mcr20a.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417
  1. /*
  2. * Driver for NXP MCR20A 802.15.4 Wireless-PAN Networking controller
  3. *
  4. * Copyright (C) 2018 Xue Liu <liuxuenetmail@gmail.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2
  8. * as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/gpio/consumer.h>
  19. #include <linux/spi/spi.h>
  20. #include <linux/workqueue.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/irq.h>
  23. #include <linux/skbuff.h>
  24. #include <linux/of_gpio.h>
  25. #include <linux/regmap.h>
  26. #include <linux/ieee802154.h>
  27. #include <linux/debugfs.h>
  28. #include <net/mac802154.h>
  29. #include <net/cfg802154.h>
  30. #include <linux/device.h>
  31. #include "mcr20a.h"
  32. #define SPI_COMMAND_BUFFER 3
  33. #define REGISTER_READ BIT(7)
  34. #define REGISTER_WRITE (0 << 7)
  35. #define REGISTER_ACCESS (0 << 6)
  36. #define PACKET_BUFF_BURST_ACCESS BIT(6)
  37. #define PACKET_BUFF_BYTE_ACCESS BIT(5)
  38. #define MCR20A_WRITE_REG(x) (x)
  39. #define MCR20A_READ_REG(x) (REGISTER_READ | (x))
  40. #define MCR20A_BURST_READ_PACKET_BUF (0xC0)
  41. #define MCR20A_BURST_WRITE_PACKET_BUF (0x40)
  42. #define MCR20A_CMD_REG 0x80
  43. #define MCR20A_CMD_REG_MASK 0x3f
  44. #define MCR20A_CMD_WRITE 0x40
  45. #define MCR20A_CMD_FB 0x20
  46. /* Number of Interrupt Request Status Register */
  47. #define MCR20A_IRQSTS_NUM 2 /* only IRQ_STS1 and IRQ_STS2 */
  48. /* MCR20A CCA Type */
  49. enum {
  50. MCR20A_CCA_ED, // energy detect - CCA bit not active,
  51. // not to be used for T and CCCA sequences
  52. MCR20A_CCA_MODE1, // energy detect - CCA bit ACTIVE
  53. MCR20A_CCA_MODE2, // 802.15.4 compliant signal detect - CCA bit ACTIVE
  54. MCR20A_CCA_MODE3
  55. };
  56. enum {
  57. MCR20A_XCVSEQ_IDLE = 0x00,
  58. MCR20A_XCVSEQ_RX = 0x01,
  59. MCR20A_XCVSEQ_TX = 0x02,
  60. MCR20A_XCVSEQ_CCA = 0x03,
  61. MCR20A_XCVSEQ_TR = 0x04,
  62. MCR20A_XCVSEQ_CCCA = 0x05,
  63. };
  64. /* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */
  65. #define MCR20A_MIN_CHANNEL (11)
  66. #define MCR20A_MAX_CHANNEL (26)
  67. #define MCR20A_CHANNEL_SPACING (5)
  68. /* MCR20A CCA Threshold constans */
  69. #define MCR20A_MIN_CCA_THRESHOLD (0x6EU)
  70. #define MCR20A_MAX_CCA_THRESHOLD (0x00U)
  71. /* version 0C */
  72. #define MCR20A_OVERWRITE_VERSION (0x0C)
  73. /* MCR20A PLL configurations */
  74. static const u8 PLL_INT[16] = {
  75. /* 2405 */ 0x0B, /* 2410 */ 0x0B, /* 2415 */ 0x0B,
  76. /* 2420 */ 0x0B, /* 2425 */ 0x0B, /* 2430 */ 0x0B,
  77. /* 2435 */ 0x0C, /* 2440 */ 0x0C, /* 2445 */ 0x0C,
  78. /* 2450 */ 0x0C, /* 2455 */ 0x0C, /* 2460 */ 0x0C,
  79. /* 2465 */ 0x0D, /* 2470 */ 0x0D, /* 2475 */ 0x0D,
  80. /* 2480 */ 0x0D
  81. };
  82. static const u8 PLL_FRAC[16] = {
  83. /* 2405 */ 0x28, /* 2410 */ 0x50, /* 2415 */ 0x78,
  84. /* 2420 */ 0xA0, /* 2425 */ 0xC8, /* 2430 */ 0xF0,
  85. /* 2435 */ 0x18, /* 2440 */ 0x40, /* 2445 */ 0x68,
  86. /* 2450 */ 0x90, /* 2455 */ 0xB8, /* 2460 */ 0xE0,
  87. /* 2465 */ 0x08, /* 2470 */ 0x30, /* 2475 */ 0x58,
  88. /* 2480 */ 0x80
  89. };
  90. static const struct reg_sequence mar20a_iar_overwrites[] = {
  91. { IAR_MISC_PAD_CTRL, 0x02 },
  92. { IAR_VCO_CTRL1, 0xB3 },
  93. { IAR_VCO_CTRL2, 0x07 },
  94. { IAR_PA_TUNING, 0x71 },
  95. { IAR_CHF_IBUF, 0x2F },
  96. { IAR_CHF_QBUF, 0x2F },
  97. { IAR_CHF_IRIN, 0x24 },
  98. { IAR_CHF_QRIN, 0x24 },
  99. { IAR_CHF_IL, 0x24 },
  100. { IAR_CHF_QL, 0x24 },
  101. { IAR_CHF_CC1, 0x32 },
  102. { IAR_CHF_CCL, 0x1D },
  103. { IAR_CHF_CC2, 0x2D },
  104. { IAR_CHF_IROUT, 0x24 },
  105. { IAR_CHF_QROUT, 0x24 },
  106. { IAR_PA_CAL, 0x28 },
  107. { IAR_AGC_THR1, 0x55 },
  108. { IAR_AGC_THR2, 0x2D },
  109. { IAR_ATT_RSSI1, 0x5F },
  110. { IAR_ATT_RSSI2, 0x8F },
  111. { IAR_RSSI_OFFSET, 0x61 },
  112. { IAR_CHF_PMA_GAIN, 0x03 },
  113. { IAR_CCA1_THRESH, 0x50 },
  114. { IAR_CORR_NVAL, 0x13 },
  115. { IAR_ACKDELAY, 0x3D },
  116. };
  117. #define MCR20A_VALID_CHANNELS (0x07FFF800)
  118. struct mcr20a_platform_data {
  119. int rst_gpio;
  120. };
  121. #define MCR20A_MAX_BUF (127)
  122. #define printdev(X) (&X->spi->dev)
  123. /* regmap information for Direct Access Register (DAR) access */
  124. #define MCR20A_DAR_WRITE 0x01
  125. #define MCR20A_DAR_READ 0x00
  126. #define MCR20A_DAR_NUMREGS 0x3F
  127. /* regmap information for Indirect Access Register (IAR) access */
  128. #define MCR20A_IAR_ACCESS 0x80
  129. #define MCR20A_IAR_NUMREGS 0xBEFF
  130. /* Read/Write SPI Commands for DAR and IAR registers. */
  131. #define MCR20A_READSHORT(reg) ((reg) << 1)
  132. #define MCR20A_WRITESHORT(reg) ((reg) << 1 | 1)
  133. #define MCR20A_READLONG(reg) (1 << 15 | (reg) << 5)
  134. #define MCR20A_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
  135. /* Type definitions for link configuration of instantiable layers */
  136. #define MCR20A_PHY_INDIRECT_QUEUE_SIZE (12)
  137. static bool
  138. mcr20a_dar_writeable(struct device *dev, unsigned int reg)
  139. {
  140. switch (reg) {
  141. case DAR_IRQ_STS1:
  142. case DAR_IRQ_STS2:
