wmi.c 95 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465
  1. /*
  2. * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
  3. * Copyright (c) 2018, The Linux Foundation. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/moduleparam.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/if_arp.h>
  20. #include "wil6210.h"
  21. #include "txrx.h"
  22. #include "wmi.h"
  23. #include "trace.h"
  24. static uint max_assoc_sta = WIL6210_MAX_CID;
  25. module_param(max_assoc_sta, uint, 0644);
  26. MODULE_PARM_DESC(max_assoc_sta, " Max number of stations associated to the AP");
  27. int agg_wsize; /* = 0; */
  28. module_param(agg_wsize, int, 0644);
  29. MODULE_PARM_DESC(agg_wsize, " Window size for Tx Block Ack after connect;"
  30. " 0 - use default; < 0 - don't auto-establish");
  31. u8 led_id = WIL_LED_INVALID_ID;
  32. module_param(led_id, byte, 0444);
  33. MODULE_PARM_DESC(led_id,
  34. " 60G device led enablement. Set the led ID (0-2) to enable");
  35. #define WIL_WAIT_FOR_SUSPEND_RESUME_COMP 200
  36. #define WIL_WMI_CALL_GENERAL_TO_MS 100
  37. /**
  38. * WMI event receiving - theory of operations
  39. *
  40. * When firmware about to report WMI event, it fills memory area
  41. * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
  42. * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
  43. *
  44. * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
  45. * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
  46. * and handles events within the @wmi_event_worker. Every event get detached
  47. * from list, processed and deleted.
  48. *
  49. * Purpose for this mechanism is to release IRQ thread; otherwise,
  50. * if WMI event handling involves another WMI command flow, this 2-nd flow
  51. * won't be completed because of blocked IRQ thread.
  52. */
  53. /**
  54. * Addressing - theory of operations
  55. *
  56. * There are several buses present on the WIL6210 card.
  57. * Same memory areas are visible at different address on
  58. * the different busses. There are 3 main bus masters:
  59. * - MAC CPU (ucode)
  60. * - User CPU (firmware)
  61. * - AHB (host)
  62. *
  63. * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
  64. * AHB addresses starting from 0x880000
  65. *
  66. * Internally, firmware uses addresses that allow faster access but
  67. * are invisible from the host. To read from these addresses, alternative
  68. * AHB address must be used.
  69. */
  70. /**
  71. * @sparrow_fw_mapping provides memory remapping table for sparrow
  72. *
  73. * array size should be in sync with the declaration in the wil6210.h
  74. *
  75. * Sparrow memory mapping:
  76. * Linker address PCI/Host address
  77. * 0x880000 .. 0xa80000 2Mb BAR0
  78. * 0x800000 .. 0x808000 0x900000 .. 0x908000 32k DCCM
  79. * 0x840000 .. 0x860000 0x908000 .. 0x928000 128k PERIPH
  80. */
  81. const struct fw_map sparrow_fw_mapping[] = {
  82. /* FW code RAM 256k */
  83. {0x000000, 0x040000, 0x8c0000, "fw_code", true, true},
  84. /* FW data RAM 32k */
  85. {0x800000, 0x808000, 0x900000, "fw_data", true, true},
  86. /* periph data 128k */
  87. {0x840000, 0x860000, 0x908000, "fw_peri", true, true},
  88. /* various RGF 40k */
  89. {0x880000, 0x88a000, 0x880000, "rgf", true, true},
  90. /* AGC table 4k */
  91. {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
  92. /* Pcie_ext_rgf 4k */
  93. {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
  94. /* mac_ext_rgf 512b */
  95. {0x88c000, 0x88c200, 0x88c000, "mac_rgf_ext", true, true},
  96. /* upper area 548k */
  97. {0x8c0000, 0x949000, 0x8c0000, "upper", true, true},
  98. /* UCODE areas - accessible by debugfs blobs but not by
  99. * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
  100. */
  101. /* ucode code RAM 128k */
  102. {0x000000, 0x020000, 0x920000, "uc_code", false, false},
  103. /* ucode data RAM 16k */
  104. {0x800000, 0x804000, 0x940000, "uc_data", false, false},
  105. };
  106. /**
  107. * @sparrow_d0_mac_rgf_ext - mac_rgf_ext section for Sparrow D0
  108. * it is a bit larger to support extra features
  109. */
  110. const struct fw_map sparrow_d0_mac_rgf_ext = {
  111. 0x88c000, 0x88c500, 0x88c000, "mac_rgf_ext", true, true
  112. };
  113. /**
  114. * @talyn_fw_mapping provides memory remapping table for Talyn
  115. *
  116. * array size should be in sync with the declaration in the wil6210.h
  117. *
  118. * Talyn memory mapping:
  119. * Linker address PCI/Host address
  120. * 0x880000 .. 0xc80000 4Mb BAR0
  121. * 0x800000 .. 0x820000 0xa00000 .. 0xa20000 128k DCCM
  122. * 0x840000 .. 0x858000 0xa20000 .. 0xa38000 96k PERIPH
  123. */
  124. const struct fw_map talyn_fw_mapping[] = {
  125. /* FW code RAM 1M */
  126. {0x000000, 0x100000, 0x900000, "fw_code", true, true},
  127. /* FW data RAM 128k */
  128. {0x800000, 0x820000, 0xa00000, "fw_data", true, true},
  129. /* periph. data RAM 96k */
  130. {0x840000, 0x858000, 0xa20000, "fw_peri", true, true},
  131. /* various RGF 40k */
  132. {0x880000, 0x88a000, 0x880000, "rgf", true, true},
  133. /* AGC table 4k */
  134. {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
  135. /* Pcie_ext_rgf 4k */
  136. {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
  137. /* mac_ext_rgf 1344b */
  138. {0x88c000, 0x88c540, 0x88c000, "mac_rgf_ext", true, true},
  139. /* ext USER RGF 4k */
  140. {0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true, true},
  141. /* OTP 4k */
  142. {0x8a0000, 0x8a1000, 0x8a0000, "otp", true, false},
  143. /* DMA EXT RGF 64k */
  144. {0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true, true},
  145. /* upper area 1536k */
  146. {0x900000, 0xa80000, 0x900000, "upper", true, true},
  147. /* UCODE areas - accessible by debugfs blobs but not by
  148. * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
  149. */
  150. /* ucode code RAM 256k */
  151. {0x000000, 0x040000, 0xa38000, "uc_code", false, false},
  152. /* ucode data RAM 32k */
  153. {0x800000, 0x808000, 0xa78000, "uc_data", false, false},
  154. };
  155. /**
  156. * @talyn_mb_fw_mapping provides memory remapping table for Talyn-MB
  157. *
  158. * array size should be in sync with the declaration in the wil6210.h
  159. *
  160. * Talyn MB memory mapping:
  161. * Linker address PCI/Host address
  162. * 0x880000 .. 0xc80000 4Mb BAR0
  163. * 0x800000 .. 0x820000 0xa00000 .. 0xa20000 128k DCCM
  164. * 0x840000 .. 0x858000 0xa20000 .. 0xa38000 96k PERIPH
  165. */
  166. const struct fw_map talyn_mb_fw_mapping[] = {
  167. /* FW code RAM 768k */
  168. {0x000000, 0x0c0000, 0x900000, "fw_code", true, true},
  169. /* FW data RAM 128k */
  170. {0x800000, 0x820000, 0xa00000, "fw_data", true, true},
  171. /* periph. data RAM 96k */
  172. {0x840000, 0x858000, 0xa20000, "fw_peri", true, true},
  173. /* various RGF 40k */
  174. {0x880000, 0x88a000, 0x880000, "rgf", true, true},
  175. /* AGC table 4k */
  176. {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
  177. /* Pcie_ext_rgf 4k */
  178. {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
  179. /* mac_ext_rgf 2256b */
  180. {0x88c000, 0x88c8d0, 0x88c000, "mac_rgf_ext", true, true},
  181. /* ext USER RGF 4k */
  182. {0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true, true},
  183. /* SEC PKA 16k */
  184. {0x890000, 0x894000, 0x890000, "sec_pka", true, true},
  185. /* SEC KDF RGF 3096b */
  186. {0x898000, 0x898c18, 0x898000, "sec_kdf_rgf", true, true},
  187. /* SEC MAIN 2124b */
  188. {0x89a000, 0x89a84c, 0x89a000, "sec_main", true, true},
  189. /* OTP 4k */
  190. {0x8a0000, 0x8a1000, 0x8a0000, "otp", true, false},
  191. /* DMA EXT RGF 64k */
  192. {0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true, true},
  193. /* DUM USER RGF 528b */
  194. {0x8c0000, 0x8c0210, 0x8c0000, "dum_user_rgf", true, true},
  195. /* DMA OFU 296b */
  196. {0x8c2000, 0x8c2128, 0x8c2000, "dma_ofu", true, true},
  197. /* ucode debug 4k */
  198. {0x8c3000, 0x8c4000, 0x8c3000, "ucode_debug", true, true},
  199. /* upper area 1536k */
  200. {0x900000, 0xa80000, 0x900000, "upper", true, true},
  201. /* UCODE areas - accessible by debugfs blobs but not by
  202. * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
  203. */
  204. /* ucode code RAM 256k */
  205. {0x000000, 0x040000, 0xa38000, "uc_code", false, false},
  206. /* ucode data RAM 32k */
  207. {0x800000, 0x808000, 0xa78000, "uc_data", false, false},
  208. };
  209. struct fw_map fw_mapping[MAX_FW_MAPPING_TABLE_SIZE];
  210. struct blink_on_off_time led_blink_time[] = {
  211. {WIL_LED_BLINK_ON_SLOW_MS, WIL_LED_BLINK_OFF_SLOW_MS},
  212. {WIL_LED_BLINK_ON_MED_MS, WIL_LED_BLINK_OFF_MED_MS},
  213. {WIL_LED_BLINK_ON_FAST_MS, WIL_LED_BLINK_OFF_FAST_MS},
  214. };
  215. u8 led_polarity = LED_POLARITY_LOW_ACTIVE;
  216. /**
  217. * return AHB address for given firmware internal (linker) address
  218. * @x - internal address
  219. * If address have no valid AHB mapping, return 0
  220. */
  221. static u32 wmi_addr_remap(u32 x)
  222. {
  223. uint i;
  224. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
  225. if (fw_mapping[i].fw &&
  226. ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to)))
  227. return x + fw_mapping[i].host - fw_mapping[i].from;
  228. }
  229. return 0;
  230. }
  231. /**
  232. * find fw_mapping entry by section name
  233. * @section - section name
  234. *
  235. * Return pointer to section or NULL if not found
  236. */
  237. struct fw_map *wil_find_fw_mapping(const char *section)
  238. {
  239. int i;
  240. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++)
  241. if (fw_mapping[i].name &&
  242. !strcmp(section, fw_mapping[i].name))
  243. return &fw_mapping[i];
  244. return NULL;
  245. }
  246. /**
  247. * Check address validity for WMI buffer; remap if needed
  248. * @ptr - internal (linker) fw/ucode address
  249. * @size - if non zero, validate the block does not
  250. * exceed the device memory (bar)
  251. *
  252. * Valid buffer should be DWORD aligned
  253. *
  254. * return address for accessing buffer from the host;
  255. * if buffer is not valid, return NULL.
  256. */
  257. void __iomem *wmi_buffer_block(struct wil6210_priv *wil, __le32 ptr_, u32 size)
  258. {
  259. u32 off;
  260. u32 ptr = le32_to_cpu(ptr_);
  261. if (ptr % 4)
  262. return NULL;
  263. ptr = wmi_addr_remap(ptr);
  264. if (ptr < WIL6210_FW_HOST_OFF)
  265. return NULL;
  266. off = HOSTADDR(ptr);
  267. if (off > wil->bar_size - 4)
  268. return NULL;
  269. if (size && ((off + size > wil->bar_size) || (off + size < off)))
  270. return NULL;
  271. return wil->csr + off;
  272. }
  273. void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
  274. {
  275. return wmi_buffer_block(wil, ptr_, 0);
  276. }
  277. /**
  278. * Check address validity
  279. */
  280. void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
  281. {
  282. u32 off;
  283. if (ptr % 4)
  284. return NULL;
  285. if (ptr < WIL6210_FW_HOST_OFF)
  286. return NULL;
  287. off = HOSTADDR(ptr);
  288. if (off > wil->bar_size - 4)
  289. return NULL;
  290. return wil->csr + off;
  291. }
  292. int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
  293. struct wil6210_mbox_hdr *hdr)
  294. {
  295. void __iomem *src = wmi_buffer(wil, ptr);
  296. if (!src)
  297. return -EINVAL;
  298. wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
  299. return 0;
  300. }
  301. static const char *cmdid2name(u16 cmdid)
  302. {
  303. switch (cmdid) {
  304. case WMI_NOTIFY_REQ_CMDID:
  305. return "WMI_NOTIFY_REQ_CMD";
  306. case WMI_START_SCAN_CMDID:
  307. return "WMI_START_SCAN_CMD";
  308. case WMI_CONNECT_CMDID:
  309. return "WMI_CONNECT_CMD";
  310. case WMI_DISCONNECT_CMDID:
  311. return "WMI_DISCONNECT_CMD";
  312. case WMI_SW_TX_REQ_CMDID:
  313. return "WMI_SW_TX_REQ_CMD";
  314. case WMI_GET_RF_SECTOR_PARAMS_CMDID:
  315. return "WMI_GET_RF_SECTOR_PARAMS_CMD";
  316. case WMI_SET_RF_SECTOR_PARAMS_CMDID:
  317. return "WMI_SET_RF_SECTOR_PARAMS_CMD";
  318. case WMI_GET_SELECTED_RF_SECTOR_INDEX_CMDID:
  319. return "WMI_GET_SELECTED_RF_SECTOR_INDEX_CMD";
  320. case WMI_SET_SELECTED_RF_SECTOR_INDEX_CMDID:
  321. return "WMI_SET_SELECTED_RF_SECTOR_INDEX_CMD";
  322. case WMI_BRP_SET_ANT_LIMIT_CMDID:
  323. return "WMI_BRP_SET_ANT_LIMIT_CMD";
  324. case WMI_TOF_SESSION_START_CMDID:
  325. return "WMI_TOF_SESSION_START_CMD";
  326. case WMI_AOA_MEAS_CMDID:
  327. return "WMI_AOA_MEAS_CMD";
  328. case WMI_PMC_CMDID:
  329. return "WMI_PMC_CMD";
  330. case WMI_TOF_GET_TX_RX_OFFSET_CMDID:
  331. return "WMI_TOF_GET_TX_RX_OFFSET_CMD";
  332. case WMI_TOF_SET_TX_RX_OFFSET_CMDID:
  333. return "WMI_TOF_SET_TX_RX_OFFSET_CMD";
  334. case WMI_VRING_CFG_CMDID:
  335. return "WMI_VRING_CFG_CMD";
  336. case WMI_BCAST_VRING_CFG_CMDID:
  337. return "WMI_BCAST_VRING_CFG_CMD";
  338. case WMI_TRAFFIC_SUSPEND_CMDID:
  339. return "WMI_TRAFFIC_SUSPEND_CMD";
  340. case WMI_TRAFFIC_RESUME_CMDID:
  341. return "WMI_TRAFFIC_RESUME_CMD";
  342. case WMI_ECHO_CMDID:
  343. return "WMI_ECHO_CMD";
