request_manager.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892
  1. /**********************************************************************
  2. * Author: Cavium, Inc.
  3. *
  4. * Contact: support@cavium.com
  5. * Please include "LiquidIO" in the subject.
  6. *
  7. * Copyright (c) 2003-2016 Cavium, Inc.
  8. *
  9. * This file is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License, Version 2, as
  11. * published by the Free Software Foundation.
  12. *
  13. * This file is distributed in the hope that it will be useful, but
  14. * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
  15. * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
  16. * NONINFRINGEMENT. See the GNU General Public License for more
  17. * details.
  18. **********************************************************************/
  19. #include <linux/pci.h>
  20. #include <linux/netdevice.h>
  21. #include <linux/vmalloc.h>
  22. #include "liquidio_common.h"
  23. #include "octeon_droq.h"
  24. #include "octeon_iq.h"
  25. #include "response_manager.h"
  26. #include "octeon_device.h"
  27. #include "octeon_main.h"
  28. #include "octeon_network.h"
  29. #include "cn66xx_device.h"
  30. #include "cn23xx_pf_device.h"
  31. #include "cn23xx_vf_device.h"
  32. struct iq_post_status {
  33. int status;
  34. int index;
  35. };
  36. static void check_db_timeout(struct work_struct *work);
  37. static void __check_db_timeout(struct octeon_device *oct, u64 iq_no);
  38. static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *);
  39. static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no)
  40. {
  41. struct octeon_instr_queue *iq =
  42. (struct octeon_instr_queue *)oct->instr_queue[iq_no];
  43. return iq->iqcmd_64B;
  44. }
  45. #define IQ_INSTR_MODE_32B(oct, iq_no) (!IQ_INSTR_MODE_64B(oct, iq_no))
  46. /* Define this to return the request status comaptible to old code */
  47. /*#define OCTEON_USE_OLD_REQ_STATUS*/
  48. /* Return 0 on success, 1 on failure */
  49. int octeon_init_instr_queue(struct octeon_device *oct,
  50. union oct_txpciq txpciq,
  51. u32 num_descs)
  52. {
  53. struct octeon_instr_queue *iq;
  54. struct octeon_iq_config *conf = NULL;
  55. u32 iq_no = (u32)txpciq.s.q_no;
  56. u32 q_size;
  57. struct cavium_wq *db_wq;
  58. int numa_node = dev_to_node(&oct->pci_dev->dev);
  59. if (OCTEON_CN6XXX(oct))
  60. conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn6xxx)));
  61. else if (OCTEON_CN23XX_PF(oct))
  62. conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_pf)));
  63. else if (OCTEON_CN23XX_VF(oct))
  64. conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_vf)));
  65. if (!conf) {
  66. dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n",
  67. oct->chip_id);
  68. return 1;
  69. }
  70. q_size = (u32)conf->instr_type * num_descs;
  71. iq = oct->instr_queue[iq_no];
  72. iq->oct_dev = oct;
  73. iq->base_addr = lio_dma_alloc(oct, q_size, &iq->base_addr_dma);
  74. if (!iq->base_addr) {
  75. dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n",
  76. iq_no);
  77. return 1;
  78. }
  79. iq->max_count = num_descs;
  80. /* Initialize a list to holds requests that have been posted to Octeon
  81. * but has yet to be fetched by octeon
  82. */
  83. iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs),
  84. numa_node);
  85. if (!iq->request_list)
  86. iq->request_list =
  87. vmalloc(array_size(num_descs,
  88. sizeof(*iq->request_list)));
  89. if (!iq->request_list) {
  90. lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
  91. dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n",
  92. iq_no);
  93. return 1;
  94. }
  95. memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs);
  96. dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %pad count: %d\n",
  97. iq_no, iq->base_addr, &iq->base_addr_dma, iq->max_count);
  98. iq->txpciq.u64 = txpciq.u64;
  99. iq->fill_threshold = (u32)conf->db_min;
  100. iq->fill_cnt = 0;
  101. iq->host_write_index = 0;
  102. iq->octeon_read_index = 0;
  103. iq->flush_index = 0;
  104. iq->last_db_time = 0;
  105. iq->do_auto_flush = 1;
