rdma.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682
  1. /*
  2. * NVMe over Fabrics RDMA target.
  3. * Copyright (c) 2015-2016 HGST, a Western Digital Company.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15. #include <linux/atomic.h>
  16. #include <linux/ctype.h>
  17. #include <linux/delay.h>
  18. #include <linux/err.h>
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/nvme.h>
  22. #include <linux/slab.h>
  23. #include <linux/string.h>
  24. #include <linux/wait.h>
  25. #include <linux/inet.h>
  26. #include <asm/unaligned.h>
  27. #include <rdma/ib_verbs.h>
  28. #include <rdma/rdma_cm.h>
  29. #include <rdma/rw.h>
  30. #include <linux/nvme-rdma.h>
  31. #include "nvmet.h"
  32. /*
  33. * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
  34. */
  35. #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
  36. #define NVMET_RDMA_MAX_INLINE_SGE 4
  37. #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
  38. struct nvmet_rdma_cmd {
  39. struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
  40. struct ib_cqe cqe;
  41. struct ib_recv_wr wr;
  42. struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
  43. struct nvme_command *nvme_cmd;
  44. struct nvmet_rdma_queue *queue;
  45. };
  46. enum {
  47. NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
  48. NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1),
  49. };
  50. struct nvmet_rdma_rsp {
  51. struct ib_sge send_sge;
  52. struct ib_cqe send_cqe;
  53. struct ib_send_wr send_wr;
  54. struct nvmet_rdma_cmd *cmd;
  55. struct nvmet_rdma_queue *queue;
  56. struct ib_cqe read_cqe;
  57. struct rdma_rw_ctx rw;
  58. struct nvmet_req req;
  59. bool allocated;
  60. u8 n_rdma;
  61. u32 flags;
  62. u32 invalidate_rkey;
  63. struct list_head wait_list;
  64. struct list_head free_list;
  65. };
  66. enum nvmet_rdma_queue_state {
  67. NVMET_RDMA_Q_CONNECTING,
  68. NVMET_RDMA_Q_LIVE,
  69. NVMET_RDMA_Q_DISCONNECTING,
  70. };
  71. struct nvmet_rdma_queue {
  72. struct rdma_cm_id *cm_id;
  73. struct nvmet_port *port;
  74. struct ib_cq *cq;
  75. atomic_t sq_wr_avail;
  76. struct nvmet_rdma_device *dev;
  77. spinlock_t state_lock;
  78. enum nvmet_rdma_queue_state state;
  79. struct nvmet_cq nvme_cq;
  80. struct nvmet_sq nvme_sq;
  81. struct nvmet_rdma_rsp *rsps;
  82. struct list_head free_rsps;
  83. spinlock_t rsps_lock;
  84. struct nvmet_rdma_cmd *cmds;
  85. struct work_struct release_work;
  86. struct list_head rsp_wait_list;
  87. struct list_head rsp_wr_wait_list;
  88. spinlock_t rsp_wr_wait_lock;
  89. int idx;
  90. int host_qid;
  91. int recv_queue_size;
  92. int send_queue_size;
  93. struct list_head queue_list;
  94. };
  95. struct nvmet_rdma_device {
  96. struct ib_device *device;
  97. struct ib_pd *pd;
  98. struct ib_srq *srq;
  99. struct nvmet_rdma_cmd *srq_cmds;
  100. size_t srq_size;
  101. struct kref ref;
  102. struct list_head entry;
  103. int inline_data_size;
  104. int inline_page_count;
  105. };
  106. struct workqueue_struct *nvmet_rdma_delete_wq;
  107. static bool nvmet_rdma_use_srq;
  108. module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
  109. MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
  110. static DEFINE_IDA(nvmet_rdma_queue_ida);
  111. static LIST_HEAD(nvmet_rdma_queue_list);
  112. static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
  113. static LIST_HEAD(device_list);
  114. static DEFINE_MUTEX(device_list_mutex);
  115. static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
  116. static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
  117. static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
  118. static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
  119. static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
  120. static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
  121. static const struct nvmet_fabrics_ops nvmet_rdma_ops;
  122. static int num_pages(int len)
  123. {
  124. return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
  125. }
  126. /* XXX: really should move to a generic header sooner or later.. */
  127. static inline u32 get_unaligned_le24(const u8 *p)
  128. {
  129. return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16;
  130. }
  131. static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
  132. {
  133. return nvme_is_write(rsp->req.cmd) &&
  134. rsp->req.transfer_len &&
  135. !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
  136. }
  137. static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
  138. {
  139. return !nvme_is_write(rsp->req.cmd) &&
  140. rsp->req.transfer_len &&
  141. !rsp->req.rsp->status &&
  142. !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
  143. }
  144. static inline struct nvmet_rdma_rsp *
  145. nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
  146. {
  147. struct nvmet_rdma_rsp *rsp;
  148. unsigned long flags;
  149. spin_lock_irqsave(&queue->rsps_lock, flags);
  150. rsp = list_first_entry_or_null(&queue->free_rsps,
  151. struct nvmet_rdma_rsp, free_list);
  152. if (likely(rsp))
  153. list_del(&rsp->free_list);
  154. spin_unlock_irqrestore(&queue->rsps_lock, flags);
  155. if (unlikely(!rsp)) {
  156. rsp = kmalloc(sizeof(*rsp), GFP_KERNEL);
  157. if (unlikely(!rsp))
  158. return NULL;
  159. rsp->allocated = true;
  160. }
  161. return rsp;
  162. }
  163. static inline void
  164. nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
  165. {
  166. unsigned long flags;
  167. if (rsp->allocated) {
  168. kfree(rsp);
  169. return;
  170. }
  171. spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
  172. list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
  173. spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
  174. }
  175. static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
  176. struct nvmet_rdma_cmd *c)
  177. {
  178. struct scatterlist *sg;
  179. struct ib_sge *sge;
  180. int i;
  181. if (!ndev->inline_data_size)
  182. return;
  183. sg = c->inline_sg;
  184. sge = &c->sge[1];
  185. for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