  344. case WMI_SET_MAC_ADDRESS_CMDID:
  345. return "WMI_SET_MAC_ADDRESS_CMD";
  346. case WMI_LED_CFG_CMDID:
  347. return "WMI_LED_CFG_CMD";
  348. case WMI_PCP_START_CMDID:
  349. return "WMI_PCP_START_CMD";
  350. case WMI_PCP_STOP_CMDID:
  351. return "WMI_PCP_STOP_CMD";
  352. case WMI_SET_SSID_CMDID:
  353. return "WMI_SET_SSID_CMD";
  354. case WMI_GET_SSID_CMDID:
  355. return "WMI_GET_SSID_CMD";
  356. case WMI_SET_PCP_CHANNEL_CMDID:
  357. return "WMI_SET_PCP_CHANNEL_CMD";
  358. case WMI_GET_PCP_CHANNEL_CMDID:
  359. return "WMI_GET_PCP_CHANNEL_CMD";
  360. case WMI_P2P_CFG_CMDID:
  361. return "WMI_P2P_CFG_CMD";
  362. case WMI_PORT_ALLOCATE_CMDID:
  363. return "WMI_PORT_ALLOCATE_CMD";
  364. case WMI_PORT_DELETE_CMDID:
  365. return "WMI_PORT_DELETE_CMD";
  366. case WMI_START_LISTEN_CMDID:
  367. return "WMI_START_LISTEN_CMD";
  368. case WMI_START_SEARCH_CMDID:
  369. return "WMI_START_SEARCH_CMD";
  370. case WMI_DISCOVERY_STOP_CMDID:
  371. return "WMI_DISCOVERY_STOP_CMD";
  372. case WMI_DELETE_CIPHER_KEY_CMDID:
  373. return "WMI_DELETE_CIPHER_KEY_CMD";
  374. case WMI_ADD_CIPHER_KEY_CMDID:
  375. return "WMI_ADD_CIPHER_KEY_CMD";
  376. case WMI_SET_APPIE_CMDID:
  377. return "WMI_SET_APPIE_CMD";
  378. case WMI_CFG_RX_CHAIN_CMDID:
  379. return "WMI_CFG_RX_CHAIN_CMD";
  380. case WMI_TEMP_SENSE_CMDID:
  381. return "WMI_TEMP_SENSE_CMD";
  382. case WMI_DEL_STA_CMDID:
  383. return "WMI_DEL_STA_CMD";
  384. case WMI_DISCONNECT_STA_CMDID:
  385. return "WMI_DISCONNECT_STA_CMD";
  386. case WMI_RING_BA_EN_CMDID:
  387. return "WMI_RING_BA_EN_CMD";
  388. case WMI_RING_BA_DIS_CMDID:
  389. return "WMI_RING_BA_DIS_CMD";
  390. case WMI_RCP_DELBA_CMDID:
  391. return "WMI_RCP_DELBA_CMD";
  392. case WMI_RCP_ADDBA_RESP_CMDID:
  393. return "WMI_RCP_ADDBA_RESP_CMD";
  394. case WMI_RCP_ADDBA_RESP_EDMA_CMDID:
  395. return "WMI_RCP_ADDBA_RESP_EDMA_CMD";
  396. case WMI_PS_DEV_PROFILE_CFG_CMDID:
  397. return "WMI_PS_DEV_PROFILE_CFG_CMD";
  398. case WMI_SET_MGMT_RETRY_LIMIT_CMDID:
  399. return "WMI_SET_MGMT_RETRY_LIMIT_CMD";
  400. case WMI_GET_MGMT_RETRY_LIMIT_CMDID:
  401. return "WMI_GET_MGMT_RETRY_LIMIT_CMD";
  402. case WMI_ABORT_SCAN_CMDID:
  403. return "WMI_ABORT_SCAN_CMD";
  404. case WMI_NEW_STA_CMDID:
  405. return "WMI_NEW_STA_CMD";
  406. case WMI_SET_THERMAL_THROTTLING_CFG_CMDID:
  407. return "WMI_SET_THERMAL_THROTTLING_CFG_CMD";
  408. case WMI_GET_THERMAL_THROTTLING_CFG_CMDID:
  409. return "WMI_GET_THERMAL_THROTTLING_CFG_CMD";
  410. case WMI_LINK_MAINTAIN_CFG_WRITE_CMDID:
  411. return "WMI_LINK_MAINTAIN_CFG_WRITE_CMD";
  412. case WMI_LO_POWER_CALIB_FROM_OTP_CMDID:
  413. return "WMI_LO_POWER_CALIB_FROM_OTP_CMD";
  414. case WMI_START_SCHED_SCAN_CMDID:
  415. return "WMI_START_SCHED_SCAN_CMD";
  416. case WMI_STOP_SCHED_SCAN_CMDID:
  417. return "WMI_STOP_SCHED_SCAN_CMD";
  418. case WMI_TX_STATUS_RING_ADD_CMDID:
  419. return "WMI_TX_STATUS_RING_ADD_CMD";
  420. case WMI_RX_STATUS_RING_ADD_CMDID:
  421. return "WMI_RX_STATUS_RING_ADD_CMD";
  422. case WMI_TX_DESC_RING_ADD_CMDID:
  423. return "WMI_TX_DESC_RING_ADD_CMD";
  424. case WMI_RX_DESC_RING_ADD_CMDID:
  425. return "WMI_RX_DESC_RING_ADD_CMD";
  426. case WMI_BCAST_DESC_RING_ADD_CMDID:
  427. return "WMI_BCAST_DESC_RING_ADD_CMD";
  428. case WMI_CFG_DEF_RX_OFFLOAD_CMDID:
  429. return "WMI_CFG_DEF_RX_OFFLOAD_CMD";
  430. case WMI_LINK_STATS_CMDID:
  431. return "WMI_LINK_STATS_CMD";
  432. case WMI_SW_TX_REQ_EXT_CMDID:
  433. return "WMI_SW_TX_REQ_EXT_CMDID";
  434. default:
  435. return "Untracked CMD";
  436. }
  437. }
  438. static const char *eventid2name(u16 eventid)
  439. {
  440. switch (eventid) {
  441. case WMI_NOTIFY_REQ_DONE_EVENTID:
  442. return "WMI_NOTIFY_REQ_DONE_EVENT";
  443. case WMI_DISCONNECT_EVENTID:
  444. return "WMI_DISCONNECT_EVENT";
  445. case WMI_SW_TX_COMPLETE_EVENTID:
  446. return "WMI_SW_TX_COMPLETE_EVENT";
  447. case WMI_GET_RF_SECTOR_PARAMS_DONE_EVENTID:
  448. return "WMI_GET_RF_SECTOR_PARAMS_DONE_EVENT";
  449. case WMI_SET_RF_SECTOR_PARAMS_DONE_EVENTID:
  450. return "WMI_SET_RF_SECTOR_PARAMS_DONE_EVENT";
  451. case WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
  452. return "WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
  453. case WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
  454. return "WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
  455. case WMI_BRP_SET_ANT_LIMIT_EVENTID:
  456. return "WMI_BRP_SET_ANT_LIMIT_EVENT";
  457. case WMI_FW_READY_EVENTID:
  458. return "WMI_FW_READY_EVENT";
  459. case WMI_TRAFFIC_RESUME_EVENTID:
  460. return "WMI_TRAFFIC_RESUME_EVENT";
  461. case WMI_TOF_GET_TX_RX_OFFSET_EVENTID:
  462. return "WMI_TOF_GET_TX_RX_OFFSET_EVENT";
  463. case WMI_TOF_SET_TX_RX_OFFSET_EVENTID:
  464. return "WMI_TOF_SET_TX_RX_OFFSET_EVENT";
  465. case WMI_VRING_CFG_DONE_EVENTID:
  466. return "WMI_VRING_CFG_DONE_EVENT";
  467. case WMI_READY_EVENTID:
  468. return "WMI_READY_EVENT";
  469. case WMI_RX_MGMT_PACKET_EVENTID:
  470. return "WMI_RX_MGMT_PACKET_EVENT";
  471. case WMI_TX_MGMT_PACKET_EVENTID:
  472. return "WMI_TX_MGMT_PACKET_EVENT";
  473. case WMI_SCAN_COMPLETE_EVENTID:
  474. return "WMI_SCAN_COMPLETE_EVENT";
  475. case WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENTID:
  476. return "WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENT";
  477. case WMI_CONNECT_EVENTID:
  478. return "WMI_CONNECT_EVENT";
  479. case WMI_EAPOL_RX_EVENTID:
  480. return "WMI_EAPOL_RX_EVENT";
  481. case WMI_BA_STATUS_EVENTID:
  482. return "WMI_BA_STATUS_EVENT";
  483. case WMI_RCP_ADDBA_REQ_EVENTID:
  484. return "WMI_RCP_ADDBA_REQ_EVENT";
  485. case WMI_DELBA_EVENTID:
  486. return "WMI_DELBA_EVENT";
  487. case WMI_RING_EN_EVENTID:
  488. return "WMI_RING_EN_EVENT";
  489. case WMI_DATA_PORT_OPEN_EVENTID:
  490. return "WMI_DATA_PORT_OPEN_EVENT";
  491. case WMI_AOA_MEAS_EVENTID:
  492. return "WMI_AOA_MEAS_EVENT";
  493. case WMI_TOF_SESSION_END_EVENTID:
  494. return "WMI_TOF_SESSION_END_EVENT";
  495. case WMI_TOF_GET_CAPABILITIES_EVENTID:
  496. return "WMI_TOF_GET_CAPABILITIES_EVENT";
  497. case WMI_TOF_SET_LCR_EVENTID:
  498. return "WMI_TOF_SET_LCR_EVENT";
  499. case WMI_TOF_SET_LCI_EVENTID:
  500. return "WMI_TOF_SET_LCI_EVENT";
  501. case WMI_TOF_FTM_PER_DEST_RES_EVENTID:
  502. return "WMI_TOF_FTM_PER_DEST_RES_EVENT";
  503. case WMI_TOF_CHANNEL_INFO_EVENTID:
  504. return "WMI_TOF_CHANNEL_INFO_EVENT";
  505. case WMI_TRAFFIC_SUSPEND_EVENTID:
  506. return "WMI_TRAFFIC_SUSPEND_EVENT";
  507. case WMI_ECHO_RSP_EVENTID:
  508. return "WMI_ECHO_RSP_EVENT";
  509. case WMI_LED_CFG_DONE_EVENTID:
  510. return "WMI_LED_CFG_DONE_EVENT";
  511. case WMI_PCP_STARTED_EVENTID:
  512. return "WMI_PCP_STARTED_EVENT";
  513. case WMI_PCP_STOPPED_EVENTID:
  514. return "WMI_PCP_STOPPED_EVENT";
  515. case WMI_GET_SSID_EVENTID:
  516. return "WMI_GET_SSID_EVENT";
  517. case WMI_GET_PCP_CHANNEL_EVENTID:
  518. return "WMI_GET_PCP_CHANNEL_EVENT";
  519. case WMI_P2P_CFG_DONE_EVENTID:
  520. return "WMI_P2P_CFG_DONE_EVENT";
  521. case WMI_PORT_ALLOCATED_EVENTID:
  522. return "WMI_PORT_ALLOCATED_EVENT";
  523. case WMI_PORT_DELETED_EVENTID:
  524. return "WMI_PORT_DELETED_EVENT";
  525. case WMI_LISTEN_STARTED_EVENTID:
  526. return "WMI_LISTEN_STARTED_EVENT";
  527. case WMI_SEARCH_STARTED_EVENTID:
  528. return "WMI_SEARCH_STARTED_EVENT";
  529. case WMI_DISCOVERY_STOPPED_EVENTID:
  530. return "WMI_DISCOVERY_STOPPED_EVENT";
  531. case WMI_CFG_RX_CHAIN_DONE_EVENTID:
  532. return "WMI_CFG_RX_CHAIN_DONE_EVENT";
  533. case WMI_TEMP_SENSE_DONE_EVENTID:
  534. return "WMI_TEMP_SENSE_DONE_EVENT";
  535. case WMI_RCP_ADDBA_RESP_SENT_EVENTID:
  536. return "WMI_RCP_ADDBA_RESP_SENT_EVENT";
  537. case WMI_PS_DEV_PROFILE_CFG_EVENTID:
  538. return "WMI_PS_DEV_PROFILE_CFG_EVENT";
  539. case WMI_SET_MGMT_RETRY_LIMIT_EVENTID:
  540. return "WMI_SET_MGMT_RETRY_LIMIT_EVENT";
  541. case WMI_GET_MGMT_RETRY_LIMIT_EVENTID:
  542. return "WMI_GET_MGMT_RETRY_LIMIT_EVENT";
  543. case WMI_SET_THERMAL_THROTTLING_CFG_EVENTID:
  544. return "WMI_SET_THERMAL_THROTTLING_CFG_EVENT";
  545. case WMI_GET_THERMAL_THROTTLING_CFG_EVENTID:
  546. return "WMI_GET_THERMAL_THROTTLING_CFG_EVENT";
  547. case WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENTID:
  548. return "WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENT";
  549. case WMI_LO_POWER_CALIB_FROM_OTP_EVENTID:
  550. return "WMI_LO_POWER_CALIB_FROM_OTP_EVENT";
  551. case WMI_START_SCHED_SCAN_EVENTID:
  552. return "WMI_START_SCHED_SCAN_EVENT";
  553. case WMI_STOP_SCHED_SCAN_EVENTID:
  554. return "WMI_STOP_SCHED_SCAN_EVENT";
  555. case WMI_SCHED_SCAN_RESULT_EVENTID:
  556. return "WMI_SCHED_SCAN_RESULT_EVENT";
  557. case WMI_TX_STATUS_RING_CFG_DONE_EVENTID:
  558. return "WMI_TX_STATUS_RING_CFG_DONE_EVENT";
  559. case WMI_RX_STATUS_RING_CFG_DONE_EVENTID:
  560. return "WMI_RX_STATUS_RING_CFG_DONE_EVENT";
  561. case WMI_TX_DESC_RING_CFG_DONE_EVENTID:
  562. return "WMI_TX_DESC_RING_CFG_DONE_EVENT";
  563. case WMI_RX_DESC_RING_CFG_DONE_EVENTID:
  564. return "WMI_RX_DESC_RING_CFG_DONE_EVENT";
  565. case WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENTID:
  566. return "WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENT";
  567. case WMI_LINK_STATS_CONFIG_DONE_EVENTID:
  568. return "WMI_LINK_STATS_CONFIG_DONE_EVENT";
  569. case WMI_LINK_STATS_EVENTID:
  570. return "WMI_LINK_STATS_EVENT";
  571. default:
  572. return "Untracked EVENT";
  573. }
  574. }
  575. static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid,
  576. void *buf, u16 len)
  577. {
  578. struct {
  579. struct wil6210_mbox_hdr hdr;
  580. struct wmi_cmd_hdr wmi;
  581. } __packed cmd = {
  582. .hdr = {
  583. .type = WIL_MBOX_HDR_TYPE_WMI,
  584. .flags = 0,
  585. .len = cpu_to_le16(sizeof(cmd.wmi) + len),
  586. },
  587. .wmi = {
  588. .mid = mid,
  589. .command_id = cpu_to_le16(cmdid),
  590. },
  591. };
  592. struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
  593. struct wil6210_mbox_ring_desc d_head;
  594. u32 next_head;
  595. void __iomem *dst;
  596. void __iomem *head = wmi_addr(wil, r->head);
  597. uint retry;
  598. int rc = 0;
  599. if (len > r->entry_size - sizeof(cmd)) {
  600. wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
  601. (int)(sizeof(cmd) + len), r->entry_size);
  602. return -ERANGE;
  603. }
  604. might_sleep();
  605. if (!test_bit(wil_status_fwready, wil->status)) {
  606. wil_err(wil, "WMI: cannot send command while FW not ready\n");
  607. return -EAGAIN;
  608. }
  609. /* Allow sending only suspend / resume commands during susepnd flow */
  610. if ((test_bit(wil_status_suspending, wil->status) ||
  611. test_bit(wil_status_suspended, wil->status) ||
  612. test_bit(wil_status_resuming, wil->status)) &&
  613. ((cmdid != WMI_TRAFFIC_SUSPEND_CMDID) &&
  614. (cmdid != WMI_TRAFFIC_RESUME_CMDID))) {
  615. wil_err(wil, "WMI: reject send_command during suspend\n");
  616. return -EINVAL;
  617. }
  618. if (!head) {
  619. wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
  620. return -EINVAL;
  621. }
  622. wil_halp_vote(wil);
  623. /* read Tx head till it is not busy */
  624. for (retry = 5; retry > 0; retry--) {
  625. wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
  626. if (d_head.sync == 0)
  627. break;
  628. msleep(20);
  629. }
  630. if (d_head.sync != 0) {
  631. wil_err(wil, "WMI head busy\n");
  632. rc = -EBUSY;
  633. goto out;
  634. }
  635. /* next head */
  636. next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
  637. wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
  638. /* wait till FW finish with previous command */
  639. for (retry = 5; retry > 0; retry--) {
  640. if (!test_bit(wil_status_fwready, wil->status)) {
  641. wil_err(wil, "WMI: cannot send command while FW not ready\n");
  642. rc = -EAGAIN;
  643. goto out;
  644. }
  645. r->tail = wil_r(wil, RGF_MBOX +
  646. offsetof(struct wil6210_mbox_ctl, tx.tail));
  647. if (next_head != r->tail)
  648. break;
  649. msleep(20);
  650. }
  651. if (next_head == r->tail) {
  652. wil_err(wil, "WMI ring full\n");
  653. rc = -EBUSY;
  654. goto out;
  655. }
  656. dst = wmi_buffer(wil, d_head.addr);
  657. if (!dst) {
  658. wil_err(wil, "invalid WMI buffer: 0x%08x\n",
  659. le32_to_cpu(d_head.addr));
  660. rc = -EAGAIN;
  661. goto out;
  662. }
  663. cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
  664. /* set command */
  665. wil_dbg_wmi(wil, "sending %s (0x%04x) [%d] mid %d\n",
  666. cmdid2name(cmdid), cmdid, len, mid);
  667. wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
  668. sizeof(cmd), true);
  669. wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  670. len, true);
  671. wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
  672. wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
  673. /* mark entry as full */
  674. wil_w(wil, r->head + offsetof(struct wil6210_mbox_ring_desc, sync), 1);
  675. /* advance next ptr */
  676. wil_w(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, tx.head),