  106. iq->db_timeout = (u32)conf->db_timeout;
  107. atomic_set(&iq->instr_pending, 0);
  108. /* Initialize the spinlock for this instruction queue */
  109. spin_lock_init(&iq->lock);
  110. if (iq_no == 0) {
  111. iq->allow_soft_cmds = true;
  112. spin_lock_init(&iq->post_lock);
  113. } else {
  114. iq->allow_soft_cmds = false;
  115. }
  116. spin_lock_init(&iq->iq_flush_running_lock);
  117. oct->io_qmask.iq |= BIT_ULL(iq_no);
  118. /* Set the 32B/64B mode for each input queue */
  119. oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
  120. iq->iqcmd_64B = (conf->instr_type == 64);
  121. oct->fn_list.setup_iq_regs(oct, iq_no);
  122. oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db",
  123. WQ_MEM_RECLAIM,
  124. 0);
  125. if (!oct->check_db_wq[iq_no].wq) {
  126. vfree(iq->request_list);
  127. iq->request_list = NULL;
  128. lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
  129. dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n",
  130. iq_no);
  131. return 1;
  132. }
  133. db_wq = &oct->check_db_wq[iq_no];
  134. INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout);
  135. db_wq->wk.ctxptr = oct;
  136. db_wq->wk.ctxul = iq_no;
  137. queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
  138. return 0;
  139. }
  140. int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no)
  141. {
  142. u64 desc_size = 0, q_size;
  143. struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
  144. cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work);
  145. destroy_workqueue(oct->check_db_wq[iq_no].wq);
  146. if (OCTEON_CN6XXX(oct))
  147. desc_size =
  148. CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn6xxx));
  149. else if (OCTEON_CN23XX_PF(oct))
  150. desc_size =
  151. CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_pf));
  152. else if (OCTEON_CN23XX_VF(oct))
  153. desc_size =
  154. CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_vf));
  155. vfree(iq->request_list);
  156. if (iq->base_addr) {
  157. q_size = iq->max_count * desc_size;
  158. lio_dma_free(oct, (u32)q_size, iq->base_addr,
  159. iq->base_addr_dma);
  160. oct->io_qmask.iq &= ~(1ULL << iq_no);
  161. vfree(oct->instr_queue[iq_no]);
  162. oct->instr_queue[iq_no] = NULL;
  163. oct->num_iqs--;
  164. return 0;
  165. }
  166. return 1;
  167. }
  168. /* Return 0 on success, 1 on failure */
  169. int octeon_setup_iq(struct octeon_device *oct,
  170. int ifidx,
  171. int q_index,
  172. union oct_txpciq txpciq,
  173. u32 num_descs,
  174. void *app_ctx)
  175. {
  176. u32 iq_no = (u32)txpciq.s.q_no;
  177. int numa_node = dev_to_node(&oct->pci_dev->dev);
  178. if (oct->instr_queue[iq_no]) {
  179. dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n",
  180. iq_no);
  181. oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64;
  182. oct->instr_queue[iq_no]->app_ctx = app_ctx;
  183. return 0;
  184. }
  185. oct->instr_queue[iq_no] =
  186. vmalloc_node(sizeof(struct octeon_instr_queue), numa_node);
  187. if (!oct->instr_queue[iq_no])
  188. oct->instr_queue[iq_no] =
  189. vmalloc(sizeof(struct octeon_instr_queue));
  190. if (!oct->instr_queue[iq_no])
  191. return 1;
  192. memset(oct->instr_queue[iq_no], 0,
  193. sizeof(struct octeon_instr_queue));
  194. oct->instr_queue[iq_no]->q_index = q_index;
  195. oct->instr_queue[iq_no]->app_ctx = app_ctx;
  196. oct->instr_queue[iq_no]->ifidx = ifidx;
  197. if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
  198. vfree(oct->instr_queue[iq_no]);
  199. oct->instr_queue[iq_no] = NULL;
  200. return 1;
  201. }
  202. oct->num_iqs++;
  203. if (oct->fn_list.enable_io_queues(oct))
  204. return 1;
  205. return 0;
  206. }
  207. int lio_wait_for_instr_fetch(struct octeon_device *oct)
  208. {
  209. int i, retry = 1000, pending, instr_cnt = 0;
  210. do {
  211. instr_cnt = 0;
  212. for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
  213. if (!(oct->io_qmask.iq & BIT_ULL(i)))
  214. continue;
  215. pending =
  216. atomic_read(&oct->instr_queue[i]->instr_pending);
  217. if (pending)
  218. __check_db_timeout(oct, i);