  186. if (sge->length)
  187. ib_dma_unmap_page(ndev->device, sge->addr,
  188. sge->length, DMA_FROM_DEVICE);
  189. if (sg_page(sg))
  190. __free_page(sg_page(sg));
  191. }
  192. }
  193. static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
  194. struct nvmet_rdma_cmd *c)
  195. {
  196. struct scatterlist *sg;
  197. struct ib_sge *sge;
  198. struct page *pg;
  199. int len;
  200. int i;
  201. if (!ndev->inline_data_size)
  202. return 0;
  203. sg = c->inline_sg;
  204. sg_init_table(sg, ndev->inline_page_count);
  205. sge = &c->sge[1];
  206. len = ndev->inline_data_size;
  207. for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
  208. pg = alloc_page(GFP_KERNEL);
  209. if (!pg)
  210. goto out_err;
  211. sg_assign_page(sg, pg);
  212. sge->addr = ib_dma_map_page(ndev->device,
  213. pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  214. if (ib_dma_mapping_error(ndev->device, sge->addr))
  215. goto out_err;
  216. sge->length = min_t(int, len, PAGE_SIZE);
  217. sge->lkey = ndev->pd->local_dma_lkey;
  218. len -= sge->length;
  219. }
  220. return 0;
  221. out_err:
  222. for (; i >= 0; i--, sg--, sge--) {
  223. if (sge->length)
  224. ib_dma_unmap_page(ndev->device, sge->addr,
  225. sge->length, DMA_FROM_DEVICE);
  226. if (sg_page(sg))
  227. __free_page(sg_page(sg));
  228. }
  229. return -ENOMEM;
  230. }
  231. static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
  232. struct nvmet_rdma_cmd *c, bool admin)
  233. {
  234. /* NVMe command / RDMA RECV */
  235. c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
  236. if (!c->nvme_cmd)
  237. goto out;
  238. c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
  239. sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
  240. if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
  241. goto out_free_cmd;
  242. c->sge[0].length = sizeof(*c->nvme_cmd);
  243. c->sge[0].lkey = ndev->pd->local_dma_lkey;
  244. if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
  245. goto out_unmap_cmd;
  246. c->cqe.done = nvmet_rdma_recv_done;
  247. c->wr.wr_cqe = &c->cqe;
  248. c->wr.sg_list = c->sge;
  249. c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
  250. return 0;
  251. out_unmap_cmd:
  252. ib_dma_unmap_single(ndev->device, c->sge[0].addr,
  253. sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
  254. out_free_cmd:
  255. kfree(c->nvme_cmd);
  256. out:
  257. return -ENOMEM;
  258. }
  259. static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
  260. struct nvmet_rdma_cmd *c, bool admin)
  261. {
  262. if (!admin)
  263. nvmet_rdma_free_inline_pages(ndev, c);
  264. ib_dma_unmap_single(ndev->device, c->sge[0].addr,
  265. sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
  266. kfree(c->nvme_cmd);
  267. }
  268. static struct nvmet_rdma_cmd *
  269. nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
  270. int nr_cmds, bool admin)
  271. {
  272. struct nvmet_rdma_cmd *cmds;
  273. int ret = -EINVAL, i;
  274. cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
  275. if (!cmds)
  276. goto out;
  277. for (i = 0; i < nr_cmds; i++) {
  278. ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
  279. if (ret)
  280. goto out_free;
  281. }
  282. return cmds;
  283. out_free:
  284. while (--i >= 0)
  285. nvmet_rdma_free_cmd(ndev, cmds + i, admin);
  286. kfree(cmds);
  287. out:
  288. return ERR_PTR(ret);
  289. }
  290. static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
  291. struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
  292. {
  293. int i;
  294. for (i = 0; i < nr_cmds; i++)
  295. nvmet_rdma_free_cmd(ndev, cmds + i, admin);
  296. kfree(cmds);
  297. }
  298. static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
  299. struct nvmet_rdma_rsp *r)
  300. {
  301. /* NVMe CQE / RDMA SEND */
  302. r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL);
  303. if (!r->req.rsp)
  304. goto out;
  305. r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp,
  306. sizeof(*r->req.rsp), DMA_TO_DEVICE);
  307. if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
  308. goto out_free_rsp;
  309. r->send_sge.length = sizeof(*r->req.rsp);
  310. r->send_sge.lkey = ndev->pd->local_dma_lkey;
  311. r->send_cqe.done = nvmet_rdma_send_done;
  312. r->send_wr.wr_cqe = &r->send_cqe;
  313. r->send_wr.sg_list = &r->send_sge;
  314. r->send_wr.num_sge = 1;
  315. r->send_wr.send_flags = IB_SEND_SIGNALED;
  316. /* Data In / RDMA READ */
  317. r->read_cqe.done = nvmet_rdma_read_data_done;
  318. return 0;
  319. out_free_rsp:
  320. kfree(r->req.rsp);
  321. out:
  322. return -ENOMEM;
  323. }
  324. static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
  325. struct nvmet_rdma_rsp *r)
  326. {
  327. ib_dma_unmap_single(ndev->device, r->send_sge.addr,
  328. sizeof(*r->req.rsp), DMA_TO_DEVICE);
  329. kfree(r->req.rsp);
  330. }
  331. static int
  332. nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
  333. {
  334. struct nvmet_rdma_device *ndev = queue->dev;
  335. int nr_rsps = queue->recv_queue_size * 2;
  336. int ret = -EINVAL, i;
  337. queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
  338. GFP_KERNEL);
  339. if (!queue->rsps)
  340. goto out;
  341. for (i = 0; i < nr_rsps; i++) {
  342. struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
  343. ret = nvmet_rdma_alloc_rsp(ndev, rsp);
  344. if (ret)
  345. goto out_free;
  346. list_add_tail(&rsp->free_list, &queue->free_rsps);
  347. }
  348. return 0;
  349. out_free:
  350. while (--i >= 0) {
  351. struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
  352. list_del(&rsp->free_list);
  353. nvmet_rdma_free_rsp(ndev, rsp);
  354. }
  355. kfree(queue->rsps);
  356. out:
  357. return ret;
  358. }
  359. static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
  360. {
  361. struct nvmet_rdma_device *ndev = queue->dev;
  362. int i, nr_rsps = queue->recv_queue_size * 2;
  363. for (i = 0; i < nr_rsps; i++) {
  364. struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
  365. list_del(&rsp->free_list);
  366. nvmet_rdma_free_rsp(ndev, rsp);
  367. }