  677. r->head = next_head);
  678. trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
  679. /* interrupt to FW */
  680. wil_w(wil, RGF_USER_USER_ICR + offsetof(struct RGF_ICR, ICS),
  681. SW_INT_MBOX);
  682. out:
  683. wil_halp_unvote(wil);
  684. return rc;
  685. }
  686. int wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len)
  687. {
  688. int rc;
  689. mutex_lock(&wil->wmi_mutex);
  690. rc = __wmi_send(wil, cmdid, mid, buf, len);
  691. mutex_unlock(&wil->wmi_mutex);
  692. return rc;
  693. }
  694. /*=== Event handlers ===*/
  695. static void wmi_evt_ready(struct wil6210_vif *vif, int id, void *d, int len)
  696. {
  697. struct wil6210_priv *wil = vif_to_wil(vif);
  698. struct wiphy *wiphy = wil_to_wiphy(wil);
  699. struct wmi_ready_event *evt = d;
  700. wil_info(wil, "FW ver. %s(SW %d); MAC %pM; %d MID's\n",
  701. wil->fw_version, le32_to_cpu(evt->sw_version),
  702. evt->mac, evt->numof_additional_mids);
  703. if (evt->numof_additional_mids + 1 < wil->max_vifs) {
  704. wil_err(wil, "FW does not support enough MIDs (need %d)",
  705. wil->max_vifs - 1);
  706. return; /* FW load will fail after timeout */
  707. }
  708. /* ignore MAC address, we already have it from the boot loader */
  709. strlcpy(wiphy->fw_version, wil->fw_version, sizeof(wiphy->fw_version));
  710. if (len > offsetof(struct wmi_ready_event, rfc_read_calib_result)) {
  711. wil_dbg_wmi(wil, "rfc calibration result %d\n",
  712. evt->rfc_read_calib_result);
  713. wil->fw_calib_result = evt->rfc_read_calib_result;
  714. }
  715. wil_set_recovery_state(wil, fw_recovery_idle);
  716. set_bit(wil_status_fwready, wil->status);
  717. /* let the reset sequence continue */
  718. complete(&wil->wmi_ready);
  719. }
  720. static void wmi_evt_rx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
  721. {
  722. struct wil6210_priv *wil = vif_to_wil(vif);
  723. struct wmi_rx_mgmt_packet_event *data = d;
  724. struct wiphy *wiphy = wil_to_wiphy(wil);
  725. struct ieee80211_mgmt *rx_mgmt_frame =
  726. (struct ieee80211_mgmt *)data->payload;
  727. int flen = len - offsetof(struct wmi_rx_mgmt_packet_event, payload);
  728. int ch_no;
  729. u32 freq;
  730. struct ieee80211_channel *channel;
  731. s32 signal;
  732. __le16 fc;
  733. u32 d_len;
  734. u16 d_status;
  735. if (flen < 0) {
  736. wil_err(wil, "MGMT Rx: short event, len %d\n", len);
  737. return;
  738. }
  739. d_len = le32_to_cpu(data->info.len);
  740. if (d_len != flen) {
  741. wil_err(wil,
  742. "MGMT Rx: length mismatch, d_len %d should be %d\n",
  743. d_len, flen);
  744. return;
  745. }
  746. ch_no = data->info.channel + 1;
  747. freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
  748. channel = ieee80211_get_channel(wiphy, freq);
  749. if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
  750. signal = 100 * data->info.rssi;
  751. else
  752. signal = data->info.sqi;
  753. d_status = le16_to_cpu(data->info.status);
  754. fc = rx_mgmt_frame->frame_control;
  755. wil_dbg_wmi(wil, "MGMT Rx: channel %d MCS %d RSSI %d SQI %d%%\n",
  756. data->info.channel, data->info.mcs, data->info.rssi,
  757. data->info.sqi);
  758. wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
  759. le16_to_cpu(fc));
  760. wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
  761. data->info.qid, data->info.mid, data->info.cid);
  762. wil_hex_dump_wmi("MGMT Rx ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
  763. d_len, true);
  764. if (!channel) {
  765. wil_err(wil, "Frame on unsupported channel\n");
  766. return;
  767. }
  768. if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
  769. struct cfg80211_bss *bss;
  770. u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp);
  771. u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info);
  772. u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int);
  773. const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable;
  774. size_t ie_len = d_len - offsetof(struct ieee80211_mgmt,
  775. u.beacon.variable);
  776. wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
  777. wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf);
  778. wil_dbg_wmi(wil, "Beacon interval : %d\n", bi);
  779. wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf,
  780. ie_len, true);
  781. wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
  782. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  783. d_len, signal, GFP_KERNEL);
  784. if (bss) {
  785. wil_dbg_wmi(wil, "Added BSS %pM\n",
  786. rx_mgmt_frame->bssid);
  787. cfg80211_put_bss(wiphy, bss);
  788. } else {
  789. wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
  790. }
  791. } else {
  792. mutex_lock(&wil->vif_mutex);
  793. cfg80211_rx_mgmt(vif_to_radio_wdev(wil, vif), freq, signal,
  794. (void *)rx_mgmt_frame, d_len, 0);
  795. mutex_unlock(&wil->vif_mutex);
  796. }
  797. }
  798. static void wmi_evt_tx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
  799. {
  800. struct wmi_tx_mgmt_packet_event *data = d;
  801. struct ieee80211_mgmt *mgmt_frame =
  802. (struct ieee80211_mgmt *)data->payload;
  803. int flen = len - offsetof(struct wmi_tx_mgmt_packet_event, payload);
  804. wil_hex_dump_wmi("MGMT Tx ", DUMP_PREFIX_OFFSET, 16, 1, mgmt_frame,
  805. flen, true);
  806. }
  807. static void wmi_evt_scan_complete(struct wil6210_vif *vif, int id,
  808. void *d, int len)
  809. {
  810. struct wil6210_priv *wil = vif_to_wil(vif);
  811. mutex_lock(&wil->vif_mutex);
  812. if (vif->scan_request) {
  813. struct wmi_scan_complete_event *data = d;
  814. int status = le32_to_cpu(data->status);
  815. struct cfg80211_scan_info info = {
  816. .aborted = ((status != WMI_SCAN_SUCCESS) &&
  817. (status != WMI_SCAN_ABORT_REJECTED)),
  818. };
  819. wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", status);
  820. wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n",
  821. vif->scan_request, info.aborted);
  822. del_timer_sync(&vif->scan_timer);
  823. cfg80211_scan_done(vif->scan_request, &info);
  824. if (vif->mid == 0)
  825. wil->radio_wdev = wil->main_ndev->ieee80211_ptr;
  826. vif->scan_request = NULL;
  827. wake_up_interruptible(&wil->wq);
  828. if (vif->p2p.pending_listen_wdev) {
  829. wil_dbg_misc(wil, "Scheduling delayed listen\n");
  830. schedule_work(&vif->p2p.delayed_listen_work);
  831. }
  832. } else {
  833. wil_err(wil, "SCAN_COMPLETE while not scanning\n");
  834. }
  835. mutex_unlock(&wil->vif_mutex);
  836. }
  837. static void wmi_evt_connect(struct wil6210_vif *vif, int id, void *d, int len)
  838. {
  839. struct wil6210_priv *wil = vif_to_wil(vif);
  840. struct net_device *ndev = vif_to_ndev(vif);
  841. struct wireless_dev *wdev = vif_to_wdev(vif);
  842. struct wmi_connect_event *evt = d;
  843. int ch; /* channel number */
  844. struct station_info *sinfo;
  845. u8 *assoc_req_ie, *assoc_resp_ie;
  846. size_t assoc_req_ielen, assoc_resp_ielen;
  847. /* capinfo(u16) + listen_interval(u16) + IEs */
  848. const size_t assoc_req_ie_offset = sizeof(u16) * 2;
  849. /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
  850. const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
  851. int rc;
  852. if (len < sizeof(*evt)) {
  853. wil_err(wil, "Connect event too short : %d bytes\n", len);
  854. return;
  855. }
  856. if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
  857. evt->assoc_resp_len) {
  858. wil_err(wil,
  859. "Connect event corrupted : %d != %d + %d + %d + %d\n",
  860. len, (int)sizeof(*evt), evt->beacon_ie_len,
  861. evt->assoc_req_len, evt->assoc_resp_len);
  862. return;
  863. }
  864. if (evt->cid >= WIL6210_MAX_CID) {
  865. wil_err(wil, "Connect CID invalid : %d\n", evt->cid);
  866. return;
  867. }
  868. ch = evt->channel + 1;
  869. wil_info(wil, "Connect %pM channel [%d] cid %d aid %d\n",
  870. evt->bssid, ch, evt->cid, evt->aid);
  871. wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
  872. evt->assoc_info, len - sizeof(*evt), true);
  873. /* figure out IE's */
  874. assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
  875. assoc_req_ie_offset];
  876. assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
  877. if (evt->assoc_req_len <= assoc_req_ie_offset) {
  878. assoc_req_ie = NULL;
  879. assoc_req_ielen = 0;
  880. }
  881. assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
  882. evt->assoc_req_len +
  883. assoc_resp_ie_offset];
  884. assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
  885. if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
  886. assoc_resp_ie = NULL;
  887. assoc_resp_ielen = 0;
  888. }
  889. if (test_bit(wil_status_resetting, wil->status) ||
  890. !test_bit(wil_status_fwready, wil->status)) {
  891. wil_err(wil, "status_resetting, cancel connect event, CID %d\n",
  892. evt->cid);
  893. /* no need for cleanup, wil_reset will do that */
  894. return;
  895. }
  896. mutex_lock(&wil->mutex);
  897. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  898. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  899. if (!test_bit(wil_vif_fwconnecting, vif->status)) {
  900. wil_err(wil, "Not in connecting state\n");
  901. mutex_unlock(&wil->mutex);
  902. return;
  903. }
  904. del_timer_sync(&vif->connect_timer);
  905. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  906. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  907. if (wil->sta[evt->cid].status != wil_sta_unused) {
  908. wil_err(wil, "AP: Invalid status %d for CID %d\n",
  909. wil->sta[evt->cid].status, evt->cid);
  910. mutex_unlock(&wil->mutex);
  911. return;
  912. }
  913. }
  914. ether_addr_copy(wil->sta[evt->cid].addr, evt->bssid);
  915. wil->sta[evt->cid].mid = vif->mid;
  916. wil->sta[evt->cid].status = wil_sta_conn_pending;
  917. rc = wil_ring_init_tx(vif, evt->cid);
  918. if (rc) {
  919. wil_err(wil, "config tx vring failed for CID %d, rc (%d)\n",
  920. evt->cid, rc);
  921. wmi_disconnect_sta(vif, wil->sta[evt->cid].addr,
  922. WLAN_REASON_UNSPECIFIED, false, false);
  923. } else {
  924. wil_info(wil, "successful connection to CID %d\n", evt->cid);
  925. }
  926. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  927. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  928. if (rc) {
  929. netif_carrier_off(ndev);
  930. wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
  931. wil_err(wil, "cfg80211_connect_result with failure\n");
  932. cfg80211_connect_result(ndev, evt->bssid, NULL, 0,
  933. NULL, 0,
  934. WLAN_STATUS_UNSPECIFIED_FAILURE,
  935. GFP_KERNEL);
  936. goto out;
  937. } else {
  938. struct wiphy *wiphy = wil_to_wiphy(wil);
  939. cfg80211_ref_bss(wiphy, vif->bss);
  940. cfg80211_connect_bss(ndev, evt->bssid, vif->bss,
  941. assoc_req_ie, assoc_req_ielen,
  942. assoc_resp_ie, assoc_resp_ielen,
  943. WLAN_STATUS_SUCCESS, GFP_KERNEL,
  944. NL80211_TIMEOUT_UNSPECIFIED);
  945. }
  946. vif->bss = NULL;
  947. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  948. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  949. if (rc) {
  950. if (disable_ap_sme)
  951. /* notify new_sta has failed */
  952. cfg80211_del_sta(ndev, evt->bssid, GFP_KERNEL);
  953. goto out;
  954. }
  955. sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
  956. if (!sinfo) {
  957. rc = -ENOMEM;
  958. goto out;
  959. }
  960. sinfo->generation = wil->sinfo_gen++;
  961. if (assoc_req_ie) {
  962. sinfo->assoc_req_ies = assoc_req_ie;
  963. sinfo->assoc_req_ies_len = assoc_req_ielen;
  964. }
  965. cfg80211_new_sta(ndev, evt->bssid, sinfo, GFP_KERNEL);
  966. kfree(sinfo);
  967. } else {
  968. wil_err(wil, "unhandled iftype %d for CID %d\n", wdev->iftype,
  969. evt->cid);
  970. goto out;
  971. }
  972. wil->sta[evt->cid].status = wil_sta_connected;
  973. wil->sta[evt->cid].aid = evt->aid;
  974. if (!test_and_set_bit(wil_vif_fwconnected, vif->status))
  975. atomic_inc(&wil->connected_vifs);
  976. wil_update_net_queues_bh(wil, vif, NULL, false);
  977. out:
  978. if (rc) {
  979. wil->sta[evt->cid].status = wil_sta_unused;
  980. wil->sta[evt->cid].mid = U8_MAX;
  981. }
  982. clear_bit(wil_vif_fwconnecting, vif->status);
  983. mutex_unlock(&wil->mutex);
  984. }
  985. static void wmi_evt_disconnect(struct wil6210_vif *vif, int id,
  986. void *d, int len)
  987. {
  988. struct wil6210_priv *wil = vif_to_wil(vif);
  989. struct wmi_disconnect_event *evt = d;
  990. u16 reason_code = le16_to_cpu(evt->protocol_reason_status);
  991. wil_info(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
  992. evt->bssid, reason_code, evt->disconnect_reason);
  993. wil->sinfo_gen++;
  994. if (test_bit(wil_status_resetting, wil->status) ||
  995. !test_bit(wil_status_fwready, wil->status)) {
  996. wil_err(wil, "status_resetting, cancel disconnect event\n");
  997. /* no need for cleanup, wil_reset will do that */
  998. return;
  999. }
  1000. mutex_lock(&wil->mutex);
  1001. wil6210_disconnect(vif, evt->bssid, reason_code, true);
  1002. mutex_unlock(&wil->mutex);
  1003. }
  1004. /*
  1005. * Firmware reports EAPOL frame using WME event.
