mtk-eint.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. // SPDX-License-Identifier: GPL-2.0
  2. // Copyright (c) 2014-2018 MediaTek Inc.
  3. /*
  4. * Library for MediaTek External Interrupt Support
  5. *
  6. * Author: Maoguang Meng <maoguang.meng@mediatek.com>
  7. * Sean Wang <sean.wang@mediatek.com>
  8. *
  9. */
  10. #include <linux/delay.h>
  11. #include <linux/err.h>
  12. #include <linux/gpio.h>
  13. #include <linux/io.h>
  14. #include <linux/irqchip/chained_irq.h>
  15. #include <linux/irqdomain.h>
  16. #include <linux/of_irq.h>
  17. #include <linux/platform_device.h>
  18. #include "mtk-eint.h"
  19. #define MTK_EINT_EDGE_SENSITIVE 0
  20. #define MTK_EINT_LEVEL_SENSITIVE 1
  21. #define MTK_EINT_DBNC_SET_DBNC_BITS 4
  22. #define MTK_EINT_DBNC_RST_BIT (0x1 << 1)
  23. #define MTK_EINT_DBNC_SET_EN (0x1 << 0)
  24. static const struct mtk_eint_regs mtk_generic_eint_regs = {
  25. .stat = 0x000,
  26. .ack = 0x040,
  27. .mask = 0x080,
  28. .mask_set = 0x0c0,
  29. .mask_clr = 0x100,
  30. .sens = 0x140,
  31. .sens_set = 0x180,
  32. .sens_clr = 0x1c0,
  33. .soft = 0x200,
  34. .soft_set = 0x240,
  35. .soft_clr = 0x280,
  36. .pol = 0x300,
  37. .pol_set = 0x340,
  38. .pol_clr = 0x380,
  39. .dom_en = 0x400,
  40. .dbnc_ctrl = 0x500,
  41. .dbnc_set = 0x600,
  42. .dbnc_clr = 0x700,
  43. };
  44. static void __iomem *mtk_eint_get_offset(struct mtk_eint *eint,
  45. unsigned int eint_num,
  46. unsigned int offset)
  47. {
  48. unsigned int eint_base = 0;
  49. void __iomem *reg;
  50. if (eint_num >= eint->hw->ap_num)
  51. eint_base = eint->hw->ap_num;
  52. reg = eint->base + offset + ((eint_num - eint_base) / 32) * 4;
  53. return reg;
  54. }
  55. static unsigned int mtk_eint_can_en_debounce(struct mtk_eint *eint,
  56. unsigned int eint_num)
  57. {
  58. unsigned int sens;
  59. unsigned int bit = BIT(eint_num % 32);
  60. void __iomem *reg = mtk_eint_get_offset(eint, eint_num,
  61. eint->regs->sens);
  62. if (readl(reg) & bit)
  63. sens = MTK_EINT_LEVEL_SENSITIVE;
  64. else
  65. sens = MTK_EINT_EDGE_SENSITIVE;
  66. if (eint_num < eint->hw->db_cnt && sens != MTK_EINT_EDGE_SENSITIVE)
  67. return 1;
  68. else
  69. return 0;
  70. }
  71. static int mtk_eint_flip_edge(struct mtk_eint *eint, int hwirq)
  72. {
  73. int start_level, curr_level;
  74. unsigned int reg_offset;
  75. u32 mask = BIT(hwirq & 0x1f);
  76. u32 port = (hwirq >> 5) & eint->hw->port_mask;
  77. void __iomem *reg = eint->base + (port << 2);
  78. curr_level = eint->gpio_xlate->get_gpio_state(eint->pctl, hwirq);
  79. do {
  80. start_level = curr_level;
  81. if (start_level)
  82. reg_offset = eint->regs->pol_clr;
  83. else
  84. reg_offset = eint->regs->pol_set;
  85. writel(mask, reg + reg_offset);
  86. curr_level = eint->gpio_xlate->get_gpio_state(eint->pctl,
  87. hwirq);
  88. } while (start_level != curr_level);
  89. return start_level;
  90. }
  91. static void mtk_eint_mask(struct irq_data *d)
  92. {
  93. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  94. u32 mask = BIT(d->hwirq & 0x1f);
  95. void __iomem *reg = mtk_eint_get_offset(eint, d->hwirq,
  96. eint->regs->mask_set);
  97. writel(mask, reg);
  98. }
  99. static void mtk_eint_unmask(struct irq_data *d)
  100. {
  101. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  102. u32 mask = BIT(d->hwirq & 0x1f);
  103. void __iomem *reg = mtk_eint_get_offset(eint, d->hwirq,