  368. kfree(queue->rsps);
  369. }
  370. static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
  371. struct nvmet_rdma_cmd *cmd)
  372. {
  373. int ret;
  374. ib_dma_sync_single_for_device(ndev->device,
  375. cmd->sge[0].addr, cmd->sge[0].length,
  376. DMA_FROM_DEVICE);
  377. if (ndev->srq)
  378. ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL);
  379. else
  380. ret = ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, NULL);
  381. if (unlikely(ret))
  382. pr_err("post_recv cmd failed\n");
  383. return ret;
  384. }
  385. static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
  386. {
  387. spin_lock(&queue->rsp_wr_wait_lock);
  388. while (!list_empty(&queue->rsp_wr_wait_list)) {
  389. struct nvmet_rdma_rsp *rsp;
  390. bool ret;
  391. rsp = list_entry(queue->rsp_wr_wait_list.next,
  392. struct nvmet_rdma_rsp, wait_list);
  393. list_del(&rsp->wait_list);
  394. spin_unlock(&queue->rsp_wr_wait_lock);
  395. ret = nvmet_rdma_execute_command(rsp);
  396. spin_lock(&queue->rsp_wr_wait_lock);
  397. if (!ret) {
  398. list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
  399. break;
  400. }
  401. }
  402. spin_unlock(&queue->rsp_wr_wait_lock);
  403. }
  404. static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
  405. {
  406. struct nvmet_rdma_queue *queue = rsp->queue;
  407. atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
  408. if (rsp->n_rdma) {
  409. rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
  410. queue->cm_id->port_num, rsp->req.sg,
  411. rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
  412. }
  413. if (rsp->req.sg != rsp->cmd->inline_sg)
  414. sgl_free(rsp->req.sg);
  415. if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
  416. nvmet_rdma_process_wr_wait_list(queue);
  417. nvmet_rdma_put_rsp(rsp);
  418. }
  419. static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
  420. {
  421. if (queue->nvme_sq.ctrl) {
  422. nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
  423. } else {
  424. /*
  425. * we didn't setup the controller yet in case
  426. * of admin connect error, just disconnect and
  427. * cleanup the queue
  428. */
  429. nvmet_rdma_queue_disconnect(queue);
  430. }
  431. }
  432. static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
  433. {
  434. struct nvmet_rdma_rsp *rsp =
  435. container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
  436. nvmet_rdma_release_rsp(rsp);
  437. if (unlikely(wc->status != IB_WC_SUCCESS &&
  438. wc->status != IB_WC_WR_FLUSH_ERR)) {
  439. pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
  440. wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
  441. nvmet_rdma_error_comp(rsp->queue);
  442. }
  443. }
  444. static void nvmet_rdma_queue_response(struct nvmet_req *req)
  445. {
  446. struct nvmet_rdma_rsp *rsp =
  447. container_of(req, struct nvmet_rdma_rsp, req);
  448. struct rdma_cm_id *cm_id = rsp->queue->cm_id;
  449. struct ib_send_wr *first_wr;
  450. if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
  451. rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
  452. rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
  453. } else {
  454. rsp->send_wr.opcode = IB_WR_SEND;
  455. }
  456. if (nvmet_rdma_need_data_out(rsp))
  457. first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
  458. cm_id->port_num, NULL, &rsp->send_wr);
  459. else
  460. first_wr = &rsp->send_wr;
  461. nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
  462. ib_dma_sync_single_for_device(rsp->queue->dev->device,
  463. rsp->send_sge.addr, rsp->send_sge.length,
  464. DMA_TO_DEVICE);
  465. if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
  466. pr_err("sending cmd response failed\n");
  467. nvmet_rdma_release_rsp(rsp);
  468. }
  469. }
  470. static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
  471. {
  472. struct nvmet_rdma_rsp *rsp =
  473. container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
  474. struct nvmet_rdma_queue *queue = cq->cq_context;
  475. WARN_ON(rsp->n_rdma <= 0);
  476. atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
  477. rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp,
  478. queue->cm_id->port_num, rsp->req.sg,
  479. rsp->req.sg_cnt, nvmet_data_dir(&rsp->req));
  480. rsp->n_rdma = 0;
  481. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  482. nvmet_req_uninit(&rsp->req);
  483. nvmet_rdma_release_rsp(rsp);
  484. if (wc->status != IB_WC_WR_FLUSH_ERR) {
  485. pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
  486. wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
  487. nvmet_rdma_error_comp(queue);
  488. }
  489. return;
  490. }
  491. nvmet_req_execute(&rsp->req);
  492. }
  493. static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
  494. u64 off)
  495. {
  496. int sg_count = num_pages(len);
  497. struct scatterlist *sg;
  498. int i;
  499. sg = rsp->cmd->inline_sg;
  500. for (i = 0; i < sg_count; i++, sg++) {
  501. if (i < sg_count - 1)
  502. sg_unmark_end(sg);
  503. else
  504. sg_mark_end(sg);
  505. sg->offset = off;
  506. sg->length = min_t(int, len, PAGE_SIZE - off);
  507. len -= sg->length;
  508. if (!i)
  509. off = 0;
  510. }
  511. rsp->req.sg = rsp->cmd->inline_sg;
  512. rsp->req.sg_cnt = sg_count;
  513. }
  514. static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
  515. {
  516. struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
  517. u64 off = le64_to_cpu(sgl->addr);
  518. u32 len = le32_to_cpu(sgl->length);
  519. if (!nvme_is_write(rsp->req.cmd))
  520. return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
  521. if (off + len > rsp->queue->dev->inline_data_size) {
  522. pr_err("invalid inline data offset!\n");
  523. return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
  524. }
  525. /* no data command? */
  526. if (!len)
  527. return 0;
  528. nvmet_rdma_use_inline_sg(rsp, len, off);
  529. rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
  530. rsp->req.transfer_len += len;
  531. return 0;
  532. }
  533. static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