  219. instr_cnt += pending;
  220. }
  221. if (instr_cnt == 0)
  222. break;
  223. schedule_timeout_uninterruptible(1);
  224. } while (retry-- && instr_cnt);
  225. return instr_cnt;
  226. }
  227. static inline void
  228. ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq)
  229. {
  230. if (atomic_read(&oct->status) == OCT_DEV_RUNNING) {
  231. writel(iq->fill_cnt, iq->doorbell_reg);
  232. /* make sure doorbell write goes through */
  233. mmiowb();
  234. iq->fill_cnt = 0;
  235. iq->last_db_time = jiffies;
  236. return;
  237. }
  238. }
  239. void
  240. octeon_ring_doorbell_locked(struct octeon_device *oct, u32 iq_no)
  241. {
  242. struct octeon_instr_queue *iq;
  243. iq = oct->instr_queue[iq_no];
  244. spin_lock(&iq->post_lock);
  245. if (iq->fill_cnt)
  246. ring_doorbell(oct, iq);
  247. spin_unlock(&iq->post_lock);
  248. }
  249. static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq,
  250. u8 *cmd)
  251. {
  252. u8 *iqptr, cmdsize;
  253. cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
  254. iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
  255. memcpy(iqptr, cmd, cmdsize);
  256. }
  257. static inline struct iq_post_status
  258. __post_command2(struct octeon_instr_queue *iq, u8 *cmd)
  259. {
  260. struct iq_post_status st;
  261. st.status = IQ_SEND_OK;
  262. /* This ensures that the read index does not wrap around to the same
  263. * position if queue gets full before Octeon could fetch any instr.
  264. */
  265. if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) {
  266. st.status = IQ_SEND_FAILED;
  267. st.index = -1;
  268. return st;
  269. }
  270. if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2))
  271. st.status = IQ_SEND_STOP;
  272. __copy_cmd_into_iq(iq, cmd);
  273. /* "index" is returned, host_write_index is modified. */
  274. st.index = iq->host_write_index;
  275. iq->host_write_index = incr_index(iq->host_write_index, 1,
  276. iq->max_count);
  277. iq->fill_cnt++;
  278. /* Flush the command into memory. We need to be sure the data is in
  279. * memory before indicating that the instruction is pending.
  280. */
  281. wmb();
  282. atomic_inc(&iq->instr_pending);
  283. return st;
  284. }
  285. int
  286. octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype,
  287. void (*fn)(void *))
  288. {
  289. if (reqtype > REQTYPE_LAST) {
  290. dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n",
  291. __func__, reqtype);
  292. return -EINVAL;
  293. }
  294. reqtype_free_fn[oct->octeon_id][reqtype] = fn;
  295. return 0;
  296. }
  297. static inline void
  298. __add_to_request_list(struct octeon_instr_queue *iq,
  299. int idx, void *buf, int reqtype)
  300. {
  301. iq->request_list[idx].buf = buf;
  302. iq->request_list[idx].reqtype = reqtype;
  303. }
  304. /* Can only run in process context */
  305. int
  306. lio_process_iq_request_list(struct octeon_device *oct,
  307. struct octeon_instr_queue *iq, u32 napi_budget)
  308. {
  309. struct cavium_wq *cwq = &oct->dma_comp_wq;
  310. int reqtype;
  311. void *buf;
  312. u32 old = iq->flush_index;
  313. u32 inst_count = 0;
  314. unsigned int pkts_compl = 0, bytes_compl = 0;
  315. struct octeon_soft_command *sc;
  316. struct octeon_instr_irh *irh;
  317. unsigned long flags;
  318. while (old != iq->octeon_read_index) {
  319. reqtype = iq->request_list[old].reqtype;
  320. buf = iq->request_list[old].buf;
  321. if (reqtype == REQTYPE_NONE)
  322. goto skip_this;
  323. octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl,
  324. &bytes_compl);
  325. switch (reqtype) {
  326. case REQTYPE_NORESP_NET:
  327. case REQTYPE_NORESP_NET_SG:
  328. case REQTYPE_RESP_NET_SG:
  329. reqtype_free_fn[oct->octeon_id][reqtype](buf);
  330. break;
  331. case REQTYPE_RESP_NET:
  332. case REQTYPE_SOFT_COMMAND:
  333. sc = buf;
  334. if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct))
  335. irh = (struct octeon_instr_irh *)
  336. &sc->cmd.cmd3.irh;
  337. else
  338. irh = (struct octeon_instr_irh *)
  339. &sc->cmd.cmd2.irh;
  340. if (irh->rflag) {
  341. /* We're expecting a response from Octeon.
