pci.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/aer.h>
  15. #include <linux/async.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/blk-mq.h>
  18. #include <linux/blk-mq-pci.h>
  19. #include <linux/dmi.h>
  20. #include <linux/init.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include <linux/mm.h>
  24. #include <linux/module.h>
  25. #include <linux/mutex.h>
  26. #include <linux/once.h>
  27. #include <linux/pci.h>
  28. #include <linux/t10-pi.h>
  29. #include <linux/types.h>
  30. #include <linux/io-64-nonatomic-lo-hi.h>
  31. #include <linux/sed-opal.h>
  32. #include "nvme.h"
  33. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  34. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  35. #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
  36. /*
  37. * These can be higher, but we need to ensure that any command doesn't
  38. * require an sg allocation that needs more than a page of data.
  39. */
  40. #define NVME_MAX_KB_SZ 4096
  41. #define NVME_MAX_SEGS 127
  42. static int use_threaded_interrupts;
  43. module_param(use_threaded_interrupts, int, 0);
  44. static bool use_cmb_sqes = true;
  45. module_param(use_cmb_sqes, bool, 0444);
  46. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  47. static unsigned int max_host_mem_size_mb = 128;
  48. module_param(max_host_mem_size_mb, uint, 0444);
  49. MODULE_PARM_DESC(max_host_mem_size_mb,
  50. "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  51. static unsigned int sgl_threshold = SZ_32K;
  52. module_param(sgl_threshold, uint, 0644);
  53. MODULE_PARM_DESC(sgl_threshold,
  54. "Use SGLs when average request segment size is larger or equal to "
  55. "this size. Use 0 to disable SGLs.");
  56. static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  57. static const struct kernel_param_ops io_queue_depth_ops = {
  58. .set = io_queue_depth_set,
  59. .get = param_get_int,
  60. };
  61. static int io_queue_depth = 1024;
  62. module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  63. MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  64. struct nvme_dev;
  65. struct nvme_queue;
  66. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  67. /*
  68. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  69. */
  70. struct nvme_dev {
  71. struct nvme_queue *queues;
  72. struct blk_mq_tag_set tagset;
  73. struct blk_mq_tag_set admin_tagset;
  74. u32 __iomem *dbs;
  75. struct device *dev;
  76. struct dma_pool *prp_page_pool;
  77. struct dma_pool *prp_small_pool;
  78. unsigned online_queues;
  79. unsigned max_qid;
  80. unsigned int num_vecs;
  81. int q_depth;
  82. u32 db_stride;
  83. void __iomem *bar;
  84. unsigned long bar_mapped_size;
  85. struct work_struct remove_work;
  86. struct mutex shutdown_lock;
  87. bool subsystem;
  88. void __iomem *cmb;
  89. pci_bus_addr_t cmb_bus_addr;
  90. u64 cmb_size;
  91. u32 cmbsz;
  92. u32 cmbloc;
  93. struct nvme_ctrl ctrl;
  94. struct completion ioq_wait;
  95. mempool_t *iod_mempool;
  96. /* shadow doorbell buffer support: */
  97. u32 *dbbuf_dbs;
  98. dma_addr_t dbbuf_dbs_dma_addr;
  99. u32 *dbbuf_eis;
  100. dma_addr_t dbbuf_eis_dma_addr;
  101. /* host memory buffer support: */
  102. u64 host_mem_size;
  103. u32 nr_host_mem_descs;
  104. dma_addr_t host_mem_descs_dma;
  105. struct nvme_host_mem_buf_desc *host_mem_descs;
  106. void **host_mem_desc_bufs;
  107. };
  108. static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
  109. {
  110. int n = 0, ret;
  111. ret = kstrtoint(val, 10, &n);
  112. if (ret != 0 || n < 2)
  113. return -EINVAL;
  114. return param_set_int(val, kp);
  115. }
  116. static inline unsigned int sq_idx(unsigned int qid, u32 stride)
  117. {
  118. return qid * 2 * stride;
  119. }
  120. static inline unsigned int cq_idx(unsigned int qid, u32 stride)
  121. {
  122. return (qid * 2 + 1) * stride;
  123. }
  124. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  125. {
  126. return container_of(ctrl, struct nvme_dev, ctrl);
  127. }
  128. /*
  129. * An NVM Express queue. Each device has at least two (one for admin
  130. * commands and one for I/O commands).
  131. */
  132. struct nvme_queue {
  133. struct device *q_dmadev;
  134. struct nvme_dev *dev;
  135. spinlock_t sq_lock;
  136. struct nvme_command *sq_cmds;
  137. struct nvme_command __iomem *sq_cmds_io;
  138. spinlock_t cq_lock ____cacheline_aligned_in_smp;
  139. volatile struct nvme_completion *cqes;
  140. struct blk_mq_tags **tags;
  141. dma_addr_t sq_dma_addr;
  142. dma_addr_t cq_dma_addr;
  143. u32 __iomem *q_db;
  144. u16 q_depth;
  145. s16 cq_vector;
  146. u16 sq_tail;
  147. u16 cq_head;
  148. u16 last_cq_head;
  149. u16 qid;
  150. u8 cq_phase;
  151. u32 *dbbuf_sq_db;
  152. u32 *dbbuf_cq_db;
  153. u32 *dbbuf_sq_ei;
  154. u32 *dbbuf_cq_ei;
  155. };
  156. /*
  157. * The nvme_iod describes the data in an I/O, including the list of PRP
  158. * entries. You can't see it in this data structure because C doesn't let
  159. * me express that. Use nvme_init_iod to ensure there's enough space
  160. * allocated to store the PRP list.
  161. */
  162. struct nvme_iod {
  163. struct nvme_request req;
  164. struct nvme_queue *nvmeq;
  165. bool use_sgl;
  166. int aborted;
  167. int npages; /* In the PRP list. 0 means small pool in use */
  168. int nents; /* Used in scatterlist */
  169. int length; /* Of data, in bytes */
  170. dma_addr_t first_dma;
  171. struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
  172. struct scatterlist *sg;
  173. struct scatterlist inline_sg[0];
  174. };
  175. /*
  176. * Check we didin't inadvertently grow the command struct
  177. */
  178. static inline void _nvme_check_size(void)
  179. {
  180. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  181. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  182. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  183. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  184. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  185. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  186. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  187. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  188. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
  189. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
  190. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  191. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  192. BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
  193. }
  194. static inline unsigned int nvme_dbbuf_size(u32 stride)
  195. {
  196. return ((num_possible_cpus() + 1) * 8 * stride);
  197. }
  198. static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
  199. {
  200. unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
  201. if (dev->dbbuf_dbs)
  202. return 0;
  203. dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
  204. &dev->dbbuf_dbs_dma_addr,
  205. GFP_KERNEL);
  206. if (!dev->dbbuf_dbs)
  207. return -ENOMEM;
  208. dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
  209. &dev->dbbuf_eis_dma_addr,
  210. GFP_KERNEL);
  211. if (!dev->dbbuf_eis) {
  212. dma_free_coherent(dev->dev, mem_size,
  213. dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
  214. dev->dbbuf_dbs = NULL;
  215. return -ENOMEM;
  216. }
  217. return 0;
  218. }
  219. static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
  220. {
  221. unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
  222. if (dev->dbbuf_dbs) {
  223. dma_free_coherent(dev->dev, mem_size,
  224. dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
  225. dev->dbbuf_dbs = NULL;
  226. }
  227. if (dev->dbbuf_eis) {
  228. dma_free_coherent(dev->dev, mem_size,
  229. dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
  230. dev->dbbuf_eis = NULL;
  231. }
  232. }
  233. static void nvme_dbbuf_init(struct nvme_dev *dev,
  234. struct nvme_queue *nvmeq, int qid)
  235. {
  236. if (!dev->dbbuf_dbs || !qid)
  237. return;
  238. nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
  239. nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
  240. nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
  241. nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
  242. }
  243. static void nvme_dbbuf_set(struct nvme_dev *dev)
  244. {
  245. struct nvme_command c;
  246. if (!dev->dbbuf_dbs)
  247. return;
  248. memset(&c, 0, sizeof(c));
  249. c.dbbuf.opcode = nvme_admin_dbbuf;
  250. c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
  251. c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
  252. if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
  253. dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
  254. /* Free memory and continue on */
  255. nvme_dbbuf_dma_free(dev);
  256. }
  257. }
  258. static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
  259. {
  260. return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
  261. }
  262. /* Update dbbuf and return true if an MMIO is required */
  263. static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
  264. volatile u32 *dbbuf_ei)
  265. {
  266. if (dbbuf_db) {
  267. u16 old_value;
  268. /*
  269. * Ensure that the queue is written before updating
  270. * the doorbell in memory
  271. */
  272. wmb();
  273. old_value = *dbbuf_db;
  274. *dbbuf_db = value;
  275. /*
  276. * Ensure that the doorbell is updated before reading the event
  277. * index from memory. The controller needs to provide similar
  278. * ordering to ensure the envent index is updated before reading
  279. * the doorbell.
  280. */
  281. mb();
  282. if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
  283. return false;
  284. }
  285. return true;
  286. }
  287. /*
  288. * Max size of iod being embedded in the request payload
  289. */
  290. #define NVME_INT_PAGES 2
  291. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  292. /*
  293. * Will slightly overestimate the number of pages needed. This is OK
  294. * as it only leads to a small amount of wasted memory for the lifetime of
  295. * the I/O.
  296. */
  297. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  298. {
  299. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  300. dev->ctrl.page_size);
  301. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  302. }
  303. /*
  304. * Calculates the number of pages needed for the SGL segments. For example a 4k
  305. * page can accommodate 256 SGL descriptors.