  534. struct nvme_keyed_sgl_desc *sgl, bool invalidate)
  535. {
  536. struct rdma_cm_id *cm_id = rsp->queue->cm_id;
  537. u64 addr = le64_to_cpu(sgl->addr);
  538. u32 len = get_unaligned_le24(sgl->length);
  539. u32 key = get_unaligned_le32(sgl->key);
  540. int ret;
  541. /* no data command? */
  542. if (!len)
  543. return 0;
  544. rsp->req.sg = sgl_alloc(len, GFP_KERNEL, &rsp->req.sg_cnt);
  545. if (!rsp->req.sg)
  546. return NVME_SC_INTERNAL;
  547. ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
  548. rsp->req.sg, rsp->req.sg_cnt, 0, addr, key,
  549. nvmet_data_dir(&rsp->req));
  550. if (ret < 0)
  551. return NVME_SC_INTERNAL;
  552. rsp->req.transfer_len += len;
  553. rsp->n_rdma += ret;
  554. if (invalidate) {
  555. rsp->invalidate_rkey = key;
  556. rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
  557. }
  558. return 0;
  559. }
  560. static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
  561. {
  562. struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
  563. switch (sgl->type >> 4) {
  564. case NVME_SGL_FMT_DATA_DESC:
  565. switch (sgl->type & 0xf) {
  566. case NVME_SGL_FMT_OFFSET:
  567. return nvmet_rdma_map_sgl_inline(rsp);
  568. default:
  569. pr_err("invalid SGL subtype: %#x\n", sgl->type);
  570. return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
  571. }
  572. case NVME_KEY_SGL_FMT_DATA_DESC:
  573. switch (sgl->type & 0xf) {
  574. case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
  575. return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
  576. case NVME_SGL_FMT_ADDRESS:
  577. return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
  578. default:
  579. pr_err("invalid SGL subtype: %#x\n", sgl->type);
  580. return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
  581. }
  582. default:
  583. pr_err("invalid SGL type: %#x\n", sgl->type);
  584. return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
  585. }
  586. }
  587. static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
  588. {
  589. struct nvmet_rdma_queue *queue = rsp->queue;
  590. if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
  591. &queue->sq_wr_avail) < 0)) {
  592. pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
  593. 1 + rsp->n_rdma, queue->idx,
  594. queue->nvme_sq.ctrl->cntlid);
  595. atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
  596. return false;
  597. }
  598. if (nvmet_rdma_need_data_in(rsp)) {
  599. if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp,
  600. queue->cm_id->port_num, &rsp->read_cqe, NULL))
  601. nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
  602. } else {
  603. nvmet_req_execute(&rsp->req);
  604. }
  605. return true;
  606. }
  607. static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
  608. struct nvmet_rdma_rsp *cmd)
  609. {
  610. u16 status;
  611. ib_dma_sync_single_for_cpu(queue->dev->device,
  612. cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
  613. DMA_FROM_DEVICE);
  614. ib_dma_sync_single_for_cpu(queue->dev->device,
  615. cmd->send_sge.addr, cmd->send_sge.length,
  616. DMA_TO_DEVICE);
  617. if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
  618. &queue->nvme_sq, &nvmet_rdma_ops))
  619. return;
  620. status = nvmet_rdma_map_sgl(cmd);
  621. if (status)
  622. goto out_err;
  623. if (unlikely(!nvmet_rdma_execute_command(cmd))) {
  624. spin_lock(&queue->rsp_wr_wait_lock);
  625. list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
  626. spin_unlock(&queue->rsp_wr_wait_lock);
  627. }
  628. return;
  629. out_err:
  630. nvmet_req_complete(&cmd->req, status);
  631. }
  632. static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
  633. {
  634. struct nvmet_rdma_cmd *cmd =
  635. container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
  636. struct nvmet_rdma_queue *queue = cq->cq_context;
  637. struct nvmet_rdma_rsp *rsp;
  638. if (unlikely(wc->status != IB_WC_SUCCESS)) {
  639. if (wc->status != IB_WC_WR_FLUSH_ERR) {
  640. pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
  641. wc->wr_cqe, ib_wc_status_msg(wc->status),
  642. wc->status);
  643. nvmet_rdma_error_comp(queue);
  644. }
  645. return;
  646. }
  647. if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
  648. pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
  649. nvmet_rdma_error_comp(queue);
  650. return;
  651. }
  652. cmd->queue = queue;
  653. rsp = nvmet_rdma_get_rsp(queue);
  654. if (unlikely(!rsp)) {
  655. /*
  656. * we get here only under memory pressure,
  657. * silently drop and have the host retry
  658. * as we can't even fail it.
  659. */
  660. nvmet_rdma_post_recv(queue->dev, cmd);
  661. return;
  662. }
  663. rsp->queue = queue;
  664. rsp->cmd = cmd;
  665. rsp->flags = 0;
  666. rsp->req.cmd = cmd->nvme_cmd;
  667. rsp->req.port = queue->port;
  668. rsp->n_rdma = 0;
  669. if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
  670. unsigned long flags;
  671. spin_lock_irqsave(&queue->state_lock, flags);
  672. if (queue->state == NVMET_RDMA_Q_CONNECTING)
  673. list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
  674. else
  675. nvmet_rdma_put_rsp(rsp);
  676. spin_unlock_irqrestore(&queue->state_lock, flags);
  677. return;
  678. }
  679. nvmet_rdma_handle_command(queue, rsp);
  680. }
  681. static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev)
  682. {
  683. if (!ndev->srq)
  684. return;
  685. nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
  686. ib_destroy_srq(ndev->srq);
  687. }
  688. static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
  689. {
  690. struct ib_srq_init_attr srq_attr = { NULL, };
  691. struct ib_srq *srq;
  692. size_t srq_size;
  693. int ret, i;
  694. srq_size = 4095; /* XXX: tune */
  695. srq_attr.attr.max_wr = srq_size;
  696. srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
  697. srq_attr.attr.srq_limit = 0;
  698. srq_attr.srq_type = IB_SRQT_BASIC;
  699. srq = ib_create_srq(ndev->pd, &srq_attr);
  700. if (IS_ERR(srq)) {
  701. /*
  702. * If SRQs aren't supported we just go ahead and use normal
  703. * non-shared receive queues.