  342. * It's up to lio_process_ordered_list() to
  343. * process sc. Add sc to the ordered soft
  344. * command response list because we expect
  345. * a response from Octeon.
  346. */
  347. spin_lock_irqsave
  348. (&oct->response_list
  349. [OCTEON_ORDERED_SC_LIST].lock,
  350. flags);
  351. atomic_inc(&oct->response_list
  352. [OCTEON_ORDERED_SC_LIST].
  353. pending_req_count);
  354. list_add_tail(&sc->node, &oct->response_list
  355. [OCTEON_ORDERED_SC_LIST].head);
  356. spin_unlock_irqrestore
  357. (&oct->response_list
  358. [OCTEON_ORDERED_SC_LIST].lock,
  359. flags);
  360. } else {
  361. if (sc->callback) {
  362. /* This callback must not sleep */
  363. sc->callback(oct, OCTEON_REQUEST_DONE,
  364. sc->callback_arg);
  365. }
  366. }
  367. break;
  368. default:
  369. dev_err(&oct->pci_dev->dev,
  370. "%s Unknown reqtype: %d buf: %p at idx %d\n",
  371. __func__, reqtype, buf, old);
  372. }
  373. iq->request_list[old].buf = NULL;
  374. iq->request_list[old].reqtype = 0;
  375. skip_this:
  376. inst_count++;
  377. old = incr_index(old, 1, iq->max_count);
  378. if ((napi_budget) && (inst_count >= napi_budget))
  379. break;
  380. }
  381. if (bytes_compl)
  382. octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl,
  383. bytes_compl);
  384. iq->flush_index = old;
  385. if (atomic_read(&oct->response_list
  386. [OCTEON_ORDERED_SC_LIST].pending_req_count))
  387. queue_delayed_work(cwq->wq, &cwq->wk.work, msecs_to_jiffies(1));
  388. return inst_count;
  389. }
  390. /* Can only be called from process context */
  391. int
  392. octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq,
  393. u32 napi_budget)
  394. {
  395. u32 inst_processed = 0;
  396. u32 tot_inst_processed = 0;
  397. int tx_done = 1;
  398. if (!spin_trylock(&iq->iq_flush_running_lock))
  399. return tx_done;
  400. spin_lock_bh(&iq->lock);
  401. iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
  402. do {
  403. /* Process any outstanding IQ packets. */
  404. if (iq->flush_index == iq->octeon_read_index)
  405. break;
  406. if (napi_budget)
  407. inst_processed =
  408. lio_process_iq_request_list(oct, iq,
  409. napi_budget -
  410. tot_inst_processed);
  411. else
  412. inst_processed =
  413. lio_process_iq_request_list(oct, iq, 0);
  414. if (inst_processed) {
  415. atomic_sub(inst_processed, &iq->instr_pending);
  416. iq->stats.instr_processed += inst_processed;
  417. }
  418. tot_inst_processed += inst_processed;
  419. } while (tot_inst_processed < napi_budget);
  420. if (napi_budget && (tot_inst_processed >= napi_budget))
  421. tx_done = 0;
  422. iq->last_db_time = jiffies;
  423. spin_unlock_bh(&iq->lock);
  424. spin_unlock(&iq->iq_flush_running_lock);
  425. return tx_done;
  426. }
  427. /* Process instruction queue after timeout.
  428. * This routine gets called from a workqueue or when removing the module.
  429. */
  430. static void __check_db_timeout(struct octeon_device *oct, u64 iq_no)
  431. {
  432. struct octeon_instr_queue *iq;
  433. u64 next_time;
  434. if (!oct)
  435. return;
  436. iq = oct->instr_queue[iq_no];
  437. if (!iq)
  438. return;
  439. /* return immediately, if no work pending */
  440. if (!atomic_read(&iq->instr_pending))
  441. return;
  442. /* If jiffies - last_db_time < db_timeout do nothing */
  443. next_time = iq->last_db_time + iq->db_timeout;
  444. if (!time_after(jiffies, (unsigned long)next_time))
  445. return;
  446. iq->last_db_time = jiffies;
  447. /* Flush the instruction queue */
  448. octeon_flush_iq(oct, iq, 0);
  449. lio_enable_irq(NULL, iq);
  450. }
  451. /* Called by the Poll thread at regular intervals to check the instruction
  452. * queue for commands to be posted and for commands that were fetched by Octeon.
  453. */
  454. static void check_db_timeout(struct work_struct *work)
  455. {
  456. struct cavium_wk *wk = (struct cavium_wk *)work;
  457. struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
  458. u64 iq_no = wk->ctxul;
  459. struct cavium_wq *db_wq = &oct->check_db_wq[iq_no];
  460. u32 delay = 10;
  461. __check_db_timeout(oct, iq_no);
  462. queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay));
  463. }
  464. int
  465. octeon_send_command(struct octeon_device *oct, u32 iq_no,
  466. u32 force_db, void *cmd, void *buf,
  467. u32 datasize, u32 reqtype)
  468. {
  469. int xmit_stopped;
  470. struct iq_post_status st;
  471. struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
  472. /* Get the lock and prevent other tasks and tx interrupt handler from
  473. * running.
  474. */
  475. if (iq->allow_soft_cmds)
  476. spin_lock_bh(&iq->post_lock);
  477. st = __post_command2(iq, cmd);
  478. if (st.status != IQ_SEND_FAILED) {
  479. xmit_stopped = octeon_report_sent_bytes_to_bql(buf, reqtype);
  480. __add_to_request_list(iq, st.index, buf, reqtype);
  481. INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
  482. INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
  483. if (iq->fill_cnt >= MAX_OCTEON_FILL_COUNT || force_db ||
  484. xmit_stopped || st.status == IQ_SEND_STOP)
  485. ring_doorbell(oct, iq);
  486. } else {
  487. INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
  488. }
  489. if (iq->allow_soft_cmds)
  490. spin_unlock_bh(&iq->post_lock);
  491. /* This is only done here to expedite packets being flushed
  492. * for cases where there are no IQ completion interrupts.
  493. */
  494. return st.status;
  495. }
  496. void
  497. octeon_prepare_soft_command(struct octeon_device *oct,
  498. struct octeon_soft_command *sc,
  499. u8 opcode,
  500. u8 subcode,
  501. u32 irh_ossp,
  502. u64 ossp0,
  503. u64 ossp1)
  504. {
  505. struct octeon_config *oct_cfg;
  506. struct octeon_instr_ih2 *ih2;
  507. struct octeon_instr_ih3 *ih3;
  508. struct octeon_instr_pki_ih3 *pki_ih3;
  509. struct octeon_instr_irh *irh;
  510. struct octeon_instr_rdp *rdp;
  511. WARN_ON(opcode > 15);
  512. WARN_ON(subcode > 127);
  513. oct_cfg = octeon_get_conf(oct);
  514. if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
  515. ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
  516. ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind;
  517. pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
  518. pki_ih3->w = 1;
  519. pki_ih3->raw = 1;
  520. pki_ih3->utag = 1;
  521. pki_ih3->uqpg =
  522. oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