  143. case DAR_IRQ_STS3:
  144. case DAR_PHY_CTRL1:
  145. case DAR_PHY_CTRL2:
  146. case DAR_PHY_CTRL3:
  147. case DAR_PHY_CTRL4:
  148. case DAR_SRC_CTRL:
  149. case DAR_SRC_ADDRS_SUM_LSB:
  150. case DAR_SRC_ADDRS_SUM_MSB:
  151. case DAR_T3CMP_LSB:
  152. case DAR_T3CMP_MSB:
  153. case DAR_T3CMP_USB:
  154. case DAR_T2PRIMECMP_LSB:
  155. case DAR_T2PRIMECMP_MSB:
  156. case DAR_T1CMP_LSB:
  157. case DAR_T1CMP_MSB:
  158. case DAR_T1CMP_USB:
  159. case DAR_T2CMP_LSB:
  160. case DAR_T2CMP_MSB:
  161. case DAR_T2CMP_USB:
  162. case DAR_T4CMP_LSB:
  163. case DAR_T4CMP_MSB:
  164. case DAR_T4CMP_USB:
  165. case DAR_PLL_INT0:
  166. case DAR_PLL_FRAC0_LSB:
  167. case DAR_PLL_FRAC0_MSB:
  168. case DAR_PA_PWR:
  169. /* no DAR_ACM */
  170. case DAR_OVERWRITE_VER:
  171. case DAR_CLK_OUT_CTRL:
  172. case DAR_PWR_MODES:
  173. return true;
  174. default:
  175. return false;
  176. }
  177. }
  178. static bool
  179. mcr20a_dar_readable(struct device *dev, unsigned int reg)
  180. {
  181. bool rc;
  182. /* all writeable are also readable */
  183. rc = mcr20a_dar_writeable(dev, reg);
  184. if (rc)
  185. return rc;
  186. /* readonly regs */
  187. switch (reg) {
  188. case DAR_RX_FRM_LEN:
  189. case DAR_CCA1_ED_FNL:
  190. case DAR_EVENT_TMR_LSB:
  191. case DAR_EVENT_TMR_MSB:
  192. case DAR_EVENT_TMR_USB:
  193. case DAR_TIMESTAMP_LSB:
  194. case DAR_TIMESTAMP_MSB:
  195. case DAR_TIMESTAMP_USB:
  196. case DAR_SEQ_STATE:
  197. case DAR_LQI_VALUE:
  198. case DAR_RSSI_CCA_CONT:
  199. return true;
  200. default:
  201. return false;
  202. }
  203. }
  204. static bool
  205. mcr20a_dar_volatile(struct device *dev, unsigned int reg)
  206. {
  207. /* can be changed during runtime */
  208. switch (reg) {
  209. case DAR_IRQ_STS1:
  210. case DAR_IRQ_STS2:
  211. case DAR_IRQ_STS3:
  212. /* use them in spi_async and regmap so it's volatile */
  213. return true;
  214. default:
  215. return false;
  216. }
  217. }
  218. static bool
  219. mcr20a_dar_precious(struct device *dev, unsigned int reg)
  220. {
  221. /* don't clear irq line on read */
  222. switch (reg) {
  223. case DAR_IRQ_STS1:
  224. case DAR_IRQ_STS2:
  225. case DAR_IRQ_STS3:
  226. return true;
  227. default:
  228. return false;
  229. }
  230. }
  231. static const struct regmap_config mcr20a_dar_regmap = {
  232. .name = "mcr20a_dar",
  233. .reg_bits = 8,
  234. .val_bits = 8,
  235. .write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE,
  236. .read_flag_mask = REGISTER_ACCESS | REGISTER_READ,
  237. .cache_type = REGCACHE_RBTREE,
  238. .writeable_reg = mcr20a_dar_writeable,
  239. .readable_reg = mcr20a_dar_readable,
  240. .volatile_reg = mcr20a_dar_volatile,
  241. .precious_reg = mcr20a_dar_precious,
  242. .fast_io = true,
  243. .can_multi_write = true,
  244. };
  245. static bool
  246. mcr20a_iar_writeable(struct device *dev, unsigned int reg)
  247. {
  248. switch (reg) {
  249. case IAR_XTAL_TRIM:
  250. case IAR_PMC_LP_TRIM:
  251. case IAR_MACPANID0_LSB:
  252. case IAR_MACPANID0_MSB:
  253. case IAR_MACSHORTADDRS0_LSB:
  254. case IAR_MACSHORTADDRS0_MSB:
  255. case IAR_MACLONGADDRS0_0:
  256. case IAR_MACLONGADDRS0_8:
  257. case IAR_MACLONGADDRS0_16:
  258. case IAR_MACLONGADDRS0_24:
  259. case IAR_MACLONGADDRS0_32:
  260. case IAR_MACLONGADDRS0_40:
  261. case IAR_MACLONGADDRS0_48:
  262. case IAR_MACLONGADDRS0_56:
  263. case IAR_RX_FRAME_FILTER:
  264. case IAR_PLL_INT1:
  265. case IAR_PLL_FRAC1_LSB:
  266. case IAR_PLL_FRAC1_MSB:
  267. case IAR_MACPANID1_LSB:
  268. case IAR_MACPANID1_MSB:
  269. case IAR_MACSHORTADDRS1_LSB:
  270. case IAR_MACSHORTADDRS1_MSB:
  271. case IAR_MACLONGADDRS1_0:
  272. case IAR_MACLONGADDRS1_8:
  273. case IAR_MACLONGADDRS1_16:
  274. case IAR_MACLONGADDRS1_24:
  275. case IAR_MACLONGADDRS1_32:
  276. case IAR_MACLONGADDRS1_40:
  277. case IAR_MACLONGADDRS1_48:
  278. case IAR_MACLONGADDRS1_56:
  279. case IAR_DUAL_PAN_CTRL:
  280. case IAR_DUAL_PAN_DWELL:
  281. case IAR_CCA1_THRESH:
  282. case IAR_CCA1_ED_OFFSET_COMP:
  283. case IAR_LQI_OFFSET_COMP:
  284. case IAR_CCA_CTRL:
  285. case IAR_CCA2_CORR_PEAKS:
  286. case IAR_CCA2_CORR_THRESH:
  287. case IAR_TMR_PRESCALE:
  288. case IAR_ANT_PAD_CTRL:
  289. case IAR_MISC_PAD_CTRL:
  290. case IAR_BSM_CTRL:
  291. case IAR_RNG:
  292. case IAR_RX_WTR_MARK:
  293. case IAR_SOFT_RESET:
  294. case IAR_TXDELAY:
  295. case IAR_ACKDELAY:
  296. case IAR_CORR_NVAL:
  297. case IAR_ANT_AGC_CTRL:
  298. case IAR_AGC_THR1:
  299. case IAR_AGC_THR2:
  300. case IAR_PA_CAL:
  301. case IAR_ATT_RSSI1:
  302. case IAR_ATT_RSSI2:
  303. case IAR_RSSI_OFFSET:
  304. case IAR_XTAL_CTRL:
  305. case IAR_CHF_PMA_GAIN:
  306. case IAR_CHF_IBUF:
  307. case IAR_CHF_QBUF:
  308. case IAR_CHF_IRIN:
  309. case IAR_CHF_QRIN:
  310. case IAR_CHF_IL:
  311. case IAR_CHF_QL:
  312. case IAR_CHF_CC1:
  313. case IAR_CHF_CCL:
  314. case IAR_CHF_CC2:
  315. case IAR_CHF_IROUT:
  316. case IAR_CHF_QROUT:
  317. case IAR_PA_TUNING:
  318. case IAR_VCO_CTRL1:
  319. case IAR_VCO_CTRL2:
  320. return true;
  321. default:
  322. return false;
  323. }
  324. }
  325. static bool
  326. mcr20a_iar_readable(struct device *dev, unsigned int reg)
  327. {
  328. bool rc;
  329. /* all writeable are also readable */
  330. rc = mcr20a_iar_writeable(dev, reg);
  331. if (rc)
  332. return rc;
  333. /* readonly regs */
  334. switch (reg) {
  335. case IAR_PART_ID:
  336. case IAR_DUAL_PAN_STS:
  337. case IAR_RX_BYTE_COUNT:
  338. case IAR_FILTERFAIL_CODE1:
  339. case IAR_FILTERFAIL_CODE2:
  340. case IAR_RSSI:
  341. return true;
  342. default:
  343. return false;
  344. }
  345. }
  346. static bool
  347. mcr20a_iar_volatile(struct device *dev, unsigned int reg)
  348. {
  349. /* can be changed during runtime */
  350. switch (reg) {
  351. case IAR_DUAL_PAN_STS:
  352. case IAR_RX_BYTE_COUNT:
  353. case IAR_FILTERFAIL_CODE1:
  354. case IAR_FILTERFAIL_CODE2:
  355. case IAR_RSSI:
  356. return true;
  357. default:
  358. return false;
  359. }
  360. }
  361. static const struct regmap_config mcr20a_iar_regmap = {
  362. .name = "mcr20a_iar",
  363. .reg_bits = 16,
  364. .val_bits = 8,
  365. .write_flag_mask = REGISTER_ACCESS | REGISTER_WRITE | IAR_INDEX,
  366. .read_flag_mask = REGISTER_ACCESS | REGISTER_READ | IAR_INDEX,
  367. .cache_type = REGCACHE_RBTREE,
  368. .writeable_reg = mcr20a_iar_writeable,
  369. .readable_reg = mcr20a_iar_readable,
  370. .volatile_reg = mcr20a_iar_volatile,
  371. .fast_io = true,
  372. };
  373. struct mcr20a_local {
  374. struct spi_device *spi;
  375. struct ieee802154_hw *hw;
  376. struct mcr20a_platform_data *pdata;
  377. struct regmap *regmap_dar;
  378. struct regmap *regmap_iar;
  379. u8 *buf;
  380. bool is_tx;
  381. /* for writing tx buffer */
  382. struct spi_message tx_buf_msg;
  383. u8 tx_header[1];
  384. /* burst buffer write command */
  385. struct spi_transfer tx_xfer_header;
  386. u8 tx_len[1];
  387. /* len of tx packet */
  388. struct spi_transfer tx_xfer_len;
  389. /* data of tx packet */
  390. struct spi_transfer tx_xfer_buf;
  391. struct sk_buff *tx_skb;
  392. /* for read length rxfifo */
  393. struct spi_message reg_msg;
  394. u8 reg_cmd[1];
  395. u8 reg_data[MCR20A_IRQSTS_NUM];
  396. struct spi_transfer reg_xfer_cmd;
  397. struct spi_transfer reg_xfer_data;
  398. /* receive handling */
  399. struct spi_message rx_buf_msg;
  400. u8 rx_header[1];
  401. struct spi_transfer rx_xfer_header;
  402. u8 rx_lqi[1];
  403. struct spi_transfer rx_xfer_lqi;
  404. u8 rx_buf[MCR20A_MAX_BUF];
  405. struct spi_transfer rx_xfer_buf;
  406. /* isr handling for reading intstat */
  407. struct spi_message irq_msg;
  408. u8 irq_header[1];
  409. u8 irq_data[MCR20A_IRQSTS_NUM];
  410. struct spi_transfer irq_xfer_data;
  411. struct spi_transfer irq_xfer_header;
  412. };
  413. static void
  414. mcr20a_write_tx_buf_complete(void *context)
  415. {
  416. struct mcr20a_local *lp = context;
  417. int ret;
  418. dev_dbg(printdev(lp), "%s\n", __func__);
  419. lp->reg_msg.complete = NULL;
  420. lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1);
  421. lp->reg_data[0] = MCR20A_XCVSEQ_TX;
  422. lp->reg_xfer_data.len = 1;
  423. ret = spi_async(lp->spi, &lp->reg_msg);
  424. if (ret)
  425. dev_err(printdev(lp), "failed to set SEQ TX\n");
  426. }
  427. static int
  428. mcr20a_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
  429. {
  430. struct mcr20a_local *lp = hw->priv;
  431. dev_dbg(printdev(lp), "%s\n", __func__);
  432. lp->tx_skb = skb;
  433. print_hex_dump_debug("mcr20a tx: ", DUMP_PREFIX_OFFSET, 16, 1,
  434. skb->data, skb->len, 0);
  435. lp->is_tx = 1;
  436. lp->reg_msg.complete = NULL;
  437. lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_PHY_CTRL1);
  438. lp->reg_data[0] = MCR20A_XCVSEQ_IDLE;
  439. lp->reg_xfer_data.len = 1;
  440. return spi_async(lp->spi, &lp->reg_msg);
  441. }
  442. static int
  443. mcr20a_ed(struct ieee802154_hw *hw, u8 *level)
  444. {
  445. WARN_ON(!level);
  446. *level = 0xbe;
  447. return 0;
  448. }
  449. static int
  450. mcr20a_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
  451. {
  452. struct mcr20a_local *lp = hw->priv;
  453. int ret;
  454. dev_dbg(printdev(lp), "%s\n", __func__);
  455. /* freqency = ((PLL_INT+64) + (PLL_FRAC/65536)) * 32 MHz */
  456. ret = regmap_write(lp->regmap_dar, DAR_PLL_INT0, PLL_INT[channel - 11]);
  457. if (ret)
  458. return ret;
  459. ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_LSB, 0x00);
  460. if (ret)
  461. return ret;
  462. ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_MSB,
  463. PLL_FRAC[channel - 11]);
  464. if (ret)
  465. return ret;
  466. return 0;
  467. }
  468. static int
  469. mcr20a_start(struct ieee802154_hw *hw)
  470. {
  471. struct mcr20a_local *lp = hw->priv;
  472. int ret;
  473. dev_dbg(printdev(lp), "%s\n", __func__);
  474. /* No slotted operation */
  475. dev_dbg(printdev(lp), "no slotted operation\n");
  476. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
  477. DAR_PHY_CTRL1_SLOTTED, 0x0);
  478. /* enable irq */
  479. enable_irq(lp->spi->irq);
  480. /* Unmask SEQ interrupt */
  481. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL2,
  482. DAR_PHY_CTRL2_SEQMSK, 0x0);
  483. /* Start the RX sequence */
  484. dev_dbg(printdev(lp), "start the RX sequence\n");
  485. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
  486. DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
  487. return 0;
  488. }
  489. static void
  490. mcr20a_stop(struct ieee802154_hw *hw)
  491. {
  492. struct mcr20a_local *lp = hw->priv;
  493. dev_dbg(printdev(lp), "%s\n", __func__);
  494. /* stop all running sequence */
  495. regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
  496. DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
  497. /* disable irq */
  498. disable_irq(lp->spi->irq);
  499. }
  500. static int
  501. mcr20a_set_hw_addr_filt(struct ieee802154_hw *hw,
  502. struct ieee802154_hw_addr_filt *filt,
  503. unsigned long changed)
  504. {
  505. struct mcr20a_local *lp = hw->priv;
  506. dev_dbg(printdev(lp), "%s\n", __func__);
  507. if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
  508. u16 addr = le16_to_cpu(filt->short_addr);
  509. regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_LSB, addr);
  510. regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_MSB, addr >> 8);
  511. }
  512. if (changed & IEEE802154_AFILT_PANID_CHANGED) {
  513. u16 pan = le16_to_cpu(filt->pan_id);
  514. regmap_write(lp->regmap_iar, IAR_MACPANID0_LSB, pan);
  515. regmap_write(lp->regmap_iar, IAR_MACPANID0_MSB, pan >> 8);
  516. }
  517. if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
  518. u8 addr[8], i;
  519. memcpy(addr, &filt->ieee_addr, 8);
  520. for (i = 0; i < 8; i++)
  521. regmap_write(lp->regmap_iar,
  522. IAR_MACLONGADDRS0_0 + i, addr[i]);
  523. }
  524. if (changed & IEEE802154_AFILT_PANC_CHANGED) {
  525. if (filt->pan_coord) {
  526. regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  527. DAR_PHY_CTRL4_PANCORDNTR0, 0x10);
  528. } else {
  529. regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  530. DAR_PHY_CTRL4_PANCORDNTR0, 0x00);
  531. }
  532. }
  533. return 0;
  534. }
  535. /* -30 dBm to 10 dBm */
  536. #define MCR20A_MAX_TX_POWERS 0x14
  537. static const s32 mcr20a_powers[MCR20A_MAX_TX_POWERS + 1] = {
  538. -3000, -2800, -2600, -2400, -2200, -2000, -1800, -1600, -1400,
  539. -1200, -1000, -800, -600, -400, -200, 0, 200, 400, 600, 800, 1000
  540. };
  541. static int
  542. mcr20a_set_txpower(struct ieee802154_hw *hw, s32 mbm)
  543. {
  544. struct mcr20a_local *lp = hw->priv;
  545. u32 i;
  546. dev_dbg(printdev(lp), "%s(%d)\n", __func__, mbm);
  547. for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
  548. if (lp->hw->phy->supported.tx_powers[i] == mbm)
  549. return regmap_write(lp->regmap_dar, DAR_PA_PWR,
  550. ((i + 8) & 0x1F));
  551. }
  552. return -EINVAL;
  553. }
  554. #define MCR20A_MAX_ED_LEVELS MCR20A_MIN_CCA_THRESHOLD
  555. static s32 mcr20a_ed_levels[MCR20A_MAX_ED_LEVELS + 1];
  556. static int
  557. mcr20a_set_cca_mode(struct ieee802154_hw *hw,
  558. const struct wpan_phy_cca *cca)
  559. {
  560. struct mcr20a_local *lp = hw->priv;
  561. unsigned int cca_mode = 0xff;
  562. bool cca_mode_and = false;
  563. int ret;
  564. dev_dbg(printdev(lp), "%s\n", __func__);
  565. /* mapping 802.15.4 to driver spec */
  566. switch (cca->mode) {
  567. case NL802154_CCA_ENERGY:
  568. cca_mode = MCR20A_CCA_MODE1;
  569. break;
  570. case NL802154_CCA_CARRIER:
  571. cca_mode = MCR20A_CCA_MODE2;
  572. break;
  573. case NL802154_CCA_ENERGY_CARRIER:
  574. switch (cca->opt) {
  575. case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
  576. cca_mode = MCR20A_CCA_MODE3;
  577. cca_mode_and = true;
  578. break;
  579. case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
  580. cca_mode = MCR20A_CCA_MODE3;
  581. cca_mode_and = false;
  582. break;
  583. default:
  584. return -EINVAL;
  585. }
  586. break;
  587. default:
  588. return -EINVAL;
  589. }
  590. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  591. DAR_PHY_CTRL4_CCATYPE_MASK,
  592. cca_mode << DAR_PHY_CTRL4_CCATYPE_SHIFT);
  593. if (ret < 0)
  594. return ret;
  595. if (cca_mode == MCR20A_CCA_MODE3) {
  596. if (cca_mode_and) {
  597. ret = regmap_update_bits(lp->regmap_iar, IAR_CCA_CTRL,
  598. IAR_CCA_CTRL_CCA3_AND_NOT_OR,
  599. 0x08);
  600. } else {
  601. ret = regmap_update_bits(lp->regmap_iar,
  602. IAR_CCA_CTRL,
  603. IAR_CCA_CTRL_CCA3_AND_NOT_OR,
  604. 0x00);
  605. }
  606. if (ret < 0)
  607. return ret;
  608. }
  609. return ret;
  610. }
  611. static int
  612. mcr20a_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
  613. {
  614. struct mcr20a_local *lp = hw->priv;
  615. u32 i;
  616. dev_dbg(printdev(lp), "%s\n", __func__);
  617. for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
  618. if (hw->phy->supported.cca_ed_levels[i] == mbm)
  619. return regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, i);
  620. }
  621. return 0;
  622. }
  623. static int
  624. mcr20a_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
  625. {
  626. struct mcr20a_local *lp = hw->priv;
  627. int ret;
  628. u8 rx_frame_filter_reg = 0x0;
  629. dev_dbg(printdev(lp), "%s(%d)\n", __func__, on);
  630. if (on) {
  631. /* All frame types accepted*/
  632. rx_frame_filter_reg &= ~(IAR_RX_FRAME_FLT_FRM_VER);
  633. rx_frame_filter_reg |= (IAR_RX_FRAME_FLT_ACK_FT |
  634. IAR_RX_FRAME_FLT_NS_FT);
  635. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  636. DAR_PHY_CTRL4_PROMISCUOUS,
  637. DAR_PHY_CTRL4_PROMISCUOUS);
  638. if (ret < 0)
  639. return ret;
  640. ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
  641. rx_frame_filter_reg);
  642. if (ret < 0)
  643. return ret;
  644. } else {
  645. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
  646. DAR_PHY_CTRL4_PROMISCUOUS, 0x0);
  647. if (ret < 0)
  648. return ret;
  649. ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
  650. IAR_RX_FRAME_FLT_FRM_VER |
  651. IAR_RX_FRAME_FLT_BEACON_FT |
  652. IAR_RX_FRAME_FLT_DATA_FT |
  653. IAR_RX_FRAME_FLT_CMD_FT);
  654. if (ret < 0)
  655. return ret;
  656. }
  657. return 0;
  658. }
  659. static const struct ieee802154_ops mcr20a_hw_ops = {
  660. .owner = THIS_MODULE,
  661. .xmit_async = mcr20a_xmit,
  662. .ed = mcr20a_ed,
  663. .set_channel = mcr20a_set_channel,
  664. .start = mcr20a_start,
  665. .stop = mcr20a_stop,
  666. .set_hw_addr_filt = mcr20a_set_hw_addr_filt,
  667. .set_txpower = mcr20a_set_txpower,
  668. .set_cca_mode = mcr20a_set_cca_mode,
  669. .set_cca_ed_level = mcr20a_set_cca_ed_level,
  670. .set_promiscuous_mode = mcr20a_set_promiscuous_mode,
  671. };
  672. static int
  673. mcr20a_request_rx(struct mcr20a_local *lp)
  674. {
  675. dev_dbg(printdev(lp), "%s\n", __func__);
  676. /* Start the RX sequence */
  677. regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
  678. DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
  679. return 0;
  680. }
  681. static void
  682. mcr20a_handle_rx_read_buf_complete(void *context)
  683. {
  684. struct mcr20a_local *lp = context;
  685. u8 len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
  686. struct sk_buff *skb;
  687. dev_dbg(printdev(lp), "%s\n", __func__);
  688. dev_dbg(printdev(lp), "RX is done\n");
  689. if (!ieee802154_is_valid_psdu_len(len)) {
  690. dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
  691. len = IEEE802154_MTU;
  692. }
  693. len = len - 2; /* get rid of frame check field */
  694. skb = dev_alloc_skb(len);
  695. if (!skb)
  696. return;
  697. memcpy(skb_put(skb, len), lp->rx_buf, len);
  698. ieee802154_rx_irqsafe(lp->hw, skb, lp->rx_lqi[0]);
  699. print_hex_dump_debug("mcr20a rx: ", DUMP_PREFIX_OFFSET, 16, 1,
  700. lp->rx_buf, len, 0);
  701. pr_debug("mcr20a rx: lqi: %02hhx\n", lp->rx_lqi[0]);
  702. /* start RX sequence */
  703. mcr20a_request_rx(lp);
  704. }
  705. static void
  706. mcr20a_handle_rx_read_len_complete(void *context)
  707. {
  708. struct mcr20a_local *lp = context;
  709. u8 len;
  710. int ret;
  711. dev_dbg(printdev(lp), "%s\n", __func__);
  712. /* get the length of received frame */
  713. len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
  714. dev_dbg(printdev(lp), "frame len : %d\n", len);
  715. /* prepare to read the rx buf */
  716. lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
  717. lp->rx_header[0] = MCR20A_BURST_READ_PACKET_BUF;
  718. lp->rx_xfer_buf.len = len;
  719. ret = spi_async(lp->spi, &lp->rx_buf_msg);
  720. if (ret)
  721. dev_err(printdev(lp), "failed to read rx buffer length\n");
  722. }
  723. static int
  724. mcr20a_handle_rx(struct mcr20a_local *lp)
  725. {
  726. dev_dbg(printdev(lp), "%s\n", __func__);
  727. lp->reg_msg.complete = mcr20a_handle_rx_read_len_complete;
  728. lp->reg_cmd[0] = MCR20A_READ_REG(DAR_RX_FRM_LEN);
  729. lp->reg_xfer_data.len = 1;
  730. return spi_async(lp->spi, &lp->reg_msg);
  731. }
  732. static int
  733. mcr20a_handle_tx_complete(struct mcr20a_local *lp)
  734. {
  735. dev_dbg(printdev(lp), "%s\n", __func__);
  736. ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
  737. return mcr20a_request_rx(lp);
  738. }
  739. static int
  740. mcr20a_handle_tx(struct mcr20a_local *lp)
  741. {
  742. int ret;
  743. dev_dbg(printdev(lp), "%s\n", __func__);
  744. /* write tx buffer */
  745. lp->tx_header[0] = MCR20A_BURST_WRITE_PACKET_BUF;
  746. /* add 2 bytes of FCS */
  747. lp->tx_len[0] = lp->tx_skb->len + 2;
  748. lp->tx_xfer_buf.tx_buf = lp->tx_skb->data;
  749. /* add 1 byte psduLength */
  750. lp->tx_xfer_buf.len = lp->tx_skb->len + 1;
  751. ret = spi_async(lp->spi, &lp->tx_buf_msg);
  752. if (ret) {
  753. dev_err(printdev(lp), "SPI write Failed for TX buf\n");
  754. return ret;
  755. }
  756. return 0;
  757. }
  758. static void
  759. mcr20a_irq_clean_complete(void *context)
  760. {
  761. struct mcr20a_local *lp = context;
  762. u8 seq_state = lp->irq_data[DAR_IRQ_STS1] & DAR_PHY_CTRL1_XCVSEQ_MASK;
  763. dev_dbg(printdev(lp), "%s\n", __func__);
  764. enable_irq(lp->spi->irq);
  765. dev_dbg(printdev(lp), "IRQ STA1 (%02x) STA2 (%02x)\n",
  766. lp->irq_data[DAR_IRQ_STS1], lp->irq_data[DAR_IRQ_STS2]);
  767. switch (seq_state) {
  768. /* TX IRQ, RX IRQ and SEQ IRQ */