  704. */
  705. pr_info("SRQ requested but not supported.\n");
  706. return 0;
  707. }
  708. ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
  709. if (IS_ERR(ndev->srq_cmds)) {
  710. ret = PTR_ERR(ndev->srq_cmds);
  711. goto out_destroy_srq;
  712. }
  713. ndev->srq = srq;
  714. ndev->srq_size = srq_size;
  715. for (i = 0; i < srq_size; i++) {
  716. ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]);
  717. if (ret)
  718. goto out_free_cmds;
  719. }
  720. return 0;
  721. out_free_cmds:
  722. nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false);
  723. out_destroy_srq:
  724. ib_destroy_srq(srq);
  725. return ret;
  726. }
  727. static void nvmet_rdma_free_dev(struct kref *ref)
  728. {
  729. struct nvmet_rdma_device *ndev =
  730. container_of(ref, struct nvmet_rdma_device, ref);
  731. mutex_lock(&device_list_mutex);
  732. list_del(&ndev->entry);
  733. mutex_unlock(&device_list_mutex);
  734. nvmet_rdma_destroy_srq(ndev);
  735. ib_dealloc_pd(ndev->pd);
  736. kfree(ndev);
  737. }
  738. static struct nvmet_rdma_device *
  739. nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
  740. {
  741. struct nvmet_port *port = cm_id->context;
  742. struct nvmet_rdma_device *ndev;
  743. int inline_page_count;
  744. int inline_sge_count;
  745. int ret;
  746. mutex_lock(&device_list_mutex);
  747. list_for_each_entry(ndev, &device_list, entry) {
  748. if (ndev->device->node_guid == cm_id->device->node_guid &&
  749. kref_get_unless_zero(&ndev->ref))
  750. goto out_unlock;
  751. }
  752. ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
  753. if (!ndev)
  754. goto out_err;
  755. inline_page_count = num_pages(port->inline_data_size);
  756. inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
  757. cm_id->device->attrs.max_recv_sge) - 1;
  758. if (inline_page_count > inline_sge_count) {
  759. pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
  760. port->inline_data_size, cm_id->device->name,
  761. inline_sge_count * PAGE_SIZE);
  762. port->inline_data_size = inline_sge_count * PAGE_SIZE;
  763. inline_page_count = inline_sge_count;
  764. }
  765. ndev->inline_data_size = port->inline_data_size;
  766. ndev->inline_page_count = inline_page_count;
  767. ndev->device = cm_id->device;
  768. kref_init(&ndev->ref);
  769. ndev->pd = ib_alloc_pd(ndev->device, 0);
  770. if (IS_ERR(ndev->pd))
  771. goto out_free_dev;
  772. if (nvmet_rdma_use_srq) {
  773. ret = nvmet_rdma_init_srq(ndev);
  774. if (ret)
  775. goto out_free_pd;
  776. }
  777. list_add(&ndev->entry, &device_list);
  778. out_unlock:
  779. mutex_unlock(&device_list_mutex);
  780. pr_debug("added %s.\n", ndev->device->name);
  781. return ndev;
  782. out_free_pd:
  783. ib_dealloc_pd(ndev->pd);
  784. out_free_dev:
  785. kfree(ndev);
  786. out_err:
  787. mutex_unlock(&device_list_mutex);
  788. return NULL;
  789. }
  790. static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
  791. {
  792. struct ib_qp_init_attr qp_attr;
  793. struct nvmet_rdma_device *ndev = queue->dev;
  794. int comp_vector, nr_cqe, ret, i;
  795. /*
  796. * Spread the io queues across completion vectors,
  797. * but still keep all admin queues on vector 0.
  798. */
  799. comp_vector = !queue->host_qid ? 0 :
  800. queue->idx % ndev->device->num_comp_vectors;
  801. /*
  802. * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
  803. */
  804. nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
  805. queue->cq = ib_alloc_cq(ndev->device, queue,
  806. nr_cqe + 1, comp_vector,
  807. IB_POLL_WORKQUEUE);
  808. if (IS_ERR(queue->cq)) {
  809. ret = PTR_ERR(queue->cq);
  810. pr_err("failed to create CQ cqe= %d ret= %d\n",
  811. nr_cqe + 1, ret);
  812. goto out;
  813. }
  814. memset(&qp_attr, 0, sizeof(qp_attr));
  815. qp_attr.qp_context = queue;
  816. qp_attr.event_handler = nvmet_rdma_qp_event;
  817. qp_attr.send_cq = queue->cq;
  818. qp_attr.recv_cq = queue->cq;
  819. qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
  820. qp_attr.qp_type = IB_QPT_RC;
  821. /* +1 for drain */
  822. qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
  823. qp_attr.cap.max_rdma_ctxs = queue->send_queue_size;
  824. qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
  825. ndev->device->attrs.max_send_sge);
  826. if (ndev->srq) {
  827. qp_attr.srq = ndev->srq;
  828. } else {
  829. /* +1 for drain */
  830. qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
  831. qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
  832. }
  833. ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
  834. if (ret) {
  835. pr_err("failed to create_qp ret= %d\n", ret);
  836. goto err_destroy_cq;
  837. }
  838. atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
  839. pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
  840. __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
  841. qp_attr.cap.max_send_wr, queue->cm_id);
  842. if (!ndev->srq) {
  843. for (i = 0; i < queue->recv_queue_size; i++) {
  844. queue->cmds[i].queue = queue;
  845. ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
  846. if (ret)
  847. goto err_destroy_qp;
  848. }
  849. }
  850. out:
  851. return ret;
  852. err_destroy_qp:
  853. rdma_destroy_qp(queue->cm_id);
  854. err_destroy_cq:
  855. ib_free_cq(queue->cq);
  856. goto out;
  857. }
  858. static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
  859. {
  860. struct ib_qp *qp = queue->cm_id->qp;
  861. ib_drain_qp(qp);
  862. rdma_destroy_id(queue->cm_id);
  863. ib_destroy_qp(qp);
  864. ib_free_cq(queue->cq);
  865. }
  866. static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
  867. {
  868. pr_debug("freeing queue %d\n", queue->idx);
  869. nvmet_sq_destroy(&queue->nvme_sq);
  870. nvmet_rdma_destroy_queue_ib(queue);
  871. if (!queue->dev->srq) {
  872. nvmet_rdma_free_cmds(queue->dev, queue->cmds,
  873. queue->recv_queue_size,
  874. !queue->host_qid);
  875. }
  876. nvmet_rdma_free_rsps(queue);
  877. ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
  878. kfree(queue);
  879. }
  880. static void nvmet_rdma_release_queue_work(struct work_struct *w)
  881. {
  882. struct nvmet_rdma_queue *queue =
  883. container_of(w, struct nvmet_rdma_queue, release_work);
  884. struct nvmet_rdma_device *dev = queue->dev;
  885. nvmet_rdma_free_queue(queue);
  886. kref_put(&dev->ref, nvmet_rdma_free_dev);
  887. }
  888. static int
  889. nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
  890. struct nvmet_rdma_queue *queue)
  891. {
  892. struct nvme_rdma_cm_req *req;
  893. req = (struct nvme_rdma_cm_req *)conn->private_data;
  894. if (!req || conn->private_data_len == 0)
  895. return NVME_RDMA_CM_INVALID_LEN;
  896. if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
  897. return NVME_RDMA_CM_INVALID_RECFMT;
  898. queue->host_qid = le16_to_cpu(req->qid);
  899. /*
  900. * req->hsqsize corresponds to our recv queue size plus 1
  901. * req->hrqsize corresponds to our send queue size
  902. */
  903. queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
  904. queue->send_queue_size = le16_to_cpu(req->hrqsize);
  905. if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
  906. return NVME_RDMA_CM_INVALID_HSQSIZE;
  907. /* XXX: Should we enforce some kind of max for IO queues? */
  908. return 0;
  909. }
  910. static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
  911. enum nvme_rdma_cm_status status)
  912. {
  913. struct nvme_rdma_cm_rej rej;
  914. pr_debug("rejecting connect request: status %d (%s)\n",
  915. status, nvme_rdma_cm_msg(status));
  916. rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
  917. rej.sts = cpu_to_le16(status);
  918. return rdma_reject(cm_id, (void *)&rej, sizeof(rej));
  919. }
  920. static struct nvmet_rdma_queue *
  921. nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
  922. struct rdma_cm_id *cm_id,
  923. struct rdma_cm_event *event)
  924. {
  925. struct nvmet_rdma_queue *queue;
  926. int ret;
  927. queue = kzalloc(sizeof(*queue), GFP_KERNEL);
  928. if (!queue) {
  929. ret = NVME_RDMA_CM_NO_RSC;
  930. goto out_reject;
  931. }
  932. ret = nvmet_sq_init(&queue->nvme_sq);
  933. if (ret) {
  934. ret = NVME_RDMA_CM_NO_RSC;
  935. goto out_free_queue;
  936. }
  937. ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
  938. if (ret)
  939. goto out_destroy_sq;
  940. /*
  941. * Schedules the actual release because calling rdma_destroy_id from
  942. * inside a CM callback would trigger a deadlock. (great API design..)