  1006. * Reconstruct Ethernet frame and deliver it via normal Rx
  1007. */
  1008. static void wmi_evt_eapol_rx(struct wil6210_vif *vif, int id, void *d, int len)
  1009. {
  1010. struct wil6210_priv *wil = vif_to_wil(vif);
  1011. struct net_device *ndev = vif_to_ndev(vif);
  1012. struct wmi_eapol_rx_event *evt = d;
  1013. u16 eapol_len = le16_to_cpu(evt->eapol_len);
  1014. int sz = eapol_len + ETH_HLEN;
  1015. struct sk_buff *skb;
  1016. struct ethhdr *eth;
  1017. int cid;
  1018. struct wil_net_stats *stats = NULL;
  1019. wil_dbg_wmi(wil, "EAPOL len %d from %pM MID %d\n", eapol_len,
  1020. evt->src_mac, vif->mid);
  1021. cid = wil_find_cid(wil, vif->mid, evt->src_mac);
  1022. if (cid >= 0)
  1023. stats = &wil->sta[cid].stats;
  1024. if (eapol_len > 196) { /* TODO: revisit size limit */
  1025. wil_err(wil, "EAPOL too large\n");
  1026. return;
  1027. }
  1028. skb = alloc_skb(sz, GFP_KERNEL);
  1029. if (!skb) {
  1030. wil_err(wil, "Failed to allocate skb\n");
  1031. return;
  1032. }
  1033. eth = skb_put(skb, ETH_HLEN);
  1034. ether_addr_copy(eth->h_dest, ndev->dev_addr);
  1035. ether_addr_copy(eth->h_source, evt->src_mac);
  1036. eth->h_proto = cpu_to_be16(ETH_P_PAE);
  1037. skb_put_data(skb, evt->eapol, eapol_len);
  1038. skb->protocol = eth_type_trans(skb, ndev);
  1039. if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
  1040. ndev->stats.rx_packets++;
  1041. ndev->stats.rx_bytes += sz;
  1042. if (stats) {
  1043. stats->rx_packets++;
  1044. stats->rx_bytes += sz;
  1045. }
  1046. } else {
  1047. ndev->stats.rx_dropped++;
  1048. if (stats)
  1049. stats->rx_dropped++;
  1050. }
  1051. }
  1052. static void wmi_evt_ring_en(struct wil6210_vif *vif, int id, void *d, int len)
  1053. {
  1054. struct wil6210_priv *wil = vif_to_wil(vif);
  1055. struct wmi_ring_en_event *evt = d;
  1056. u8 vri = evt->ring_index;
  1057. struct wireless_dev *wdev = vif_to_wdev(vif);
  1058. wil_dbg_wmi(wil, "Enable vring %d MID %d\n", vri, vif->mid);
  1059. if (vri >= ARRAY_SIZE(wil->ring_tx)) {
  1060. wil_err(wil, "Enable for invalid vring %d\n", vri);
  1061. return;
  1062. }
  1063. if (wdev->iftype != NL80211_IFTYPE_AP || !disable_ap_sme)
  1064. /* in AP mode with disable_ap_sme, this is done by
  1065. * wil_cfg80211_change_station()
  1066. */
  1067. wil->ring_tx_data[vri].dot1x_open = true;
  1068. if (vri == vif->bcast_ring) /* no BA for bcast */
  1069. return;
  1070. if (agg_wsize >= 0)
  1071. wil_addba_tx_request(wil, vri, agg_wsize);
  1072. }
  1073. static void wmi_evt_ba_status(struct wil6210_vif *vif, int id,
  1074. void *d, int len)
  1075. {
  1076. struct wil6210_priv *wil = vif_to_wil(vif);
  1077. struct wmi_ba_status_event *evt = d;
  1078. struct wil_ring_tx_data *txdata;
  1079. wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d AMSDU%s\n",
  1080. evt->ringid,
  1081. evt->status == WMI_BA_AGREED ? "OK" : "N/A",
  1082. evt->agg_wsize, __le16_to_cpu(evt->ba_timeout),
  1083. evt->amsdu ? "+" : "-");
  1084. if (evt->ringid >= WIL6210_MAX_TX_RINGS) {
  1085. wil_err(wil, "invalid ring id %d\n", evt->ringid);
  1086. return;
  1087. }
  1088. if (evt->status != WMI_BA_AGREED) {
  1089. evt->ba_timeout = 0;
  1090. evt->agg_wsize = 0;
  1091. evt->amsdu = 0;
  1092. }
  1093. txdata = &wil->ring_tx_data[evt->ringid];
  1094. txdata->agg_timeout = le16_to_cpu(evt->ba_timeout);
  1095. txdata->agg_wsize = evt->agg_wsize;
  1096. txdata->agg_amsdu = evt->amsdu;
  1097. txdata->addba_in_progress = false;
  1098. }
  1099. static void wmi_evt_addba_rx_req(struct wil6210_vif *vif, int id,
  1100. void *d, int len)
  1101. {
  1102. struct wil6210_priv *wil = vif_to_wil(vif);
  1103. struct wmi_rcp_addba_req_event *evt = d;
  1104. wil_addba_rx_request(wil, vif->mid, evt->cidxtid, evt->dialog_token,
  1105. evt->ba_param_set, evt->ba_timeout,
  1106. evt->ba_seq_ctrl);
  1107. }
  1108. static void wmi_evt_delba(struct wil6210_vif *vif, int id, void *d, int len)
  1109. __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
  1110. {
  1111. struct wil6210_priv *wil = vif_to_wil(vif);
  1112. struct wmi_delba_event *evt = d;
  1113. u8 cid, tid;
  1114. u16 reason = __le16_to_cpu(evt->reason);
  1115. struct wil_sta_info *sta;
  1116. struct wil_tid_ampdu_rx *r;
  1117. might_sleep();
  1118. parse_cidxtid(evt->cidxtid, &cid, &tid);
  1119. wil_dbg_wmi(wil, "DELBA MID %d CID %d TID %d from %s reason %d\n",
  1120. vif->mid, cid, tid,
  1121. evt->from_initiator ? "originator" : "recipient",
  1122. reason);
  1123. if (!evt->from_initiator) {
  1124. int i;
  1125. /* find Tx vring it belongs to */
  1126. for (i = 0; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
  1127. if (wil->ring2cid_tid[i][0] == cid &&
  1128. wil->ring2cid_tid[i][1] == tid) {
  1129. struct wil_ring_tx_data *txdata =
  1130. &wil->ring_tx_data[i];
  1131. wil_dbg_wmi(wil, "DELBA Tx vring %d\n", i);
  1132. txdata->agg_timeout = 0;
  1133. txdata->agg_wsize = 0;
  1134. txdata->addba_in_progress = false;
  1135. break; /* max. 1 matching ring */
  1136. }
  1137. }
  1138. if (i >= ARRAY_SIZE(wil->ring2cid_tid))
  1139. wil_err(wil, "DELBA: unable to find Tx vring\n");
  1140. return;
  1141. }
  1142. sta = &wil->sta[cid];
  1143. spin_lock_bh(&sta->tid_rx_lock);
  1144. r = sta->tid_rx[tid];
  1145. sta->tid_rx[tid] = NULL;
  1146. wil_tid_ampdu_rx_free(wil, r);
  1147. spin_unlock_bh(&sta->tid_rx_lock);
  1148. }
  1149. static void
  1150. wmi_evt_sched_scan_result(struct wil6210_vif *vif, int id, void *d, int len)
  1151. {
  1152. struct wil6210_priv *wil = vif_to_wil(vif);
  1153. struct wmi_sched_scan_result_event *data = d;
  1154. struct wiphy *wiphy = wil_to_wiphy(wil);
  1155. struct ieee80211_mgmt *rx_mgmt_frame =
  1156. (struct ieee80211_mgmt *)data->payload;
  1157. int flen = len - offsetof(struct wmi_sched_scan_result_event, payload);
  1158. int ch_no;
  1159. u32 freq;
  1160. struct ieee80211_channel *channel;
  1161. s32 signal;
  1162. __le16 fc;
  1163. u32 d_len;
  1164. struct cfg80211_bss *bss;
  1165. if (flen < 0) {
  1166. wil_err(wil, "sched scan result event too short, len %d\n",
  1167. len);
  1168. return;
  1169. }
  1170. d_len = le32_to_cpu(data->info.len);
  1171. if (d_len != flen) {
  1172. wil_err(wil,
  1173. "sched scan result length mismatch, d_len %d should be %d\n",
  1174. d_len, flen);
  1175. return;
  1176. }
  1177. fc = rx_mgmt_frame->frame_control;
  1178. if (!ieee80211_is_probe_resp(fc)) {
  1179. wil_err(wil, "sched scan result invalid frame, fc 0x%04x\n",
  1180. fc);
  1181. return;
  1182. }
  1183. ch_no = data->info.channel + 1;
  1184. freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
  1185. channel = ieee80211_get_channel(wiphy, freq);
  1186. if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
  1187. signal = 100 * data->info.rssi;
  1188. else
  1189. signal = data->info.sqi;
  1190. wil_dbg_wmi(wil, "sched scan result: channel %d MCS %d RSSI %d\n",
  1191. data->info.channel, data->info.mcs, data->info.rssi);
  1192. wil_dbg_wmi(wil, "len %d qid %d mid %d cid %d\n",
  1193. d_len, data->info.qid, data->info.mid, data->info.cid);
  1194. wil_hex_dump_wmi("PROBE ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
  1195. d_len, true);
  1196. if (!channel) {
  1197. wil_err(wil, "Frame on unsupported channel\n");
  1198. return;
  1199. }
  1200. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  1201. d_len, signal, GFP_KERNEL);
  1202. if (bss) {
  1203. wil_dbg_wmi(wil, "Added BSS %pM\n", rx_mgmt_frame->bssid);
  1204. cfg80211_put_bss(wiphy, bss);
  1205. } else {
  1206. wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
  1207. }
  1208. cfg80211_sched_scan_results(wiphy, 0);
  1209. }
  1210. static void wil_link_stats_store_basic(struct wil6210_vif *vif,
  1211. struct wmi_link_stats_basic *basic)
  1212. {
  1213. struct wil6210_priv *wil = vif_to_wil(vif);
  1214. u8 cid = basic->cid;
  1215. struct wil_sta_info *sta;
  1216. if (cid < 0 || cid >= WIL6210_MAX_CID) {
  1217. wil_err(wil, "invalid cid %d\n", cid);
  1218. return;
  1219. }
  1220. sta = &wil->sta[cid];
  1221. sta->fw_stats_basic = *basic;
  1222. }
  1223. static void wil_link_stats_store_global(struct wil6210_vif *vif,
  1224. struct wmi_link_stats_global *global)
  1225. {
  1226. struct wil6210_priv *wil = vif_to_wil(vif);
  1227. wil->fw_stats_global.stats = *global;
  1228. }
  1229. static void wmi_link_stats_parse(struct wil6210_vif *vif, u64 tsf,
  1230. bool has_next, void *payload,
  1231. size_t payload_size)
  1232. {
  1233. struct wil6210_priv *wil = vif_to_wil(vif);
  1234. size_t hdr_size = sizeof(struct wmi_link_stats_record);
  1235. size_t stats_size, record_size, expected_size;
  1236. struct wmi_link_stats_record *hdr;
  1237. if (payload_size < hdr_size) {
  1238. wil_err(wil, "link stats wrong event size %zu\n", payload_size);
  1239. return;
  1240. }
  1241. while (payload_size >= hdr_size) {
  1242. hdr = payload;
  1243. stats_size = le16_to_cpu(hdr->record_size);
  1244. record_size = hdr_size + stats_size;
  1245. if (payload_size < record_size) {
  1246. wil_err(wil, "link stats payload ended unexpectedly, size %zu < %zu\n",
  1247. payload_size, record_size);
  1248. return;
  1249. }
  1250. switch (hdr->record_type_id) {
  1251. case WMI_LINK_STATS_TYPE_BASIC:
  1252. expected_size = sizeof(struct wmi_link_stats_basic);
  1253. if (stats_size < expected_size) {
  1254. wil_err(wil, "link stats invalid basic record size %zu < %zu\n",
  1255. stats_size, expected_size);
  1256. return;
  1257. }
  1258. if (vif->fw_stats_ready) {
  1259. /* clean old statistics */
  1260. vif->fw_stats_tsf = 0;
  1261. vif->fw_stats_ready = 0;
  1262. }
  1263. wil_link_stats_store_basic(vif, payload + hdr_size);
  1264. if (!has_next) {
  1265. vif->fw_stats_tsf = tsf;
  1266. vif->fw_stats_ready = 1;
  1267. }
  1268. break;
  1269. case WMI_LINK_STATS_TYPE_GLOBAL:
  1270. expected_size = sizeof(struct wmi_link_stats_global);
  1271. if (stats_size < sizeof(struct wmi_link_stats_global)) {
  1272. wil_err(wil, "link stats invalid global record size %zu < %zu\n",
  1273. stats_size, expected_size);
  1274. return;
  1275. }
  1276. if (wil->fw_stats_global.ready) {
  1277. /* clean old statistics */
  1278. wil->fw_stats_global.tsf = 0;
  1279. wil->fw_stats_global.ready = 0;
  1280. }
  1281. wil_link_stats_store_global(vif, payload + hdr_size);
  1282. if (!has_next) {
  1283. wil->fw_stats_global.tsf = tsf;
  1284. wil->fw_stats_global.ready = 1;
  1285. }
  1286. break;
  1287. default:
  1288. break;
  1289. }
  1290. /* skip to next record */
  1291. payload += record_size;
  1292. payload_size -= record_size;
  1293. }
  1294. }
  1295. static void
  1296. wmi_evt_link_stats(struct wil6210_vif *vif, int id, void *d, int len)
  1297. {
  1298. struct wil6210_priv *wil = vif_to_wil(vif);
  1299. struct wmi_link_stats_event *evt = d;
  1300. size_t payload_size;
  1301. if (len < offsetof(struct wmi_link_stats_event, payload)) {
  1302. wil_err(wil, "stats event way too short %d\n", len);
  1303. return;
  1304. }
  1305. payload_size = le16_to_cpu(evt->payload_size);
  1306. if (len < sizeof(struct wmi_link_stats_event) + payload_size) {
  1307. wil_err(wil, "stats event too short %d\n", len);
  1308. return;
  1309. }
  1310. wmi_link_stats_parse(vif, le64_to_cpu(evt->tsf), evt->has_next,
  1311. evt->payload, payload_size);
  1312. }
  1313. /**
  1314. * Some events are ignored for purpose; and need not be interpreted as
  1315. * "unhandled events"
  1316. */
  1317. static void wmi_evt_ignore(struct wil6210_vif *vif, int id, void *d, int len)
  1318. {
  1319. struct wil6210_priv *wil = vif_to_wil(vif);
  1320. wil_dbg_wmi(wil, "Ignore event 0x%04x len %d\n", id, len);
  1321. }
  1322. static const struct {
  1323. int eventid;
  1324. void (*handler)(struct wil6210_vif *vif,
  1325. int eventid, void *data, int data_len);
  1326. } wmi_evt_handlers[] = {
  1327. {WMI_READY_EVENTID, wmi_evt_ready},
  1328. {WMI_FW_READY_EVENTID, wmi_evt_ignore},
  1329. {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
  1330. {WMI_TX_MGMT_PACKET_EVENTID, wmi_evt_tx_mgmt},
  1331. {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
  1332. {WMI_CONNECT_EVENTID, wmi_evt_connect},
  1333. {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
  1334. {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
  1335. {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
  1336. {WMI_RCP_ADDBA_REQ_EVENTID, wmi_evt_addba_rx_req},
  1337. {WMI_DELBA_EVENTID, wmi_evt_delba},
  1338. {WMI_RING_EN_EVENTID, wmi_evt_ring_en},
  1339. {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_ignore},
  1340. {WMI_SCHED_SCAN_RESULT_EVENTID, wmi_evt_sched_scan_result},
  1341. {WMI_LINK_STATS_EVENTID, wmi_evt_link_stats},
  1342. };
  1343. /*
  1344. * Run in IRQ context
  1345. * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
  1346. * that will be eventually handled by the @wmi_event_worker in the thread
  1347. * context of thread "wil6210_wmi"
  1348. */
  1349. void wmi_recv_cmd(struct wil6210_priv *wil)
  1350. {
  1351. struct wil6210_mbox_ring_desc d_tail;
  1352. struct wil6210_mbox_hdr hdr;
  1353. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  1354. struct pending_wmi_event *evt;
  1355. u8 *cmd;
  1356. void __iomem *src;
  1357. ulong flags;
  1358. unsigned n;
  1359. unsigned int num_immed_reply = 0;
  1360. if (!test_bit(wil_status_mbox_ready, wil->status)) {
  1361. wil_err(wil, "Reset in progress. Cannot handle WMI event\n");
  1362. return;
  1363. }
  1364. if (test_bit(wil_status_suspended, wil->status)) {
  1365. wil_err(wil, "suspended. cannot handle WMI event\n");
  1366. return;
  1367. }
  1368. for (n = 0;; n++) {
  1369. u16 len;
  1370. bool q;
  1371. bool immed_reply = false;
  1372. r->head = wil_r(wil, RGF_MBOX +
  1373. offsetof(struct wil6210_mbox_ctl, rx.head));
  1374. if (r->tail == r->head)
  1375. break;
  1376. wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n",
  1377. r->head, r->tail);
  1378. /* read cmd descriptor from tail */
  1379. wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
  1380. sizeof(struct wil6210_mbox_ring_desc));
  1381. if (d_tail.sync == 0) {
  1382. wil_err(wil, "Mbox evt not owned by FW?\n");
  1383. break;
  1384. }
  1385. /* read cmd header from descriptor */
  1386. if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
  1387. wil_err(wil, "Mbox evt at 0x%08x?\n",
  1388. le32_to_cpu(d_tail.addr));
  1389. break;
  1390. }
  1391. len = le16_to_cpu(hdr.len);
  1392. wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
  1393. le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
  1394. hdr.flags);
  1395. /* read cmd buffer from descriptor */
  1396. src = wmi_buffer(wil, d_tail.addr) +
  1397. sizeof(struct wil6210_mbox_hdr);
  1398. evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
  1399. event.wmi) + len, 4),
  1400. GFP_KERNEL);
  1401. if (!evt)
  1402. break;
  1403. evt->event.hdr = hdr;
  1404. cmd = (void *)&evt->event.wmi;
  1405. wil_memcpy_fromio_32(cmd, src, len);
  1406. /* mark entry as empty */
  1407. wil_w(wil, r->tail +
  1408. offsetof(struct wil6210_mbox_ring_desc, sync), 0);
  1409. /* indicate */
  1410. if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
  1411. (len >= sizeof(struct wmi_cmd_hdr))) {
  1412. struct wmi_cmd_hdr *wmi = &evt->event.wmi;
  1413. u16 id = le16_to_cpu(wmi->command_id);
  1414. u8 mid = wmi->mid;
  1415. u32 tstamp = le32_to_cpu(wmi->fw_timestamp);
  1416. if (test_bit(wil_status_resuming, wil->status)) {
  1417. if (id == WMI_TRAFFIC_RESUME_EVENTID)
  1418. clear_bit(wil_status_resuming,
  1419. wil->status);
  1420. else
  1421. wil_err(wil,
  1422. "WMI evt %d while resuming\n",
  1423. id);
  1424. }
  1425. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  1426. if (wil->reply_id && wil->reply_id == id &&
  1427. wil->reply_mid == mid) {
  1428. if (wil->reply_buf) {
  1429. memcpy(wil->reply_buf, wmi,
  1430. min(len, wil->reply_size));
  1431. immed_reply = true;
  1432. }
  1433. if (id == WMI_TRAFFIC_SUSPEND_EVENTID) {
  1434. wil_dbg_wmi(wil,
  1435. "set suspend_resp_rcvd\n");
  1436. wil->suspend_resp_rcvd = true;
  1437. }
  1438. }
  1439. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  1440. wil_dbg_wmi(wil, "recv %s (0x%04x) MID %d @%d msec\n",
  1441. eventid2name(id), id, wmi->mid, tstamp);
  1442. trace_wil6210_wmi_event(wmi, &wmi[1],
  1443. len - sizeof(*wmi));
  1444. }
  1445. wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
  1446. &evt->event.hdr, sizeof(hdr) + len, true);
  1447. /* advance tail */
  1448. r->tail = r->base + ((r->tail - r->base +
  1449. sizeof(struct wil6210_mbox_ring_desc)) % r->size);
  1450. wil_w(wil, RGF_MBOX +
  1451. offsetof(struct wil6210_mbox_ctl, rx.tail), r->tail);
  1452. if (immed_reply) {
  1453. wil_dbg_wmi(wil, "recv_cmd: Complete WMI 0x%04x\n",
  1454. wil->reply_id);
  1455. kfree(evt);
  1456. num_immed_reply++;
  1457. complete(&wil->wmi_call);
  1458. } else {
  1459. /* add to the pending list */
  1460. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  1461. list_add_tail(&evt->list, &wil->pending_wmi_ev);
  1462. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  1463. q = queue_work(wil->wmi_wq, &wil->wmi_event_worker);
  1464. wil_dbg_wmi(wil, "queue_work -> %d\n", q);
  1465. }
  1466. }
  1467. /* normally, 1 event per IRQ should be processed */
  1468. wil_dbg_wmi(wil, "recv_cmd: -> %d events queued, %d completed\n",
  1469. n - num_immed_reply, num_immed_reply);
  1470. }
  1471. int wmi_call(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len,
  1472. u16 reply_id, void *reply, u16 reply_size, int to_msec)
  1473. {
  1474. int rc;
  1475. unsigned long remain;
  1476. mutex_lock(&wil->wmi_mutex);
  1477. spin_lock(&wil->wmi_ev_lock);
  1478. wil->reply_id = reply_id;
  1479. wil->reply_mid = mid;
  1480. wil->reply_buf = reply;
  1481. wil->reply_size = reply_size;
  1482. reinit_completion(&wil->wmi_call);
  1483. spin_unlock(&wil->wmi_ev_lock);
  1484. rc = __wmi_send(wil, cmdid, mid, buf, len);
  1485. if (rc)
  1486. goto out;
  1487. remain = wait_for_completion_timeout(&wil->wmi_call,
  1488. msecs_to_jiffies(to_msec));
  1489. if (0 == remain) {
  1490. wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
  1491. cmdid, reply_id, to_msec);
  1492. rc = -ETIME;
  1493. } else {
  1494. wil_dbg_wmi(wil,
  1495. "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
  1496. cmdid, reply_id,
  1497. to_msec - jiffies_to_msecs(remain));
  1498. }
  1499. out:
  1500. spin_lock(&wil->wmi_ev_lock);
  1501. wil->reply_id = 0;
  1502. wil->reply_mid = U8_MAX;
  1503. wil->reply_buf = NULL;
  1504. wil->reply_size = 0;
  1505. spin_unlock(&wil->wmi_ev_lock);
  1506. mutex_unlock(&wil->wmi_mutex);
  1507. return rc;
  1508. }
  1509. int wmi_echo(struct wil6210_priv *wil)
  1510. {
  1511. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1512. struct wmi_echo_cmd cmd = {
  1513. .value = cpu_to_le32(0x12345678),
  1514. };
  1515. return wmi_call(wil, WMI_ECHO_CMDID, vif->mid, &cmd, sizeof(cmd),
  1516. WMI_ECHO_RSP_EVENTID, NULL, 0, 50);
  1517. }
  1518. int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
  1519. {
  1520. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1521. struct wmi_set_mac_address_cmd cmd;
  1522. ether_addr_copy(cmd.mac, addr);
  1523. wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
  1524. return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, vif->mid,
  1525. &cmd, sizeof(cmd));
  1526. }
  1527. int wmi_led_cfg(struct wil6210_priv *wil, bool enable)
  1528. {
  1529. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1530. int rc = 0;
  1531. struct wmi_led_cfg_cmd cmd = {
  1532. .led_mode = enable,
  1533. .id = led_id,
  1534. .slow_blink_cfg.blink_on =
  1535. cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].on_ms),
  1536. .slow_blink_cfg.blink_off =
  1537. cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].off_ms),
  1538. .medium_blink_cfg.blink_on =
  1539. cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].on_ms),
  1540. .medium_blink_cfg.blink_off =
  1541. cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].off_ms),
  1542. .fast_blink_cfg.blink_on =
  1543. cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].on_ms),
  1544. .fast_blink_cfg.blink_off =
  1545. cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].off_ms),
  1546. .led_polarity = led_polarity,
  1547. };
  1548. struct {
  1549. struct wmi_cmd_hdr wmi;
  1550. struct wmi_led_cfg_done_event evt;
  1551. } __packed reply = {
  1552. .evt = {.status = cpu_to_le32(WMI_FW_STATUS_FAILURE)},
  1553. };
  1554. if (led_id == WIL_LED_INVALID_ID)
  1555. goto out;
  1556. if (led_id > WIL_LED_MAX_ID) {
  1557. wil_err(wil, "Invalid led id %d\n", led_id);
  1558. rc = -EINVAL;
  1559. goto out;
  1560. }
  1561. wil_dbg_wmi(wil,
  1562. "%s led %d\n",
  1563. enable ? "enabling" : "disabling", led_id);
  1564. rc = wmi_call(wil, WMI_LED_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
  1565. WMI_LED_CFG_DONE_EVENTID, &reply, sizeof(reply),
  1566. 100);
  1567. if (rc)
  1568. goto out;
  1569. if (reply.evt.status) {
  1570. wil_err(wil, "led %d cfg failed with status %d\n",
  1571. led_id, le32_to_cpu(reply.evt.status));
  1572. rc = -EINVAL;
  1573. }
  1574. out:
  1575. return rc;
  1576. }
  1577. int wmi_pcp_start(struct wil6210_vif *vif,
  1578. int bi, u8 wmi_nettype, u8 chan, u8 hidden_ssid, u8 is_go)
  1579. {
  1580. struct wil6210_priv *wil = vif_to_wil(vif);
  1581. int rc;
  1582. struct wmi_pcp_start_cmd cmd = {
  1583. .bcon_interval = cpu_to_le16(bi),
  1584. .network_type = wmi_nettype,
  1585. .disable_sec_offload = 1,
  1586. .channel = chan - 1,
  1587. .pcp_max_assoc_sta = max_assoc_sta,
  1588. .hidden_ssid = hidden_ssid,
  1589. .is_go = is_go,
  1590. .ap_sme_offload_mode = disable_ap_sme ?