  769. case (0x03):
  770. if (lp->is_tx) {
  771. lp->is_tx = 0;
  772. dev_dbg(printdev(lp), "TX is done. No ACK\n");
  773. mcr20a_handle_tx_complete(lp);
  774. }
  775. break;
  776. case (0x05):
  777. /* rx is starting */
  778. dev_dbg(printdev(lp), "RX is starting\n");
  779. mcr20a_handle_rx(lp);
  780. break;
  781. case (0x07):
  782. if (lp->is_tx) {
  783. /* tx is done */
  784. lp->is_tx = 0;
  785. dev_dbg(printdev(lp), "TX is done. Get ACK\n");
  786. mcr20a_handle_tx_complete(lp);
  787. } else {
  788. /* rx is starting */
  789. dev_dbg(printdev(lp), "RX is starting\n");
  790. mcr20a_handle_rx(lp);
  791. }
  792. break;
  793. case (0x01):
  794. if (lp->is_tx) {
  795. dev_dbg(printdev(lp), "TX is starting\n");
  796. mcr20a_handle_tx(lp);
  797. } else {
  798. dev_dbg(printdev(lp), "MCR20A is stop\n");
  799. }
  800. break;
  801. }
  802. }
  803. static void mcr20a_irq_status_complete(void *context)
  804. {
  805. int ret;
  806. struct mcr20a_local *lp = context;
  807. dev_dbg(printdev(lp), "%s\n", __func__);
  808. regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
  809. DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
  810. lp->reg_msg.complete = mcr20a_irq_clean_complete;
  811. lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_IRQ_STS1);
  812. memcpy(lp->reg_data, lp->irq_data, MCR20A_IRQSTS_NUM);
  813. lp->reg_xfer_data.len = MCR20A_IRQSTS_NUM;
  814. ret = spi_async(lp->spi, &lp->reg_msg);
  815. if (ret)
  816. dev_err(printdev(lp), "failed to clean irq status\n");
  817. }
  818. static irqreturn_t mcr20a_irq_isr(int irq, void *data)
  819. {
  820. struct mcr20a_local *lp = data;
  821. int ret;
  822. disable_irq_nosync(irq);
  823. lp->irq_header[0] = MCR20A_READ_REG(DAR_IRQ_STS1);
  824. /* read IRQSTSx */
  825. ret = spi_async(lp->spi, &lp->irq_msg);
  826. if (ret) {
  827. enable_irq(irq);
  828. return IRQ_NONE;
  829. }
  830. return IRQ_HANDLED;
  831. }
  832. static int mcr20a_get_platform_data(struct spi_device *spi,
  833. struct mcr20a_platform_data *pdata)
  834. {
  835. int ret = 0;
  836. if (!spi->dev.of_node)
  837. return -EINVAL;
  838. pdata->rst_gpio = of_get_named_gpio(spi->dev.of_node, "rst_b-gpio", 0);
  839. dev_dbg(&spi->dev, "rst_b-gpio: %d\n", pdata->rst_gpio);
  840. return ret;
  841. }
  842. static void mcr20a_hw_setup(struct mcr20a_local *lp)
  843. {
  844. u8 i;
  845. struct ieee802154_hw *hw = lp->hw;
  846. struct wpan_phy *phy = lp->hw->phy;
  847. dev_dbg(printdev(lp), "%s\n", __func__);
  848. phy->symbol_duration = 16;
  849. phy->lifs_period = 40;
  850. phy->sifs_period = 12;
  851. hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
  852. IEEE802154_HW_AFILT |
  853. IEEE802154_HW_PROMISCUOUS;
  854. phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL |
  855. WPAN_PHY_FLAG_CCA_MODE;
  856. phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
  857. BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
  858. phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
  859. BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
  860. /* initiating cca_ed_levels */
  861. for (i = MCR20A_MAX_CCA_THRESHOLD; i < MCR20A_MIN_CCA_THRESHOLD + 1;
  862. ++i) {
  863. mcr20a_ed_levels[i] = -i * 100;
  864. }
  865. phy->supported.cca_ed_levels = mcr20a_ed_levels;
  866. phy->supported.cca_ed_levels_size = ARRAY_SIZE(mcr20a_ed_levels);
  867. phy->cca.mode = NL802154_CCA_ENERGY;
  868. phy->supported.channels[0] = MCR20A_VALID_CHANNELS;
  869. phy->current_page = 0;
  870. /* MCR20A default reset value */
  871. phy->current_channel = 20;
  872. phy->symbol_duration = 16;
  873. phy->supported.tx_powers = mcr20a_powers;
  874. phy->supported.tx_powers_size = ARRAY_SIZE(mcr20a_powers);
  875. phy->cca_ed_level = phy->supported.cca_ed_levels[75];
  876. phy->transmit_power = phy->supported.tx_powers[0x0F];
  877. }
  878. static void
  879. mcr20a_setup_tx_spi_messages(struct mcr20a_local *lp)
  880. {
  881. spi_message_init(&lp->tx_buf_msg);
  882. lp->tx_buf_msg.context = lp;
  883. lp->tx_buf_msg.complete = mcr20a_write_tx_buf_complete;
  884. lp->tx_xfer_header.len = 1;
  885. lp->tx_xfer_header.tx_buf = lp->tx_header;
  886. lp->tx_xfer_len.len = 1;
  887. lp->tx_xfer_len.tx_buf = lp->tx_len;
  888. spi_message_add_tail(&lp->tx_xfer_header, &lp->tx_buf_msg);
  889. spi_message_add_tail(&lp->tx_xfer_len, &lp->tx_buf_msg);
  890. spi_message_add_tail(&lp->tx_xfer_buf, &lp->tx_buf_msg);
  891. }
  892. static void
  893. mcr20a_setup_rx_spi_messages(struct mcr20a_local *lp)
  894. {
  895. spi_message_init(&lp->reg_msg);
  896. lp->reg_msg.context = lp;
  897. lp->reg_xfer_cmd.len = 1;
  898. lp->reg_xfer_cmd.tx_buf = lp->reg_cmd;
  899. lp->reg_xfer_cmd.rx_buf = lp->reg_cmd;
  900. lp->reg_xfer_data.rx_buf = lp->reg_data;
  901. lp->reg_xfer_data.tx_buf = lp->reg_data;
  902. spi_message_add_tail(&lp->reg_xfer_cmd, &lp->reg_msg);
  903. spi_message_add_tail(&lp->reg_xfer_data, &lp->reg_msg);
  904. spi_message_init(&lp->rx_buf_msg);
  905. lp->rx_buf_msg.context = lp;
  906. lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
  907. lp->rx_xfer_header.len = 1;
  908. lp->rx_xfer_header.tx_buf = lp->rx_header;
  909. lp->rx_xfer_header.rx_buf = lp->rx_header;
  910. lp->rx_xfer_buf.rx_buf = lp->rx_buf;
  911. lp->rx_xfer_lqi.len = 1;
  912. lp->rx_xfer_lqi.rx_buf = lp->rx_lqi;
  913. spi_message_add_tail(&lp->rx_xfer_header, &lp->rx_buf_msg);
  914. spi_message_add_tail(&lp->rx_xfer_buf, &lp->rx_buf_msg);
  915. spi_message_add_tail(&lp->rx_xfer_lqi, &lp->rx_buf_msg);
  916. }
  917. static void
  918. mcr20a_setup_irq_spi_messages(struct mcr20a_local *lp)
  919. {
  920. spi_message_init(&lp->irq_msg);
  921. lp->irq_msg.context = lp;
  922. lp->irq_msg.complete = mcr20a_irq_status_complete;
  923. lp->irq_xfer_header.len = 1;
  924. lp->irq_xfer_header.tx_buf = lp->irq_header;
  925. lp->irq_xfer_header.rx_buf = lp->irq_header;
  926. lp->irq_xfer_data.len = MCR20A_IRQSTS_NUM;
  927. lp->irq_xfer_data.rx_buf = lp->irq_data;
  928. spi_message_add_tail(&lp->irq_xfer_header, &lp->irq_msg);
  929. spi_message_add_tail(&lp->irq_xfer_data, &lp->irq_msg);
  930. }
  931. static int
  932. mcr20a_phy_init(struct mcr20a_local *lp)
  933. {
  934. u8 index;
  935. unsigned int phy_reg = 0;
  936. int ret;
  937. dev_dbg(printdev(lp), "%s\n", __func__);
  938. /* Disable Tristate on COCO MISO for SPI reads */
  939. ret = regmap_write(lp->regmap_iar, IAR_MISC_PAD_CTRL, 0x02);
  940. if (ret)
  941. goto err_ret;
  942. /* Clear all PP IRQ bits in IRQSTS1 to avoid unexpected interrupts
  943. * immediately after init
  944. */
  945. ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS1, 0xEF);
  946. if (ret)
  947. goto err_ret;
  948. /* Clear all PP IRQ bits in IRQSTS2 */
  949. ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS2,
  950. DAR_IRQSTS2_ASM_IRQ | DAR_IRQSTS2_PB_ERR_IRQ |
  951. DAR_IRQSTS2_WAKE_IRQ);
  952. if (ret)
  953. goto err_ret;
  954. /* Disable all timer interrupts */
  955. ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS3, 0xFF);
  956. if (ret)
  957. goto err_ret;
  958. /* PHY_CTRL1 : default HW settings + AUTOACK enabled */
  959. ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
  960. DAR_PHY_CTRL1_AUTOACK, DAR_PHY_CTRL1_AUTOACK);
  961. /* PHY_CTRL2 : disable all interrupts */
  962. ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL2, 0xFF);
  963. if (ret)
  964. goto err_ret;
  965. /* PHY_CTRL3 : disable all timers and remaining interrupts */
  966. ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL3,
  967. DAR_PHY_CTRL3_ASM_MSK | DAR_PHY_CTRL3_PB_ERR_MSK |
  968. DAR_PHY_CTRL3_WAKE_MSK);
  969. if (ret)
  970. goto err_ret;
  971. /* SRC_CTRL : enable Acknowledge Frame Pending and
  972. * Source Address Matching Enable
  973. */
  974. ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL,
  975. DAR_SRC_CTRL_ACK_FRM_PND |
  976. (DAR_SRC_CTRL_INDEX << DAR_SRC_CTRL_INDEX_SHIFT));
  977. if (ret)
  978. goto err_ret;
  979. /* RX_FRAME_FILTER */
  980. /* FRM_VER[1:0] = b11. Accept FrameVersion 0 and 1 packets */
  981. ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
  982. IAR_RX_FRAME_FLT_FRM_VER |
  983. IAR_RX_FRAME_FLT_BEACON_FT |
  984. IAR_RX_FRAME_FLT_DATA_FT |
  985. IAR_RX_FRAME_FLT_CMD_FT);
  986. if (ret)
  987. goto err_ret;
  988. dev_info(printdev(lp), "MCR20A DAR overwrites version: 0x%02x\n",
  989. MCR20A_OVERWRITE_VERSION);
  990. /* Overwrites direct registers */
  991. ret = regmap_write(lp->regmap_dar, DAR_OVERWRITE_VER,
  992. MCR20A_OVERWRITE_VERSION);
  993. if (ret)
  994. goto err_ret;
  995. /* Overwrites indirect registers */
  996. ret = regmap_multi_reg_write(lp->regmap_iar, mar20a_iar_overwrites,
  997. ARRAY_SIZE(mar20a_iar_overwrites));
  998. if (ret)
  999. goto err_ret;
  1000. /* Clear HW indirect queue */
  1001. dev_dbg(printdev(lp), "clear HW indirect queue\n");
  1002. for (index = 0; index < MCR20A_PHY_INDIRECT_QUEUE_SIZE; index++) {
  1003. phy_reg = (u8)(((index & DAR_SRC_CTRL_INDEX) <<
  1004. DAR_SRC_CTRL_INDEX_SHIFT)
  1005. | (DAR_SRC_CTRL_SRCADDR_EN)
  1006. | (DAR_SRC_CTRL_INDEX_DISABLE));
  1007. ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL, phy_reg);
  1008. if (ret)
  1009. goto err_ret;
  1010. phy_reg = 0;
  1011. }
  1012. /* Assign HW Indirect hash table to PAN0 */
  1013. ret = regmap_read(lp->regmap_iar, IAR_DUAL_PAN_CTRL, &phy_reg);
  1014. if (ret)
  1015. goto err_ret;
  1016. /* Clear current lvl */
  1017. phy_reg &= ~IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_MSK;
  1018. /* Set new lvl */
  1019. phy_reg |= MCR20A_PHY_INDIRECT_QUEUE_SIZE <<
  1020. IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_SHIFT;
  1021. ret = regmap_write(lp->regmap_iar, IAR_DUAL_PAN_CTRL, phy_reg);
  1022. if (ret)
  1023. goto err_ret;
  1024. /* Set CCA threshold to -75 dBm */
  1025. ret = regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, 0x4B);
  1026. if (ret)
  1027. goto err_ret;
  1028. /* Set prescaller to obtain 1 symbol (16us) timebase */
  1029. ret = regmap_write(lp->regmap_iar, IAR_TMR_PRESCALE, 0x05);
  1030. if (ret)
  1031. goto err_ret;
  1032. /* Enable autodoze mode. */