  943. */
  944. INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
  945. queue->dev = ndev;
  946. queue->cm_id = cm_id;
  947. spin_lock_init(&queue->state_lock);
  948. queue->state = NVMET_RDMA_Q_CONNECTING;
  949. INIT_LIST_HEAD(&queue->rsp_wait_list);
  950. INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
  951. spin_lock_init(&queue->rsp_wr_wait_lock);
  952. INIT_LIST_HEAD(&queue->free_rsps);
  953. spin_lock_init(&queue->rsps_lock);
  954. INIT_LIST_HEAD(&queue->queue_list);
  955. queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
  956. if (queue->idx < 0) {
  957. ret = NVME_RDMA_CM_NO_RSC;
  958. goto out_destroy_sq;
  959. }
  960. ret = nvmet_rdma_alloc_rsps(queue);
  961. if (ret) {
  962. ret = NVME_RDMA_CM_NO_RSC;
  963. goto out_ida_remove;
  964. }
  965. if (!ndev->srq) {
  966. queue->cmds = nvmet_rdma_alloc_cmds(ndev,
  967. queue->recv_queue_size,
  968. !queue->host_qid);
  969. if (IS_ERR(queue->cmds)) {
  970. ret = NVME_RDMA_CM_NO_RSC;
  971. goto out_free_responses;
  972. }
  973. }
  974. ret = nvmet_rdma_create_queue_ib(queue);
  975. if (ret) {
  976. pr_err("%s: creating RDMA queue failed (%d).\n",
  977. __func__, ret);
  978. ret = NVME_RDMA_CM_NO_RSC;
  979. goto out_free_cmds;
  980. }
  981. return queue;
  982. out_free_cmds:
  983. if (!ndev->srq) {
  984. nvmet_rdma_free_cmds(queue->dev, queue->cmds,
  985. queue->recv_queue_size,
  986. !queue->host_qid);
  987. }
  988. out_free_responses:
  989. nvmet_rdma_free_rsps(queue);
  990. out_ida_remove:
  991. ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
  992. out_destroy_sq:
  993. nvmet_sq_destroy(&queue->nvme_sq);
  994. out_free_queue:
  995. kfree(queue);
  996. out_reject:
  997. nvmet_rdma_cm_reject(cm_id, ret);
  998. return NULL;
  999. }
  1000. static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
  1001. {
  1002. struct nvmet_rdma_queue *queue = priv;
  1003. switch (event->event) {
  1004. case IB_EVENT_COMM_EST:
  1005. rdma_notify(queue->cm_id, event->event);
  1006. break;
  1007. default:
  1008. pr_err("received IB QP event: %s (%d)\n",
  1009. ib_event_msg(event->event), event->event);
  1010. break;
  1011. }
  1012. }
  1013. static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
  1014. struct nvmet_rdma_queue *queue,
  1015. struct rdma_conn_param *p)
  1016. {
  1017. struct rdma_conn_param param = { };
  1018. struct nvme_rdma_cm_rep priv = { };
  1019. int ret = -ENOMEM;
  1020. param.rnr_retry_count = 7;
  1021. param.flow_control = 1;
  1022. param.initiator_depth = min_t(u8, p->initiator_depth,
  1023. queue->dev->device->attrs.max_qp_init_rd_atom);
  1024. param.private_data = &priv;
  1025. param.private_data_len = sizeof(priv);
  1026. priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
  1027. priv.crqsize = cpu_to_le16(queue->recv_queue_size);
  1028. ret = rdma_accept(cm_id, &param);
  1029. if (ret)
  1030. pr_err("rdma_accept failed (error code = %d)\n", ret);
  1031. return ret;
  1032. }
  1033. static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
  1034. struct rdma_cm_event *event)
  1035. {
  1036. struct nvmet_rdma_device *ndev;
  1037. struct nvmet_rdma_queue *queue;
  1038. int ret = -EINVAL;
  1039. ndev = nvmet_rdma_find_get_device(cm_id);
  1040. if (!ndev) {
  1041. nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
  1042. return -ECONNREFUSED;
  1043. }
  1044. queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
  1045. if (!queue) {
  1046. ret = -ENOMEM;
  1047. goto put_device;
  1048. }
  1049. queue->port = cm_id->context;
  1050. if (queue->host_qid == 0) {
  1051. /* Let inflight controller teardown complete */
  1052. flush_workqueue(nvmet_rdma_delete_wq);
  1053. }
  1054. ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
  1055. if (ret) {
  1056. queue_work(nvmet_rdma_delete_wq, &queue->release_work);
  1057. /* Destroying rdma_cm id is not needed here */
  1058. return 0;
  1059. }
  1060. mutex_lock(&nvmet_rdma_queue_mutex);
  1061. list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
  1062. mutex_unlock(&nvmet_rdma_queue_mutex);
  1063. return 0;
  1064. put_device:
  1065. kref_put(&ndev->ref, nvmet_rdma_free_dev);
  1066. return ret;
  1067. }
  1068. static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
  1069. {
  1070. unsigned long flags;
  1071. spin_lock_irqsave(&queue->state_lock, flags);
  1072. if (queue->state != NVMET_RDMA_Q_CONNECTING) {
  1073. pr_warn("trying to establish a connected queue\n");
  1074. goto out_unlock;
  1075. }
  1076. queue->state = NVMET_RDMA_Q_LIVE;
  1077. while (!list_empty(&queue->rsp_wait_list)) {
  1078. struct nvmet_rdma_rsp *cmd;
  1079. cmd = list_first_entry(&queue->rsp_wait_list,
  1080. struct nvmet_rdma_rsp, wait_list);
  1081. list_del(&cmd->wait_list);
  1082. spin_unlock_irqrestore(&queue->state_lock, flags);
  1083. nvmet_rdma_handle_command(queue, cmd);
  1084. spin_lock_irqsave(&queue->state_lock, flags);
  1085. }
  1086. out_unlock:
  1087. spin_unlock_irqrestore(&queue->state_lock, flags);
  1088. }
  1089. static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
  1090. {
  1091. bool disconnect = false;
  1092. unsigned long flags;
  1093. pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
  1094. spin_lock_irqsave(&queue->state_lock, flags);
  1095. switch (queue->state) {
  1096. case NVMET_RDMA_Q_CONNECTING:
  1097. case NVMET_RDMA_Q_LIVE:
  1098. queue->state = NVMET_RDMA_Q_DISCONNECTING;
  1099. disconnect = true;
  1100. break;
  1101. case NVMET_RDMA_Q_DISCONNECTING:
  1102. break;
  1103. }
  1104. spin_unlock_irqrestore(&queue->state_lock, flags);
  1105. if (disconnect) {
  1106. rdma_disconnect(queue->cm_id);
  1107. queue_work(nvmet_rdma_delete_wq, &queue->release_work);
  1108. }
  1109. }
  1110. static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