  1591. WMI_AP_SME_OFFLOAD_PARTIAL :
  1592. WMI_AP_SME_OFFLOAD_FULL,
  1593. .abft_len = wil->abft_len,
  1594. };
  1595. struct {
  1596. struct wmi_cmd_hdr wmi;
  1597. struct wmi_pcp_started_event evt;
  1598. } __packed reply = {
  1599. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1600. };
  1601. if (!vif->privacy)
  1602. cmd.disable_sec = 1;
  1603. if ((cmd.pcp_max_assoc_sta > WIL6210_MAX_CID) ||
  1604. (cmd.pcp_max_assoc_sta <= 0)) {
  1605. wil_info(wil,
  1606. "Requested connection limit %u, valid values are 1 - %d. Setting to %d\n",
  1607. max_assoc_sta, WIL6210_MAX_CID, WIL6210_MAX_CID);
  1608. cmd.pcp_max_assoc_sta = WIL6210_MAX_CID;
  1609. }
  1610. if (disable_ap_sme &&
  1611. !test_bit(WMI_FW_CAPABILITY_AP_SME_OFFLOAD_PARTIAL,
  1612. wil->fw_capabilities)) {
  1613. wil_err(wil, "disable_ap_sme not supported by FW\n");
  1614. return -EOPNOTSUPP;
  1615. }
  1616. /*
  1617. * Processing time may be huge, in case of secure AP it takes about
  1618. * 3500ms for FW to start AP
  1619. */
  1620. rc = wmi_call(wil, WMI_PCP_START_CMDID, vif->mid, &cmd, sizeof(cmd),
  1621. WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
  1622. if (rc)
  1623. return rc;
  1624. if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
  1625. rc = -EINVAL;
  1626. if (wmi_nettype != WMI_NETTYPE_P2P)
  1627. /* Don't fail due to error in the led configuration */
  1628. wmi_led_cfg(wil, true);
  1629. return rc;
  1630. }
  1631. int wmi_pcp_stop(struct wil6210_vif *vif)
  1632. {
  1633. struct wil6210_priv *wil = vif_to_wil(vif);
  1634. int rc;
  1635. rc = wmi_led_cfg(wil, false);
  1636. if (rc)
  1637. return rc;
  1638. return wmi_call(wil, WMI_PCP_STOP_CMDID, vif->mid, NULL, 0,
  1639. WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
  1640. }
  1641. int wmi_set_ssid(struct wil6210_vif *vif, u8 ssid_len, const void *ssid)
  1642. {
  1643. struct wil6210_priv *wil = vif_to_wil(vif);
  1644. struct wmi_set_ssid_cmd cmd = {
  1645. .ssid_len = cpu_to_le32(ssid_len),
  1646. };
  1647. if (ssid_len > sizeof(cmd.ssid))
  1648. return -EINVAL;
  1649. memcpy(cmd.ssid, ssid, ssid_len);
  1650. return wmi_send(wil, WMI_SET_SSID_CMDID, vif->mid, &cmd, sizeof(cmd));
  1651. }
  1652. int wmi_get_ssid(struct wil6210_vif *vif, u8 *ssid_len, void *ssid)
  1653. {
  1654. struct wil6210_priv *wil = vif_to_wil(vif);
  1655. int rc;
  1656. struct {
  1657. struct wmi_cmd_hdr wmi;
  1658. struct wmi_set_ssid_cmd cmd;
  1659. } __packed reply;
  1660. int len; /* reply.cmd.ssid_len in CPU order */
  1661. memset(&reply, 0, sizeof(reply));
  1662. rc = wmi_call(wil, WMI_GET_SSID_CMDID, vif->mid, NULL, 0,
  1663. WMI_GET_SSID_EVENTID, &reply, sizeof(reply), 20);
  1664. if (rc)
  1665. return rc;
  1666. len = le32_to_cpu(reply.cmd.ssid_len);
  1667. if (len > sizeof(reply.cmd.ssid))
  1668. return -EINVAL;
  1669. *ssid_len = len;
  1670. memcpy(ssid, reply.cmd.ssid, len);
  1671. return 0;
  1672. }
  1673. int wmi_set_channel(struct wil6210_priv *wil, int channel)
  1674. {
  1675. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1676. struct wmi_set_pcp_channel_cmd cmd = {
  1677. .channel = channel - 1,
  1678. };
  1679. return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, vif->mid,
  1680. &cmd, sizeof(cmd));
  1681. }
  1682. int wmi_get_channel(struct wil6210_priv *wil, int *channel)
  1683. {
  1684. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1685. int rc;
  1686. struct {
  1687. struct wmi_cmd_hdr wmi;
  1688. struct wmi_set_pcp_channel_cmd cmd;
  1689. } __packed reply;
  1690. memset(&reply, 0, sizeof(reply));
  1691. rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, vif->mid, NULL, 0,
  1692. WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
  1693. if (rc)
  1694. return rc;
  1695. if (reply.cmd.channel > 3)
  1696. return -EINVAL;
  1697. *channel = reply.cmd.channel + 1;
  1698. return 0;
  1699. }
  1700. int wmi_p2p_cfg(struct wil6210_vif *vif, int channel, int bi)
  1701. {
  1702. struct wil6210_priv *wil = vif_to_wil(vif);
  1703. int rc;
  1704. struct wmi_p2p_cfg_cmd cmd = {
  1705. .discovery_mode = WMI_DISCOVERY_MODE_PEER2PEER,
  1706. .bcon_interval = cpu_to_le16(bi),
  1707. .channel = channel - 1,
  1708. };
  1709. struct {
  1710. struct wmi_cmd_hdr wmi;
  1711. struct wmi_p2p_cfg_done_event evt;
  1712. } __packed reply = {
  1713. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1714. };
  1715. wil_dbg_wmi(wil, "sending WMI_P2P_CFG_CMDID\n");
  1716. rc = wmi_call(wil, WMI_P2P_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
  1717. WMI_P2P_CFG_DONE_EVENTID, &reply, sizeof(reply), 300);
  1718. if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  1719. wil_err(wil, "P2P_CFG failed. status %d\n", reply.evt.status);
  1720. rc = -EINVAL;
  1721. }
  1722. return rc;
  1723. }
  1724. int wmi_start_listen(struct wil6210_vif *vif)
  1725. {
  1726. struct wil6210_priv *wil = vif_to_wil(vif);
  1727. int rc;
  1728. struct {
  1729. struct wmi_cmd_hdr wmi;
  1730. struct wmi_listen_started_event evt;
  1731. } __packed reply = {
  1732. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1733. };
  1734. wil_dbg_wmi(wil, "sending WMI_START_LISTEN_CMDID\n");
  1735. rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
  1736. WMI_LISTEN_STARTED_EVENTID, &reply, sizeof(reply), 300);
  1737. if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  1738. wil_err(wil, "device failed to start listen. status %d\n",
  1739. reply.evt.status);
  1740. rc = -EINVAL;
  1741. }
  1742. return rc;
  1743. }
  1744. int wmi_start_search(struct wil6210_vif *vif)
  1745. {
  1746. struct wil6210_priv *wil = vif_to_wil(vif);
  1747. int rc;
  1748. struct {
  1749. struct wmi_cmd_hdr wmi;
  1750. struct wmi_search_started_event evt;
  1751. } __packed reply = {
  1752. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1753. };
  1754. wil_dbg_wmi(wil, "sending WMI_START_SEARCH_CMDID\n");
  1755. rc = wmi_call(wil, WMI_START_SEARCH_CMDID, vif->mid, NULL, 0,
  1756. WMI_SEARCH_STARTED_EVENTID, &reply, sizeof(reply), 300);
  1757. if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  1758. wil_err(wil, "device failed to start search. status %d\n",
  1759. reply.evt.status);
  1760. rc = -EINVAL;
  1761. }
  1762. return rc;
  1763. }
  1764. int wmi_stop_discovery(struct wil6210_vif *vif)
  1765. {
  1766. struct wil6210_priv *wil = vif_to_wil(vif);
  1767. int rc;
  1768. wil_dbg_wmi(wil, "sending WMI_DISCOVERY_STOP_CMDID\n");
  1769. rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
  1770. WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 100);
  1771. if (rc)
  1772. wil_err(wil, "Failed to stop discovery\n");
  1773. return rc;
  1774. }
  1775. int wmi_del_cipher_key(struct wil6210_vif *vif, u8 key_index,
  1776. const void *mac_addr, int key_usage)
  1777. {
  1778. struct wil6210_priv *wil = vif_to_wil(vif);
  1779. struct wmi_delete_cipher_key_cmd cmd = {
  1780. .key_index = key_index,
  1781. };
  1782. if (mac_addr)
  1783. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  1784. return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, vif->mid,
  1785. &cmd, sizeof(cmd));
  1786. }
  1787. int wmi_add_cipher_key(struct wil6210_vif *vif, u8 key_index,
  1788. const void *mac_addr, int key_len, const void *key,
  1789. int key_usage)
  1790. {
  1791. struct wil6210_priv *wil = vif_to_wil(vif);
  1792. struct wmi_add_cipher_key_cmd cmd = {
  1793. .key_index = key_index,
  1794. .key_usage = key_usage,
  1795. .key_len = key_len,
  1796. };
  1797. if (!key || (key_len > sizeof(cmd.key)))
  1798. return -EINVAL;
  1799. memcpy(cmd.key, key, key_len);
  1800. if (mac_addr)
  1801. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  1802. return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, vif->mid,
  1803. &cmd, sizeof(cmd));
  1804. }
  1805. int wmi_set_ie(struct wil6210_vif *vif, u8 type, u16 ie_len, const void *ie)
  1806. {
  1807. struct wil6210_priv *wil = vif_to_wil(vif);
  1808. static const char *const names[] = {
  1809. [WMI_FRAME_BEACON] = "BEACON",
  1810. [WMI_FRAME_PROBE_REQ] = "PROBE_REQ",
  1811. [WMI_FRAME_PROBE_RESP] = "WMI_FRAME_PROBE_RESP",
  1812. [WMI_FRAME_ASSOC_REQ] = "WMI_FRAME_ASSOC_REQ",
  1813. [WMI_FRAME_ASSOC_RESP] = "WMI_FRAME_ASSOC_RESP",
  1814. };
  1815. int rc;
  1816. u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
  1817. struct wmi_set_appie_cmd *cmd;
  1818. if (len < ie_len) {
  1819. rc = -EINVAL;
  1820. goto out;
  1821. }
  1822. cmd = kzalloc(len, GFP_KERNEL);
  1823. if (!cmd) {
  1824. rc = -ENOMEM;
  1825. goto out;
  1826. }
  1827. if (!ie)
  1828. ie_len = 0;
  1829. cmd->mgmt_frm_type = type;
  1830. /* BUG: FW API define ieLen as u8. Will fix FW */
  1831. cmd->ie_len = cpu_to_le16(ie_len);
  1832. memcpy(cmd->ie_info, ie, ie_len);
  1833. rc = wmi_send(wil, WMI_SET_APPIE_CMDID, vif->mid, cmd, len);
  1834. kfree(cmd);
  1835. out:
  1836. if (rc) {
  1837. const char *name = type < ARRAY_SIZE(names) ?
  1838. names[type] : "??";
  1839. wil_err(wil, "set_ie(%d %s) failed : %d\n", type, name, rc);
  1840. }
  1841. return rc;
  1842. }
  1843. /**
  1844. * wmi_rxon - turn radio on/off
  1845. * @on: turn on if true, off otherwise
  1846. *
  1847. * Only switch radio. Channel should be set separately.
  1848. * No timeout for rxon - radio turned on forever unless some other call
  1849. * turns it off
  1850. */
  1851. int wmi_rxon(struct wil6210_priv *wil, bool on)
  1852. {
  1853. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1854. int rc;
  1855. struct {
  1856. struct wmi_cmd_hdr wmi;
  1857. struct wmi_listen_started_event evt;
  1858. } __packed reply = {
  1859. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1860. };
  1861. wil_info(wil, "(%s)\n", on ? "on" : "off");
  1862. if (on) {
  1863. rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
  1864. WMI_LISTEN_STARTED_EVENTID,
  1865. &reply, sizeof(reply), 100);
  1866. if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS))
  1867. rc = -EINVAL;
  1868. } else {
  1869. rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
  1870. WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20);
  1871. }
  1872. return rc;
  1873. }
  1874. int wmi_rx_chain_add(struct wil6210_priv *wil, struct wil_ring *vring)
  1875. {
  1876. struct net_device *ndev = wil->main_ndev;
  1877. struct wireless_dev *wdev = ndev->ieee80211_ptr;
  1878. struct wil6210_vif *vif = ndev_to_vif(ndev);
  1879. struct wmi_cfg_rx_chain_cmd cmd = {
  1880. .action = WMI_RX_CHAIN_ADD,
  1881. .rx_sw_ring = {
  1882. .max_mpdu_size = cpu_to_le16(
  1883. wil_mtu2macbuf(wil->rx_buf_len)),
  1884. .ring_mem_base = cpu_to_le64(vring->pa),
  1885. .ring_size = cpu_to_le16(vring->size),
  1886. },
  1887. .mid = 0, /* TODO - what is it? */
  1888. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  1889. .reorder_type = WMI_RX_SW_REORDER,
  1890. .host_thrsh = cpu_to_le16(rx_ring_overflow_thrsh),
  1891. };
  1892. struct {
  1893. struct wmi_cmd_hdr wmi;
  1894. struct wmi_cfg_rx_chain_done_event evt;
  1895. } __packed evt;
  1896. int rc;
  1897. memset(&evt, 0, sizeof(evt));
  1898. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  1899. struct ieee80211_channel *ch = wil->monitor_chandef.chan;
  1900. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  1901. if (ch)
  1902. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  1903. cmd.sniffer_cfg.phy_info_mode =
  1904. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  1905. cmd.sniffer_cfg.phy_support =
  1906. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  1907. ? WMI_SNIFFER_CP : WMI_SNIFFER_BOTH_PHYS);
  1908. } else {
  1909. /* Initialize offload (in non-sniffer mode).
  1910. * Linux IP stack always calculates IP checksum
  1911. * HW always calculate TCP/UDP checksum
  1912. */
  1913. cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
  1914. }
  1915. if (rx_align_2)
  1916. cmd.l2_802_3_offload_ctrl |=
  1917. L2_802_3_OFFLOAD_CTRL_SNAP_KEEP_MSK;
  1918. /* typical time for secure PCP is 840ms */
  1919. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, vif->mid, &cmd, sizeof(cmd),
  1920. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  1921. if (rc)
  1922. return rc;
  1923. if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
  1924. rc = -EINVAL;
  1925. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  1926. wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
  1927. le32_to_cpu(evt.evt.status), vring->hwtail);
  1928. return rc;
  1929. }
  1930. int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_bb, u32 *t_rf)
  1931. {
  1932. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1933. int rc;
  1934. struct wmi_temp_sense_cmd cmd = {
  1935. .measure_baseband_en = cpu_to_le32(!!t_bb),
  1936. .measure_rf_en = cpu_to_le32(!!t_rf),
  1937. .measure_mode = cpu_to_le32(TEMPERATURE_MEASURE_NOW),
  1938. };
  1939. struct {
  1940. struct wmi_cmd_hdr wmi;
  1941. struct wmi_temp_sense_done_event evt;
  1942. } __packed reply;
  1943. memset(&reply, 0, sizeof(reply));
  1944. rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, vif->mid, &cmd, sizeof(cmd),
  1945. WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
  1946. if (rc)
  1947. return rc;
  1948. if (t_bb)
  1949. *t_bb = le32_to_cpu(reply.evt.baseband_t1000);
  1950. if (t_rf)
  1951. *t_rf = le32_to_cpu(reply.evt.rf_t1000);
  1952. return 0;
  1953. }
  1954. int wmi_disconnect_sta(struct wil6210_vif *vif, const u8 *mac,
  1955. u16 reason, bool full_disconnect, bool del_sta)
  1956. {
  1957. struct wil6210_priv *wil = vif_to_wil(vif);
  1958. int rc;
  1959. u16 reason_code;
  1960. struct wmi_disconnect_sta_cmd disc_sta_cmd = {
  1961. .disconnect_reason = cpu_to_le16(reason),
  1962. };
  1963. struct wmi_del_sta_cmd del_sta_cmd = {
  1964. .disconnect_reason = cpu_to_le16(reason),
  1965. };
  1966. struct {
  1967. struct wmi_cmd_hdr wmi;
  1968. struct wmi_disconnect_event evt;
  1969. } __packed reply;
  1970. wil_dbg_wmi(wil, "disconnect_sta: (%pM, reason %d)\n", mac, reason);
  1971. memset(&reply, 0, sizeof(reply));
  1972. vif->locally_generated_disc = true;
  1973. if (del_sta) {
  1974. ether_addr_copy(del_sta_cmd.dst_mac, mac);
  1975. rc = wmi_call(wil, WMI_DEL_STA_CMDID, vif->mid, &del_sta_cmd,
  1976. sizeof(del_sta_cmd), WMI_DISCONNECT_EVENTID,
  1977. &reply, sizeof(reply), 1000);
  1978. } else {
  1979. ether_addr_copy(disc_sta_cmd.dst_mac, mac);
  1980. rc = wmi_call(wil, WMI_DISCONNECT_STA_CMDID, vif->mid,
  1981. &disc_sta_cmd, sizeof(disc_sta_cmd),
  1982. WMI_DISCONNECT_EVENTID,
  1983. &reply, sizeof(reply), 1000);
  1984. }
  1985. /* failure to disconnect in reasonable time treated as FW error */
  1986. if (rc) {
  1987. wil_fw_error_recovery(wil);
  1988. return rc;
  1989. }
  1990. if (full_disconnect) {
  1991. /* call event handler manually after processing wmi_call,
  1992. * to avoid deadlock - disconnect event handler acquires
  1993. * wil->mutex while it is already held here
  1994. */
  1995. reason_code = le16_to_cpu(reply.evt.protocol_reason_status);
  1996. wil_dbg_wmi(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
  1997. reply.evt.bssid, reason_code,
  1998. reply.evt.disconnect_reason);
  1999. wil->sinfo_gen++;
  2000. wil6210_disconnect(vif, reply.evt.bssid, reason_code, true);
  2001. }
  2002. return 0;
  2003. }
  2004. int wmi_addba(struct wil6210_priv *wil, u8 mid,
  2005. u8 ringid, u8 size, u16 timeout)
  2006. {
  2007. u8 amsdu = wil->use_enhanced_dma_hw && wil->use_rx_hw_reordering &&
  2008. test_bit(WMI_FW_CAPABILITY_AMSDU, wil->fw_capabilities) &&
  2009. wil->amsdu_en;
  2010. struct wmi_ring_ba_en_cmd cmd = {
  2011. .ring_id = ringid,
  2012. .agg_max_wsize = size,
  2013. .ba_timeout = cpu_to_le16(timeout),
  2014. .amsdu = amsdu,
  2015. };
  2016. wil_dbg_wmi(wil, "addba: (ring %d size %d timeout %d amsdu %d)\n",
  2017. ringid, size, timeout, amsdu);
  2018. return wmi_send(wil, WMI_RING_BA_EN_CMDID, mid, &cmd, sizeof(cmd));
  2019. }
  2020. int wmi_delba_tx(struct wil6210_priv *wil, u8 mid, u8 ringid, u16 reason)
  2021. {
  2022. struct wmi_ring_ba_dis_cmd cmd = {
  2023. .ring_id = ringid,
  2024. .reason = cpu_to_le16(reason),
  2025. };
  2026. wil_dbg_wmi(wil, "delba_tx: (ring %d reason %d)\n", ringid, reason);
  2027. return wmi_send(wil, WMI_RING_BA_DIS_CMDID, mid, &cmd, sizeof(cmd));
  2028. }
  2029. int wmi_delba_rx(struct wil6210_priv *wil, u8 mid, u8 cidxtid, u16 reason)
  2030. {
  2031. struct wmi_rcp_delba_cmd cmd = {
  2032. .cidxtid = cidxtid,
  2033. .reason = cpu_to_le16(reason),
  2034. };
  2035. wil_dbg_wmi(wil, "delba_rx: (CID %d TID %d reason %d)\n", cidxtid & 0xf,
  2036. (cidxtid >> 4) & 0xf, reason);
  2037. return wmi_send(wil, WMI_RCP_DELBA_CMDID, mid, &cmd, sizeof(cmd));
  2038. }
  2039. int wmi_addba_rx_resp(struct wil6210_priv *wil,
  2040. u8 mid, u8 cid, u8 tid, u8 token,
  2041. u16 status, bool amsdu, u16 agg_wsize, u16 timeout)
  2042. {
  2043. int rc;
  2044. struct wmi_rcp_addba_resp_cmd cmd = {
  2045. .cidxtid = mk_cidxtid(cid, tid),
  2046. .dialog_token = token,
  2047. .status_code = cpu_to_le16(status),
  2048. /* bit 0: A-MSDU supported
  2049. * bit 1: policy (should be 0 for us)
  2050. * bits 2..5: TID
  2051. * bits 6..15: buffer size
  2052. */
  2053. .ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
  2054. (agg_wsize << 6)),
  2055. .ba_timeout = cpu_to_le16(timeout),
  2056. };
  2057. struct {
  2058. struct wmi_cmd_hdr wmi;
  2059. struct wmi_rcp_addba_resp_sent_event evt;
  2060. } __packed reply = {
  2061. .evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)},
  2062. };
  2063. wil_dbg_wmi(wil,
  2064. "ADDBA response for MID %d CID %d TID %d size %d timeout %d status %d AMSDU%s\n",
  2065. mid, cid, tid, agg_wsize,
  2066. timeout, status, amsdu ? "+" : "-");
  2067. rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_CMDID, mid, &cmd, sizeof(cmd),
  2068. WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply, sizeof(reply),
  2069. 100);
  2070. if (rc)
  2071. return rc;
  2072. if (reply.evt.status) {
  2073. wil_err(wil, "ADDBA response failed with status %d\n",
  2074. le16_to_cpu(reply.evt.status));
  2075. rc = -EINVAL;
  2076. }
  2077. return rc;
  2078. }
  2079. int wmi_addba_rx_resp_edma(struct wil6210_priv *wil, u8 mid, u8 cid, u8 tid,
  2080. u8 token, u16 status, bool amsdu, u16 agg_wsize,
  2081. u16 timeout)
  2082. {
  2083. int rc;
  2084. struct wmi_rcp_addba_resp_edma_cmd cmd = {
  2085. .cid = cid,
  2086. .tid = tid,
  2087. .dialog_token = token,
  2088. .status_code = cpu_to_le16(status),
  2089. /* bit 0: A-MSDU supported
  2090. * bit 1: policy (should be 0 for us)
  2091. * bits 2..5: TID
  2092. * bits 6..15: buffer size
  2093. */
  2094. .ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
  2095. (agg_wsize << 6)),
  2096. .ba_timeout = cpu_to_le16(timeout),
  2097. /* route all the connections to status ring 0 */
  2098. .status_ring_id = WIL_DEFAULT_RX_STATUS_RING_ID,
  2099. };
  2100. struct {
  2101. struct wmi_cmd_hdr wmi;
  2102. struct wmi_rcp_addba_resp_sent_event evt;
  2103. } __packed reply = {
  2104. .evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)},
  2105. };
  2106. wil_dbg_wmi(wil,
  2107. "ADDBA response for CID %d TID %d size %d timeout %d status %d AMSDU%s, sring_id %d\n",
  2108. cid, tid, agg_wsize, timeout, status, amsdu ? "+" : "-",
  2109. WIL_DEFAULT_RX_STATUS_RING_ID);
  2110. rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_EDMA_CMDID, mid, &cmd,
  2111. sizeof(cmd), WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply,
  2112. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2113. if (rc)
  2114. return rc;
  2115. if (reply.evt.status) {
  2116. wil_err(wil, "ADDBA response failed with status %d\n",
  2117. le16_to_cpu(reply.evt.status));
  2118. rc = -EINVAL;
  2119. }
  2120. return rc;
  2121. }
  2122. int wmi_ps_dev_profile_cfg(struct wil6210_priv *wil,
  2123. enum wmi_ps_profile_type ps_profile)
  2124. {
  2125. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2126. int rc;
  2127. struct wmi_ps_dev_profile_cfg_cmd cmd = {
  2128. .ps_profile = ps_profile,
  2129. };
  2130. struct {
  2131. struct wmi_cmd_hdr wmi;
  2132. struct wmi_ps_dev_profile_cfg_event evt;
  2133. } __packed reply = {
  2134. .evt = {.status = cpu_to_le32(WMI_PS_CFG_CMD_STATUS_ERROR)},
  2135. };
  2136. u32 status;
  2137. wil_dbg_wmi(wil, "Setting ps dev profile %d\n", ps_profile);
  2138. rc = wmi_call(wil, WMI_PS_DEV_PROFILE_CFG_CMDID, vif->mid,
  2139. &cmd, sizeof(cmd),
  2140. WMI_PS_DEV_PROFILE_CFG_EVENTID, &reply, sizeof(reply),
  2141. 100);
  2142. if (rc)
  2143. return rc;
  2144. status = le32_to_cpu(reply.evt.status);
  2145. if (status != WMI_PS_CFG_CMD_STATUS_SUCCESS) {
  2146. wil_err(wil, "ps dev profile cfg failed with status %d\n",
  2147. status);
  2148. rc = -EINVAL;
  2149. }
  2150. return rc;
  2151. }
  2152. int wmi_set_mgmt_retry(struct wil6210_priv *wil, u8 retry_short)
  2153. {
  2154. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2155. int rc;
  2156. struct wmi_set_mgmt_retry_limit_cmd cmd = {
  2157. .mgmt_retry_limit = retry_short,
  2158. };
  2159. struct {
  2160. struct wmi_cmd_hdr wmi;
  2161. struct wmi_set_mgmt_retry_limit_event evt;
  2162. } __packed reply = {
  2163. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2164. };
  2165. wil_dbg_wmi(wil, "Setting mgmt retry short %d\n", retry_short);
  2166. if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
  2167. return -ENOTSUPP;
  2168. rc = wmi_call(wil, WMI_SET_MGMT_RETRY_LIMIT_CMDID, vif->mid,
  2169. &cmd, sizeof(cmd),
  2170. WMI_SET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
  2171. 100);
  2172. if (rc)
  2173. return rc;
  2174. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2175. wil_err(wil, "set mgmt retry limit failed with status %d\n",
  2176. reply.evt.status);
  2177. rc = -EINVAL;
  2178. }
  2179. return rc;
  2180. }
  2181. int wmi_get_mgmt_retry(struct wil6210_priv *wil, u8 *retry_short)
  2182. {
  2183. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2184. int rc;
  2185. struct {
  2186. struct wmi_cmd_hdr wmi;
  2187. struct wmi_get_mgmt_retry_limit_event evt;
  2188. } __packed reply;
  2189. wil_dbg_wmi(wil, "getting mgmt retry short\n");
  2190. if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
  2191. return -ENOTSUPP;
  2192. memset(&reply, 0, sizeof(reply));
  2193. rc = wmi_call(wil, WMI_GET_MGMT_RETRY_LIMIT_CMDID, vif->mid, NULL, 0,
  2194. WMI_GET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
  2195. 100);
  2196. if (rc)
  2197. return rc;
  2198. if (retry_short)
  2199. *retry_short = reply.evt.mgmt_retry_limit;
  2200. return 0;
  2201. }
  2202. int wmi_abort_scan(struct wil6210_vif *vif)
  2203. {
  2204. struct wil6210_priv *wil = vif_to_wil(vif);
  2205. int rc;
  2206. wil_dbg_wmi(wil, "sending WMI_ABORT_SCAN_CMDID\n");
  2207. rc = wmi_send(wil, WMI_ABORT_SCAN_CMDID, vif->mid, NULL, 0);
  2208. if (rc)
  2209. wil_err(wil, "Failed to abort scan (%d)\n", rc);
  2210. return rc;
  2211. }
  2212. int wmi_new_sta(struct wil6210_vif *vif, const u8 *mac, u8 aid)
  2213. {
  2214. struct wil6210_priv *wil = vif_to_wil(vif);
  2215. int rc;
  2216. struct wmi_new_sta_cmd cmd = {
  2217. .aid = aid,
  2218. };
  2219. wil_dbg_wmi(wil, "new sta %pM, aid %d\n", mac, aid);
  2220. ether_addr_copy(cmd.dst_mac, mac);
  2221. rc = wmi_send(wil, WMI_NEW_STA_CMDID, vif->mid, &cmd, sizeof(cmd));
  2222. if (rc)
  2223. wil_err(wil, "Failed to send new sta (%d)\n", rc);
  2224. return rc;
  2225. }
  2226. void wmi_event_flush(struct wil6210_priv *wil)
  2227. {
  2228. ulong flags;
  2229. struct pending_wmi_event *evt, *t;
