htt_tx.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/etherdevice.h>
  18. #include "htt.h"
  19. #include "mac.h"
  20. #include "hif.h"
  21. #include "txrx.h"
  22. #include "debug.h"
  23. static u8 ath10k_htt_tx_txq_calc_size(size_t count)
  24. {
  25. int exp;
  26. int factor;
  27. exp = 0;
  28. factor = count >> 7;
  29. while (factor >= 64 && exp < 4) {
  30. factor >>= 3;
  31. exp++;
  32. }
  33. if (exp == 4)
  34. return 0xff;
  35. if (count > 0)
  36. factor = max(1, factor);
  37. return SM(exp, HTT_TX_Q_STATE_ENTRY_EXP) |
  38. SM(factor, HTT_TX_Q_STATE_ENTRY_FACTOR);
  39. }
  40. static void __ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  41. struct ieee80211_txq *txq)
  42. {
  43. struct ath10k *ar = hw->priv;
  44. struct ath10k_sta *arsta;
  45. struct ath10k_vif *arvif = (void *)txq->vif->drv_priv;
  46. unsigned long frame_cnt;
  47. unsigned long byte_cnt;
  48. int idx;
  49. u32 bit;
  50. u16 peer_id;
  51. u8 tid;
  52. u8 count;
  53. lockdep_assert_held(&ar->htt.tx_lock);
  54. if (!ar->htt.tx_q_state.enabled)
  55. return;
  56. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  57. return;
  58. if (txq->sta) {
  59. arsta = (void *)txq->sta->drv_priv;
  60. peer_id = arsta->peer_id;
  61. } else {
  62. peer_id = arvif->peer_id;
  63. }
  64. tid = txq->tid;
  65. bit = BIT(peer_id % 32);
  66. idx = peer_id / 32;
  67. ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt);
  68. count = ath10k_htt_tx_txq_calc_size(byte_cnt);
  69. if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
  70. unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
  71. ath10k_warn(ar, "refusing to update txq for peer_id %hu tid %hhu due to out of bounds\n",
  72. peer_id, tid);
  73. return;
  74. }
  75. ar->htt.tx_q_state.vaddr->count[tid][peer_id] = count;
  76. ar->htt.tx_q_state.vaddr->map[tid][idx] &= ~bit;
  77. ar->htt.tx_q_state.vaddr->map[tid][idx] |= count ? bit : 0;
  78. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update peer_id %hu tid %hhu count %hhu\n",
  79. peer_id, tid, count);
  80. }
  81. static void __ath10k_htt_tx_txq_sync(struct ath10k *ar)
  82. {
  83. u32 seq;
  84. size_t size;
  85. lockdep_assert_held(&ar->htt.tx_lock);
  86. if (!ar->htt.tx_q_state.enabled)
  87. return;
  88. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  89. return;
  90. seq = le32_to_cpu(ar->htt.tx_q_state.vaddr->seq);
  91. seq++;
  92. ar->htt.tx_q_state.vaddr->seq = cpu_to_le32(seq);
  93. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update commit seq %u\n",
  94. seq);
  95. size = sizeof(*ar->htt.tx_q_state.vaddr);
  96. dma_sync_single_for_device(ar->dev,
  97. ar->htt.tx_q_state.paddr,
  98. size,
  99. DMA_TO_DEVICE);
  100. }
  101. void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  102. struct ieee80211_txq *txq)
  103. {
  104. struct ath10k *ar = hw->priv;
  105. spin_lock_bh(&ar->htt.tx_lock);
  106. __ath10k_htt_tx_txq_recalc(hw, txq);
  107. spin_unlock_bh(&ar->htt.tx_lock);
  108. }
  109. void ath10k_htt_tx_txq_sync(struct ath10k *ar)
  110. {
  111. spin_lock_bh(&ar->htt.tx_lock);
  112. __ath10k_htt_tx_txq_sync(ar);
  113. spin_unlock_bh(&ar->htt.tx_lock);
  114. }
  115. void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw,
  116. struct ieee80211_txq *txq)
  117. {
  118. struct ath10k *ar = hw->priv;
  119. spin_lock_bh(&ar->htt.tx_lock);
  120. __ath10k_htt_tx_txq_recalc(hw, txq);
  121. __ath10k_htt_tx_txq_sync(ar);
  122. spin_unlock_bh(&ar->htt.tx_lock);
  123. }
  124. void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
  125. {
  126. lockdep_assert_held(&htt->tx_lock);
  127. htt->num_pending_tx--;
  128. if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
  129. ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  130. }
  131. int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt)
  132. {
  133. lockdep_assert_held(&htt->tx_lock);
  134. if (htt->num_pending_tx >= htt->max_num_pending_tx)
  135. return -EBUSY;
  136. htt->num_pending_tx++;
  137. if (htt->num_pending_tx == htt->max_num_pending_tx)
  138. ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  139. return 0;
  140. }
  141. int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt,
  142. bool is_presp)
  143. {
  144. struct ath10k *ar = htt->ar;
  145. lockdep_assert_held(&htt->tx_lock);
  146. if (!is_mgmt || !ar->hw_params.max_probe_resp_desc_thres)
  147. return 0;
  148. if (is_presp &&
  149. ar->hw_params.max_probe_resp_desc_thres < htt->num_pending_mgmt_tx)
  150. return -EBUSY;
  151. htt->num_pending_mgmt_tx++;
  152. return 0;
  153. }
  154. void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt)
  155. {
  156. lockdep_assert_held(&htt->tx_lock);
  157. if (!htt->ar->hw_params.max_probe_resp_desc_thres)
  158. return;
  159. htt->num_pending_mgmt_tx--;
  160. }
  161. int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
  162. {
  163. struct ath10k *ar = htt->ar;
  164. int ret;
  165. spin_lock_bh(&htt->tx_lock);
  166. ret = idr_alloc(&htt->pending_tx, skb, 0,
  167. htt->max_num_pending_tx, GFP_ATOMIC);
  168. spin_unlock_bh(&htt->tx_lock);
  169. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
  170. return ret;
  171. }
  172. void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
  173. {
  174. struct ath10k *ar = htt->ar;
  175. lockdep_assert_held(&htt->tx_lock);
  176. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
  177. idr_remove(&htt->pending_tx, msdu_id);
  178. }
  179. static void ath10k_htt_tx_free_cont_txbuf_32(struct ath10k_htt *htt)
  180. {
  181. struct ath10k *ar = htt->ar;
  182. size_t size;
  183. if (!htt->txbuf.vaddr_txbuff_32)
  184. return;
  185. size = htt->txbuf.size;
  186. dma_free_coherent(ar->dev, size, htt->txbuf.vaddr_txbuff_32,
  187. htt->txbuf.paddr);
  188. htt->txbuf.vaddr_txbuff_32 = NULL;
  189. }
  190. static int ath10k_htt_tx_alloc_cont_txbuf_32(struct ath10k_htt *htt)
  191. {
  192. struct ath10k *ar = htt->ar;
  193. size_t size;
  194. size = htt->max_num_pending_tx *
  195. sizeof(struct ath10k_htt_txbuf_32);
  196. htt->txbuf.vaddr_txbuff_32 = dma_alloc_coherent(ar->dev, size,
  197. &htt->txbuf.paddr,
  198. GFP_KERNEL);
  199. if (!htt->txbuf.vaddr_txbuff_32)
  200. return -ENOMEM;
  201. htt->txbuf.size = size;