  1111. {
  1112. bool disconnect = false;
  1113. mutex_lock(&nvmet_rdma_queue_mutex);
  1114. if (!list_empty(&queue->queue_list)) {
  1115. list_del_init(&queue->queue_list);
  1116. disconnect = true;
  1117. }
  1118. mutex_unlock(&nvmet_rdma_queue_mutex);
  1119. if (disconnect)
  1120. __nvmet_rdma_queue_disconnect(queue);
  1121. }
  1122. static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
  1123. struct nvmet_rdma_queue *queue)
  1124. {
  1125. WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
  1126. mutex_lock(&nvmet_rdma_queue_mutex);
  1127. if (!list_empty(&queue->queue_list))
  1128. list_del_init(&queue->queue_list);
  1129. mutex_unlock(&nvmet_rdma_queue_mutex);
  1130. pr_err("failed to connect queue %d\n", queue->idx);
  1131. queue_work(nvmet_rdma_delete_wq, &queue->release_work);
  1132. }
  1133. /**
  1134. * nvme_rdma_device_removal() - Handle RDMA device removal
  1135. * @cm_id: rdma_cm id, used for nvmet port
  1136. * @queue: nvmet rdma queue (cm id qp_context)
  1137. *
  1138. * DEVICE_REMOVAL event notifies us that the RDMA device is about
  1139. * to unplug. Note that this event can be generated on a normal
  1140. * queue cm_id and/or a device bound listener cm_id (where in this
  1141. * case queue will be null).
  1142. *
  1143. * We registered an ib_client to handle device removal for queues,
  1144. * so we only need to handle the listening port cm_ids. In this case
  1145. * we nullify the priv to prevent double cm_id destruction and destroying
  1146. * the cm_id implicitely by returning a non-zero rc to the callout.
  1147. */
  1148. static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
  1149. struct nvmet_rdma_queue *queue)
  1150. {
  1151. struct nvmet_port *port;
  1152. if (queue) {
  1153. /*
  1154. * This is a queue cm_id. we have registered
  1155. * an ib_client to handle queues removal
  1156. * so don't interfear and just return.
  1157. */
  1158. return 0;
  1159. }
  1160. port = cm_id->context;
  1161. /*
  1162. * This is a listener cm_id. Make sure that
  1163. * future remove_port won't invoke a double
  1164. * cm_id destroy. use atomic xchg to make sure
  1165. * we don't compete with remove_port.
  1166. */
  1167. if (xchg(&port->priv, NULL) != cm_id)
  1168. return 0;
  1169. /*
  1170. * We need to return 1 so that the core will destroy
  1171. * it's own ID. What a great API design..
  1172. */
  1173. return 1;
  1174. }
  1175. static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
  1176. struct rdma_cm_event *event)
  1177. {
  1178. struct nvmet_rdma_queue *queue = NULL;
  1179. int ret = 0;
  1180. if (cm_id->qp)
  1181. queue = cm_id->qp->qp_context;
  1182. pr_debug("%s (%d): status %d id %p\n",
  1183. rdma_event_msg(event->event), event->event,
  1184. event->status, cm_id);
  1185. switch (event->event) {
  1186. case RDMA_CM_EVENT_CONNECT_REQUEST:
  1187. ret = nvmet_rdma_queue_connect(cm_id, event);
  1188. break;
  1189. case RDMA_CM_EVENT_ESTABLISHED:
  1190. nvmet_rdma_queue_established(queue);
  1191. break;
  1192. case RDMA_CM_EVENT_ADDR_CHANGE:
  1193. case RDMA_CM_EVENT_DISCONNECTED:
  1194. case RDMA_CM_EVENT_TIMEWAIT_EXIT:
  1195. nvmet_rdma_queue_disconnect(queue);
  1196. break;
  1197. case RDMA_CM_EVENT_DEVICE_REMOVAL:
  1198. ret = nvmet_rdma_device_removal(cm_id, queue);
  1199. break;
  1200. case RDMA_CM_EVENT_REJECTED:
  1201. pr_debug("Connection rejected: %s\n",
  1202. rdma_reject_msg(cm_id, event->status));
  1203. /* FALLTHROUGH */
  1204. case RDMA_CM_EVENT_UNREACHABLE:
  1205. case RDMA_CM_EVENT_CONNECT_ERROR:
  1206. nvmet_rdma_queue_connect_fail(cm_id, queue);
  1207. break;
  1208. default:
  1209. pr_err("received unrecognized RDMA CM event %d\n",
  1210. event->event);
  1211. break;
  1212. }
  1213. return ret;
  1214. }
  1215. static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
  1216. {
  1217. struct nvmet_rdma_queue *queue;
  1218. restart:
  1219. mutex_lock(&nvmet_rdma_queue_mutex);
  1220. list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
  1221. if (queue->nvme_sq.ctrl == ctrl) {
  1222. list_del_init(&queue->queue_list);
  1223. mutex_unlock(&nvmet_rdma_queue_mutex);
  1224. __nvmet_rdma_queue_disconnect(queue);
  1225. goto restart;
  1226. }
  1227. }
  1228. mutex_unlock(&nvmet_rdma_queue_mutex);
  1229. }
  1230. static int nvmet_rdma_add_port(struct nvmet_port *port)
  1231. {
  1232. struct rdma_cm_id *cm_id;
  1233. struct sockaddr_storage addr = { };
  1234. __kernel_sa_family_t af;
  1235. int ret;
  1236. switch (port->disc_addr.adrfam) {
  1237. case NVMF_ADDR_FAMILY_IP4:
  1238. af = AF_INET;
  1239. break;
  1240. case NVMF_ADDR_FAMILY_IP6:
  1241. af = AF_INET6;
  1242. break;
  1243. default:
  1244. pr_err("address family %d not supported\n",
  1245. port->disc_addr.adrfam);
  1246. return -EINVAL;
  1247. }
  1248. if (port->inline_data_size < 0) {
  1249. port->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
  1250. } else if (port->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
  1251. pr_warn("inline_data_size %u is too large, reducing to %u\n",
  1252. port->inline_data_size,
  1253. NVMET_RDMA_MAX_INLINE_DATA_SIZE);
  1254. port->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
  1255. }
  1256. ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr,
  1257. port->disc_addr.trsvcid, &addr);
  1258. if (ret) {
  1259. pr_err("malformed ip/port passed: %s:%s\n",
  1260. port->disc_addr.traddr, port->disc_addr.trsvcid);
  1261. return ret;
  1262. }
  1263. cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
  1264. RDMA_PS_TCP, IB_QPT_RC);
  1265. if (IS_ERR(cm_id)) {
  1266. pr_err("CM ID creation failed\n");
  1267. return PTR_ERR(cm_id);
  1268. }
  1269. /*
  1270. * Allow both IPv4 and IPv6 sockets to bind a single port
  1271. * at the same time.