  1033. ret = regmap_update_bits(lp->regmap_dar, DAR_PWR_MODES,
  1034. DAR_PWR_MODES_AUTODOZE,
  1035. DAR_PWR_MODES_AUTODOZE);
  1036. if (ret)
  1037. goto err_ret;
  1038. /* Disable clk_out */
  1039. ret = regmap_update_bits(lp->regmap_dar, DAR_CLK_OUT_CTRL,
  1040. DAR_CLK_OUT_CTRL_EN, 0x0);
  1041. if (ret)
  1042. goto err_ret;
  1043. return 0;
  1044. err_ret:
  1045. return ret;
  1046. }
  1047. static int
  1048. mcr20a_probe(struct spi_device *spi)
  1049. {
  1050. struct ieee802154_hw *hw;
  1051. struct mcr20a_local *lp;
  1052. struct mcr20a_platform_data *pdata;
  1053. int irq_type;
  1054. int ret = -ENOMEM;
  1055. dev_dbg(&spi->dev, "%s\n", __func__);
  1056. if (!spi->irq) {
  1057. dev_err(&spi->dev, "no IRQ specified\n");
  1058. return -EINVAL;
  1059. }
  1060. pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  1061. if (!pdata)
  1062. return -ENOMEM;
  1063. /* set mcr20a platform data */
  1064. ret = mcr20a_get_platform_data(spi, pdata);
  1065. if (ret < 0) {
  1066. dev_crit(&spi->dev, "mcr20a_get_platform_data failed.\n");
  1067. goto free_pdata;
  1068. }
  1069. /* init reset gpio */
  1070. if (gpio_is_valid(pdata->rst_gpio)) {
  1071. ret = devm_gpio_request_one(&spi->dev, pdata->rst_gpio,
  1072. GPIOF_OUT_INIT_HIGH, "reset");
  1073. if (ret)
  1074. goto free_pdata;
  1075. }
  1076. /* reset mcr20a */
  1077. if (gpio_is_valid(pdata->rst_gpio)) {
  1078. usleep_range(10, 20);
  1079. gpio_set_value_cansleep(pdata->rst_gpio, 0);
  1080. usleep_range(10, 20);
  1081. gpio_set_value_cansleep(pdata->rst_gpio, 1);
  1082. usleep_range(120, 240);
  1083. }
  1084. /* allocate ieee802154_hw and private data */
  1085. hw = ieee802154_alloc_hw(sizeof(*lp), &mcr20a_hw_ops);
  1086. if (!hw) {
  1087. dev_crit(&spi->dev, "ieee802154_alloc_hw failed\n");
  1088. ret = -ENOMEM;
  1089. goto free_pdata;
  1090. }
  1091. /* init mcr20a local data */
  1092. lp = hw->priv;
  1093. lp->hw = hw;
  1094. lp->spi = spi;
  1095. lp->spi->dev.platform_data = pdata;
  1096. lp->pdata = pdata;
  1097. /* init ieee802154_hw */
  1098. hw->parent = &spi->dev;
  1099. ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
  1100. /* init buf */
  1101. lp->buf = devm_kzalloc(&spi->dev, SPI_COMMAND_BUFFER, GFP_KERNEL);
  1102. if (!lp->buf) {
  1103. ret = -ENOMEM;
  1104. goto free_dev;
  1105. }
  1106. mcr20a_setup_tx_spi_messages(lp);
  1107. mcr20a_setup_rx_spi_messages(lp);
  1108. mcr20a_setup_irq_spi_messages(lp);
  1109. /* setup regmap */
  1110. lp->regmap_dar = devm_regmap_init_spi(spi, &mcr20a_dar_regmap);
  1111. if (IS_ERR(lp->regmap_dar)) {
  1112. ret = PTR_ERR(lp->regmap_dar);
  1113. dev_err(&spi->dev, "Failed to allocate dar map: %d\n",
  1114. ret);
  1115. goto free_dev;
  1116. }
  1117. lp->regmap_iar = devm_regmap_init_spi(spi, &mcr20a_iar_regmap);
  1118. if (IS_ERR(lp->regmap_iar)) {
  1119. ret = PTR_ERR(lp->regmap_iar);
  1120. dev_err(&spi->dev, "Failed to allocate iar map: %d\n", ret);
  1121. goto free_dev;
  1122. }
  1123. mcr20a_hw_setup(lp);
  1124. spi_set_drvdata(spi, lp);
  1125. ret = mcr20a_phy_init(lp);
  1126. if (ret < 0) {
  1127. dev_crit(&spi->dev, "mcr20a_phy_init failed\n");
  1128. goto free_dev;
  1129. }
  1130. irq_type = irq_get_trigger_type(spi->irq);
  1131. if (!irq_type)
  1132. irq_type = IRQF_TRIGGER_FALLING;
  1133. ret = devm_request_irq(&spi->dev, spi->irq, mcr20a_irq_isr,
  1134. irq_type, dev_name(&spi->dev), lp);
  1135. if (ret) {
  1136. dev_err(&spi->dev, "could not request_irq for mcr20a\n");
  1137. ret = -ENODEV;
  1138. goto free_dev;
  1139. }
  1140. /* disable_irq by default and wait for starting hardware */
  1141. disable_irq(spi->irq);
  1142. ret = ieee802154_register_hw(hw);
  1143. if (ret) {
  1144. dev_crit(&spi->dev, "ieee802154_register_hw failed\n");
  1145. goto free_dev;
  1146. }
  1147. return ret;
  1148. free_dev:
  1149. ieee802154_free_hw(lp->hw);
  1150. free_pdata:
  1151. kfree(pdata);
  1152. return ret;
  1153. }
  1154. static int mcr20a_remove(struct spi_device *spi)
  1155. {
  1156. struct mcr20a_local *lp = spi_get_drvdata(spi);
  1157. dev_dbg(&spi->dev, "%s\n", __func__);
  1158. ieee802154_unregister_hw(lp->hw);
  1159. ieee802154_free_hw(lp->hw);
  1160. return 0;
  1161. }
  1162. static const struct of_device_id mcr20a_of_match[] = {
  1163. { .compatible = "nxp,mcr20a", },
  1164. { },
  1165. };
  1166. MODULE_DEVICE_TABLE(of, mcr20a_of_match);
  1167. static const struct spi_device_id mcr20a_device_id[] = {
  1168. { .name = "mcr20a", },
  1169. { },
  1170. };
  1171. MODULE_DEVICE_TABLE(spi, mcr20a_device_id);
  1172. static struct spi_driver mcr20a_driver = {
  1173. .id_table = mcr20a_device_id,
  1174. .driver = {
  1175. .of_match_table = of_match_ptr(mcr20a_of_match),
  1176. .name = "mcr20a",
  1177. },
  1178. .probe = mcr20a_probe,
  1179. .remove = mcr20a_remove,
  1180. };
  1181. module_spi_driver(mcr20a_driver);
  1182. MODULE_DESCRIPTION("MCR20A Transceiver Driver");
  1183. MODULE_LICENSE("GPL v2");
  1184. MODULE_AUTHOR("Xue Liu <liuxuenetmail@gmail>");