  2230. wil_dbg_wmi(wil, "event_flush\n");
  2231. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  2232. list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
  2233. list_del(&evt->list);
  2234. kfree(evt);
  2235. }
  2236. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  2237. }
  2238. static const char *suspend_status2name(u8 status)
  2239. {
  2240. switch (status) {
  2241. case WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE:
  2242. return "LINK_NOT_IDLE";
  2243. default:
  2244. return "Untracked status";
  2245. }
  2246. }
  2247. int wmi_suspend(struct wil6210_priv *wil)
  2248. {
  2249. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2250. int rc;
  2251. struct wmi_traffic_suspend_cmd cmd = {
  2252. .wakeup_trigger = wil->wakeup_trigger,
  2253. };
  2254. struct {
  2255. struct wmi_cmd_hdr wmi;
  2256. struct wmi_traffic_suspend_event evt;
  2257. } __packed reply = {
  2258. .evt = {.status = WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE},
  2259. };
  2260. u32 suspend_to = WIL_WAIT_FOR_SUSPEND_RESUME_COMP;
  2261. wil->suspend_resp_rcvd = false;
  2262. wil->suspend_resp_comp = false;
  2263. rc = wmi_call(wil, WMI_TRAFFIC_SUSPEND_CMDID, vif->mid,
  2264. &cmd, sizeof(cmd),
  2265. WMI_TRAFFIC_SUSPEND_EVENTID, &reply, sizeof(reply),
  2266. suspend_to);
  2267. if (rc) {
  2268. wil_err(wil, "wmi_call for suspend req failed, rc=%d\n", rc);
  2269. if (rc == -ETIME)
  2270. /* wmi_call TO */
  2271. wil->suspend_stats.rejected_by_device++;
  2272. else
  2273. wil->suspend_stats.rejected_by_host++;
  2274. goto out;
  2275. }
  2276. wil_dbg_wmi(wil, "waiting for suspend_response_completed\n");
  2277. rc = wait_event_interruptible_timeout(wil->wq,
  2278. wil->suspend_resp_comp,
  2279. msecs_to_jiffies(suspend_to));
  2280. if (rc == 0) {
  2281. wil_err(wil, "TO waiting for suspend_response_completed\n");
  2282. if (wil->suspend_resp_rcvd)
  2283. /* Device responded but we TO due to another reason */
  2284. wil->suspend_stats.rejected_by_host++;
  2285. else
  2286. wil->suspend_stats.rejected_by_device++;
  2287. rc = -EBUSY;
  2288. goto out;
  2289. }
  2290. wil_dbg_wmi(wil, "suspend_response_completed rcvd\n");
  2291. if (reply.evt.status != WMI_TRAFFIC_SUSPEND_APPROVED) {
  2292. wil_dbg_pm(wil, "device rejected the suspend, %s\n",
  2293. suspend_status2name(reply.evt.status));
  2294. wil->suspend_stats.rejected_by_device++;
  2295. }
  2296. rc = reply.evt.status;
  2297. out:
  2298. wil->suspend_resp_rcvd = false;
  2299. wil->suspend_resp_comp = false;
  2300. return rc;
  2301. }
  2302. static void resume_triggers2string(u32 triggers, char *string, int str_size)
  2303. {
  2304. string[0] = '\0';
  2305. if (!triggers) {
  2306. strlcat(string, " UNKNOWN", str_size);
  2307. return;
  2308. }
  2309. if (triggers & WMI_RESUME_TRIGGER_HOST)
  2310. strlcat(string, " HOST", str_size);
  2311. if (triggers & WMI_RESUME_TRIGGER_UCAST_RX)
  2312. strlcat(string, " UCAST_RX", str_size);
  2313. if (triggers & WMI_RESUME_TRIGGER_BCAST_RX)
  2314. strlcat(string, " BCAST_RX", str_size);
  2315. if (triggers & WMI_RESUME_TRIGGER_WMI_EVT)
  2316. strlcat(string, " WMI_EVT", str_size);
  2317. }
  2318. int wmi_resume(struct wil6210_priv *wil)
  2319. {
  2320. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2321. int rc;
  2322. char string[100];
  2323. struct {
  2324. struct wmi_cmd_hdr wmi;
  2325. struct wmi_traffic_resume_event evt;
  2326. } __packed reply = {
  2327. .evt = {.status = WMI_TRAFFIC_RESUME_FAILED,
  2328. .resume_triggers =
  2329. cpu_to_le32(WMI_RESUME_TRIGGER_UNKNOWN)},
  2330. };
  2331. rc = wmi_call(wil, WMI_TRAFFIC_RESUME_CMDID, vif->mid, NULL, 0,
  2332. WMI_TRAFFIC_RESUME_EVENTID, &reply, sizeof(reply),
  2333. WIL_WAIT_FOR_SUSPEND_RESUME_COMP);
  2334. if (rc)
  2335. return rc;
  2336. resume_triggers2string(le32_to_cpu(reply.evt.resume_triggers), string,
  2337. sizeof(string));
  2338. wil_dbg_pm(wil, "device resume %s, resume triggers:%s (0x%x)\n",
  2339. reply.evt.status ? "failed" : "passed", string,
  2340. le32_to_cpu(reply.evt.resume_triggers));
  2341. return reply.evt.status;
  2342. }
  2343. int wmi_port_allocate(struct wil6210_priv *wil, u8 mid,
  2344. const u8 *mac, enum nl80211_iftype iftype)
  2345. {
  2346. int rc;
  2347. struct wmi_port_allocate_cmd cmd = {
  2348. .mid = mid,
  2349. };
  2350. struct {
  2351. struct wmi_cmd_hdr wmi;
  2352. struct wmi_port_allocated_event evt;
  2353. } __packed reply = {
  2354. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2355. };
  2356. wil_dbg_misc(wil, "port allocate, mid %d iftype %d, mac %pM\n",
  2357. mid, iftype, mac);
  2358. ether_addr_copy(cmd.mac, mac);
  2359. switch (iftype) {
  2360. case NL80211_IFTYPE_STATION:
  2361. cmd.port_role = WMI_PORT_STA;
  2362. break;
  2363. case NL80211_IFTYPE_AP:
  2364. cmd.port_role = WMI_PORT_AP;
  2365. break;
  2366. case NL80211_IFTYPE_P2P_CLIENT:
  2367. cmd.port_role = WMI_PORT_P2P_CLIENT;
  2368. break;
  2369. case NL80211_IFTYPE_P2P_GO:
  2370. cmd.port_role = WMI_PORT_P2P_GO;
  2371. break;
  2372. /* what about monitor??? */
  2373. default:
  2374. wil_err(wil, "unsupported iftype: %d\n", iftype);
  2375. return -EINVAL;
  2376. }
  2377. rc = wmi_call(wil, WMI_PORT_ALLOCATE_CMDID, mid,
  2378. &cmd, sizeof(cmd),
  2379. WMI_PORT_ALLOCATED_EVENTID, &reply,
  2380. sizeof(reply), 300);
  2381. if (rc) {
  2382. wil_err(wil, "failed to allocate port, status %d\n", rc);
  2383. return rc;
  2384. }
  2385. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2386. wil_err(wil, "WMI_PORT_ALLOCATE returned status %d\n",
  2387. reply.evt.status);
  2388. return -EINVAL;
  2389. }
  2390. return 0;
  2391. }
  2392. int wmi_port_delete(struct wil6210_priv *wil, u8 mid)
  2393. {
  2394. int rc;
  2395. struct wmi_port_delete_cmd cmd = {
  2396. .mid = mid,
  2397. };
  2398. struct {
  2399. struct wmi_cmd_hdr wmi;
  2400. struct wmi_port_deleted_event evt;
  2401. } __packed reply = {
  2402. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2403. };
  2404. wil_dbg_misc(wil, "port delete, mid %d\n", mid);
  2405. rc = wmi_call(wil, WMI_PORT_DELETE_CMDID, mid,
  2406. &cmd, sizeof(cmd),
  2407. WMI_PORT_DELETED_EVENTID, &reply,
  2408. sizeof(reply), 2000);
  2409. if (rc) {
  2410. wil_err(wil, "failed to delete port, status %d\n", rc);
  2411. return rc;
  2412. }
  2413. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2414. wil_err(wil, "WMI_PORT_DELETE returned status %d\n",
  2415. reply.evt.status);
  2416. return -EINVAL;
  2417. }
  2418. return 0;
  2419. }
  2420. static bool wmi_evt_call_handler(struct wil6210_vif *vif, int id,
  2421. void *d, int len)
  2422. {
  2423. uint i;
  2424. for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
  2425. if (wmi_evt_handlers[i].eventid == id) {
  2426. wmi_evt_handlers[i].handler(vif, id, d, len);
  2427. return true;
  2428. }
  2429. }
  2430. return false;
  2431. }
  2432. static void wmi_event_handle(struct wil6210_priv *wil,
  2433. struct wil6210_mbox_hdr *hdr)
  2434. {
  2435. u16 len = le16_to_cpu(hdr->len);
  2436. struct wil6210_vif *vif;
  2437. if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
  2438. (len >= sizeof(struct wmi_cmd_hdr))) {
  2439. struct wmi_cmd_hdr *wmi = (void *)(&hdr[1]);
  2440. void *evt_data = (void *)(&wmi[1]);
  2441. u16 id = le16_to_cpu(wmi->command_id);
  2442. u8 mid = wmi->mid;
  2443. wil_dbg_wmi(wil, "Handle %s (0x%04x) (reply_id 0x%04x,%d)\n",
  2444. eventid2name(id), id, wil->reply_id,
  2445. wil->reply_mid);
  2446. if (mid == MID_BROADCAST)
  2447. mid = 0;
  2448. if (mid >= wil->max_vifs) {
  2449. wil_dbg_wmi(wil, "invalid mid %d, event skipped\n",
  2450. mid);
  2451. return;
  2452. }
  2453. vif = wil->vifs[mid];
  2454. if (!vif) {
  2455. wil_dbg_wmi(wil, "event for empty VIF(%d), skipped\n",
  2456. mid);
  2457. return;
  2458. }
  2459. /* check if someone waits for this event */
  2460. if (wil->reply_id && wil->reply_id == id &&
  2461. wil->reply_mid == mid) {
  2462. WARN_ON(wil->reply_buf);
  2463. wmi_evt_call_handler(vif, id, evt_data,
  2464. len - sizeof(*wmi));
  2465. wil_dbg_wmi(wil, "event_handle: Complete WMI 0x%04x\n",
  2466. id);
  2467. complete(&wil->wmi_call);
  2468. return;
  2469. }
  2470. /* unsolicited event */
  2471. /* search for handler */
  2472. if (!wmi_evt_call_handler(vif, id, evt_data,
  2473. len - sizeof(*wmi))) {
  2474. wil_info(wil, "Unhandled event 0x%04x\n", id);
  2475. }
  2476. } else {
  2477. wil_err(wil, "Unknown event type\n");
  2478. print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
  2479. hdr, sizeof(*hdr) + len, true);
  2480. }
  2481. }
  2482. /*
  2483. * Retrieve next WMI event from the pending list
  2484. */
  2485. static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
  2486. {
  2487. ulong flags;
  2488. struct list_head *ret = NULL;
  2489. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  2490. if (!list_empty(&wil->pending_wmi_ev)) {
  2491. ret = wil->pending_wmi_ev.next;
  2492. list_del(ret);
  2493. }
  2494. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  2495. return ret;
  2496. }
  2497. /*
  2498. * Handler for the WMI events
  2499. */
  2500. void wmi_event_worker(struct work_struct *work)
  2501. {
  2502. struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
  2503. wmi_event_worker);
  2504. struct pending_wmi_event *evt;
  2505. struct list_head *lh;
  2506. wil_dbg_wmi(wil, "event_worker: Start\n");
  2507. while ((lh = next_wmi_ev(wil)) != NULL) {
  2508. evt = list_entry(lh, struct pending_wmi_event, list);
  2509. wmi_event_handle(wil, &evt->event.hdr);
  2510. kfree(evt);
  2511. }
  2512. wil_dbg_wmi(wil, "event_worker: Finished\n");
  2513. }
  2514. bool wil_is_wmi_idle(struct wil6210_priv *wil)
  2515. {
  2516. ulong flags;
  2517. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  2518. bool rc = false;
  2519. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  2520. /* Check if there are pending WMI events in the events queue */
  2521. if (!list_empty(&wil->pending_wmi_ev)) {
  2522. wil_dbg_pm(wil, "Pending WMI events in queue\n");
  2523. goto out;
  2524. }
  2525. /* Check if there is a pending WMI call */
  2526. if (wil->reply_id) {
  2527. wil_dbg_pm(wil, "Pending WMI call\n");
  2528. goto out;
  2529. }
  2530. /* Check if there are pending RX events in mbox */
  2531. r->head = wil_r(wil, RGF_MBOX +
  2532. offsetof(struct wil6210_mbox_ctl, rx.head));
  2533. if (r->tail != r->head)
  2534. wil_dbg_pm(wil, "Pending WMI mbox events\n");
  2535. else
  2536. rc = true;
  2537. out:
  2538. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  2539. return rc;
  2540. }
  2541. static void
  2542. wmi_sched_scan_set_ssids(struct wil6210_priv *wil,
  2543. struct wmi_start_sched_scan_cmd *cmd,
  2544. struct cfg80211_ssid *ssids, int n_ssids,
  2545. struct cfg80211_match_set *match_sets,
  2546. int n_match_sets)
  2547. {
  2548. int i;
  2549. if (n_match_sets > WMI_MAX_PNO_SSID_NUM) {
  2550. wil_dbg_wmi(wil, "too many match sets (%d), use first %d\n",
  2551. n_match_sets, WMI_MAX_PNO_SSID_NUM);
  2552. n_match_sets = WMI_MAX_PNO_SSID_NUM;
  2553. }
  2554. cmd->num_of_ssids = n_match_sets;
  2555. for (i = 0; i < n_match_sets; i++) {
  2556. struct wmi_sched_scan_ssid_match *wmi_match =
  2557. &cmd->ssid_for_match[i];
  2558. struct cfg80211_match_set *cfg_match = &match_sets[i];
  2559. int j;
  2560. wmi_match->ssid_len = cfg_match->ssid.ssid_len;
  2561. memcpy(wmi_match->ssid, cfg_match->ssid.ssid,
  2562. min_t(u8, wmi_match->ssid_len, WMI_MAX_SSID_LEN));
  2563. wmi_match->rssi_threshold = S8_MIN;
  2564. if (cfg_match->rssi_thold >= S8_MIN &&
  2565. cfg_match->rssi_thold <= S8_MAX)
  2566. wmi_match->rssi_threshold = cfg_match->rssi_thold;
  2567. for (j = 0; j < n_ssids; j++)
  2568. if (wmi_match->ssid_len == ssids[j].ssid_len &&
  2569. memcmp(wmi_match->ssid, ssids[j].ssid,
  2570. wmi_match->ssid_len) == 0)
  2571. wmi_match->add_ssid_to_probe = true;
  2572. }
  2573. }
  2574. static void
  2575. wmi_sched_scan_set_channels(struct wil6210_priv *wil,
  2576. struct wmi_start_sched_scan_cmd *cmd,
  2577. u32 n_channels,
  2578. struct ieee80211_channel **channels)
  2579. {
  2580. int i;
  2581. if (n_channels > WMI_MAX_CHANNEL_NUM) {
  2582. wil_dbg_wmi(wil, "too many channels (%d), use first %d\n",
  2583. n_channels, WMI_MAX_CHANNEL_NUM);
  2584. n_channels = WMI_MAX_CHANNEL_NUM;
  2585. }
  2586. cmd->num_of_channels = n_channels;
  2587. for (i = 0; i < n_channels; i++) {
  2588. struct ieee80211_channel *cfg_chan = channels[i];
  2589. cmd->channel_list[i] = cfg_chan->hw_value - 1;
  2590. }
  2591. }
  2592. static void
  2593. wmi_sched_scan_set_plans(struct wil6210_priv *wil,
  2594. struct wmi_start_sched_scan_cmd *cmd,
  2595. struct cfg80211_sched_scan_plan *scan_plans,
  2596. int n_scan_plans)
  2597. {
  2598. int i;
  2599. if (n_scan_plans > WMI_MAX_PLANS_NUM) {
  2600. wil_dbg_wmi(wil, "too many plans (%d), use first %d\n",
  2601. n_scan_plans, WMI_MAX_PLANS_NUM);
  2602. n_scan_plans = WMI_MAX_PLANS_NUM;
  2603. }
  2604. for (i = 0; i < n_scan_plans; i++) {
  2605. struct cfg80211_sched_scan_plan *cfg_plan = &scan_plans[i];
  2606. cmd->scan_plans[i].interval_sec =
  2607. cpu_to_le16(cfg_plan->interval);
  2608. cmd->scan_plans[i].num_of_iterations =
  2609. cpu_to_le16(cfg_plan->iterations);
  2610. }
  2611. }
  2612. int wmi_start_sched_scan(struct wil6210_priv *wil,
  2613. struct cfg80211_sched_scan_request *request)
  2614. {
  2615. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2616. int rc;
  2617. struct wmi_start_sched_scan_cmd cmd = {
  2618. .min_rssi_threshold = S8_MIN,
  2619. .initial_delay_sec = cpu_to_le16(request->delay),
  2620. };
  2621. struct {
  2622. struct wmi_cmd_hdr wmi;
  2623. struct wmi_start_sched_scan_event evt;
  2624. } __packed reply = {
  2625. .evt = {.result = WMI_PNO_REJECT},
  2626. };
  2627. if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
  2628. return -ENOTSUPP;
  2629. if (request->min_rssi_thold >= S8_MIN &&
  2630. request->min_rssi_thold <= S8_MAX)
  2631. cmd.min_rssi_threshold = request->min_rssi_thold;
  2632. wmi_sched_scan_set_ssids(wil, &cmd, request->ssids, request->n_ssids,
  2633. request->match_sets, request->n_match_sets);
  2634. wmi_sched_scan_set_channels(wil, &cmd,
  2635. request->n_channels, request->channels);