  104. eint->regs->mask_clr);
  105. writel(mask, reg);
  106. if (eint->dual_edge[d->hwirq])
  107. mtk_eint_flip_edge(eint, d->hwirq);
  108. }
  109. static unsigned int mtk_eint_get_mask(struct mtk_eint *eint,
  110. unsigned int eint_num)
  111. {
  112. unsigned int bit = BIT(eint_num % 32);
  113. void __iomem *reg = mtk_eint_get_offset(eint, eint_num,
  114. eint->regs->mask);
  115. return !!(readl(reg) & bit);
  116. }
  117. static void mtk_eint_ack(struct irq_data *d)
  118. {
  119. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  120. u32 mask = BIT(d->hwirq & 0x1f);
  121. void __iomem *reg = mtk_eint_get_offset(eint, d->hwirq,
  122. eint->regs->ack);
  123. writel(mask, reg);
  124. }
  125. static int mtk_eint_set_type(struct irq_data *d, unsigned int type)
  126. {
  127. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  128. u32 mask = BIT(d->hwirq & 0x1f);
  129. void __iomem *reg;
  130. if (((type & IRQ_TYPE_EDGE_BOTH) && (type & IRQ_TYPE_LEVEL_MASK)) ||
  131. ((type & IRQ_TYPE_LEVEL_MASK) == IRQ_TYPE_LEVEL_MASK)) {
  132. dev_err(eint->dev,
  133. "Can't configure IRQ%d (EINT%lu) for type 0x%X\n",
  134. d->irq, d->hwirq, type);
  135. return -EINVAL;
  136. }
  137. if ((type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH)
  138. eint->dual_edge[d->hwirq] = 1;
  139. else
  140. eint->dual_edge[d->hwirq] = 0;
  141. if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_EDGE_FALLING)) {
  142. reg = mtk_eint_get_offset(eint, d->hwirq, eint->regs->pol_clr);
  143. writel(mask, reg);
  144. } else {
  145. reg = mtk_eint_get_offset(eint, d->hwirq, eint->regs->pol_set);
  146. writel(mask, reg);
  147. }
  148. if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
  149. reg = mtk_eint_get_offset(eint, d->hwirq, eint->regs->sens_clr);
  150. writel(mask, reg);
  151. } else {
  152. reg = mtk_eint_get_offset(eint, d->hwirq, eint->regs->sens_set);
  153. writel(mask, reg);
  154. }
  155. if (eint->dual_edge[d->hwirq])
  156. mtk_eint_flip_edge(eint, d->hwirq);
  157. return 0;
  158. }
  159. static int mtk_eint_irq_set_wake(struct irq_data *d, unsigned int on)
  160. {
  161. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  162. int shift = d->hwirq & 0x1f;
  163. int reg = d->hwirq >> 5;
  164. if (on)
  165. eint->wake_mask[reg] |= BIT(shift);
  166. else
  167. eint->wake_mask[reg] &= ~BIT(shift);
  168. return 0;
  169. }
  170. static void mtk_eint_chip_write_mask(const struct mtk_eint *eint,
  171. void __iomem *base, u32 *buf)
  172. {
  173. int port;
  174. void __iomem *reg;
  175. for (port = 0; port < eint->hw->ports; port++) {
  176. reg = base + (port << 2);
  177. writel_relaxed(~buf[port], reg + eint->regs->mask_set);
  178. writel_relaxed(buf[port], reg + eint->regs->mask_clr);
  179. }
  180. }
  181. static void mtk_eint_chip_read_mask(const struct mtk_eint *eint,
  182. void __iomem *base, u32 *buf)
  183. {
  184. int port;
  185. void __iomem *reg;
  186. for (port = 0; port < eint->hw->ports; port++) {
  187. reg = base + eint->regs->mask + (port << 2);
  188. buf[port] = ~readl_relaxed(reg);
  189. /* Mask is 0 when irq is enabled, and 1 when disabled. */
  190. }
  191. }
  192. static int mtk_eint_irq_request_resources(struct irq_data *d)
  193. {
  194. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  195. struct gpio_chip *gpio_c;
  196. unsigned int gpio_n;
  197. int err;
  198. err = eint->gpio_xlate->get_gpio_n(eint->pctl, d->hwirq,
  199. &gpio_n, &gpio_c);
  200. if (err < 0) {
  201. dev_err(eint->dev, "Can not find pin\n");
  202. return err;
  203. }
  204. err = gpiochip_lock_as_irq(gpio_c, gpio_n);
  205. if (err < 0) {
  206. dev_err(eint->dev, "unable to lock HW IRQ %lu for IRQ\n",
  207. irqd_to_hwirq(d));
  208. return err;
  209. }
  210. err = eint->gpio_xlate->set_gpio_as_eint(eint->pctl, d->hwirq);
  211. if (err < 0) {
  212. dev_err(eint->dev, "Can not eint mode\n");
  213. return err;
  214. }
  215. return 0;
  216. }
  217. static void mtk_eint_irq_release_resources(struct irq_data *d)
  218. {
  219. struct mtk_eint *eint = irq_data_get_irq_chip_data(d);
  220. struct gpio_chip *gpio_c;
  221. unsigned int gpio_n;
  222. eint->gpio_xlate->get_gpio_n(eint->pctl, d->hwirq, &gpio_n,
  223. &gpio_c);
  224. gpiochip_unlock_as_irq(gpio_c, gpio_n);
  225. }
  226. static struct irq_chip mtk_eint_irq_chip = {
  227. .name = "mt-eint",
  228. .irq_disable = mtk_eint_mask,
  229. .irq_mask = mtk_eint_mask,
  230. .irq_unmask = mtk_eint_unmask,
  231. .irq_ack = mtk_eint_ack,
  232. .irq_set_type = mtk_eint_set_type,
  233. .irq_set_wake = mtk_eint_irq_set_wake,
  234. .irq_request_resources = mtk_eint_irq_request_resources,
  235. .irq_release_resources = mtk_eint_irq_release_resources,
  236. };
  237. static unsigned int mtk_eint_hw_init(struct mtk_eint *eint)
  238. {
  239. void __iomem *reg = eint->base + eint->regs->dom_en;
  240. unsigned int i;
  241. for (i = 0; i < eint->hw->ap_num; i += 32) {
  242. writel(0xffffffff, reg);
  243. reg += 4;
  244. }
  245. return 0;
  246. }
  247. static inline void
  248. mtk_eint_debounce_process(struct mtk_eint *eint, int index)
  249. {
  250. unsigned int rst, ctrl_offset;
  251. unsigned int bit, dbnc;
  252. ctrl_offset = (index / 4) * 4 + eint->regs->dbnc_ctrl;
  253. dbnc = readl(eint->base + ctrl_offset);
  254. bit = MTK_EINT_DBNC_SET_EN << ((index % 4) * 8);
  255. if ((bit & dbnc) > 0) {
  256. ctrl_offset = (index / 4) * 4 + eint->regs->dbnc_set;
  257. rst = MTK_EINT_DBNC_RST_BIT << ((index % 4) * 8);
  258. writel(rst, eint->base + ctrl_offset);
  259. }
  260. }
  261. static void mtk_eint_irq_handler(struct irq_desc *desc)
  262. {
  263. struct irq_chip *chip = irq_desc_get_chip(desc);
  264. struct mtk_eint *eint = irq_desc_get_handler_data(desc);
  265. unsigned int status, eint_num;
  266. int offset, index, virq;
  267. void __iomem *reg = mtk_eint_get_offset(eint, 0, eint->regs->stat);
  268. int dual_edge, start_level, curr_level;
  269. chained_irq_enter(chip, desc);
  270. for (eint_num = 0; eint_num < eint->hw->ap_num; eint_num += 32,
  271. reg += 4) {
  272. status = readl(reg);
  273. while (status) {
  274. offset = __ffs(status);
  275. index = eint_num + offset;
  276. virq = irq_find_mapping(eint->domain, index);
  277. status &= ~BIT(offset);
  278. dual_edge = eint->dual_edge[index];
  279. if (dual_edge) {
  280. /*
  281. * Clear soft-irq in case we raised it last
  282. * time.
  283. */
  284. writel(BIT(offset), reg - eint->regs->stat +
  285. eint->regs->soft_clr);
  286. start_level =
  287. eint->gpio_xlate->get_gpio_state(eint->pctl,
  288. index);
  289. }
  290. generic_handle_irq(virq);
  291. if (dual_edge) {
  292. curr_level = mtk_eint_flip_edge(eint, index);
  293. /*
  294. * If level changed, we might lost one edge
  295. * interrupt, raised it through soft-irq.
  296. */
  297. if (start_level != curr_level)
  298. writel(BIT(offset), reg -
  299. eint->regs->stat +
  300. eint->regs->soft_set);
  301. }
  302. if (index < eint->hw->db_cnt)
  303. mtk_eint_debounce_process(eint, index);
  304. }
  305. }
  306. chained_irq_exit(chip, desc);
  307. }
  308. int mtk_eint_do_suspend(struct mtk_eint *eint)
  309. {
  310. mtk_eint_chip_read_mask(eint, eint->base, eint->cur_mask);
  311. mtk_eint_chip_write_mask(eint, eint->base, eint->wake_mask);
  312. return 0;
  313. }
  314. int mtk_eint_do_resume(struct mtk_eint *eint)
  315. {
  316. mtk_eint_chip_write_mask(eint, eint->base, eint->cur_mask);
  317. return 0;
  318. }
  319. int mtk_eint_set_debounce(struct mtk_eint *eint, unsigned long eint_num,
  320. unsigned int debounce)
  321. {
  322. int virq, eint_offset;
  323. unsigned int set_offset, bit, clr_bit, clr_offset, rst, i, unmask,
  324. dbnc;
  325. static const unsigned int debounce_time[] = {500, 1000, 16000, 32000,
  326. 64000, 128000, 256000};
  327. struct irq_data *d;
  328. virq = irq_find_mapping(eint->domain, eint_num);
  329. eint_offset = (eint_num % 4) * 8;
  330. d = irq_get_irq_data(virq);
  331. set_offset = (eint_num / 4) * 4 + eint->regs->dbnc_set;
  332. clr_offset = (eint_num / 4) * 4 + eint->regs->dbnc_clr;
  333. if (!mtk_eint_can_en_debounce(eint, eint_num))
  334. return -EINVAL;
  335. dbnc = ARRAY_SIZE(debounce_time);
  336. for (i = 0; i < ARRAY_SIZE(debounce_time); i++) {
  337. if (debounce <= debounce_time[i]) {
  338. dbnc = i;
  339. break;
  340. }
  341. }
  342. if (!mtk_eint_get_mask(eint, eint_num)) {
  343. mtk_eint_mask(d);
  344. unmask = 1;
  345. } else {
  346. unmask = 0;
  347. }
  348. clr_bit = 0xff << eint_offset;
  349. writel(clr_bit, eint->base + clr_offset);
  350. bit = ((dbnc << MTK_EINT_DBNC_SET_DBNC_BITS) | MTK_EINT_DBNC_SET_EN) <<
  351. eint_offset;
  352. rst = MTK_EINT_DBNC_RST_BIT << eint_offset;
  353. writel(rst | bit, eint->base + set_offset);
  354. /*
  355. * Delay a while (more than 2T) to wait for hw debounce counter reset
  356. * work correctly.
  357. */
  358. udelay(1);
  359. if (unmask == 1)
  360. mtk_eint_unmask(d);
  361. return 0;
  362. }
  363. int mtk_eint_find_irq(struct mtk_eint *eint, unsigned long eint_n)
  364. {
  365. int irq;
  366. irq = irq_find_mapping(eint->domain, eint_n);
  367. if (!irq)
  368. return -EINVAL;
  369. return irq;
  370. }
  371. int mtk_eint_do_init(struct mtk_eint *eint)
  372. {
  373. int i;
  374. /* If clients don't assign a specific regs, let's use generic one */
  375. if (!eint->regs)
  376. eint->regs = &mtk_generic_eint_regs;
  377. eint->wake_mask = devm_kcalloc(eint->dev, eint->hw->ports,
  378. sizeof(*eint->wake_mask), GFP_KERNEL);
  379. if (!eint->wake_mask)
  380. return -ENOMEM;
  381. eint->cur_mask = devm_kcalloc(eint->dev, eint->hw->ports,
  382. sizeof(*eint->cur_mask), GFP_KERNEL);
  383. if (!eint->cur_mask)
  384. return -ENOMEM;
  385. eint->dual_edge = devm_kcalloc(eint->dev, eint->hw->ap_num,
  386. sizeof(int), GFP_KERNEL);
  387. if (!eint->dual_edge)
  388. return -ENOMEM;
  389. eint->domain = irq_domain_add_linear(eint->dev->of_node,
  390. eint->hw->ap_num,
  391. &irq_domain_simple_ops, NULL);
  392. if (!eint->domain)
  393. return -ENOMEM;
  394. mtk_eint_hw_init(eint);
  395. for (i = 0; i < eint->hw->ap_num; i++) {
  396. int virq = irq_create_mapping(eint->domain, i);
  397. irq_set_chip_and_handler(virq, &mtk_eint_irq_chip,
  398. handle_level_irq);
  399. irq_set_chip_data(virq, eint);
  400. }
  401. irq_set_chained_handler_and_data(eint->irq, mtk_eint_irq_handler,
  402. eint);
  403. return 0;
  404. }