequeue Pointer command */
  3457. void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
  3458. unsigned int slot_id, unsigned int ep_index,
  3459. struct xhci_dequeue_state *deq_state)
  3460. {
  3461. dma_addr_t addr;
  3462. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3463. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3464. u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
  3465. u32 trb_sct = 0;
  3466. u32 type = TRB_TYPE(TRB_SET_DEQ);
  3467. struct xhci_virt_ep *ep;
  3468. struct xhci_command *cmd;
  3469. int ret;
  3470. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  3471. "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
  3472. deq_state->new_deq_seg,
  3473. (unsigned long long)deq_state->new_deq_seg->dma,
  3474. deq_state->new_deq_ptr,
  3475. (unsigned long long)xhci_trb_virt_to_dma(
  3476. deq_state->new_deq_seg, deq_state->new_deq_ptr),
  3477. deq_state->new_cycle_state);
  3478. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  3479. deq_state->new_deq_ptr);
  3480. if (addr == 0) {
  3481. xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
  3482. xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
  3483. deq_state->new_deq_seg, deq_state->new_deq_ptr);
  3484. return;
  3485. }
  3486. ep = &xhci->devs[slot_id]->eps[ep_index];
  3487. if ((ep->ep_state & SET_DEQ_PENDING)) {
  3488. xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
  3489. xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
  3490. return;
  3491. }
  3492. /* This function gets called from contexts where it cannot sleep */
  3493. cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
  3494. if (!cmd)
  3495. return;
  3496. ep->queued_deq_seg = deq_state->new_deq_seg;
  3497. ep->queued_deq_ptr = deq_state->new_deq_ptr;
  3498. if (deq_state->stream_id)
  3499. trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
  3500. ret = queue_command(xhci, cmd,
  3501. lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
  3502. upper_32_bits(addr), trb_stream_id,
  3503. trb_slot_id | trb_ep_index | type, false);
  3504. if (ret < 0) {
  3505. xhci_free_command(xhci, cmd);
  3506. return;
  3507. }
  3508. /* Stop the TD queueing code from ringing the doorbell until
  3509. * this command completes. The HC won't set the dequeue pointer
  3510. * if the ring is running, and ringing the doorbell starts the
  3511. * ring running.
  3512. */
  3513. ep->ep_state |= SET_DEQ_PENDING;
  3514. }
  3515. int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3516. int slot_id, unsigned int ep_index,
  3517. enum xhci_ep_reset_type reset_type)
  3518. {
  3519. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3520. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3521. u32 type = TRB_TYPE(TRB_RESET_EP);
  3522. if (reset_type == EP_SOFT_RESET)
  3523. type |= TRB_TSP;
  3524. return queue_command(xhci, cmd, 0, 0, 0,
  3525. trb_slot_id | trb_ep_index | type, false);
  3526. }