  1272. */
  1273. ret = rdma_set_afonly(cm_id, 1);
  1274. if (ret) {
  1275. pr_err("rdma_set_afonly failed (%d)\n", ret);
  1276. goto out_destroy_id;
  1277. }
  1278. ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr);
  1279. if (ret) {
  1280. pr_err("binding CM ID to %pISpcs failed (%d)\n",
  1281. (struct sockaddr *)&addr, ret);
  1282. goto out_destroy_id;
  1283. }
  1284. ret = rdma_listen(cm_id, 128);
  1285. if (ret) {
  1286. pr_err("listening to %pISpcs failed (%d)\n",
  1287. (struct sockaddr *)&addr, ret);
  1288. goto out_destroy_id;
  1289. }
  1290. pr_info("enabling port %d (%pISpcs)\n",
  1291. le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr);
  1292. port->priv = cm_id;
  1293. return 0;
  1294. out_destroy_id:
  1295. rdma_destroy_id(cm_id);
  1296. return ret;
  1297. }
  1298. static void nvmet_rdma_remove_port(struct nvmet_port *port)
  1299. {
  1300. struct rdma_cm_id *cm_id = xchg(&port->priv, NULL);
  1301. if (cm_id)
  1302. rdma_destroy_id(cm_id);
  1303. }
  1304. static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
  1305. struct nvmet_port *port, char *traddr)
  1306. {
  1307. struct rdma_cm_id *cm_id = port->priv;
  1308. if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
  1309. struct nvmet_rdma_rsp *rsp =
  1310. container_of(req, struct nvmet_rdma_rsp, req);
  1311. struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
  1312. struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
  1313. sprintf(traddr, "%pISc", addr);
  1314. } else {
  1315. memcpy(traddr, port->disc_addr.traddr, NVMF_TRADDR_SIZE);
  1316. }
  1317. }
  1318. static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
  1319. .owner = THIS_MODULE,
  1320. .type = NVMF_TRTYPE_RDMA,
  1321. .msdbd = 1,
  1322. .has_keyed_sgls = 1,
  1323. .add_port = nvmet_rdma_add_port,
  1324. .remove_port = nvmet_rdma_remove_port,
  1325. .queue_response = nvmet_rdma_queue_response,
  1326. .delete_ctrl = nvmet_rdma_delete_ctrl,
  1327. .disc_traddr = nvmet_rdma_disc_port_addr,
  1328. };
  1329. static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
  1330. {
  1331. struct nvmet_rdma_queue *queue, *tmp;
  1332. struct nvmet_rdma_device *ndev;
  1333. bool found = false;
  1334. mutex_lock(&device_list_mutex);
  1335. list_for_each_entry(ndev, &device_list, entry) {
  1336. if (ndev->device == ib_device) {
  1337. found = true;
  1338. break;
  1339. }
  1340. }
  1341. mutex_unlock(&device_list_mutex);
  1342. if (!found)
  1343. return;
  1344. /*
  1345. * IB Device that is used by nvmet controllers is being removed,
  1346. * delete all queues using this device.
  1347. */
  1348. mutex_lock(&nvmet_rdma_queue_mutex);
  1349. list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
  1350. queue_list) {
  1351. if (queue->dev->device != ib_device)
  1352. continue;
  1353. pr_info("Removing queue %d\n", queue->idx);
  1354. list_del_init(&queue->queue_list);
  1355. __nvmet_rdma_queue_disconnect(queue);
  1356. }
  1357. mutex_unlock(&nvmet_rdma_queue_mutex);
  1358. flush_scheduled_work();
  1359. }
  1360. static struct ib_client nvmet_rdma_ib_client = {
  1361. .name = "nvmet_rdma",
  1362. .remove = nvmet_rdma_remove_one
  1363. };
  1364. static int __init nvmet_rdma_init(void)
  1365. {
  1366. int ret;
  1367. ret = ib_register_client(&nvmet_rdma_ib_client);
  1368. if (ret)
  1369. return ret;
  1370. ret = nvmet_register_transport(&nvmet_rdma_ops);
  1371. if (ret)
  1372. goto err_ib_client;
  1373. nvmet_rdma_delete_wq = alloc_workqueue("nvmet-rdma-delete-wq",
  1374. WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
  1375. if (!nvmet_rdma_delete_wq) {
  1376. ret = -ENOMEM;
  1377. goto err_unreg_transport;
  1378. }
  1379. return 0;
  1380. err_unreg_transport:
  1381. nvmet_unregister_transport(&nvmet_rdma_ops);
  1382. err_ib_client:
  1383. ib_unregister_client(&nvmet_rdma_ib_client);
  1384. return ret;
  1385. }
  1386. static void __exit nvmet_rdma_exit(void)
  1387. {
  1388. destroy_workqueue(nvmet_rdma_delete_wq);
  1389. nvmet_unregister_transport(&nvmet_rdma_ops);
  1390. ib_unregister_client(&nvmet_rdma_ib_client);
  1391. WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
  1392. ida_destroy(&nvmet_rdma_queue_ida);
  1393. }
  1394. module_init(nvmet_rdma_init);
  1395. module_exit(nvmet_rdma_exit);
  1396. MODULE_LICENSE("GPL v2");
  1397. MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */