io-cmd-bdev.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253
  1. /*
  2. * NVMe I/O command implementation.
  3. * Copyright (c) 2015-2016 HGST, a Western Digital Company.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15. #include <linux/blkdev.h>
  16. #include <linux/module.h>
  17. #include "nvmet.h"
  18. int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
  19. {
  20. int ret;
  21. ns->bdev = blkdev_get_by_path(ns->device_path,
  22. FMODE_READ | FMODE_WRITE, NULL);
  23. if (IS_ERR(ns->bdev)) {
  24. ret = PTR_ERR(ns->bdev);
  25. if (ret != -ENOTBLK) {
  26. pr_err("failed to open block device %s: (%ld)\n",
  27. ns->device_path, PTR_ERR(ns->bdev));
  28. }
  29. ns->bdev = NULL;
  30. return ret;
  31. }
  32. ns->size = i_size_read(ns->bdev->bd_inode);
  33. ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
  34. return 0;
  35. }
  36. void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
  37. {
  38. if (ns->bdev) {
  39. blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
  40. ns->bdev = NULL;
  41. }
  42. }
  43. static void nvmet_bio_done(struct bio *bio)
  44. {
  45. struct nvmet_req *req = bio->bi_private;
  46. nvmet_req_complete(req,
  47. bio->bi_status ? NVME_SC_INTERNAL | NVME_SC_DNR : 0);
  48. if (bio != &req->b.inline_bio)
  49. bio_put(bio);
  50. }
  51. static void nvmet_bdev_execute_rw(struct nvmet_req *req)
  52. {
  53. int sg_cnt = req->sg_cnt;
  54. struct bio *bio;
  55. struct scatterlist *sg;
  56. sector_t sector;
  57. blk_qc_t cookie;
  58. int op, op_flags = 0, i;
  59. if (!req->sg_cnt) {
  60. nvmet_req_complete(req, 0);
  61. return;
  62. }
  63. if (req->cmd->rw.opcode == nvme_cmd_write) {
  64. op = REQ_OP_WRITE;
  65. op_flags = REQ_SYNC | REQ_IDLE;
  66. if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
  67. op_flags |= REQ_FUA;
  68. } else {
  69. op = REQ_OP_READ;
  70. }
  71. sector = le64_to_cpu(req->cmd->rw.slba);
  72. sector <<= (req->ns->blksize_shift - 9);
  73. if (req->data_len <= NVMET_MAX_INLINE_DATA_LEN) {
  74. bio = &req->b.inline_bio;
  75. bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
  76. } else {
  77. bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
  78. }
  79. bio_set_dev(bio, req->ns->bdev);
  80. bio->bi_iter.bi_sector = sector;
  81. bio->bi_private = req;
  82. bio->bi_end_io = nvmet_bio_done;
  83. bio_set_op_attrs(bio, op, op_flags);
  84. for_each_sg(req->sg, sg, req->sg_cnt, i) {
  85. while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
  86. != sg->length) {
  87. struct bio *prev = bio;
  88. bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
  89. bio_set_dev(bio, req->ns->bdev);
  90. bio->bi_iter.bi_sector = sector;
  91. bio_set_op_attrs(bio, op, op_flags);
  92. bio_chain(bio, prev);
  93. submit_bio(prev);
  94. }
  95. sector += sg->length >> 9;
  96. sg_cnt--;
  97. }
  98. cookie = submit_bio(bio);
  99. blk_poll(bdev_get_queue(req->ns->bdev), cookie);
  100. }
  101. static void nvmet_bdev_execute_flush(struct nvmet_req *req)
  102. {
  103. struct bio *bio = &req->b.inline_bio;
  104. bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
  105. bio_set_dev(bio, req->ns->bdev);
  106. bio->bi_private = req;
  107. bio->bi_end_io = nvmet_bio_done;
  108. bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
  109. submit_bio(bio);
  110. }
  111. u16 nvmet_bdev_flush(struct nvmet_req *req)
  112. {
  113. if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL, NULL))
  114. return NVME_SC_INTERNAL | NVME_SC_DNR;
  115. return 0;
  116. }
  117. static u16 nvmet_bdev_discard_range(struct nvmet_ns *ns,
  118. struct nvme_dsm_range *range, struct bio **bio)
  119. {
  120. int ret;
  121. ret = __blkdev_issue_discard(ns->bdev,
  122. le64_to_cpu(range->slba) << (ns->blksize_shift - 9),
  123. le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
  124. GFP_KERNEL, 0, bio);
  125. if (ret && ret != -EOPNOTSUPP)
  126. return NVME_SC_INTERNAL | NVME_SC_DNR;
  127. return 0;
  128. }
  129. static void nvmet_bdev_execute_discard(struct nvmet_req *req)
  130. {
  131. struct nvme_dsm_range range;
  132. struct bio *bio = NULL;
  133. int i;
  134. u16 status;
  135. for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
  136. status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
  137. sizeof(range));
  138. if (status)
  139. break;
  140. status = nvmet_bdev_discard_range(req->ns, &range, &bio);
  141. if (status)
  142. break;
  143. }
  144. if (bio) {
  145. bio->bi_private = req;
  146. bio->bi_end_io = nvmet_bio_done;
  147. if (status) {
  148. bio->bi_status = BLK_STS_IOERR;
  149. bio_endio(bio);
  150. } else {
  151. submit_bio(bio);
  152. }
  153. } else {
  154. nvmet_req_complete(req, status);
  155. }
  156. }
  157. static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
  158. {
  159. switch (le32_to_cpu(req->cmd->dsm.attributes)) {
  160. case NVME_DSMGMT_AD:
  161. nvmet_bdev_execute_discard(req);
  162. return;
  163. case NVME_DSMGMT_IDR:
  164. case NVME_DSMGMT_IDW:
  165. default:
  166. /* Not supported yet */
  167. nvmet_req_complete(req, 0);
  168. return;
  169. }
  170. }
  171. static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
  172. {
  173. struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
  174. struct bio *bio = NULL;
  175. u16 status = NVME_SC_SUCCESS;
  176. sector_t sector;
  177. sector_t nr_sector;
  178. sector = le64_to_cpu(write_zeroes->slba) <<
  179. (req->ns->blksize_shift - 9);
  180. nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
  181. (req->ns->blksize_shift - 9));
  182. if (__blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
  183. GFP_KERNEL, &bio, 0))
  184. status = NVME_SC_INTERNAL | NVME_SC_DNR;
  185. if (bio) {
  186. bio->bi_private = req;
  187. bio->bi_end_io = nvmet_bio_done;
  188. submit_bio(bio);
  189. } else {
  190. nvmet_req_complete(req, status);
  191. }
  192. }
  193. u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
  194. {
  195. struct nvme_command *cmd = req->cmd;
  196. switch (cmd->common.opcode) {
  197. case nvme_cmd_read:
  198. case nvme_cmd_write:
  199. req->execute = nvmet_bdev_execute_rw;
  200. req->data_len = nvmet_rw_len(req);
  201. return 0;
  202. case nvme_cmd_flush:
  203. req->execute = nvmet_bdev_execute_flush;
  204. req->data_len = 0;
  205. return 0;
  206. case nvme_cmd_dsm:
  207. req->execute = nvmet_bdev_execute_dsm;
  208. req->data_len = (le32_to_cpu(cmd->dsm.nr) + 1) *
  209. sizeof(struct nvme_dsm_range);
  210. return 0;
  211. case nvme_cmd_write_zeroes:
  212. req->execute = nvmet_bdev_execute_write_zeroes;
  213. return 0;
  214. default:
  215. pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode,
  216. req->sq->qid);
  217. return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
  218. }
  219. }