  202. return 0;
  203. }
  204. static void ath10k_htt_tx_free_cont_txbuf_64(struct ath10k_htt *htt)
  205. {
  206. struct ath10k *ar = htt->ar;
  207. size_t size;
  208. if (!htt->txbuf.vaddr_txbuff_64)
  209. return;
  210. size = htt->txbuf.size;
  211. dma_free_coherent(ar->dev, size, htt->txbuf.vaddr_txbuff_64,
  212. htt->txbuf.paddr);
  213. htt->txbuf.vaddr_txbuff_64 = NULL;
  214. }
  215. static int ath10k_htt_tx_alloc_cont_txbuf_64(struct ath10k_htt *htt)
  216. {
  217. struct ath10k *ar = htt->ar;
  218. size_t size;
  219. size = htt->max_num_pending_tx *
  220. sizeof(struct ath10k_htt_txbuf_64);
  221. htt->txbuf.vaddr_txbuff_64 = dma_alloc_coherent(ar->dev, size,
  222. &htt->txbuf.paddr,
  223. GFP_KERNEL);
  224. if (!htt->txbuf.vaddr_txbuff_64)
  225. return -ENOMEM;
  226. htt->txbuf.size = size;
  227. return 0;
  228. }
  229. static void ath10k_htt_tx_free_cont_frag_desc_32(struct ath10k_htt *htt)
  230. {
  231. size_t size;
  232. if (!htt->frag_desc.vaddr_desc_32)
  233. return;
  234. size = htt->max_num_pending_tx *
  235. sizeof(struct htt_msdu_ext_desc);
  236. dma_free_coherent(htt->ar->dev,
  237. size,
  238. htt->frag_desc.vaddr_desc_32,
  239. htt->frag_desc.paddr);
  240. htt->frag_desc.vaddr_desc_32 = NULL;
  241. }
  242. static int ath10k_htt_tx_alloc_cont_frag_desc_32(struct ath10k_htt *htt)
  243. {
  244. struct ath10k *ar = htt->ar;
  245. size_t size;
  246. if (!ar->hw_params.continuous_frag_desc)
  247. return 0;
  248. size = htt->max_num_pending_tx *
  249. sizeof(struct htt_msdu_ext_desc);
  250. htt->frag_desc.vaddr_desc_32 = dma_alloc_coherent(ar->dev, size,
  251. &htt->frag_desc.paddr,
  252. GFP_KERNEL);
  253. if (!htt->frag_desc.vaddr_desc_32) {
  254. ath10k_err(ar, "failed to alloc fragment desc memory\n");
  255. return -ENOMEM;
  256. }
  257. htt->frag_desc.size = size;
  258. return 0;
  259. }
  260. static void ath10k_htt_tx_free_cont_frag_desc_64(struct ath10k_htt *htt)
  261. {
  262. size_t size;
  263. if (!htt->frag_desc.vaddr_desc_64)
  264. return;
  265. size = htt->max_num_pending_tx *
  266. sizeof(struct htt_msdu_ext_desc_64);
  267. dma_free_coherent(htt->ar->dev,
  268. size,
  269. htt->frag_desc.vaddr_desc_64,
  270. htt->frag_desc.paddr);
  271. htt->frag_desc.vaddr_desc_64 = NULL;
  272. }
  273. static int ath10k_htt_tx_alloc_cont_frag_desc_64(struct ath10k_htt *htt)
  274. {
  275. struct ath10k *ar = htt->ar;
  276. size_t size;
  277. if (!ar->hw_params.continuous_frag_desc)
  278. return 0;
  279. size = htt->max_num_pending_tx *
  280. sizeof(struct htt_msdu_ext_desc_64);
  281. htt->frag_desc.vaddr_desc_64 = dma_alloc_coherent(ar->dev, size,
  282. &htt->frag_desc.paddr,
  283. GFP_KERNEL);
  284. if (!htt->frag_desc.vaddr_desc_64) {
  285. ath10k_err(ar, "failed to alloc fragment desc memory\n");
  286. return -ENOMEM;
  287. }
  288. htt->frag_desc.size = size;
  289. return 0;
  290. }
  291. static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt)
  292. {
  293. struct ath10k *ar = htt->ar;
  294. size_t size;
  295. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  296. ar->running_fw->fw_file.fw_features))
  297. return;
  298. size = sizeof(*htt->tx_q_state.vaddr);
  299. dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE);
  300. kfree(htt->tx_q_state.vaddr);
  301. }
  302. static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt)
  303. {
  304. struct ath10k *ar = htt->ar;
  305. size_t size;
  306. int ret;
  307. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  308. ar->running_fw->fw_file.fw_features))
  309. return 0;
  310. htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS;
  311. htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS;
  312. htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES;
  313. size = sizeof(*htt->tx_q_state.vaddr);
  314. htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL);
  315. if (!htt->tx_q_state.vaddr)
  316. return -ENOMEM;
  317. htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr,
  318. size, DMA_TO_DEVICE);
  319. ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr);
  320. if (ret) {
  321. ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret);
  322. kfree(htt->tx_q_state.vaddr);
  323. return -EIO;
  324. }
  325. return 0;
  326. }
  327. static void ath10k_htt_tx_free_txdone_fifo(struct ath10k_htt *htt)
  328. {
  329. WARN_ON(!kfifo_is_empty(&htt->txdone_fifo));
  330. kfifo_free(&htt->txdone_fifo);
  331. }
  332. static int ath10k_htt_tx_alloc_txdone_fifo(struct ath10k_htt *htt)
  333. {
  334. int ret;
  335. size_t size;
  336. size = roundup_pow_of_two(htt->max_num_pending_tx);
  337. ret = kfifo_alloc(&htt->txdone_fifo, size, GFP_KERNEL);
  338. return ret;
  339. }
  340. static int ath10k_htt_tx_alloc_buf(struct ath10k_htt *htt)
  341. {
  342. struct ath10k *ar = htt->ar;
  343. int ret;
  344. ret = ath10k_htt_alloc_txbuff(htt);
  345. if (ret) {
  346. ath10k_err(ar, "failed to alloc cont tx buffer: %d\n", ret);
  347. return ret;
  348. }
  349. ret = ath10k_htt_alloc_frag_desc(htt);
  350. if (ret) {
  351. ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret);
  352. goto free_txbuf;
  353. }
  354. ret = ath10k_htt_tx_alloc_txq(htt);
  355. if (ret) {
  356. ath10k_err(ar, "failed to alloc txq: %d\n", ret);
  357. goto free_frag_desc;
  358. }
  359. ret = ath10k_htt_tx_alloc_txdone_fifo(htt);
  360. if (ret) {
  361. ath10k_err(ar, "failed to alloc txdone fifo: %d\n", ret);
  362. goto free_txq;
  363. }
  364. return 0;
  365. free_txq:
  366. ath10k_htt_tx_free_txq(htt);
  367. free_frag_desc:
  368. ath10k_htt_free_frag_desc(htt);
  369. free_txbuf:
  370. ath10k_htt_free_txbuff(htt);
  371. return ret;
  372. }
  373. int ath10k_htt_tx_start(struct ath10k_htt *htt)
  374. {
  375. struct ath10k *ar = htt->ar;
  376. int ret;
  377. ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
  378. htt->max_num_pending_tx);
  379. spin_lock_init(&htt->tx_lock);
  380. idr_init(&htt->pending_tx);
  381. if (htt->tx_mem_allocated)
  382. return 0;
  383. ret = ath10k_htt_tx_alloc_buf(htt);
  384. if (ret)
  385. goto free_idr_pending_tx;
  386. htt->tx_mem_allocated = true;
  387. return 0;
  388. free_idr_pending_tx:
  389. idr_destroy(&htt->pending_tx);
  390. return ret;
  391. }
  392. static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
  393. {
  394. struct ath10k *ar = ctx;
  395. struct ath10k_htt *htt = &ar->htt;
  396. struct htt_tx_done tx_done = {0};
  397. ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
  398. tx_done.msdu_id = msdu_id;
  399. tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
  400. ath10k_txrx_tx_unref(htt, &tx_done);
  401. return 0;
  402. }
  403. void ath10k_htt_tx_destroy(struct ath10k_htt *htt)
  404. {
  405. if (!htt->tx_mem_allocated)
  406. return;
  407. ath10k_htt_free_txbuff(htt);
  408. ath10k_htt_tx_free_txq(htt);
  409. ath10k_htt_free_frag_desc(htt);
  410. ath10k_htt_tx_free_txdone_fifo(htt);
  411. htt->tx_mem_allocated = false;
  412. }
  413. void ath10k_htt_tx_stop(struct ath10k_htt *htt)
  414. {
  415. idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
  416. idr_destroy(&htt->pending_tx);
  417. }
  418. void ath10k_htt_tx_free(struct ath10k_htt *htt)
  419. {
  420. ath10k_htt_tx_stop(htt);
  421. ath10k_htt_tx_destroy(htt);
  422. }
  423. void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  424. {
  425. dev_kfree_skb_any(skb);
  426. }
  427. void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  428. {
  429. dev_kfree_skb_any(skb);
  430. }
  431. EXPORT_SYMBOL(ath10k_htt_hif_tx_complete);
  432. int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
  433. {
  434. struct ath10k *ar = htt->ar;
  435. struct sk_buff *skb;
  436. struct htt_cmd *cmd;
  437. int len = 0;
  438. int ret;
  439. len += sizeof(cmd->hdr);
  440. len += sizeof(cmd->ver_req);
  441. skb = ath10k_htc_alloc_skb(ar, len);
  442. if (!skb)
  443. return -ENOMEM;
  444. skb_put(skb, len);
  445. cmd = (struct htt_cmd *)skb->data;
  446. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
  447. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  448. if (ret) {
  449. dev_kfree_skb_any(skb);
  450. return ret;
  451. }
  452. return 0;
  453. }
  454. int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
  455. {
  456. struct ath10k *ar = htt->ar;
  457. struct htt_stats_req *req;
  458. struct sk_buff *skb;
  459. struct htt_cmd *cmd;
  460. int len = 0, ret;
  461. len += sizeof(cmd->hdr);
  462. len += sizeof(cmd->stats_req);
  463. skb = ath10k_htc_alloc_skb(ar, len);
  464. if (!skb)
  465. return -ENOMEM;
  466. skb_put(skb, len);
  467. cmd = (struct htt_cmd *)skb->data;
  468. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
  469. req = &cmd->stats_req;
  470. memset(req, 0, sizeof(*req));
  471. /* currently we support only max 8 bit masks so no need to worry
  472. * about endian support
  473. */
  474. req->upload_types[0] = mask;
  475. req->reset_types[0] = mask;
  476. req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
  477. req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
  478. req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
  479. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  480. if (ret) {
  481. ath10k_warn(ar, "failed to send htt type stats request: %d",
  482. ret);
  483. dev_kfree_skb_any(skb);
  484. return ret;
  485. }
  486. return 0;
  487. }
  488. static int ath10k_htt_send_frag_desc_bank_cfg_32(struct ath10k_htt *htt)
  489. {
  490. struct ath10k *ar = htt->ar;
  491. struct sk_buff *skb;
  492. struct htt_cmd *cmd;
  493. struct htt_frag_desc_bank_cfg32 *cfg;
  494. int ret, size;
  495. u8 info;
  496. if (!ar->hw_params.continuous_frag_desc)
  497. return 0;
  498. if (!htt->frag_desc.paddr) {
  499. ath10k_warn(ar, "invalid frag desc memory\n");
  500. return -EINVAL;
  501. }
  502. size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg32);
  503. skb = ath10k_htc_alloc_skb(ar, size);
  504. if (!skb)
  505. return -ENOMEM;
  506. skb_put(skb, size);
  507. cmd = (struct htt_cmd *)skb->data;
  508. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
  509. info = 0;
  510. info |= SM(htt->tx_q_state.type,
  511. HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
  512. if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  513. ar->running_fw->fw_file.fw_features))
  514. info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
  515. cfg = &cmd->frag_desc_bank_cfg32;
  516. cfg->info = info;
  517. cfg->num_banks = 1;
  518. cfg->desc_size = sizeof(struct htt_msdu_ext_desc);
  519. cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr);
  520. cfg->bank_id[0].bank_min_id = 0;
  521. cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
  522. 1);
  523. cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
  524. cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
  525. cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
  526. cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
  527. cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
  528. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
  529. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  530. if (ret) {
  531. ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
  532. ret);
  533. dev_kfree_skb_any(skb);
  534. return ret;
  535. }
  536. return 0;
  537. }
  538. static int ath10k_htt_send_frag_desc_bank_cfg_64(struct ath10k_htt *htt)
  539. {
  540. struct ath10k *ar = htt->ar;
  541. struct sk_buff *skb;
  542. struct htt_cmd *cmd;
  543. struct htt_frag_desc_bank_cfg64 *cfg;
  544. int ret, size;
  545. u8 info;
  546. if (!ar->hw_params.continuous_frag_desc)
  547. return 0;
  548. if (!htt->frag_desc.paddr) {
  549. ath10k_warn(ar, "invalid frag desc memory\n");
  550. return -EINVAL;
  551. }
  552. size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg64);
  553. skb = ath10k_htc_alloc_skb(ar, size);
  554. if (!skb)
  555. return -ENOMEM;
  556. skb_put(skb, size);
  557. cmd = (struct htt_cmd *)skb->data;
  558. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
  559. info = 0;
  560. info |= SM(htt->tx_q_state.type,
  561. HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
  562. if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  563. ar->running_fw->fw_file.fw_features))
  564. info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
  565. cfg = &cmd->frag_desc_bank_cfg64;
  566. cfg->info = info;
  567. cfg->num_banks = 1;
  568. cfg->desc_size = sizeof(struct htt_msdu_ext_desc_64);
  569. cfg->bank_base_addrs[0] = __cpu_to_le64(htt->frag_desc.paddr);
  570. cfg->bank_id[0].bank_min_id = 0;
  571. cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
  572. 1);
  573. cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
  574. cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
  575. cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
  576. cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
  577. cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
  578. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
  579. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  580. if (ret) {
  581. ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
  582. ret);
  583. dev_kfree_skb_any(skb);
  584. return ret;
  585. }
  586. return 0;
  587. }
  588. static void ath10k_htt_fill_rx_desc_offset_32(void *rx_ring)
  589. {
  590. struct htt_rx_ring_setup_ring32 *ring =
  591. (struct htt_rx_ring_setup_ring32 *)rx_ring;
  592. #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
  593. ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
  594. ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
  595. ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
  596. ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
  597. ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
  598. ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
  599. ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
  600. ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
  601. ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
  602. ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
  603. #undef desc_offset
  604. }
  605. static void ath10k_htt_fill_rx_desc_offset_64(void *rx_ring)
  606. {
  607. struct htt_rx_ring_setup_ring64 *ring =
  608. (struct htt_rx_ring_setup_ring64 *)rx_ring;
  609. #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
  610. ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
  611. ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
  612. ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
  613. ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
  614. ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
  615. ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
  616. ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
  617. ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
  618. ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
  619. ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
  620. #undef desc_offset
  621. }
  622. static int ath10k_htt_send_rx_ring_cfg_32(struct ath10k_htt *htt)
  623. {
  624. struct ath10k *ar = htt->ar;
  625. struct sk_buff *skb;
  626. struct htt_cmd *cmd;
  627. struct htt_rx_ring_setup_ring32 *ring;
  628. const int num_rx_ring = 1;
  629. u16 flags;
  630. u32 fw_idx;
  631. int len;
  632. int ret;
  633. /*
  634. * the HW expects the buffer to be an integral number of 4-byte
  635. * "words"
  636. */
  637. BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
  638. BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
  639. len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup_32.hdr)
  640. + (sizeof(*ring) * num_rx_ring);
  641. skb = ath10k_htc_alloc_skb(ar, len);
  642. if (!skb)
  643. return -ENOMEM;
  644. skb_put(skb, len);
  645. cmd = (struct htt_cmd *)skb->data;
  646. ring = &cmd->rx_setup_32.rings[0];
  647. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
  648. cmd->rx_setup_32.hdr.num_rings = 1;
  649. /* FIXME: do we need all of this? */
  650. flags = 0;
  651. flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
  652. flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
  653. flags |= HTT_RX_RING_FLAGS_PPDU_START;
  654. flags |= HTT_RX_RING_FLAGS_PPDU_END;
  655. flags |= HTT_RX_RING_FLAGS_MPDU_START;
  656. flags |= HTT_RX_RING_FLAGS_MPDU_END;
  657. flags |= HTT_RX_RING_FLAGS_MSDU_START;
  658. flags |= HTT_RX_RING_FLAGS_MSDU_END;
  659. flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
  660. flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
  661. flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
  662. flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
  663. flags |= HTT_RX_RING_FLAGS_CTRL_RX;
  664. flags |= HTT_RX_RING_FLAGS_MGMT_RX;
  665. flags |= HTT_RX_RING_FLAGS_NULL_RX;
  666. flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
  667. fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
  668. ring->fw_idx_shadow_reg_paddr =
  669. __cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
  670. ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
  671. ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
  672. ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
  673. ring->flags = __cpu_to_le16(flags);
  674. ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
  675. ath10k_htt_fill_rx_desc_offset_32(ring);
  676. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  677. if (ret) {
  678. dev_kfree_skb_any(skb);
  679. return ret;
  680. }
  681. return 0;
  682. }
  683. static int ath10k_htt_send_rx_ring_cfg_64(struct ath10k_htt *htt)
  684. {
  685. struct ath10k *ar = htt->ar;
  686. struct sk_buff *skb;
  687. struct htt_cmd *cmd;
  688. struct htt_rx_ring_setup_ring64 *ring;
  689. const int num_rx_ring = 1;
  690. u16 flags;
  691. u32 fw_idx;
  692. int len;
  693. int ret;
  694. /* HW expects the buffer to be an integral number of 4-byte
  695. * "words"
  696. */
  697. BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
  698. BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
  699. len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup_64.hdr)
  700. + (sizeof(*ring) * num_rx_ring);
  701. skb = ath10k_htc_alloc_skb(ar, len);
  702. if (!skb)
  703. return -ENOMEM;
  704. skb_put(skb, len);
  705. cmd = (struct htt_cmd *)skb->data;
  706. ring = &cmd->rx_setup_64.rings[0];
  707. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
  708. cmd->rx_setup_64.hdr.num_rings = 1;
  709. flags = 0;
  710. flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
  711. flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
  712. flags |= HTT_RX_RING_FLAGS_PPDU_START;
  713. flags |= HTT_RX_RING_FLAGS_PPDU_END;
  714. flags |= HTT_RX_RING_FLAGS_MPDU_START;
  715. flags |= HTT_RX_RING_FLAGS_MPDU_END;
  716. flags |= HTT_RX_RING_FLAGS_MSDU_START;
  717. flags |= HTT_RX_RING_FLAGS_MSDU_END;
  718. flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
  719. flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
  720. flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
  721. flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
  722. flags |= HTT_RX_RING_FLAGS_CTRL_RX;
  723. flags |= HTT_RX_RING_FLAGS_MGMT_RX;
  724. flags |= HTT_RX_RING_FLAGS_NULL_RX;
  725. flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
  726. fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
  727. ring->fw_idx_shadow_reg_paddr = __cpu_to_le64(htt->rx_ring.alloc_idx.paddr);
  728. ring->rx_ring_base_paddr = __cpu_to_le64(htt->rx_ring.base_paddr);
  729. ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
  730. ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
  731. ring->flags = __cpu_to_le16(flags);
  732. ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
  733. ath10k_htt_fill_rx_desc_offset_64(ring);
  734. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  735. if (ret) {
  736. dev_kfree_skb_any(skb);
  737. return ret;
  738. }
  739. return 0;
  740. }
  741. int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
  742. u8 max_subfrms_ampdu,
  743. u8 max_subfrms_amsdu)
  744. {
  745. struct ath10k *ar = htt->ar;
  746. struct htt_aggr_conf *aggr_conf;
  747. struct sk_buff *skb;
  748. struct htt_cmd *cmd;
  749. int len;
  750. int ret;
  751. /* Firmware defaults are: amsdu = 3 and ampdu = 64 */
  752. if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
  753. return -EINVAL;
  754. if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
  755. return -EINVAL;
  756. len = sizeof(cmd->hdr);
  757. len += sizeof(cmd->aggr_conf);
  758. skb = ath10k_htc_alloc_skb(ar, len);
  759. if (!skb)
  760. return -ENOMEM;
  761. skb_put(skb, len);
  762. cmd = (struct htt_cmd *)skb->data;
  763. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
  764. aggr_conf = &cmd->aggr_conf;
  765. aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
  766. aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
  767. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
  768. aggr_conf->max_num_amsdu_subframes,
  769. aggr_conf->max_num_ampdu_subframes);
  770. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  771. if (ret) {
  772. dev_kfree_skb_any(skb);
  773. return ret;
  774. }
  775. return 0;
  776. }
  777. int ath10k_htt_tx_fetch_resp(struct ath10k *ar,
  778. __le32 token,
  779. __le16 fetch_seq_num,
  780. struct htt_tx_fetch_record *records,
  781. size_t num_records)
  782. {
  783. struct sk_buff *skb;
  784. struct htt_cmd *cmd;
  785. const u16 resp_id = 0;
  786. int len = 0;
  787. int ret;
  788. /* Response IDs are echo-ed back only for host driver convienence
  789. * purposes. They aren't used for anything in the driver yet so use 0.
  790. */
  791. len += sizeof(cmd->hdr);
  792. len += sizeof(cmd->tx_fetch_resp);
  793. len += sizeof(cmd->tx_fetch_resp.records[0]) * num_records;
  794. skb = ath10k_htc_alloc_skb(ar, len);
  795. if (!skb)
  796. return -ENOMEM;
  797. skb_put(skb, len);
  798. cmd = (struct htt_cmd *)skb->data;
  799. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FETCH_RESP;
  800. cmd->tx_fetch_resp.resp_id = cpu_to_le16(resp_id);
  801. cmd->tx_fetch_resp.fetch_seq_num = fetch_seq_num;
  802. cmd->tx_fetch_resp.num_records = cpu_to_le16(num_records);
  803. cmd->tx_fetch_resp.token = token;
  804. memcpy(cmd->tx_fetch_resp.records, records,
  805. sizeof(records[0]) * num_records);
  806. ret = ath10k_htc_send(&ar->htc, ar->htt.eid, skb);
  807. if (ret) {
  808. ath10k_warn(ar, "failed to submit htc command: %d\n", ret);
  809. goto err_free_skb;
  810. }
  811. return 0;
  812. err_free_skb:
  813. dev_kfree_skb_any(skb);
  814. return ret;
  815. }
  816. static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb)
  817. {
  818. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  819. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  820. struct ath10k_vif *arvif;
  821. if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
  822. return ar->scan.vdev_id;
  823. } else if (cb->vif) {
  824. arvif = (void *)cb->vif->drv_priv;
  825. return arvif->vdev_id;
  826. } else if (ar->monitor_started) {
  827. return ar->monitor_vdev_id;
  828. } else {
  829. return 0;
  830. }
  831. }
  832. static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth)
  833. {
  834. struct ieee80211_hdr *hdr = (void *)skb->data;
  835. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  836. if (!is_eth && ieee80211_is_mgmt(hdr->frame_control))
  837. return HTT_DATA_TX_EXT_TID_MGMT;
  838. else if (cb->flags & ATH10K_SKB_F_QOS)
  839. return skb->priority & IEEE80211_QOS_CTL_TID_MASK;
  840. else
  841. return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
  842. }
  843. int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
  844. {
  845. struct ath10k *ar = htt->ar;
  846. struct device *dev = ar->dev;
  847. struct sk_buff *txdesc = NULL;
  848. struct htt_cmd *cmd;
  849. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  850. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  851. int len = 0;
  852. int msdu_id = -1;
  853. int res;
  854. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  855. len += sizeof(cmd->hdr);
  856. len += sizeof(cmd->mgmt_tx);
  857. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  858. if (res < 0)
  859. goto err;
  860. msdu_id = res;
  861. if ((ieee80211_is_action(hdr->frame_control) ||
  862. ieee80211_is_deauth(hdr->frame_control) ||
  863. ieee80211_is_disassoc(hdr->frame_control)) &&
  864. ieee80211_has_protected(hdr->frame_control)) {
  865. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  866. }
  867. txdesc = ath10k_htc_alloc_skb(ar, len);
  868. if (!txdesc) {
  869. res = -ENOMEM;
  870. goto err_free_msdu_id;
  871. }
  872. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  873. DMA_TO_DEVICE);
  874. res = dma_mapping_error(dev, skb_cb->paddr);
  875. if (res) {
  876. res = -EIO;
  877. goto err_free_txdesc;
  878. }
  879. skb_put(txdesc, len);
  880. cmd = (struct htt_cmd *)txdesc->data;
  881. memset(cmd, 0, len);
  882. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_MGMT_TX;
  883. cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
  884. cmd->mgmt_tx.len = __cpu_to_le32(msdu->len);
  885. cmd->mgmt_tx.desc_id = __cpu_to_le32(msdu_id);
  886. cmd->mgmt_tx.vdev_id = __cpu_to_le32(vdev_id);
  887. memcpy(cmd->mgmt_tx.hdr, msdu->data,
  888. min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
  889. res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
  890. if (res)
  891. goto err_unmap_msdu;
  892. return 0;
  893. err_unmap_msdu:
  894. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  895. err_free_txdesc:
  896. dev_kfree_skb_any(txdesc);
  897. err_free_msdu_id:
  898. spin_lock_bh(&htt->tx_lock);
  899. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  900. spin_unlock_bh(&htt->tx_lock);
  901. err:
  902. return res;
  903. }
  904. static int ath10k_htt_tx_32(struct ath10k_htt *htt,
  905. enum ath10k_hw_txrx_mode txmode,
  906. struct sk_buff *msdu)
  907. {
  908. struct ath10k *ar = htt->ar;
  909. struct device *dev = ar->dev;
  910. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  911. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
  912. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  913. struct ath10k_hif_sg_item sg_items[2];
  914. struct ath10k_htt_txbuf_32 *txbuf;
  915. struct htt_data_tx_desc_frag *frags;
  916. bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
  917. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  918. u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
  919. int prefetch_len;
  920. int res;
  921. u8 flags0 = 0;
  922. u16 msdu_id, flags1 = 0;
  923. u16 freq = 0;
  924. u32 frags_paddr = 0;
  925. u32 txbuf_paddr;
  926. struct htt_msdu_ext_desc *ext_desc = NULL;
  927. struct htt_msdu_ext_desc *ext_desc_t = NULL;
  928. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  929. if (res < 0)
  930. goto err;
  931. msdu_id = res;
  932. prefetch_len = min(htt->prefetch_len, msdu->len);
  933. prefetch_len = roundup(prefetch_len, 4);
  934. txbuf = htt->txbuf.vaddr_txbuff_32 + msdu_id;
  935. txbuf_paddr = htt->txbuf.paddr +
  936. (sizeof(struct ath10k_htt_txbuf_32) * msdu_id);
  937. if ((ieee80211_is_action(hdr->frame_control) ||
  938. ieee80211_is_deauth(hdr->frame_control) ||
  939. ieee80211_is_disassoc(hdr->frame_control)) &&
  940. ieee80211_has_protected(hdr->frame_control)) {
  941. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  942. } else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
  943. txmode == ATH10K_HW_TXRX_RAW &&
  944. ieee80211_has_protected(hdr->frame_control)) {
  945. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  946. }
  947. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  948. DMA_TO_DEVICE);
  949. res = dma_mapping_error(dev, skb_cb->paddr);
  950. if (res) {
  951. res = -EIO;
  952. goto err_free_msdu_id;
  953. }
  954. if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
  955. freq = ar->scan.roc_freq;
  956. switch (txmode) {
  957. case ATH10K_HW_TXRX_RAW:
  958. case ATH10K_HW_TXRX_NATIVE_WIFI:
  959. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  960. /* fall through */
  961. case ATH10K_HW_TXRX_ETHERNET:
  962. if (ar->hw_params.continuous_frag_desc) {
  963. ext_desc_t = htt->frag_desc.vaddr_desc_32;
  964. memset(&ext_desc_t[msdu_id], 0,
  965. sizeof(struct htt_msdu_ext_desc));
  966. frags = (struct htt_data_tx_desc_frag *)
  967. &ext_desc_t[msdu_id].frags;
  968. ext_desc = &ext_desc_t[msdu_id];
  969. frags[0].tword_addr.paddr_lo =
  970. __cpu_to_le32(skb_cb->paddr);
  971. frags[0].tword_addr.paddr_hi = 0;
  972. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  973. frags_paddr = htt->frag_desc.paddr +
  974. (sizeof(struct htt_msdu_ext_desc) * msdu_id);
  975. } else {
  976. frags = txbuf->frags;
  977. frags[0].dword_addr.paddr =
  978. __cpu_to_le32(skb_cb->paddr);
  979. frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
  980. frags[1].dword_addr.paddr = 0;
  981. frags[1].dword_addr.len = 0;
  982. frags_paddr = txbuf_paddr;
  983. }
  984. flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  985. break;
  986. case ATH10K_HW_TXRX_MGMT:
  987. flags0 |= SM(ATH10K_HW_TXRX_MGMT,
  988. HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  989. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  990. frags_paddr = skb_cb->paddr;
  991. break;
  992. }
  993. /* Normally all commands go through HTC which manages tx credits for
  994. * each endpoint and notifies when tx is completed.
  995. *
  996. * HTT endpoint is creditless so there's no need to care about HTC
  997. * flags. In that case it is trivial to fill the HTC header here.
  998. *
  999. * MSDU transmission is considered completed upon HTT event. This
  1000. * implies no relevant resources can be freed until after the event is
  1001. * received. That's why HTC tx completion handler itself is ignored by
  1002. * setting NULL to transfer_context for all sg items.
  1003. *
  1004. * There is simply no point in pushing HTT TX_FRM through HTC tx path
  1005. * as it's a waste of resources. By bypassing HTC it is possible to
  1006. * avoid extra memory allocations, compress data structures and thus
  1007. * improve performance.
  1008. */
  1009. txbuf->htc_hdr.eid = htt->eid;
  1010. txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
  1011. sizeof(txbuf->cmd_tx) +
  1012. prefetch_len);
  1013. txbuf->htc_hdr.flags = 0;
  1014. if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
  1015. flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
  1016. flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
  1017. flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
  1018. if (msdu->ip_summed == CHECKSUM_PARTIAL &&
  1019. !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
  1020. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
  1021. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
  1022. if (ar->hw_params.continuous_frag_desc)
  1023. ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
  1024. }
  1025. /* Prevent firmware from sending up tx inspection requests. There's
  1026. * nothing ath10k can do with frames requested for inspection so force
  1027. * it to simply rely a regular tx completion with discard status.
  1028. */
  1029. flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
  1030. txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
  1031. txbuf->cmd_tx.flags0 = flags0;
  1032. txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
  1033. txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
  1034. txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
  1035. txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
  1036. if (ath10k_mac_tx_frm_has_freq(ar)) {
  1037. txbuf->cmd_tx.offchan_tx.peerid =
  1038. __cpu_to_le16(HTT_INVALID_PEERID);
  1039. txbuf->cmd_tx.offchan_tx.freq =
  1040. __cpu_to_le16(freq);
  1041. } else {
  1042. txbuf->cmd_tx.peerid =
  1043. __cpu_to_le32(HTT_INVALID_PEERID);
  1044. }
  1045. trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
  1046. ath10k_dbg(ar, ATH10K_DBG_HTT,
  1047. "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %pad, msdu_paddr %pad vdev %hhu tid %hhu freq %hu\n",
  1048. flags0, flags1, msdu->len, msdu_id, &frags_paddr,
  1049. &skb_cb->paddr, vdev_id, tid, freq);
  1050. ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
  1051. msdu->data, msdu->len);
  1052. trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
  1053. trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
  1054. sg_items[0].transfer_id = 0;
  1055. sg_items[0].transfer_context = NULL;
  1056. sg_items[0].vaddr = &txbuf->htc_hdr;
  1057. sg_items[0].paddr = txbuf_paddr +
  1058. sizeof(txbuf->frags);
  1059. sg_items[0].len = sizeof(txbuf->htc_hdr) +
  1060. sizeof(txbuf->cmd_hdr) +
  1061. sizeof(txbuf->cmd_tx);
  1062. sg_items[1].transfer_id = 0;
  1063. sg_items[1].transfer_context = NULL;
  1064. sg_items[1].vaddr = msdu->data;
  1065. sg_items[1].paddr = skb_cb->paddr;
  1066. sg_items[1].len = prefetch_len;
  1067. res = ath10k_hif_tx_sg(htt->ar,
  1068. htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
  1069. sg_items, ARRAY_SIZE(sg_items));
  1070. if (res)
  1071. goto err_unmap_msdu;
  1072. return 0;
  1073. err_unmap_msdu:
  1074. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  1075. err_free_msdu_id:
  1076. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  1077. err:
  1078. return res;
  1079. }
  1080. static int ath10k_htt_tx_64(struct ath10k_htt *htt,
  1081. enum ath10k_hw_txrx_mode txmode,
  1082. struct sk_buff *msdu)
  1083. {
  1084. struct ath10k *ar = htt->ar;
  1085. struct device *dev = ar->dev;
  1086. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  1087. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
  1088. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  1089. struct ath10k_hif_sg_item sg_items[2];
  1090. struct ath10k_htt_txbuf_64 *txbuf;
  1091. struct htt_data_tx_desc_frag *frags;
  1092. bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
  1093. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  1094. u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
  1095. int prefetch_len;
  1096. int res;
  1097. u8 flags0 = 0;
  1098. u16 msdu_id, flags1 = 0;
  1099. u16 freq = 0;
  1100. dma_addr_t frags_paddr = 0;
  1101. u32 txbuf_paddr;
  1102. struct htt_msdu_ext_desc_64 *ext_desc = NULL;
  1103. struct htt_msdu_ext_desc_64 *ext_desc_t = NULL;
  1104. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  1105. if (res < 0)
  1106. goto err;
  1107. msdu_id = res;
  1108. prefetch_len = min(htt->prefetch_len, msdu->len);
  1109. prefetch_len = roundup(prefetch_len, 4);
  1110. txbuf = htt->txbuf.vaddr_txbuff_64 + msdu_id;
  1111. txbuf_paddr = htt->txbuf.paddr +
  1112. (sizeof(struct ath10k_htt_txbuf_64) * msdu_id);
  1113. if ((ieee80211_is_action(hdr->frame_control) ||
  1114. ieee80211_is_deauth(hdr->frame_control) ||
  1115. ieee80211_is_disassoc(hdr->frame_control)) &&
  1116. ieee80211_has_protected(hdr->frame_control)) {
  1117. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  1118. } else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
  1119. txmode == ATH10K_HW_TXRX_RAW &&
  1120. ieee80211_has_protected(hdr->frame_control)) {
  1121. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  1122. }
  1123. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  1124. DMA_TO_DEVICE);
  1125. res = dma_mapping_error(dev, skb_cb->paddr);
  1126. if (res) {
  1127. res = -EIO;
  1128. goto err_free_msdu_id;
  1129. }
  1130. if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
  1131. freq = ar->scan.roc_freq;
  1132. switch (txmode) {
  1133. case ATH10K_HW_TXRX_RAW:
  1134. case ATH10K_HW_TXRX_NATIVE_WIFI:
  1135. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  1136. /* fall through */
  1137. case ATH10K_HW_TXRX_ETHERNET:
  1138. if (ar->hw_params.continuous_frag_desc) {
  1139. ext_desc_t = htt->frag_desc.vaddr_desc_64;
  1140. memset(&ext_desc_t[msdu_id], 0,
  1141. sizeof(struct htt_msdu_ext_desc_64));
  1142. frags = (struct htt_data_tx_desc_frag *)
  1143. &ext_desc_t[msdu_id].frags;
  1144. ext_desc = &ext_desc_t[msdu_id];
  1145. frags[0].tword_addr.paddr_lo =
  1146. __cpu_to_le32(skb_cb->paddr);
  1147. frags[0].tword_addr.paddr_hi =
  1148. __cpu_to_le16(upper_32_bits(skb_cb->paddr));
  1149. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  1150. frags_paddr = htt->frag_desc.paddr +
  1151. (sizeof(struct htt_msdu_ext_desc_64) * msdu_id);
  1152. } else {
  1153. frags = txbuf->frags;
  1154. frags[0].tword_addr.paddr_lo =
  1155. __cpu_to_le32(skb_cb->paddr);
  1156. frags[0].tword_addr.paddr_hi =
  1157. __cpu_to_le16(upper_32_bits(skb_cb->paddr));
  1158. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  1159. frags[1].tword_addr.paddr_lo = 0;
  1160. frags[1].tword_addr.paddr_hi = 0;
  1161. frags[1].tword_addr.len_16 = 0;
  1162. }
  1163. flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  1164. break;
  1165. case ATH10K_HW_TXRX_MGMT:
  1166. flags0 |= SM(ATH10K_HW_TXRX_MGMT,
  1167. HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  1168. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  1169. frags_paddr = skb_cb->paddr;
  1170. break;
  1171. }
  1172. /* Normally all commands go through HTC which manages tx credits for
  1173. * each endpoint and notifies when tx is completed.
  1174. *
  1175. * HTT endpoint is creditless so there's no need to care about HTC
  1176. * flags. In that case it is trivial to fill the HTC header here.
  1177. *
  1178. * MSDU transmission is considered completed upon HTT event. This
  1179. * implies no relevant resources can be freed until after the event is
  1180. * received. That's why HTC tx completion handler itself is ignored by
  1181. * setting NULL to transfer_context for all sg items.
  1182. *
  1183. * There is simply no point in pushing HTT TX_FRM through HTC tx path
  1184. * as it's a waste of resources. By bypassing HTC it is possible to
  1185. * avoid extra memory allocations, compress data structures and thus
  1186. * improve performance.
  1187. */
  1188. txbuf->htc_hdr.eid = htt->eid;
  1189. txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
  1190. sizeof(txbuf->cmd_tx) +
  1191. prefetch_len);
  1192. txbuf->htc_hdr.flags = 0;
  1193. if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
  1194. flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
  1195. flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
  1196. flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
  1197. if (msdu->ip_summed == CHECKSUM_PARTIAL &&
  1198. !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
  1199. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
  1200. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
  1201. if (ar->hw_params.continuous_frag_desc) {
  1202. memset(ext_desc->tso_flag, 0, sizeof(ext_desc->tso_flag));
  1203. ext_desc->tso_flag[3] |=
  1204. __cpu_to_le32(HTT_MSDU_CHECKSUM_ENABLE_64);
  1205. }
  1206. }
  1207. /* Prevent firmware from sending up tx inspection requests. There's
  1208. * nothing ath10k can do with frames requested for inspection so force
  1209. * it to simply rely a regular tx completion with discard status.
  1210. */
  1211. flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
  1212. txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
  1213. txbuf->cmd_tx.flags0 = flags0;
  1214. txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
  1215. txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
  1216. txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
  1217. /* fill fragment descriptor */
  1218. txbuf->cmd_tx.frags_paddr = __cpu_to_le64(frags_paddr);
  1219. if (ath10k_mac_tx_frm_has_freq(ar)) {
  1220. txbuf->cmd_tx.offchan_tx.peerid =
  1221. __cpu_to_le16(HTT_INVALID_PEERID);
  1222. txbuf->cmd_tx.offchan_tx.freq =
  1223. __cpu_to_le16(freq);
  1224. } else {
  1225. txbuf->cmd_tx.peerid =
  1226. __cpu_to_le32(HTT_INVALID_PEERID);
  1227. }
  1228. trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
  1229. ath10k_dbg(ar, ATH10K_DBG_HTT,
  1230. "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %pad, msdu_paddr %pad vdev %hhu tid %hhu freq %hu\n",
  1231. flags0, flags1, msdu->len, msdu_id, &frags_paddr,
  1232. &skb_cb->paddr, vdev_id, tid, freq);
  1233. ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
  1234. msdu->data, msdu->len);
  1235. trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
  1236. trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
  1237. sg_items[0].transfer_id = 0;
  1238. sg_items[0].transfer_context = NULL;
  1239. sg_items[0].vaddr = &txbuf->htc_hdr;
  1240. sg_items[0].paddr = txbuf_paddr +
  1241. sizeof(txbuf->frags);
  1242. sg_items[0].len = sizeof(txbuf->htc_hdr) +
  1243. sizeof(txbuf->cmd_hdr) +
  1244. sizeof(txbuf->cmd_tx);
  1245. sg_items[1].transfer_id = 0;
  1246. sg_items[1].transfer_context = NULL;
  1247. sg_items[1].vaddr = msdu->data;
  1248. sg_items[1].paddr = skb_cb->paddr;
  1249. sg_items[1].len = prefetch_len;
  1250. res = ath10k_hif_tx_sg(htt->ar,
  1251. htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
  1252. sg_items, ARRAY_SIZE(sg_items));
  1253. if (res)
  1254. goto err_unmap_msdu;
  1255. return 0;
  1256. err_unmap_msdu:
  1257. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  1258. err_free_msdu_id:
  1259. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  1260. err:
  1261. return res;
  1262. }
  1263. static const struct ath10k_htt_tx_ops htt_tx_ops_32 = {
  1264. .htt_send_rx_ring_cfg = ath10k_htt_send_rx_ring_cfg_32,
  1265. .htt_send_frag_desc_bank_cfg = ath10k_htt_send_frag_desc_bank_cfg_32,
  1266. .htt_alloc_frag_desc = ath10k_htt_tx_alloc_cont_frag_desc_32,
  1267. .htt_free_frag_desc = ath10k_htt_tx_free_cont_frag_desc_32,
  1268. .htt_tx = ath10k_htt_tx_32,
  1269. .htt_alloc_txbuff = ath10k_htt_tx_alloc_cont_txbuf_32,
  1270. .htt_free_txbuff = ath10k_htt_tx_free_cont_txbuf_32,
  1271. };
  1272. static const struct ath10k_htt_tx_ops htt_tx_ops_64 = {
  1273. .htt_send_rx_ring_cfg = ath10k_htt_send_rx_ring_cfg_64,
  1274. .htt_send_frag_desc_bank_cfg = ath10k_htt_send_frag_desc_bank_cfg_64,
  1275. .htt_alloc_frag_desc = ath10k_htt_tx_alloc_cont_frag_desc_64,
  1276. .htt_free_frag_desc = ath10k_htt_tx_free_cont_frag_desc_64,
  1277. .htt_tx = ath10k_htt_tx_64,
  1278. .htt_alloc_txbuff = ath10k_htt_tx_alloc_cont_txbuf_64,
  1279. .htt_free_txbuff = ath10k_htt_tx_free_cont_txbuf_64,
  1280. };
  1281. void ath10k_htt_set_tx_ops(struct ath10k_htt *htt)
  1282. {
  1283. struct ath10k *ar = htt->ar;
  1284. if (ar->hw_params.target_64bit)
  1285. htt->tx_ops = &htt_tx_ops_64;
  1286. else
  1287. htt->tx_ops = &htt_tx_ops_32;
  1288. }