  523. pki_ih3->utt = 1;
  524. pki_ih3->tag = LIO_CONTROL;
  525. pki_ih3->tagtype = ATOMIC_TAG;
  526. pki_ih3->qpg =
  527. oct->instr_queue[sc->iq_no]->txpciq.s.ctrl_qpg;
  528. pki_ih3->pm = 0x7;
  529. pki_ih3->sl = 8;
  530. if (sc->datasize)
  531. ih3->dlengsz = sc->datasize;
  532. irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
  533. irh->opcode = opcode;
  534. irh->subcode = subcode;
  535. /* opcode/subcode specific parameters (ossp) */
  536. irh->ossp = irh_ossp;
  537. sc->cmd.cmd3.ossp[0] = ossp0;
  538. sc->cmd.cmd3.ossp[1] = ossp1;
  539. if (sc->rdatasize) {
  540. rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
  541. rdp->pcie_port = oct->pcie_port;
  542. rdp->rlen = sc->rdatasize;
  543. irh->rflag = 1;
  544. /*PKI IH3*/
  545. /* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */
  546. ih3->fsz = LIO_SOFTCMDRESP_IH3;
  547. } else {
  548. irh->rflag = 0;
  549. /*PKI IH3*/
  550. /* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
  551. ih3->fsz = LIO_PCICMD_O3;
  552. }
  553. } else {
  554. ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
  555. ih2->tagtype = ATOMIC_TAG;
  556. ih2->tag = LIO_CONTROL;
  557. ih2->raw = 1;
  558. ih2->grp = CFG_GET_CTRL_Q_GRP(oct_cfg);
  559. if (sc->datasize) {
  560. ih2->dlengsz = sc->datasize;
  561. ih2->rs = 1;
  562. }
  563. irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
  564. irh->opcode = opcode;
  565. irh->subcode = subcode;
  566. /* opcode/subcode specific parameters (ossp) */
  567. irh->ossp = irh_ossp;
  568. sc->cmd.cmd2.ossp[0] = ossp0;
  569. sc->cmd.cmd2.ossp[1] = ossp1;
  570. if (sc->rdatasize) {
  571. rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp;
  572. rdp->pcie_port = oct->pcie_port;
  573. rdp->rlen = sc->rdatasize;
  574. irh->rflag = 1;
  575. /* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */
  576. ih2->fsz = LIO_SOFTCMDRESP_IH2;
  577. } else {
  578. irh->rflag = 0;
  579. /* irh + ossp[0] + ossp[1] = 24 bytes */
  580. ih2->fsz = LIO_PCICMD_O2;
  581. }
  582. }
  583. }
  584. int octeon_send_soft_command(struct octeon_device *oct,
  585. struct octeon_soft_command *sc)
  586. {
  587. struct octeon_instr_queue *iq;
  588. struct octeon_instr_ih2 *ih2;
  589. struct octeon_instr_ih3 *ih3;
  590. struct octeon_instr_irh *irh;
  591. u32 len;
  592. iq = oct->instr_queue[sc->iq_no];
  593. if (!iq->allow_soft_cmds) {
  594. dev_err(&oct->pci_dev->dev, "Soft commands are not allowed on Queue %d\n",
  595. sc->iq_no);
  596. INCR_INSTRQUEUE_PKT_COUNT(oct, sc->iq_no, instr_dropped, 1);
  597. return IQ_SEND_FAILED;
  598. }
  599. if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
  600. ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
  601. if (ih3->dlengsz) {
  602. WARN_ON(!sc->dmadptr);
  603. sc->cmd.cmd3.dptr = sc->dmadptr;
  604. }
  605. irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
  606. if (irh->rflag) {
  607. WARN_ON(!sc->dmarptr);
  608. WARN_ON(!sc->status_word);
  609. *sc->status_word = COMPLETION_WORD_INIT;
  610. sc->cmd.cmd3.rptr = sc->dmarptr;
  611. }
  612. len = (u32)ih3->dlengsz;
  613. } else {
  614. ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
  615. if (ih2->dlengsz) {
  616. WARN_ON(!sc->dmadptr);
  617. sc->cmd.cmd2.dptr = sc->dmadptr;
  618. }
  619. irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
  620. if (irh->rflag) {
  621. WARN_ON(!sc->dmarptr);
  622. WARN_ON(!sc->status_word);
  623. *sc->status_word = COMPLETION_WORD_INIT;