  2636. wmi_sched_scan_set_plans(wil, &cmd,
  2637. request->scan_plans, request->n_scan_plans);
  2638. rc = wmi_call(wil, WMI_START_SCHED_SCAN_CMDID, vif->mid,
  2639. &cmd, sizeof(cmd),
  2640. WMI_START_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
  2641. WIL_WMI_CALL_GENERAL_TO_MS);
  2642. if (rc)
  2643. return rc;
  2644. if (reply.evt.result != WMI_PNO_SUCCESS) {
  2645. wil_err(wil, "start sched scan failed, result %d\n",
  2646. reply.evt.result);
  2647. return -EINVAL;
  2648. }
  2649. return 0;
  2650. }
  2651. int wmi_stop_sched_scan(struct wil6210_priv *wil)
  2652. {
  2653. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2654. int rc;
  2655. struct {
  2656. struct wmi_cmd_hdr wmi;
  2657. struct wmi_stop_sched_scan_event evt;
  2658. } __packed reply = {
  2659. .evt = {.result = WMI_PNO_REJECT},
  2660. };
  2661. if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
  2662. return -ENOTSUPP;
  2663. rc = wmi_call(wil, WMI_STOP_SCHED_SCAN_CMDID, vif->mid, NULL, 0,
  2664. WMI_STOP_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
  2665. WIL_WMI_CALL_GENERAL_TO_MS);
  2666. if (rc)
  2667. return rc;
  2668. if (reply.evt.result != WMI_PNO_SUCCESS) {
  2669. wil_err(wil, "stop sched scan failed, result %d\n",
  2670. reply.evt.result);
  2671. return -EINVAL;
  2672. }
  2673. return 0;
  2674. }
  2675. int wmi_mgmt_tx(struct wil6210_vif *vif, const u8 *buf, size_t len)
  2676. {
  2677. size_t total;
  2678. struct wil6210_priv *wil = vif_to_wil(vif);
  2679. struct ieee80211_mgmt *mgmt_frame = (void *)buf;
  2680. struct wmi_sw_tx_req_cmd *cmd;
  2681. struct {
  2682. struct wmi_cmd_hdr wmi;
  2683. struct wmi_sw_tx_complete_event evt;
  2684. } __packed evt = {
  2685. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2686. };
  2687. int rc;
  2688. wil_dbg_misc(wil, "mgmt_tx mid %d\n", vif->mid);
  2689. wil_hex_dump_misc("mgmt tx frame ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  2690. len, true);
  2691. if (len < sizeof(struct ieee80211_hdr_3addr))
  2692. return -EINVAL;
  2693. total = sizeof(*cmd) + len;
  2694. if (total < len) {
  2695. wil_err(wil, "mgmt_tx invalid len %zu\n", len);
  2696. return -EINVAL;
  2697. }
  2698. cmd = kmalloc(total, GFP_KERNEL);
  2699. if (!cmd)
  2700. return -ENOMEM;
  2701. memcpy(cmd->dst_mac, mgmt_frame->da, WMI_MAC_LEN);
  2702. cmd->len = cpu_to_le16(len);
  2703. memcpy(cmd->payload, buf, len);
  2704. rc = wmi_call(wil, WMI_SW_TX_REQ_CMDID, vif->mid, cmd, total,
  2705. WMI_SW_TX_COMPLETE_EVENTID, &evt, sizeof(evt), 2000);
  2706. if (!rc && evt.evt.status != WMI_FW_STATUS_SUCCESS) {
  2707. wil_err(wil, "mgmt_tx failed with status %d\n", evt.evt.status);
  2708. rc = -EINVAL;
  2709. }
  2710. kfree(cmd);
  2711. return rc;
  2712. }
  2713. int wmi_mgmt_tx_ext(struct wil6210_vif *vif, const u8 *buf, size_t len,
  2714. u8 channel, u16 duration_ms)
  2715. {
  2716. size_t total;
  2717. struct wil6210_priv *wil = vif_to_wil(vif);
  2718. struct ieee80211_mgmt *mgmt_frame = (void *)buf;
  2719. struct wmi_sw_tx_req_ext_cmd *cmd;
  2720. struct {
  2721. struct wmi_cmd_hdr wmi;
  2722. struct wmi_sw_tx_complete_event evt;
  2723. } __packed evt = {
  2724. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2725. };
  2726. int rc;
  2727. wil_dbg_wmi(wil, "mgmt_tx_ext mid %d channel %d duration %d\n",
  2728. vif->mid, channel, duration_ms);
  2729. wil_hex_dump_wmi("mgmt_tx_ext frame ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  2730. len, true);
  2731. if (len < sizeof(struct ieee80211_hdr_3addr)) {
  2732. wil_err(wil, "short frame. len %zu\n", len);
  2733. return -EINVAL;
  2734. }
  2735. total = sizeof(*cmd) + len;
  2736. if (total < len) {
  2737. wil_err(wil, "mgmt_tx_ext invalid len %zu\n", len);
  2738. return -EINVAL;
  2739. }
  2740. cmd = kzalloc(total, GFP_KERNEL);
  2741. if (!cmd)
  2742. return -ENOMEM;
  2743. memcpy(cmd->dst_mac, mgmt_frame->da, WMI_MAC_LEN);
  2744. cmd->len = cpu_to_le16(len);
  2745. memcpy(cmd->payload, buf, len);
  2746. cmd->channel = channel - 1;
  2747. cmd->duration_ms = cpu_to_le16(duration_ms);
  2748. rc = wmi_call(wil, WMI_SW_TX_REQ_EXT_CMDID, vif->mid, cmd, total,
  2749. WMI_SW_TX_COMPLETE_EVENTID, &evt, sizeof(evt), 2000);
  2750. if (!rc && evt.evt.status != WMI_FW_STATUS_SUCCESS) {
  2751. wil_err(wil, "mgmt_tx_ext failed with status %d\n",
  2752. evt.evt.status);
  2753. rc = -EINVAL;
  2754. }
  2755. kfree(cmd);
  2756. return rc;
  2757. }
  2758. int wil_wmi_tx_sring_cfg(struct wil6210_priv *wil, int ring_id)
  2759. {
  2760. int rc;
  2761. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2762. struct wil_status_ring *sring = &wil->srings[ring_id];
  2763. struct wmi_tx_status_ring_add_cmd cmd = {
  2764. .ring_cfg = {
  2765. .ring_size = cpu_to_le16(sring->size),
  2766. },
  2767. .irq_index = WIL_TX_STATUS_IRQ_IDX
  2768. };
  2769. struct {
  2770. struct wmi_cmd_hdr hdr;
  2771. struct wmi_tx_status_ring_cfg_done_event evt;
  2772. } __packed reply = {
  2773. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2774. };
  2775. cmd.ring_cfg.ring_id = ring_id;
  2776. cmd.ring_cfg.ring_mem_base = cpu_to_le64(sring->pa);
  2777. rc = wmi_call(wil, WMI_TX_STATUS_RING_ADD_CMDID, vif->mid, &cmd,
  2778. sizeof(cmd), WMI_TX_STATUS_RING_CFG_DONE_EVENTID,
  2779. &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2780. if (rc) {
  2781. wil_err(wil, "TX_STATUS_RING_ADD_CMD failed, rc %d\n", rc);
  2782. return rc;
  2783. }
  2784. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2785. wil_err(wil, "TX_STATUS_RING_ADD_CMD failed, status %d\n",
  2786. reply.evt.status);
  2787. return -EINVAL;
  2788. }
  2789. sring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2790. return 0;
  2791. }
  2792. int wil_wmi_cfg_def_rx_offload(struct wil6210_priv *wil, u16 max_rx_pl_per_desc)
  2793. {
  2794. struct net_device *ndev = wil->main_ndev;
  2795. struct wil6210_vif *vif = ndev_to_vif(ndev);
  2796. int rc;
  2797. struct wmi_cfg_def_rx_offload_cmd cmd = {
  2798. .max_msdu_size = cpu_to_le16(wil_mtu2macbuf(WIL_MAX_ETH_MTU)),
  2799. .max_rx_pl_per_desc = cpu_to_le16(max_rx_pl_per_desc),
  2800. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  2801. .l2_802_3_offload_ctrl = 0,
  2802. .l3_l4_ctrl = 1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS,
  2803. };
  2804. struct {
  2805. struct wmi_cmd_hdr hdr;
  2806. struct wmi_cfg_def_rx_offload_done_event evt;
  2807. } __packed reply = {
  2808. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2809. };
  2810. rc = wmi_call(wil, WMI_CFG_DEF_RX_OFFLOAD_CMDID, vif->mid, &cmd,
  2811. sizeof(cmd), WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENTID, &reply,
  2812. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2813. if (rc) {
  2814. wil_err(wil, "WMI_CFG_DEF_RX_OFFLOAD_CMD failed, rc %d\n", rc);
  2815. return rc;
  2816. }
  2817. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2818. wil_err(wil, "WMI_CFG_DEF_RX_OFFLOAD_CMD failed, status %d\n",
  2819. reply.evt.status);
  2820. return -EINVAL;
  2821. }
  2822. return 0;
  2823. }
  2824. int wil_wmi_rx_sring_add(struct wil6210_priv *wil, u16 ring_id)
  2825. {
  2826. struct net_device *ndev = wil->main_ndev;
  2827. struct wil6210_vif *vif = ndev_to_vif(ndev);
  2828. struct wil_status_ring *sring = &wil->srings[ring_id];
  2829. int rc;
  2830. struct wmi_rx_status_ring_add_cmd cmd = {
  2831. .ring_cfg = {
  2832. .ring_size = cpu_to_le16(sring->size),
  2833. .ring_id = ring_id,
  2834. },
  2835. .rx_msg_type = wil->use_compressed_rx_status ?
  2836. WMI_RX_MSG_TYPE_COMPRESSED :
  2837. WMI_RX_MSG_TYPE_EXTENDED,
  2838. .irq_index = WIL_RX_STATUS_IRQ_IDX,
  2839. };
  2840. struct {
  2841. struct wmi_cmd_hdr hdr;
  2842. struct wmi_rx_status_ring_cfg_done_event evt;
  2843. } __packed reply = {
  2844. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2845. };
  2846. cmd.ring_cfg.ring_mem_base = cpu_to_le64(sring->pa);
  2847. rc = wmi_call(wil, WMI_RX_STATUS_RING_ADD_CMDID, vif->mid, &cmd,
  2848. sizeof(cmd), WMI_RX_STATUS_RING_CFG_DONE_EVENTID, &reply,
  2849. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2850. if (rc) {
  2851. wil_err(wil, "RX_STATUS_RING_ADD_CMD failed, rc %d\n", rc);
  2852. return rc;
  2853. }
  2854. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2855. wil_err(wil, "RX_STATUS_RING_ADD_CMD failed, status %d\n",
  2856. reply.evt.status);
  2857. return -EINVAL;
  2858. }
  2859. sring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2860. return 0;
  2861. }
  2862. int wil_wmi_rx_desc_ring_add(struct wil6210_priv *wil, int status_ring_id)
  2863. {
  2864. struct net_device *ndev = wil->main_ndev;
  2865. struct wil6210_vif *vif = ndev_to_vif(ndev);
  2866. struct wil_ring *ring = &wil->ring_rx;
  2867. int rc;
  2868. struct wmi_rx_desc_ring_add_cmd cmd = {
  2869. .ring_cfg = {
  2870. .ring_size = cpu_to_le16(ring->size),
  2871. .ring_id = WIL_RX_DESC_RING_ID,
  2872. },
  2873. .status_ring_id = status_ring_id,
  2874. .irq_index = WIL_RX_STATUS_IRQ_IDX,
  2875. };
  2876. struct {
  2877. struct wmi_cmd_hdr hdr;
  2878. struct wmi_rx_desc_ring_cfg_done_event evt;
  2879. } __packed reply = {
  2880. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2881. };
  2882. cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
  2883. cmd.sw_tail_host_addr = cpu_to_le64(ring->edma_rx_swtail.pa);
  2884. rc = wmi_call(wil, WMI_RX_DESC_RING_ADD_CMDID, vif->mid, &cmd,
  2885. sizeof(cmd), WMI_RX_DESC_RING_CFG_DONE_EVENTID, &reply,
  2886. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2887. if (rc) {
  2888. wil_err(wil, "WMI_RX_DESC_RING_ADD_CMD failed, rc %d\n", rc);
  2889. return rc;
  2890. }
  2891. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2892. wil_err(wil, "WMI_RX_DESC_RING_ADD_CMD failed, status %d\n",
  2893. reply.evt.status);
  2894. return -EINVAL;
  2895. }
  2896. ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2897. return 0;
  2898. }
  2899. int wil_wmi_tx_desc_ring_add(struct wil6210_vif *vif, int ring_id, int cid,
  2900. int tid)
  2901. {
  2902. struct wil6210_priv *wil = vif_to_wil(vif);
  2903. int sring_id = wil->tx_sring_idx; /* there is only one TX sring */
  2904. int rc;
  2905. struct wil_ring *ring = &wil->ring_tx[ring_id];
  2906. struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
  2907. struct wmi_tx_desc_ring_add_cmd cmd = {
  2908. .ring_cfg = {
  2909. .ring_size = cpu_to_le16(ring->size),
  2910. .ring_id = ring_id,
  2911. },
  2912. .status_ring_id = sring_id,
  2913. .cid = cid,
  2914. .tid = tid,
  2915. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  2916. .max_msdu_size = cpu_to_le16(wil_mtu2macbuf(mtu_max)),
  2917. .schd_params = {
  2918. .priority = cpu_to_le16(0),
  2919. .timeslot_us = cpu_to_le16(0xfff),
  2920. }
  2921. };
  2922. struct {
  2923. struct wmi_cmd_hdr hdr;
  2924. struct wmi_tx_desc_ring_cfg_done_event evt;
  2925. } __packed reply = {
  2926. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2927. };
  2928. cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
  2929. rc = wmi_call(wil, WMI_TX_DESC_RING_ADD_CMDID, vif->mid, &cmd,
  2930. sizeof(cmd), WMI_TX_DESC_RING_CFG_DONE_EVENTID, &reply,
  2931. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2932. if (rc) {
  2933. wil_err(wil, "WMI_TX_DESC_RING_ADD_CMD failed, rc %d\n", rc);
  2934. return rc;
  2935. }
  2936. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2937. wil_err(wil, "WMI_TX_DESC_RING_ADD_CMD failed, status %d\n",
  2938. reply.evt.status);
  2939. return -EINVAL;
  2940. }
  2941. spin_lock_bh(&txdata->lock);
  2942. ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2943. txdata->mid = vif->mid;
  2944. txdata->enabled = 1;
  2945. spin_unlock_bh(&txdata->lock);
  2946. return 0;
  2947. }
  2948. int wil_wmi_bcast_desc_ring_add(struct wil6210_vif *vif, int ring_id)
  2949. {
  2950. struct wil6210_priv *wil = vif_to_wil(vif);
  2951. struct wil_ring *ring = &wil->ring_tx[ring_id];
  2952. int rc;
  2953. struct wmi_bcast_desc_ring_add_cmd cmd = {
  2954. .ring_cfg = {
  2955. .ring_size = cpu_to_le16(ring->size),
  2956. .ring_id = ring_id,
  2957. },
  2958. .status_ring_id = wil->tx_sring_idx,
  2959. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  2960. };
  2961. struct {
  2962. struct wmi_cmd_hdr hdr;
  2963. struct wmi_rx_desc_ring_cfg_done_event evt;
  2964. } __packed reply = {
  2965. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2966. };
  2967. struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
  2968. cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
  2969. rc = wmi_call(wil, WMI_BCAST_DESC_RING_ADD_CMDID, vif->mid, &cmd,
  2970. sizeof(cmd), WMI_TX_DESC_RING_CFG_DONE_EVENTID, &reply,
  2971. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2972. if (rc) {
  2973. wil_err(wil, "WMI_BCAST_DESC_RING_ADD_CMD failed, rc %d\n", rc);
  2974. return rc;
  2975. }
  2976. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2977. wil_err(wil, "Broadcast Tx config failed, status %d\n",
  2978. reply.evt.status);
  2979. return -EINVAL;
  2980. }
  2981. spin_lock_bh(&txdata->lock);
  2982. ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2983. txdata->mid = vif->mid;
  2984. txdata->enabled = 1;
  2985. spin_unlock_bh(&txdata->lock);
  2986. return 0;
  2987. }
  2988. int wmi_link_stats_cfg(struct wil6210_vif *vif, u32 type, u8 cid, u32 interval)
  2989. {
  2990. struct wil6210_priv *wil = vif_to_wil(vif);
  2991. struct wmi_link_stats_cmd cmd = {
  2992. .record_type_mask = cpu_to_le32(type),
  2993. .cid = cid,
  2994. .action = WMI_LINK_STATS_SNAPSHOT,
  2995. .interval_msec = cpu_to_le32(interval),
  2996. };
  2997. struct {
  2998. struct wmi_cmd_hdr wmi;
  2999. struct wmi_link_stats_config_done_event evt;
  3000. } __packed reply = {
  3001. .evt = {.status = WMI_FW_STATUS_FAILURE},
  3002. };
  3003. int rc;
  3004. rc = wmi_call(wil, WMI_LINK_STATS_CMDID, vif->mid, &cmd, sizeof(cmd),
  3005. WMI_LINK_STATS_CONFIG_DONE_EVENTID, &reply,
  3006. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  3007. if (rc) {
  3008. wil_err(wil, "WMI_LINK_STATS_CMDID failed, rc %d\n", rc);
  3009. return rc;
  3010. }
  3011. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  3012. wil_err(wil, "Link statistics config failed, status %d\n",
  3013. reply.evt.status);
  3014. return -EINVAL;
  3015. }
  3016. return 0;
  3017. }