  306. */
  307. static int nvme_pci_npages_sgl(unsigned int num_seg)
  308. {
  309. return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
  310. }
  311. static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
  312. unsigned int size, unsigned int nseg, bool use_sgl)
  313. {
  314. size_t alloc_size;
  315. if (use_sgl)
  316. alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
  317. else
  318. alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
  319. return alloc_size + sizeof(struct scatterlist) * nseg;
  320. }
  321. static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
  322. {
  323. unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
  324. NVME_INT_BYTES(dev), NVME_INT_PAGES,
  325. use_sgl);
  326. return sizeof(struct nvme_iod) + alloc_size;
  327. }
  328. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  329. unsigned int hctx_idx)
  330. {
  331. struct nvme_dev *dev = data;
  332. struct nvme_queue *nvmeq = &dev->queues[0];
  333. WARN_ON(hctx_idx != 0);
  334. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  335. WARN_ON(nvmeq->tags);
  336. hctx->driver_data = nvmeq;
  337. nvmeq->tags = &dev->admin_tagset.tags[0];
  338. return 0;
  339. }
  340. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  341. {
  342. struct nvme_queue *nvmeq = hctx->driver_data;
  343. nvmeq->tags = NULL;
  344. }
  345. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  346. unsigned int hctx_idx)
  347. {
  348. struct nvme_dev *dev = data;
  349. struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
  350. if (!nvmeq->tags)
  351. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  352. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  353. hctx->driver_data = nvmeq;
  354. return 0;
  355. }
  356. static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
  357. unsigned int hctx_idx, unsigned int numa_node)
  358. {
  359. struct nvme_dev *dev = set->driver_data;
  360. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  361. int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
  362. struct nvme_queue *nvmeq = &dev->queues[queue_idx];
  363. BUG_ON(!nvmeq);
  364. iod->nvmeq = nvmeq;
  365. nvme_req(req)->ctrl = &dev->ctrl;
  366. return 0;
  367. }
  368. static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
  369. {
  370. struct nvme_dev *dev = set->driver_data;
  371. return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
  372. dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
  373. }
  374. /**
  375. * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  376. * @nvmeq: The queue to use
  377. * @cmd: The command to send
  378. */
  379. static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
  380. {
  381. spin_lock(&nvmeq->sq_lock);
  382. if (nvmeq->sq_cmds_io)
  383. memcpy_toio(&nvmeq->sq_cmds_io[nvmeq->sq_tail], cmd,
  384. sizeof(*cmd));
  385. else
  386. memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
  387. if (++nvmeq->sq_tail == nvmeq->q_depth)
  388. nvmeq->sq_tail = 0;
  389. if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
  390. nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
  391. writel(nvmeq->sq_tail, nvmeq->q_db);
  392. spin_unlock(&nvmeq->sq_lock);
  393. }
  394. static void **nvme_pci_iod_list(struct request *req)
  395. {
  396. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  397. return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
  398. }
  399. static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
  400. {
  401. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  402. int nseg = blk_rq_nr_phys_segments(req);
  403. unsigned int avg_seg_size;
  404. if (nseg == 0)
  405. return false;
  406. avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
  407. if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
  408. return false;
  409. if (!iod->nvmeq->qid)
  410. return false;
  411. if (!sgl_threshold || avg_seg_size < sgl_threshold)
  412. return false;
  413. return true;
  414. }
  415. static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
  416. {
  417. struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
  418. int nseg = blk_rq_nr_phys_segments(rq);
  419. unsigned int size = blk_rq_payload_bytes(rq);
  420. iod->use_sgl = nvme_pci_use_sgls(dev, rq);
  421. if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
  422. iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
  423. if (!iod->sg)
  424. return BLK_STS_RESOURCE;
  425. } else {
  426. iod->sg = iod->inline_sg;
  427. }
  428. iod->aborted = 0;
  429. iod->npages = -1;
  430. iod->nents = 0;
  431. iod->length = size;
  432. return BLK_STS_OK;
  433. }
  434. static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
  435. {
  436. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  437. const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
  438. dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
  439. int i;
  440. if (iod->npages == 0)
  441. dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
  442. dma_addr);
  443. for (i = 0; i < iod->npages; i++) {
  444. void *addr = nvme_pci_iod_list(req)[i];
  445. if (iod->use_sgl) {
  446. struct nvme_sgl_desc *sg_list = addr;
  447. next_dma_addr =
  448. le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
  449. } else {
  450. __le64 *prp_list = addr;
  451. next_dma_addr = le64_to_cpu(prp_list[last_prp]);
  452. }
  453. dma_pool_free(dev->prp_page_pool, addr, dma_addr);
  454. dma_addr = next_dma_addr;
  455. }
  456. if (iod->sg != iod->inline_sg)
  457. mempool_free(iod->sg, dev->iod_mempool);
  458. }
  459. static void nvme_print_sgl(struct scatterlist *sgl, int nents)
  460. {
  461. int i;
  462. struct scatterlist *sg;
  463. for_each_sg(sgl, sg, nents, i) {
  464. dma_addr_t phys = sg_phys(sg);
  465. pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
  466. "dma_address:%pad dma_length:%d\n",
  467. i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
  468. sg_dma_len(sg));
  469. }
  470. }
  471. static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
  472. struct request *req, struct nvme_rw_command *cmnd)
  473. {
  474. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  475. struct dma_pool *pool;
  476. int length = blk_rq_payload_bytes(req);
  477. struct scatterlist *sg = iod->sg;
  478. int dma_len = sg_dma_len(sg);
  479. u64 dma_addr = sg_dma_address(sg);
  480. u32 page_size = dev->ctrl.page_size;
  481. int offset = dma_addr & (page_size - 1);
  482. __le64 *prp_list;
  483. void **list = nvme_pci_iod_list(req);
  484. dma_addr_t prp_dma;
  485. int nprps, i;
  486. length -= (page_size - offset);
  487. if (length <= 0) {
  488. iod->first_dma = 0;
  489. goto done;
  490. }
  491. dma_len -= (page_size - offset);
  492. if (dma_len) {
  493. dma_addr += (page_size - offset);
  494. } else {
  495. sg = sg_next(sg);
  496. dma_addr = sg_dma_address(sg);
  497. dma_len = sg_dma_len(sg);
  498. }
  499. if (length <= page_size) {
  500. iod->first_dma = dma_addr;
  501. goto done;
  502. }
  503. nprps = DIV_ROUND_UP(length, page_size);
  504. if (nprps <= (256 / 8)) {
  505. pool = dev->prp_small_pool;
  506. iod->npages = 0;
  507. } else {
  508. pool = dev->prp_page_pool;
  509. iod->npages = 1;
  510. }
  511. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  512. if (!prp_list) {
  513. iod->first_dma = dma_addr;
  514. iod->npages = -1;
  515. return BLK_STS_RESOURCE;
  516. }
  517. list[0] = prp_list;
  518. iod->first_dma = prp_dma;
  519. i = 0;
  520. for (;;) {
  521. if (i == page_size >> 3) {
  522. __le64 *old_prp_list = prp_list;
  523. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  524. if (!prp_list)
  525. return BLK_STS_RESOURCE;
  526. list[iod->npages++] = prp_list;
  527. prp_list[0] = old_prp_list[i - 1];
  528. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  529. i = 1;
  530. }
  531. prp_list[i++] = cpu_to_le64(dma_addr);
  532. dma_len -= page_size;
  533. dma_addr += page_size;
  534. length -= page_size;
  535. if (length <= 0)
  536. break;
  537. if (dma_len > 0)
  538. continue;
  539. if (unlikely(dma_len < 0))
  540. goto bad_sgl;
  541. sg = sg_next(sg);
  542. dma_addr = sg_dma_address(sg);
  543. dma_len = sg_dma_len(sg);
  544. }
  545. done:
  546. cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  547. cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
  548. return BLK_STS_OK;
  549. bad_sgl:
  550. WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
  551. "Invalid SGL for payload:%d nents:%d\n",
  552. blk_rq_payload_bytes(req), iod->nents);
  553. return BLK_STS_IOERR;
  554. }
  555. static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
  556. struct scatterlist *sg)
  557. {
  558. sge->addr = cpu_to_le64(sg_dma_address(sg));
  559. sge->length = cpu_to_le32(sg_dma_len(sg));
  560. sge->type = NVME_SGL_FMT_DATA_DESC << 4;
  561. }
  562. static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
  563. dma_addr_t dma_addr, int entries)
  564. {
  565. sge->addr = cpu_to_le64(dma_addr);
  566. if (entries < SGES_PER_PAGE) {
  567. sge->length = cpu_to_le32(entries * sizeof(*sge));
  568. sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
  569. } else {
  570. sge->length = cpu_to_le32(PAGE_SIZE);
  571. sge->type = NVME_SGL_FMT_SEG_DESC << 4;
  572. }
  573. }
  574. static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
  575. struct request *req, struct nvme_rw_command *cmd, int entries)
  576. {
  577. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  578. struct dma_pool *pool;
  579. struct nvme_sgl_desc *sg_list;
  580. struct scatterlist *sg = iod->sg;
  581. dma_addr_t sgl_dma;
  582. int i = 0;
  583. /* setting the transfer type as SGL */
  584. cmd->flags = NVME_CMD_SGL_METABUF;
  585. if (entries == 1) {
  586. nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
  587. return BLK_STS_OK;
  588. }
  589. if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
  590. pool = dev->prp_small_pool;
  591. iod->npages = 0;
  592. } else {
  593. pool = dev->prp_page_pool;
  594. iod->npages = 1;
  595. }
  596. sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
  597. if (!sg_list) {
  598. iod->npages = -1;
  599. return BLK_STS_RESOURCE;
  600. }
  601. nvme_pci_iod_list(req)[0] = sg_list;
  602. iod->first_dma = sgl_dma;
  603. nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
  604. do {
  605. if (i == SGES_PER_PAGE) {
  606. struct nvme_sgl_desc *old_sg_desc = sg_list;
  607. struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
  608. sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
  609. if (!sg_list)
  610. return BLK_STS_RESOURCE;
  611. i = 0;
  612. nvme_pci_iod_list(req)[iod->npages++] = sg_list;
  613. sg_list[i++] = *link;
  614. nvme_pci_sgl_set_seg(link, sgl_dma, entries);
  615. }
  616. nvme_pci_sgl_set_data(&sg_list[i++], sg);
  617. sg = sg_next(sg);
  618. } while (--entries > 0);
  619. return BLK_STS_OK;
  620. }
  621. static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
  622. struct nvme_command *cmnd)
  623. {
  624. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  625. struct request_queue *q = req->q;
  626. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  627. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  628. blk_status_t ret = BLK_STS_IOERR;
  629. int nr_mapped;
  630. sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
  631. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  632. if (!iod->nents)
  633. goto out;
  634. ret = BLK_STS_RESOURCE;
  635. nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
  636. DMA_ATTR_NO_WARN);
  637. if (!nr_mapped)
  638. goto out;
  639. if (iod->use_sgl)
  640. ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
  641. else
  642. ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
  643. if (ret != BLK_STS_OK)
  644. goto out_unmap;
  645. ret = BLK_STS_IOERR;
  646. if (blk_integrity_rq(req)) {
  647. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  648. goto out_unmap;
  649. sg_init_table(&iod->meta_sg, 1);
  650. if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
  651. goto out_unmap;
  652. if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
  653. goto out_unmap;
  654. }
  655. if (blk_integrity_rq(req))
  656. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
  657. return BLK_STS_OK;
  658. out_unmap:
  659. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  660. out:
  661. return ret;
  662. }
  663. static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
  664. {
  665. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  666. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  667. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  668. if (iod->nents) {
  669. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  670. if (blk_integrity_rq(req))
  671. dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
  672. }
  673. nvme_cleanup_cmd(req);
  674. nvme_free_iod(dev, req);
  675. }
  676. /*
  677. * NOTE: ns is NULL when called on the admin queue.
  678. */
  679. static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  680. const struct blk_mq_queue_data *bd)
  681. {
  682. struct nvme_ns *ns = hctx->queue->queuedata;
  683. struct nvme_queue *nvmeq = hctx->driver_data;
  684. struct nvme_dev *dev = nvmeq->dev;
  685. struct request *req = bd->rq;
  686. struct nvme_command cmnd;
  687. blk_status_t ret;
  688. /*
  689. * We should not need to do this, but we're still using this to
  690. * ensure we can drain requests on a dying queue.
  691. */
  692. if (unlikely(nvmeq->cq_vector < 0))
  693. return BLK_STS_IOERR;
  694. ret = nvme_setup_cmd(ns, req, &cmnd);
  695. if (ret)
  696. return ret;
  697. ret = nvme_init_iod(req, dev);
  698. if (ret)
  699. goto out_free_cmd;
  700. if (blk_rq_nr_phys_segments(req)) {
  701. ret = nvme_map_data(dev, req, &cmnd);
  702. if (ret)
  703. goto out_cleanup_iod;
  704. }
  705. blk_mq_start_request(req);
  706. nvme_submit_cmd(nvmeq, &cmnd);
  707. return BLK_STS_OK;
  708. out_cleanup_iod:
  709. nvme_free_iod(dev, req);
  710. out_free_cmd:
  711. nvme_cleanup_cmd(req);
  712. return ret;
  713. }
  714. static void nvme_pci_complete_rq(struct request *req)
  715. {
  716. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  717. nvme_unmap_data(iod->nvmeq->dev, req);
  718. nvme_complete_rq(req);
  719. }
  720. /* We read the CQE phase first to check if the rest of the entry is valid */
  721. static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
  722. {
  723. return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
  724. nvmeq->cq_phase;
  725. }
  726. static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
  727. {
  728. u16 head = nvmeq->cq_head;
  729. if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
  730. nvmeq->dbbuf_cq_ei))
  731. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  732. }
  733. static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
  734. {
  735. volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
  736. struct request *req;
  737. if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
  738. dev_warn(nvmeq->dev->ctrl.device,
  739. "invalid id %d completed on queue %d\n",
  740. cqe->command_id, le16_to_cpu(cqe->sq_id));
  741. return;
  742. }
  743. /*
  744. * AEN requests are special as they don't time out and can
  745. * survive any kind of queue freeze and often don't respond to
  746. * aborts. We don't even bother to allocate a struct request
  747. * for them but rather special case them here.
  748. */
  749. if (unlikely(nvmeq->qid == 0 &&
  750. cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
  751. nvme_complete_async_event(&nvmeq->dev->ctrl,
  752. cqe->status, &cqe->result);
  753. return;
  754. }
  755. req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
  756. nvme_end_request(req, cqe->status, cqe->result);
  757. }
  758. static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
  759. {
  760. while (start != end) {
  761. nvme_handle_cqe(nvmeq, start);
  762. if (++start == nvmeq->q_depth)
  763. start = 0;
  764. }
  765. }
  766. static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
  767. {
  768. if (++nvmeq->cq_head == nvmeq->q_depth) {
  769. nvmeq->cq_head = 0;
  770. nvmeq->cq_phase = !nvmeq->cq_phase;
  771. }
  772. }
  773. static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
  774. u16 *end, int tag)
  775. {
  776. bool found = false;
  777. *start = nvmeq->cq_head;
  778. while (!found && nvme_cqe_pending(nvmeq)) {
  779. if (nvmeq->cqes[nvmeq->cq_head].command_id == tag)
  780. found = true;
  781. nvme_update_cq_head(nvmeq);
  782. }
  783. *end = nvmeq->cq_head;
  784. if (*start != *end)
  785. nvme_ring_cq_doorbell(nvmeq);
  786. return found;
  787. }
  788. static irqreturn_t nvme_irq(int irq, void *data)
  789. {
  790. struct nvme_queue *nvmeq = data;
  791. irqreturn_t ret = IRQ_NONE;
  792. u16 start, end;
  793. spin_lock(&nvmeq->cq_lock);
  794. if (nvmeq->cq_head != nvmeq->last_cq_head)
  795. ret = IRQ_HANDLED;
  796. nvme_process_cq(nvmeq, &start, &end, -1);
  797. nvmeq->last_cq_head = nvmeq->cq_head;
  798. spin_unlock(&nvmeq->cq_lock);
  799. if (start != end) {
  800. nvme_complete_cqes(nvmeq, start, end);
  801. return IRQ_HANDLED;
  802. }
  803. return ret;
  804. }
  805. static irqreturn_t nvme_irq_check(int irq, void *data)
  806. {
  807. struct nvme_queue *nvmeq = data;
  808. if (nvme_cqe_pending(nvmeq))
  809. return IRQ_WAKE_THREAD;
  810. return IRQ_NONE;
  811. }
  812. static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
  813. {
  814. u16 start, end;
  815. bool found;
  816. if (!nvme_cqe_pending(nvmeq))
  817. return 0;
  818. spin_lock_irq(&nvmeq->cq_lock);
  819. found = nvme_process_cq(nvmeq, &start, &end, tag);
  820. spin_unlock_irq(&nvmeq->cq_lock);
  821. nvme_complete_cqes(nvmeq, start, end);
  822. return found;
  823. }
  824. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  825. {
  826. struct nvme_queue *nvmeq = hctx->driver_data;
  827. return __nvme_poll(nvmeq, tag);
  828. }
  829. static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
  830. {
  831. struct nvme_dev *dev = to_nvme_dev(ctrl);
  832. struct nvme_queue *nvmeq = &dev->queues[0];
  833. struct nvme_command c;
  834. memset(&c, 0, sizeof(c));
  835. c.common.opcode = nvme_admin_async_event;
  836. c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
  837. nvme_submit_cmd(nvmeq, &c);
  838. }
  839. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  840. {
  841. struct nvme_command c;
  842. memset(&c, 0, sizeof(c));
  843. c.delete_queue.opcode = opcode;
  844. c.delete_queue.qid = cpu_to_le16(id);
  845. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  846. }
  847. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  848. struct nvme_queue *nvmeq, s16 vector)
  849. {
  850. struct nvme_command c;
  851. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  852. /*
  853. * Note: we (ab)use the fact that the prp fields survive if no data
  854. * is attached to the request.
  855. */
  856. memset(&c, 0, sizeof(c));
  857. c.create_cq.opcode = nvme_admin_create_cq;
  858. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  859. c.create_cq.cqid = cpu_to_le16(qid);
  860. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  861. c.create_cq.cq_flags = cpu_to_le16(flags);
  862. c.create_cq.irq_vector = cpu_to_le16(vector);
  863. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  864. }
  865. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  866. struct nvme_queue *nvmeq)
  867. {
  868. struct nvme_ctrl *ctrl = &dev->ctrl;
  869. struct nvme_command c;
  870. int flags = NVME_QUEUE_PHYS_CONTIG;
  871. /*
  872. * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
  873. * set. Since URGENT priority is zeroes, it makes all queues
  874. * URGENT.
  875. */
  876. if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
  877. flags |= NVME_SQ_PRIO_MEDIUM;
  878. /*
  879. * Note: we (ab)use the fact that the prp fields survive if no data
  880. * is attached to the request.
  881. */
  882. memset(&c, 0, sizeof(c));
  883. c.create_sq.opcode = nvme_admin_create_sq;
  884. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  885. c.create_sq.sqid = cpu_to_le16(qid);
  886. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  887. c.create_sq.sq_flags = cpu_to_le16(flags);
  888. c.create_sq.cqid = cpu_to_le16(qid);
  889. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  890. }
  891. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  892. {
  893. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  894. }
  895. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  896. {
  897. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  898. }
  899. static void abort_endio(struct request *req, blk_status_t error)
  900. {
  901. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  902. struct nvme_queue *nvmeq = iod->nvmeq;
  903. dev_warn(nvmeq->dev->ctrl.device,
  904. "Abort status: 0x%x", nvme_req(req)->status);
  905. atomic_inc(&nvmeq->dev->ctrl.abort_limit);
  906. blk_mq_free_request(req);
  907. }
  908. static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
  909. {
  910. /* If true, indicates loss of adapter communication, possibly by a
  911. * NVMe Subsystem reset.
  912. */
  913. bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
  914. /* If there is a reset/reinit ongoing, we shouldn't reset again. */
  915. switch (dev->ctrl.state) {
  916. case NVME_CTRL_RESETTING:
  917. case NVME_CTRL_CONNECTING:
  918. return false;
  919. default:
  920. break;
  921. }
  922. /* We shouldn't reset unless the controller is on fatal error state
  923. * _or_ if we lost the communication with it.
  924. */
  925. if (!(csts & NVME_CSTS_CFS) && !nssro)
  926. return false;
  927. return true;
  928. }
  929. static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
  930. {
  931. /* Read a config register to help see what died. */
  932. u16 pci_status;
  933. int result;
  934. result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
  935. &pci_status);
  936. if (result == PCIBIOS_SUCCESSFUL)
  937. dev_warn(dev->ctrl.device,
  938. "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
  939. csts, pci_status);
  940. else
  941. dev_warn(dev->ctrl.device,
  942. "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
  943. csts, result);
  944. }
  945. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  946. {
  947. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  948. struct nvme_queue *nvmeq = iod->nvmeq;
  949. struct nvme_dev *dev = nvmeq->dev;
  950. struct request *abort_req;
  951. struct nvme_command cmd;
  952. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  953. /* If PCI error recovery process is happening, we cannot reset or
  954. * the recovery mechanism will surely fail.
  955. */
  956. mb();
  957. if (pci_channel_offline(to_pci_dev(dev->dev)))
  958. return BLK_EH_RESET_TIMER;
  959. /*
  960. * Reset immediately if the controller is failed
  961. */
  962. if (nvme_should_reset(dev, csts)) {
  963. nvme_warn_reset(dev, csts);
  964. nvme_dev_disable(dev, false);
  965. nvme_reset_ctrl(&dev->ctrl);
  966. return BLK_EH_DONE;
  967. }
  968. /*
  969. * Did we miss an interrupt?
  970. */
  971. if (__nvme_poll(nvmeq, req->tag)) {
  972. dev_warn(dev->ctrl.device,
  973. "I/O %d QID %d timeout, completion polled\n",
  974. req->tag, nvmeq->qid);
  975. return BLK_EH_DONE;
  976. }
  977. /*
  978. * Shutdown immediately if controller times out while starting. The
  979. * reset work will see the pci device disabled when it gets the forced
  980. * cancellation error. All outstanding requests are completed on
  981. * shutdown, so we return BLK_EH_DONE.
  982. */
  983. switch (dev->ctrl.state) {
  984. case NVME_CTRL_CONNECTING:
  985. case NVME_CTRL_RESETTING:
  986. dev_warn_ratelimited(dev->ctrl.device,
  987. "I/O %d QID %d timeout, disable controller\n",
  988. req->tag, nvmeq->qid);
  989. nvme_dev_disable(dev, false);
  990. nvme_req(req)->flags |= NVME_REQ_CANCELLED;
  991. return BLK_EH_DONE;
  992. default:
  993. break;
  994. }
  995. /*
  996. * Shutdown the controller immediately and schedule a reset if the
  997. * command was already aborted once before and still hasn't been
  998. * returned to the driver, or if this is the admin queue.
  999. */
  1000. if (!nvmeq->qid || iod->aborted) {
  1001. dev_warn(dev->ctrl.device,
  1002. "I/O %d QID %d timeout, reset controller\n",
  1003. req->tag, nvmeq->qid);
  1004. nvme_dev_disable(dev, false);
  1005. nvme_reset_ctrl(&dev->ctrl);
  1006. nvme_req(req)->flags |= NVME_REQ_CANCELLED;
  1007. return BLK_EH_DONE;
  1008. }
  1009. if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
  1010. atomic_inc(&dev->ctrl.abort_limit);
  1011. return BLK_EH_RESET_TIMER;
  1012. }
  1013. iod->aborted = 1;
  1014. memset(&cmd, 0, sizeof(cmd));
  1015. cmd.abort.opcode = nvme_admin_abort_cmd;
  1016. cmd.abort.cid = req->tag;
  1017. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  1018. dev_warn(nvmeq->dev->ctrl.device,
  1019. "I/O %d QID %d timeout, aborting\n",
  1020. req->tag, nvmeq->qid);
  1021. abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
  1022. BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1023. if (IS_ERR(abort_req)) {
  1024. atomic_inc(&dev->ctrl.abort_limit);
  1025. return BLK_EH_RESET_TIMER;
  1026. }
  1027. abort_req->timeout = ADMIN_TIMEOUT;
  1028. abort_req->end_io_data = NULL;
  1029. blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
  1030. /*
  1031. * The aborted req will be completed on receiving the abort req.
  1032. * We enable the timer again. If hit twice, it'll cause a device reset,
  1033. * as the device then is in a faulty state.
  1034. */
  1035. return BLK_EH_RESET_TIMER;
  1036. }
  1037. static void nvme_free_queue(struct nvme_queue *nvmeq)
  1038. {
  1039. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  1040. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  1041. if (nvmeq->sq_cmds)
  1042. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  1043. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  1044. }
  1045. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  1046. {
  1047. int i;
  1048. for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
  1049. dev->ctrl.queue_count--;
  1050. nvme_free_queue(&dev->queues[i]);
  1051. }
  1052. }
  1053. /**
  1054. * nvme_suspend_queue - put queue into suspended state
  1055. * @nvmeq - queue to suspend
  1056. */
  1057. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  1058. {
  1059. int vector;
  1060. spin_lock_irq(&nvmeq->cq_lock);
  1061. if (nvmeq->cq_vector == -1) {
  1062. spin_unlock_irq(&nvmeq->cq_lock);
  1063. return 1;
  1064. }
  1065. vector = nvmeq->cq_vector;
  1066. nvmeq->dev->online_queues--;
  1067. nvmeq->cq_vector = -1;
  1068. spin_unlock_irq(&nvmeq->cq_lock);
  1069. /*
  1070. * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without
  1071. * having to grab the lock.
  1072. */
  1073. mb();
  1074. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  1075. blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
  1076. pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
  1077. return 0;
  1078. }
  1079. static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
  1080. {
  1081. struct nvme_queue *nvmeq = &dev->queues[0];
  1082. u16 start, end;
  1083. if (shutdown)
  1084. nvme_shutdown_ctrl(&dev->ctrl);
  1085. else
  1086. nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1087. spin_lock_irq(&nvmeq->cq_lock);
  1088. nvme_process_cq(nvmeq, &start, &end, -1);
  1089. spin_unlock_irq(&nvmeq->cq_lock);
  1090. nvme_complete_cqes(nvmeq, start, end);
  1091. }
  1092. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  1093. int entry_size)
  1094. {
  1095. int q_depth = dev->q_depth;
  1096. unsigned q_size_aligned = roundup(q_depth * entry_size,
  1097. dev->ctrl.page_size);
  1098. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  1099. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  1100. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  1101. q_depth = div_u64(mem_per_q, entry_size);
  1102. /*
  1103. * Ensure the reduced q_depth is above some threshold where it
  1104. * would be better to map queues in system memory with the
  1105. * original depth
  1106. */
  1107. if (q_depth < 64)
  1108. return -ENOMEM;
  1109. }
  1110. return q_depth;
  1111. }
  1112. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  1113. int qid, int depth)
  1114. {
  1115. /* CMB SQEs will be mapped before creation */
  1116. if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
  1117. return 0;
  1118. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  1119. &nvmeq->sq_dma_addr, GFP_KERNEL);
  1120. if (!nvmeq->sq_cmds)
  1121. return -ENOMEM;
  1122. return 0;
  1123. }
  1124. static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
  1125. {
  1126. struct nvme_queue *nvmeq = &dev->queues[qid];
  1127. if (dev->ctrl.queue_count > qid)
  1128. return 0;
  1129. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  1130. &nvmeq->cq_dma_addr, GFP_KERNEL);
  1131. if (!nvmeq->cqes)
  1132. goto free_nvmeq;
  1133. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  1134. goto free_cqdma;
  1135. nvmeq->q_dmadev = dev->dev;
  1136. nvmeq->dev = dev;
  1137. spin_lock_init(&nvmeq->sq_lock);
  1138. spin_lock_init(&nvmeq->cq_lock);
  1139. nvmeq->cq_head = 0;
  1140. nvmeq->cq_phase = 1;
  1141. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1142. nvmeq->q_depth = depth;
  1143. nvmeq->qid = qid;
  1144. nvmeq->cq_vector = -1;
  1145. dev->ctrl.queue_count++;
  1146. return 0;
  1147. free_cqdma:
  1148. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  1149. nvmeq->cq_dma_addr);
  1150. free_nvmeq:
  1151. return -ENOMEM;
  1152. }
  1153. static int queue_request_irq(struct nvme_queue *nvmeq)
  1154. {
  1155. struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
  1156. int nr = nvmeq->dev->ctrl.instance;
  1157. if (use_threaded_interrupts) {
  1158. return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
  1159. nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
  1160. } else {
  1161. return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
  1162. NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
  1163. }
  1164. }
  1165. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  1166. {
  1167. struct nvme_dev *dev = nvmeq->dev;
  1168. spin_lock_irq(&nvmeq->cq_lock);
  1169. nvmeq->sq_tail = 0;
  1170. nvmeq->cq_head = 0;
  1171. nvmeq->cq_phase = 1;
  1172. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1173. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  1174. nvme_dbbuf_init(dev, nvmeq, qid);
  1175. dev->online_queues++;
  1176. spin_unlock_irq(&nvmeq->cq_lock);
  1177. }
  1178. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  1179. {
  1180. struct nvme_dev *dev = nvmeq->dev;
  1181. int result;
  1182. s16 vector;
  1183. if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
  1184. unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
  1185. dev->ctrl.page_size);
  1186. nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
  1187. nvmeq->sq_cmds_io = dev->cmb + offset;
  1188. }
  1189. /*
  1190. * A queue's vector matches the queue identifier unless the controller
  1191. * has only one vector available.
  1192. */
  1193. vector = dev->num_vecs == 1 ? 0 : qid;
  1194. result = adapter_alloc_cq(dev, qid, nvmeq, vector);
  1195. if (result)
  1196. return result;
  1197. result = adapter_alloc_sq(dev, qid, nvmeq);
  1198. if (result < 0)
  1199. return result;
  1200. else if (result)
  1201. goto release_cq;
  1202. /*
  1203. * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will
  1204. * invoke free_irq for it and cause a 'Trying to free already-free IRQ
  1205. * xxx' warning if the create CQ/SQ command times out.
  1206. */
  1207. nvmeq->cq_vector = vector;
  1208. nvme_init_queue(nvmeq, qid);
  1209. result = queue_request_irq(nvmeq);
  1210. if (result < 0)
  1211. goto release_sq;
  1212. return result;
  1213. release_sq:
  1214. nvmeq->cq_vector = -1;
  1215. dev->online_queues--;
  1216. adapter_delete_sq(dev, qid);
  1217. release_cq:
  1218. adapter_delete_cq(dev, qid);
  1219. return result;
  1220. }
  1221. static const struct blk_mq_ops nvme_mq_admin_ops = {
  1222. .queue_rq = nvme_queue_rq,
  1223. .complete = nvme_pci_complete_rq,
  1224. .init_hctx = nvme_admin_init_hctx,
  1225. .exit_hctx = nvme_admin_exit_hctx,
  1226. .init_request = nvme_init_request,
  1227. .timeout = nvme_timeout,
  1228. };
  1229. static const struct blk_mq_ops nvme_mq_ops = {
  1230. .queue_rq = nvme_queue_rq,
  1231. .complete = nvme_pci_complete_rq,
  1232. .init_hctx = nvme_init_hctx,
  1233. .init_request = nvme_init_request,
  1234. .map_queues = nvme_pci_map_queues,
  1235. .timeout = nvme_timeout,
  1236. .poll = nvme_poll,
  1237. };
  1238. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  1239. {
  1240. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  1241. /*
  1242. * If the controller was reset during removal, it's possible
  1243. * user requests may be waiting on a stopped queue. Start the
  1244. * queue to flush these to completion.
  1245. */
  1246. blk_mq_unquiesce_queue(dev->ctrl.admin_q);
  1247. blk_cleanup_queue(dev->ctrl.admin_q);
  1248. blk_mq_free_tag_set(&dev->admin_tagset);
  1249. }
  1250. }
  1251. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  1252. {
  1253. if (!dev->ctrl.admin_q) {
  1254. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1255. dev->admin_tagset.nr_hw_queues = 1;
  1256. dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
  1257. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1258. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1259. dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
  1260. dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
  1261. dev->admin_tagset.driver_data = dev;
  1262. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1263. return -ENOMEM;
  1264. dev->ctrl.admin_tagset = &dev->admin_tagset;
  1265. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1266. if (IS_ERR(dev->ctrl.admin_q)) {
  1267. blk_mq_free_tag_set(&dev->admin_tagset);
  1268. return -ENOMEM;
  1269. }
  1270. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1271. nvme_dev_remove_admin(dev);
  1272. dev->ctrl.admin_q = NULL;
  1273. return -ENODEV;
  1274. }
  1275. } else
  1276. blk_mq_unquiesce_queue(dev->ctrl.admin_q);
  1277. return 0;
  1278. }
  1279. static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1280. {
  1281. return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1282. }
  1283. static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
  1284. {
  1285. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1286. if (size <= dev->bar_mapped_size)
  1287. return 0;
  1288. if (size > pci_resource_len(pdev, 0))
  1289. return -ENOMEM;
  1290. if (dev->bar)
  1291. iounmap(dev->bar);
  1292. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1293. if (!dev->bar) {
  1294. dev->bar_mapped_size = 0;
  1295. return -ENOMEM;
  1296. }
  1297. dev->bar_mapped_size = size;
  1298. dev->dbs = dev->bar + NVME_REG_DBS;
  1299. return 0;
  1300. }
  1301. static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
  1302. {
  1303. int result;
  1304. u32 aqa;
  1305. struct nvme_queue *nvmeq;
  1306. result = nvme_remap_bar(dev, db_bar_size(dev, 0));
  1307. if (result < 0)
  1308. return result;
  1309. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
  1310. NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
  1311. if (dev->subsystem &&
  1312. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1313. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1314. result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1315. if (result < 0)
  1316. return result;
  1317. result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
  1318. if (result)
  1319. return result;
  1320. nvmeq = &dev->queues[0];
  1321. aqa = nvmeq->q_depth - 1;
  1322. aqa |= aqa << 16;
  1323. writel(aqa, dev->bar + NVME_REG_AQA);
  1324. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1325. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1326. result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1327. if (result)
  1328. return result;
  1329. nvmeq->cq_vector = 0;
  1330. nvme_init_queue(nvmeq, 0);
  1331. result = queue_request_irq(nvmeq);
  1332. if (result) {
  1333. nvmeq->cq_vector = -1;
  1334. return result;
  1335. }
  1336. return result;
  1337. }
  1338. static int nvme_create_io_queues(struct nvme_dev *dev)
  1339. {
  1340. unsigned i, max;
  1341. int ret = 0;
  1342. for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
  1343. if (nvme_alloc_queue(dev, i, dev->q_depth)) {
  1344. ret = -ENOMEM;
  1345. break;
  1346. }
  1347. }
  1348. max = min(dev->max_qid, dev->ctrl.queue_count - 1);
  1349. for (i = dev->online_queues; i <= max; i++) {
  1350. ret = nvme_create_queue(&dev->queues[i], i);
  1351. if (ret)
  1352. break;
  1353. }
  1354. /*
  1355. * Ignore failing Create SQ/CQ commands, we can continue with less
  1356. * than the desired amount of queues, and even a controller without
  1357. * I/O queues can still be used to issue admin commands. This might
  1358. * be useful to upgrade a buggy firmware for example.
  1359. */
  1360. return ret >= 0 ? 0 : ret;
  1361. }
  1362. static ssize_t nvme_cmb_show(struct device *dev,
  1363. struct device_attribute *attr,
  1364. char *buf)
  1365. {
  1366. struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
  1367. return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
  1368. ndev->cmbloc, ndev->cmbsz);
  1369. }
  1370. static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
  1371. static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
  1372. {
  1373. u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
  1374. return 1ULL << (12 + 4 * szu);
  1375. }
  1376. static u32 nvme_cmb_size(struct nvme_dev *dev)
  1377. {
  1378. return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
  1379. }
  1380. static void nvme_map_cmb(struct nvme_dev *dev)
  1381. {
  1382. u64 size, offset;
  1383. resource_size_t bar_size;
  1384. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1385. int bar;
  1386. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1387. if (!dev->cmbsz)
  1388. return;
  1389. dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1390. if (!use_cmb_sqes)
  1391. return;
  1392. size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
  1393. offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
  1394. bar = NVME_CMB_BIR(dev->cmbloc);
  1395. bar_size = pci_resource_len(pdev, bar);
  1396. if (offset > bar_size)
  1397. return;
  1398. /*
  1399. * Controllers may support a CMB size larger than their BAR,
  1400. * for example, due to being behind a bridge. Reduce the CMB to
  1401. * the reported size of the BAR
  1402. */
  1403. if (size > bar_size - offset)
  1404. size = bar_size - offset;
  1405. dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
  1406. if (!dev->cmb)
  1407. return;
  1408. dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
  1409. dev->cmb_size = size;
  1410. if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
  1411. &dev_attr_cmb.attr, NULL))
  1412. dev_warn(dev->ctrl.device,
  1413. "failed to add sysfs attribute for CMB\n");
  1414. }
  1415. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1416. {
  1417. if (dev->cmb) {
  1418. iounmap(dev->cmb);
  1419. dev->cmb = NULL;
  1420. sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
  1421. &dev_attr_cmb.attr, NULL);
  1422. dev->cmbsz = 0;
  1423. }
  1424. }
  1425. static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
  1426. {
  1427. u64 dma_addr = dev->host_mem_descs_dma;
  1428. struct nvme_command c;
  1429. int ret;
  1430. memset(&c, 0, sizeof(c));
  1431. c.features.opcode = nvme_admin_set_features;
  1432. c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
  1433. c.features.dword11 = cpu_to_le32(bits);
  1434. c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
  1435. ilog2(dev->ctrl.page_size));
  1436. c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
  1437. c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
  1438. c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
  1439. ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  1440. if (ret) {
  1441. dev_warn(dev->ctrl.device,
  1442. "failed to set host mem (err %d, flags %#x).\n",
  1443. ret, bits);
  1444. }
  1445. return ret;
  1446. }
  1447. static void nvme_free_host_mem(struct nvme_dev *dev)
  1448. {
  1449. int i;
  1450. for (i = 0; i < dev->nr_host_mem_descs; i++) {
  1451. struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
  1452. size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
  1453. dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
  1454. le64_to_cpu(desc->addr));
  1455. }
  1456. kfree(dev->host_mem_desc_bufs);
  1457. dev->host_mem_desc_bufs = NULL;
  1458. dma_free_coherent(dev->dev,
  1459. dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
  1460. dev->host_mem_descs, dev->host_mem_descs_dma);
  1461. dev->host_mem_descs = NULL;
  1462. dev->nr_host_mem_descs = 0;
  1463. }
  1464. static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
  1465. u32 chunk_size)
  1466. {
  1467. struct nvme_host_mem_buf_desc *descs;
  1468. u32 max_entries, len;
  1469. dma_addr_t descs_dma;
  1470. int i = 0;
  1471. void **bufs;
  1472. u64 size, tmp;
  1473. tmp = (preferred + chunk_size - 1);
  1474. do_div(tmp, chunk_size);
  1475. max_entries = tmp;
  1476. if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
  1477. max_entries = dev->ctrl.hmmaxd;
  1478. descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
  1479. &descs_dma, GFP_KERNEL);
  1480. if (!descs)
  1481. goto out;
  1482. bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
  1483. if (!bufs)
  1484. goto out_free_descs;
  1485. for (size = 0; size < preferred && i < max_entries; size += len) {
  1486. dma_addr_t dma_addr;
  1487. len = min_t(u64, chunk_size, preferred - size);
  1488. bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
  1489. DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
  1490. if (!bufs[i])
  1491. break;
  1492. descs[i].addr = cpu_to_le64(dma_addr);
  1493. descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
  1494. i++;
  1495. }
  1496. if (!size)
  1497. goto out_free_bufs;
  1498. dev->nr_host_mem_descs = i;
  1499. dev->host_mem_size = size;
  1500. dev->host_mem_descs = descs;
  1501. dev->host_mem_descs_dma = descs_dma;
  1502. dev->host_mem_desc_bufs = bufs;
  1503. return 0;
  1504. out_free_bufs:
  1505. while (--i >= 0) {
  1506. size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
  1507. dma_free_coherent(dev->dev, size, bufs[i],
  1508. le64_to_cpu(descs[i].addr));
  1509. }
  1510. kfree(bufs);
  1511. out_free_descs:
  1512. dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
  1513. descs_dma);
  1514. out:
  1515. dev->host_mem_descs = NULL;
  1516. return -ENOMEM;
  1517. }
  1518. static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
  1519. {
  1520. u32 chunk_size;
  1521. /* start big and work our way down */
  1522. for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
  1523. chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
  1524. chunk_size /= 2) {
  1525. if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
  1526. if (!min || dev->host_mem_size >= min)
  1527. return 0;
  1528. nvme_free_host_mem(dev);
  1529. }
  1530. }
  1531. return -ENOMEM;
  1532. }
  1533. static int nvme_setup_host_mem(struct nvme_dev *dev)
  1534. {
  1535. u64 max = (u64)max_host_mem_size_mb * SZ_1M;
  1536. u64 preferred = (u64)dev->ctrl.hmpre * 4096;
  1537. u64 min = (u64)dev->ctrl.hmmin * 4096;
  1538. u32 enable_bits = NVME_HOST_MEM_ENABLE;
  1539. int ret;
  1540. preferred = min(preferred, max);
  1541. if (min > max) {
  1542. dev_warn(dev->ctrl.device,
  1543. "min host memory (%lld MiB) above limit (%d MiB).\n",
  1544. min >> ilog2(SZ_1M), max_host_mem_size_mb);
  1545. nvme_free_host_mem(dev);
  1546. return 0;
  1547. }
  1548. /*
  1549. * If we already have a buffer allocated check if we can reuse it.
  1550. */
  1551. if (dev->host_mem_descs) {
  1552. if (dev->host_mem_size >= min)
  1553. enable_bits |= NVME_HOST_MEM_RETURN;
  1554. else
  1555. nvme_free_host_mem(dev);
  1556. }
  1557. if (!dev->host_mem_descs) {
  1558. if (nvme_alloc_host_mem(dev, min, preferred)) {
  1559. dev_warn(dev->ctrl.device,
  1560. "failed to allocate host memory buffer.\n");
  1561. return 0; /* controller must work without HMB */
  1562. }
  1563. dev_info(dev->ctrl.device,
  1564. "allocated %lld MiB host memory buffer.\n",
  1565. dev->host_mem_size >> ilog2(SZ_1M));
  1566. }
  1567. ret = nvme_set_host_mem(dev, enable_bits);
  1568. if (ret)
  1569. nvme_free_host_mem(dev);
  1570. return ret;
  1571. }
  1572. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1573. {
  1574. struct nvme_queue *adminq = &dev->queues[0];
  1575. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1576. int result, nr_io_queues;
  1577. unsigned long size;
  1578. struct irq_affinity affd = {
  1579. .pre_vectors = 1
  1580. };
  1581. nr_io_queues = num_possible_cpus();
  1582. result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
  1583. if (result < 0)
  1584. return result;
  1585. if (nr_io_queues == 0)
  1586. return 0;
  1587. if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
  1588. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1589. sizeof(struct nvme_command));
  1590. if (result > 0)
  1591. dev->q_depth = result;
  1592. else
  1593. nvme_release_cmb(dev);
  1594. }
  1595. do {
  1596. size = db_bar_size(dev, nr_io_queues);
  1597. result = nvme_remap_bar(dev, size);
  1598. if (!result)
  1599. break;
  1600. if (!--nr_io_queues)
  1601. return -ENOMEM;
  1602. } while (1);
  1603. adminq->q_db = dev->dbs;
  1604. /* Deregister the admin queue's interrupt */
  1605. pci_free_irq(pdev, 0, adminq);
  1606. /*
  1607. * If we enable msix early due to not intx, disable it again before
  1608. * setting up the full range we need.
  1609. */
  1610. pci_free_irq_vectors(pdev);
  1611. result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
  1612. PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
  1613. if (result <= 0)
  1614. return -EIO;
  1615. dev->num_vecs = result;
  1616. dev->max_qid = max(result - 1, 1);
  1617. /*
  1618. * Should investigate if there's a performance win from allocating
  1619. * more queues than interrupt vectors; it might allow the submission
  1620. * path to scale better, even if the receive path is limited by the
  1621. * number of interrupts.
  1622. */
  1623. result = queue_request_irq(adminq);
  1624. if (result) {
  1625. adminq->cq_vector = -1;
  1626. return result;
  1627. }
  1628. return nvme_create_io_queues(dev);
  1629. }
  1630. static void nvme_del_queue_end(struct request *req, blk_status_t error)
  1631. {
  1632. struct nvme_queue *nvmeq = req->end_io_data;
  1633. blk_mq_free_request(req);
  1634. complete(&nvmeq->dev->ioq_wait);
  1635. }
  1636. static void nvme_del_cq_end(struct request *req, blk_status_t error)
  1637. {
  1638. struct nvme_queue *nvmeq = req->end_io_data;
  1639. u16 start, end;
  1640. if (!error) {
  1641. unsigned long flags;
  1642. spin_lock_irqsave(&nvmeq->cq_lock, flags);
  1643. nvme_process_cq(nvmeq, &start, &end, -1);
  1644. spin_unlock_irqrestore(&nvmeq->cq_lock, flags);
  1645. nvme_complete_cqes(nvmeq, start, end);
  1646. }
  1647. nvme_del_queue_end(req, error);
  1648. }
  1649. static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
  1650. {
  1651. struct request_queue *q = nvmeq->dev->ctrl.admin_q;
  1652. struct request *req;
  1653. struct nvme_command cmd;
  1654. memset(&cmd, 0, sizeof(cmd));
  1655. cmd.delete_queue.opcode = opcode;
  1656. cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1657. req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1658. if (IS_ERR(req))
  1659. return PTR_ERR(req);
  1660. req->timeout = ADMIN_TIMEOUT;
  1661. req->end_io_data = nvmeq;
  1662. blk_execute_rq_nowait(q, NULL, req, false,
  1663. opcode == nvme_admin_delete_cq ?
  1664. nvme_del_cq_end : nvme_del_queue_end);
  1665. return 0;
  1666. }
  1667. static void nvme_disable_io_queues(struct nvme_dev *dev)
  1668. {
  1669. int pass, queues = dev->online_queues - 1;
  1670. unsigned long timeout;
  1671. u8 opcode = nvme_admin_delete_sq;
  1672. for (pass = 0; pass < 2; pass++) {
  1673. int sent = 0, i = queues;
  1674. reinit_completion(&dev->ioq_wait);
  1675. retry:
  1676. timeout = ADMIN_TIMEOUT;
  1677. for (; i > 0; i--, sent++)
  1678. if (nvme_delete_queue(&dev->queues[i], opcode))
  1679. break;
  1680. while (sent--) {
  1681. timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
  1682. if (timeout == 0)
  1683. return;
  1684. if (i)
  1685. goto retry;
  1686. }
  1687. opcode = nvme_admin_delete_cq;
  1688. }
  1689. }
  1690. /*
  1691. * return error value only when tagset allocation failed
  1692. */
  1693. static int nvme_dev_add(struct nvme_dev *dev)
  1694. {
  1695. int ret;
  1696. if (!dev->ctrl.tagset) {
  1697. dev->tagset.ops = &nvme_mq_ops;
  1698. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1699. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1700. dev->tagset.numa_node = dev_to_node(dev->dev);
  1701. dev->tagset.queue_depth =
  1702. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1703. dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
  1704. if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
  1705. dev->tagset.cmd_size = max(dev->tagset.cmd_size,
  1706. nvme_pci_cmd_size(dev, true));
  1707. }
  1708. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1709. dev->tagset.driver_data = dev;
  1710. ret = blk_mq_alloc_tag_set(&dev->tagset);
  1711. if (ret) {
  1712. dev_warn(dev->ctrl.device,
  1713. "IO queues tagset allocation failed %d\n", ret);
  1714. return ret;
  1715. }
  1716. dev->ctrl.tagset = &dev->tagset;
  1717. nvme_dbbuf_set(dev);
  1718. } else {
  1719. blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
  1720. /* Free previously allocated queues that are no longer usable */
  1721. nvme_free_queues(dev, dev->online_queues);
  1722. }
  1723. return 0;
  1724. }
  1725. static int nvme_pci_enable(struct nvme_dev *dev)
  1726. {
  1727. int result = -ENOMEM;
  1728. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1729. if (pci_enable_device_mem(pdev))
  1730. return result;
  1731. pci_set_master(pdev);
  1732. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1733. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1734. goto disable;
  1735. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1736. result = -ENODEV;
  1737. goto disable;
  1738. }
  1739. /*
  1740. * Some devices and/or platforms don't advertise or work with INTx
  1741. * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
  1742. * adjust this later.
  1743. */
  1744. result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
  1745. if (result < 0)
  1746. return result;
  1747. dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1748. dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
  1749. io_queue_depth);
  1750. dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
  1751. dev->dbs = dev->bar + 4096;
  1752. /*
  1753. * Temporary fix for the Apple controller found in the MacBook8,1 and
  1754. * some MacBook7,1 to avoid controller resets and data loss.
  1755. */
  1756. if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
  1757. dev->q_depth = 2;
  1758. dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
  1759. "set queue depth=%u to work around controller resets\n",
  1760. dev->q_depth);
  1761. } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
  1762. (pdev->device == 0xa821 || pdev->device == 0xa822) &&
  1763. NVME_CAP_MQES(dev->ctrl.cap) == 0) {
  1764. dev->q_depth = 64;
  1765. dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
  1766. "set queue depth=%u\n", dev->q_depth);
  1767. }
  1768. nvme_map_cmb(dev);
  1769. pci_enable_pcie_error_reporting(pdev);
  1770. pci_save_state(pdev);
  1771. return 0;
  1772. disable:
  1773. pci_disable_device(pdev);
  1774. return result;
  1775. }
  1776. static void nvme_dev_unmap(struct nvme_dev *dev)
  1777. {
  1778. if (dev->bar)
  1779. iounmap(dev->bar);
  1780. pci_release_mem_regions(to_pci_dev(dev->dev));
  1781. }
  1782. static void nvme_pci_disable(struct nvme_dev *dev)
  1783. {
  1784. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1785. nvme_release_cmb(dev);
  1786. pci_free_irq_vectors(pdev);
  1787. if (pci_is_enabled(pdev)) {
  1788. pci_disable_pcie_error_reporting(pdev);
  1789. pci_disable_device(pdev);
  1790. }
  1791. }
  1792. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
  1793. {
  1794. int i;
  1795. bool dead = true;
  1796. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1797. mutex_lock(&dev->shutdown_lock);
  1798. if (pci_is_enabled(pdev)) {
  1799. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1800. if (dev->ctrl.state == NVME_CTRL_LIVE ||
  1801. dev->ctrl.state == NVME_CTRL_RESETTING)
  1802. nvme_start_freeze(&dev->ctrl);
  1803. dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
  1804. pdev->error_state != pci_channel_io_normal);
  1805. }
  1806. /*
  1807. * Give the controller a chance to complete all entered requests if
  1808. * doing a safe shutdown.
  1809. */
  1810. if (!dead) {
  1811. if (shutdown)
  1812. nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
  1813. }
  1814. nvme_stop_queues(&dev->ctrl);
  1815. if (!dead && dev->ctrl.queue_count > 0) {
  1816. nvme_disable_io_queues(dev);
  1817. nvme_disable_admin_queue(dev, shutdown);
  1818. }
  1819. for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
  1820. nvme_suspend_queue(&dev->queues[i]);
  1821. nvme_pci_disable(dev);
  1822. blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
  1823. blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
  1824. /*
  1825. * The driver will not be starting up queues again if shutting down so
  1826. * must flush all entered requests to their failed completion to avoid
  1827. * deadlocking blk-mq hot-cpu notifier.
  1828. */
  1829. if (shutdown)
  1830. nvme_start_queues(&dev->ctrl);
  1831. mutex_unlock(&dev->shutdown_lock);
  1832. }
  1833. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1834. {
  1835. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1836. PAGE_SIZE, PAGE_SIZE, 0);
  1837. if (!dev->prp_page_pool)
  1838. return -ENOMEM;
  1839. /* Optimisation for I/Os between 4k and 128k */
  1840. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1841. 256, 256, 0);
  1842. if (!dev->prp_small_pool) {
  1843. dma_pool_destroy(dev->prp_page_pool);
  1844. return -ENOMEM;
  1845. }
  1846. return 0;
  1847. }
  1848. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1849. {
  1850. dma_pool_destroy(dev->prp_page_pool);
  1851. dma_pool_destroy(dev->prp_small_pool);
  1852. }
  1853. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1854. {
  1855. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1856. nvme_dbbuf_dma_free(dev);
  1857. put_device(dev->dev);
  1858. if (dev->tagset.tags)
  1859. blk_mq_free_tag_set(&dev->tagset);
  1860. if (dev->ctrl.admin_q)
  1861. blk_put_queue(dev->ctrl.admin_q);
  1862. kfree(dev->queues);
  1863. free_opal_dev(dev->ctrl.opal_dev);
  1864. mempool_destroy(dev->iod_mempool);
  1865. kfree(dev);
  1866. }
  1867. static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
  1868. {
  1869. dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
  1870. nvme_get_ctrl(&dev->ctrl);
  1871. nvme_dev_disable(dev, false);
  1872. nvme_kill_queues(&dev->ctrl);
  1873. if (!queue_work(nvme_wq, &dev->remove_work))
  1874. nvme_put_ctrl(&dev->ctrl);
  1875. }
  1876. static void nvme_reset_work(struct work_struct *work)
  1877. {
  1878. struct nvme_dev *dev =
  1879. container_of(work, struct nvme_dev, ctrl.reset_work);
  1880. bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
  1881. int result = -ENODEV;
  1882. enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
  1883. if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
  1884. goto out;
  1885. /*
  1886. * If we're called to reset a live controller first shut it down before
  1887. * moving on.
  1888. */
  1889. if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
  1890. nvme_dev_disable(dev, false);
  1891. /*
  1892. * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
  1893. * initializing procedure here.
  1894. */
  1895. if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
  1896. dev_warn(dev->ctrl.device,
  1897. "failed to mark controller CONNECTING\n");
  1898. goto out;
  1899. }
  1900. result = nvme_pci_enable(dev);
  1901. if (result)
  1902. goto out;
  1903. result = nvme_pci_configure_admin_queue(dev);
  1904. if (result)
  1905. goto out;
  1906. result = nvme_alloc_admin_tags(dev);
  1907. if (result)
  1908. goto out;
  1909. /*
  1910. * Limit the max command size to prevent iod->sg allocations going
  1911. * over a single page.
  1912. */
  1913. dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1;
  1914. dev->ctrl.max_segments = NVME_MAX_SEGS;
  1915. result = nvme_init_identify(&dev->ctrl);
  1916. if (result)
  1917. goto out;
  1918. if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
  1919. if (!dev->ctrl.opal_dev)
  1920. dev->ctrl.opal_dev =
  1921. init_opal_dev(&dev->ctrl, &nvme_sec_submit);
  1922. else if (was_suspend)
  1923. opal_unlock_from_suspend(dev->ctrl.opal_dev);
  1924. } else {
  1925. free_opal_dev(dev->ctrl.opal_dev);
  1926. dev->ctrl.opal_dev = NULL;
  1927. }
  1928. if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
  1929. result = nvme_dbbuf_dma_alloc(dev);
  1930. if (result)
  1931. dev_warn(dev->dev,
  1932. "unable to allocate dma for dbbuf\n");
  1933. }
  1934. if (dev->ctrl.hmpre) {
  1935. result = nvme_setup_host_mem(dev);
  1936. if (result < 0)
  1937. goto out;
  1938. }
  1939. result = nvme_setup_io_queues(dev);
  1940. if (result)
  1941. goto out;
  1942. /*
  1943. * Keep the controller around but remove all namespaces if we don't have
  1944. * any working I/O queue.
  1945. */
  1946. if (dev->online_queues < 2) {
  1947. dev_warn(dev->ctrl.device, "IO queues not created\n");
  1948. nvme_kill_queues(&dev->ctrl);
  1949. nvme_remove_namespaces(&dev->ctrl);
  1950. new_state = NVME_CTRL_ADMIN_ONLY;
  1951. } else {
  1952. nvme_start_queues(&dev->ctrl);
  1953. nvme_wait_freeze(&dev->ctrl);
  1954. /* hit this only when allocate tagset fails */
  1955. if (nvme_dev_add(dev))
  1956. new_state = NVME_CTRL_ADMIN_ONLY;
  1957. nvme_unfreeze(&dev->ctrl);
  1958. }
  1959. /*
  1960. * If only admin queue live, keep it to do further investigation or
  1961. * recovery.
  1962. */
  1963. if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
  1964. dev_warn(dev->ctrl.device,
  1965. "failed to mark controller state %d\n", new_state);
  1966. goto out;
  1967. }
  1968. nvme_start_ctrl(&dev->ctrl);
  1969. return;
  1970. out:
  1971. nvme_remove_dead_ctrl(dev, result);
  1972. }
  1973. static void nvme_remove_dead_ctrl_work(struct work_struct *work)
  1974. {
  1975. struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
  1976. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1977. if (pci_get_drvdata(pdev))
  1978. device_release_driver(&pdev->dev);
  1979. nvme_put_ctrl(&dev->ctrl);
  1980. }
  1981. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  1982. {
  1983. *val = readl(to_nvme_dev(ctrl)->bar + off);
  1984. return 0;
  1985. }
  1986. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  1987. {
  1988. writel(val, to_nvme_dev(ctrl)->bar + off);
  1989. return 0;
  1990. }
  1991. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  1992. {
  1993. *val = readq(to_nvme_dev(ctrl)->bar + off);
  1994. return 0;
  1995. }
  1996. static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
  1997. {
  1998. struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
  1999. return snprintf(buf, size, "%s", dev_name(&pdev->dev));
  2000. }
  2001. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  2002. .name = "pcie",
  2003. .module = THIS_MODULE,
  2004. .flags = NVME_F_METADATA_SUPPORTED,
  2005. .reg_read32 = nvme_pci_reg_read32,
  2006. .reg_write32 = nvme_pci_reg_write32,
  2007. .reg_read64 = nvme_pci_reg_read64,
  2008. .free_ctrl = nvme_pci_free_ctrl,
  2009. .submit_async_event = nvme_pci_submit_async_event,
  2010. .get_address = nvme_pci_get_address,
  2011. };
  2012. static int nvme_dev_map(struct nvme_dev *dev)
  2013. {
  2014. struct pci_dev *pdev = to_pci_dev(dev->dev);
  2015. if (pci_request_mem_regions(pdev, "nvme"))
  2016. return -ENODEV;
  2017. if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
  2018. goto release;
  2019. return 0;
  2020. release:
  2021. pci_release_mem_regions(pdev);
  2022. return -ENODEV;
  2023. }
  2024. static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
  2025. {
  2026. if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
  2027. /*
  2028. * Several Samsung devices seem to drop off the PCIe bus
  2029. * randomly when APST is on and uses the deepest sleep state.
  2030. * This has been observed on a Samsung "SM951 NVMe SAMSUNG
  2031. * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
  2032. * 950 PRO 256GB", but it seems to be restricted to two Dell
  2033. * laptops.
  2034. */
  2035. if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
  2036. (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
  2037. dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
  2038. return NVME_QUIRK_NO_DEEPEST_PS;
  2039. } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
  2040. /*
  2041. * Samsung SSD 960 EVO drops off the PCIe bus after system
  2042. * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
  2043. * within few minutes after bootup on a Coffee Lake board -
  2044. * ASUS PRIME Z370-A
  2045. */
  2046. if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
  2047. (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
  2048. dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
  2049. return NVME_QUIRK_NO_APST;
  2050. }
  2051. return 0;
  2052. }
  2053. static void nvme_async_probe(void *data, async_cookie_t cookie)
  2054. {
  2055. struct nvme_dev *dev = data;
  2056. nvme_reset_ctrl_sync(&dev->ctrl);
  2057. flush_work(&dev->ctrl.scan_work);
  2058. nvme_put_ctrl(&dev->ctrl);
  2059. }
  2060. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  2061. {
  2062. int node, result = -ENOMEM;
  2063. struct nvme_dev *dev;
  2064. unsigned long quirks = id->driver_data;
  2065. size_t alloc_size;
  2066. node = dev_to_node(&pdev->dev);
  2067. if (node == NUMA_NO_NODE)
  2068. set_dev_node(&pdev->dev, first_memory_node);
  2069. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  2070. if (!dev)
  2071. return -ENOMEM;
  2072. dev->queues = kcalloc_node(num_possible_cpus() + 1,
  2073. sizeof(struct nvme_queue), GFP_KERNEL, node);
  2074. if (!dev->queues)
  2075. goto free;
  2076. dev->dev = get_device(&pdev->dev);
  2077. pci_set_drvdata(pdev, dev);
  2078. result = nvme_dev_map(dev);
  2079. if (result)
  2080. goto put_pci;
  2081. INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
  2082. INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
  2083. mutex_init(&dev->shutdown_lock);
  2084. init_completion(&dev->ioq_wait);
  2085. result = nvme_setup_prp_pools(dev);
  2086. if (result)
  2087. goto unmap;
  2088. quirks |= check_vendor_combination_bug(pdev);
  2089. /*
  2090. * Double check that our mempool alloc size will cover the biggest
  2091. * command we support.
  2092. */
  2093. alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
  2094. NVME_MAX_SEGS, true);
  2095. WARN_ON_ONCE(alloc_size > PAGE_SIZE);
  2096. dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
  2097. mempool_kfree,
  2098. (void *) alloc_size,
  2099. GFP_KERNEL, node);
  2100. if (!dev->iod_mempool) {
  2101. result = -ENOMEM;
  2102. goto release_pools;
  2103. }
  2104. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  2105. quirks);
  2106. if (result)
  2107. goto release_mempool;
  2108. dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
  2109. nvme_get_ctrl(&dev->ctrl);
  2110. async_schedule(nvme_async_probe, dev);
  2111. return 0;
  2112. release_mempool:
  2113. mempool_destroy(dev->iod_mempool);
  2114. release_pools:
  2115. nvme_release_prp_pools(dev);
  2116. unmap:
  2117. nvme_dev_unmap(dev);
  2118. put_pci:
  2119. put_device(dev->dev);
  2120. free:
  2121. kfree(dev->queues);
  2122. kfree(dev);
  2123. return result;
  2124. }
  2125. static void nvme_reset_prepare(struct pci_dev *pdev)
  2126. {
  2127. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2128. nvme_dev_disable(dev, false);
  2129. }
  2130. static void nvme_reset_done(struct pci_dev *pdev)
  2131. {
  2132. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2133. nvme_reset_ctrl_sync(&dev->ctrl);
  2134. }
  2135. static void nvme_shutdown(struct pci_dev *pdev)
  2136. {
  2137. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2138. nvme_dev_disable(dev, true);
  2139. }
  2140. /*
  2141. * The driver's remove may be called on a device in a partially initialized
  2142. * state. This function must not have any dependencies on the device state in
  2143. * order to proceed.
  2144. */
  2145. static void nvme_remove(struct pci_dev *pdev)
  2146. {
  2147. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2148. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
  2149. cancel_work_sync(&dev->ctrl.reset_work);
  2150. pci_set_drvdata(pdev, NULL);
  2151. if (!pci_device_is_present(pdev)) {
  2152. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
  2153. nvme_dev_disable(dev, true);
  2154. }
  2155. flush_work(&dev->ctrl.reset_work);
  2156. nvme_stop_ctrl(&dev->ctrl);
  2157. nvme_remove_namespaces(&dev->ctrl);
  2158. nvme_dev_disable(dev, true);
  2159. nvme_free_host_mem(dev);
  2160. nvme_dev_remove_admin(dev);
  2161. nvme_free_queues(dev, 0);
  2162. nvme_uninit_ctrl(&dev->ctrl);
  2163. nvme_release_prp_pools(dev);
  2164. nvme_dev_unmap(dev);
  2165. nvme_put_ctrl(&dev->ctrl);
  2166. }
  2167. #ifdef CONFIG_PM_SLEEP
  2168. static int nvme_suspend(struct device *dev)
  2169. {
  2170. struct pci_dev *pdev = to_pci_dev(dev);
  2171. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2172. nvme_dev_disable(ndev, true);
  2173. return 0;
  2174. }
  2175. static int nvme_resume(struct device *dev)
  2176. {
  2177. struct pci_dev *pdev = to_pci_dev(dev);
  2178. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2179. nvme_reset_ctrl(&ndev->ctrl);
  2180. return 0;
  2181. }
  2182. #endif
  2183. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  2184. static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
  2185. pci_channel_state_t state)
  2186. {
  2187. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2188. /*
  2189. * A frozen channel requires a reset. When detected, this method will
  2190. * shutdown the controller to quiesce. The controller will be restarted
  2191. * after the slot reset through driver's slot_reset callback.
  2192. */
  2193. switch (state) {
  2194. case pci_channel_io_normal:
  2195. return PCI_ERS_RESULT_CAN_RECOVER;
  2196. case pci_channel_io_frozen:
  2197. dev_warn(dev->ctrl.device,
  2198. "frozen state error detected, reset controller\n");
  2199. nvme_dev_disable(dev, false);
  2200. return PCI_ERS_RESULT_NEED_RESET;
  2201. case pci_channel_io_perm_failure:
  2202. dev_warn(dev->ctrl.device,
  2203. "failure state error detected, request disconnect\n");
  2204. return PCI_ERS_RESULT_DISCONNECT;
  2205. }
  2206. return PCI_ERS_RESULT_NEED_RESET;
  2207. }
  2208. static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
  2209. {
  2210. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2211. dev_info(dev->ctrl.device, "restart after slot reset\n");
  2212. pci_restore_state(pdev);
  2213. nvme_reset_ctrl(&dev->ctrl);
  2214. return PCI_ERS_RESULT_RECOVERED;
  2215. }
  2216. static void nvme_error_resume(struct pci_dev *pdev)
  2217. {
  2218. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2219. flush_work(&dev->ctrl.reset_work);
  2220. pci_cleanup_aer_uncorrect_error_status(pdev);
  2221. }
  2222. static const struct pci_error_handlers nvme_err_handler = {
  2223. .error_detected = nvme_error_detected,
  2224. .slot_reset = nvme_slot_reset,
  2225. .resume = nvme_error_resume,
  2226. .reset_prepare = nvme_reset_prepare,
  2227. .reset_done = nvme_reset_done,
  2228. };
  2229. static const struct pci_device_id nvme_id_table[] = {
  2230. { PCI_VDEVICE(INTEL, 0x0953),
  2231. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2232. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2233. { PCI_VDEVICE(INTEL, 0x0a53),
  2234. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2235. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2236. { PCI_VDEVICE(INTEL, 0x0a54),
  2237. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2238. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2239. { PCI_VDEVICE(INTEL, 0x0a55),
  2240. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2241. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2242. { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
  2243. .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
  2244. NVME_QUIRK_MEDIUM_PRIO_SQ },
  2245. { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
  2246. .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
  2247. { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
  2248. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2249. { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
  2250. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2251. { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
  2252. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2253. { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
  2254. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2255. { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
  2256. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2257. { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
  2258. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2259. { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
  2260. .driver_data = NVME_QUIRK_LIGHTNVM, },
  2261. { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
  2262. .driver_data = NVME_QUIRK_LIGHTNVM, },
  2263. { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
  2264. .driver_data = NVME_QUIRK_LIGHTNVM, },
  2265. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  2266. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  2267. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
  2268. { 0, }
  2269. };
  2270. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  2271. static struct pci_driver nvme_driver = {
  2272. .name = "nvme",
  2273. .id_table = nvme_id_table,
  2274. .probe = nvme_probe,
  2275. .remove = nvme_remove,
  2276. .shutdown = nvme_shutdown,
  2277. .driver = {
  2278. .pm = &nvme_dev_pm_ops,
  2279. },
  2280. .sriov_configure = pci_sriov_configure_simple,
  2281. .err_handler = &nvme_err_handler,
  2282. };
  2283. static int __init nvme_init(void)
  2284. {
  2285. return pci_register_driver(&nvme_driver);
  2286. }
  2287. static void __exit nvme_exit(void)
  2288. {
  2289. pci_unregister_driver(&nvme_driver);
  2290. flush_workqueue(nvme_wq);
  2291. _nvme_check_size();
  2292. }
  2293. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  2294. MODULE_LICENSE("GPL");
  2295. MODULE_VERSION("1.0");
  2296. module_init(nvme_init);
  2297. module_exit(nvme_exit);