  624. sc->cmd.cmd2.rptr = sc->dmarptr;
  625. }
  626. len = (u32)ih2->dlengsz;
  627. }
  628. if (sc->wait_time)
  629. sc->timeout = jiffies + sc->wait_time;
  630. return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
  631. len, REQTYPE_SOFT_COMMAND));
  632. }
  633. int octeon_setup_sc_buffer_pool(struct octeon_device *oct)
  634. {
  635. int i;
  636. u64 dma_addr;
  637. struct octeon_soft_command *sc;
  638. INIT_LIST_HEAD(&oct->sc_buf_pool.head);
  639. spin_lock_init(&oct->sc_buf_pool.lock);
  640. atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0);
  641. for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) {
  642. sc = (struct octeon_soft_command *)
  643. lio_dma_alloc(oct,
  644. SOFT_COMMAND_BUFFER_SIZE,
  645. (dma_addr_t *)&dma_addr);
  646. if (!sc) {
  647. octeon_free_sc_buffer_pool(oct);
  648. return 1;
  649. }
  650. sc->dma_addr = dma_addr;
  651. sc->size = SOFT_COMMAND_BUFFER_SIZE;
  652. list_add_tail(&sc->node, &oct->sc_buf_pool.head);
  653. }
  654. return 0;
  655. }
  656. int octeon_free_sc_buffer_pool(struct octeon_device *oct)
  657. {
  658. struct list_head *tmp, *tmp2;
  659. struct octeon_soft_command *sc;
  660. spin_lock_bh(&oct->sc_buf_pool.lock);
  661. list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) {
  662. list_del(tmp);
  663. sc = (struct octeon_soft_command *)tmp;
  664. lio_dma_free(oct, sc->size, sc, sc->dma_addr);
  665. }
  666. INIT_LIST_HEAD(&oct->sc_buf_pool.head);
  667. spin_unlock_bh(&oct->sc_buf_pool.lock);
  668. return 0;
  669. }
  670. struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct,
  671. u32 datasize,
  672. u32 rdatasize,
  673. u32 ctxsize)
  674. {
  675. u64 dma_addr;
  676. u32 size;
  677. u32 offset = sizeof(struct octeon_soft_command);
  678. struct octeon_soft_command *sc = NULL;
  679. struct list_head *tmp;
  680. WARN_ON((offset + datasize + rdatasize + ctxsize) >
  681. SOFT_COMMAND_BUFFER_SIZE);
  682. spin_lock_bh(&oct->sc_buf_pool.lock);
  683. if (list_empty(&oct->sc_buf_pool.head)) {
  684. spin_unlock_bh(&oct->sc_buf_pool.lock);
  685. return NULL;
  686. }
  687. list_for_each(tmp, &oct->sc_buf_pool.head)
  688. break;
  689. list_del(tmp);
  690. atomic_inc(&oct->sc_buf_pool.alloc_buf_count);
  691. spin_unlock_bh(&oct->sc_buf_pool.lock);
  692. sc = (struct octeon_soft_command *)tmp;
  693. dma_addr = sc->dma_addr;
  694. size = sc->size;
  695. memset(sc, 0, sc->size);
  696. sc->dma_addr = dma_addr;
  697. sc->size = size;
  698. if (ctxsize) {
  699. sc->ctxptr = (u8 *)sc + offset;
  700. sc->ctxsize = ctxsize;
  701. }
  702. /* Start data at 128 byte boundary */
  703. offset = (offset + ctxsize + 127) & 0xffffff80;
  704. if (datasize) {
  705. sc->virtdptr = (u8 *)sc + offset;
  706. sc->dmadptr = dma_addr + offset;
  707. sc->datasize = datasize;
  708. }
  709. /* Start rdata at 128 byte boundary */
  710. offset = (offset + datasize + 127) & 0xffffff80;
  711. if (rdatasize) {
  712. WARN_ON(rdatasize < 16);
  713. sc->virtrptr = (u8 *)sc + offset;
  714. sc->dmarptr = dma_addr + offset;
  715. sc->rdatasize = rdatasize;
  716. sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8);
  717. }
  718. return sc;
  719. }
  720. void octeon_free_soft_command(struct octeon_device *oct,
  721. struct octeon_soft_command *sc)
  722. {
  723. spin_lock_bh(&oct->sc_buf_pool.lock);
  724. list_add_tail(&sc->node, &oct->sc_buf_pool.head);
  725. atomic_dec(&oct->sc_buf_pool.alloc_buf_count);
  726. spin_unlock_bh(&oct->sc_buf_pool.lock);
  727. }