gs_usb.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053
  1. /* CAN driver for Geschwister Schneider USB/CAN devices
  2. * and bytewerk.org candleLight USB CAN interfaces.
  3. *
  4. * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
  5. * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
  6. * Copyright (C) 2016 Hubert Denkmair
  7. *
  8. * Many thanks to all socketcan devs!
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License as published
  12. * by the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/signal.h>
  21. #include <linux/module.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/usb.h>
  24. #include <linux/can.h>
  25. #include <linux/can/dev.h>
  26. #include <linux/can/error.h>
  27. /* Device specific constants */
  28. #define USB_GSUSB_1_VENDOR_ID 0x1d50
  29. #define USB_GSUSB_1_PRODUCT_ID 0x606f
  30. #define USB_CANDLELIGHT_VENDOR_ID 0x1209
  31. #define USB_CANDLELIGHT_PRODUCT_ID 0x2323
  32. #define GSUSB_ENDPOINT_IN 1
  33. #define GSUSB_ENDPOINT_OUT 2
  34. /* Device specific constants */
  35. enum gs_usb_breq {
  36. GS_USB_BREQ_HOST_FORMAT = 0,
  37. GS_USB_BREQ_BITTIMING,
  38. GS_USB_BREQ_MODE,
  39. GS_USB_BREQ_BERR,
  40. GS_USB_BREQ_BT_CONST,
  41. GS_USB_BREQ_DEVICE_CONFIG,
  42. GS_USB_BREQ_TIMESTAMP,
  43. GS_USB_BREQ_IDENTIFY,
  44. };
  45. enum gs_can_mode {
  46. /* reset a channel. turns it off */
  47. GS_CAN_MODE_RESET = 0,
  48. /* starts a channel */
  49. GS_CAN_MODE_START
  50. };
  51. enum gs_can_state {
  52. GS_CAN_STATE_ERROR_ACTIVE = 0,
  53. GS_CAN_STATE_ERROR_WARNING,
  54. GS_CAN_STATE_ERROR_PASSIVE,
  55. GS_CAN_STATE_BUS_OFF,
  56. GS_CAN_STATE_STOPPED,
  57. GS_CAN_STATE_SLEEPING
  58. };
  59. enum gs_can_identify_mode {
  60. GS_CAN_IDENTIFY_OFF = 0,
  61. GS_CAN_IDENTIFY_ON
  62. };
  63. /* data types passed between host and device */
  64. struct gs_host_config {
  65. u32 byte_order;
  66. } __packed;
  67. /* All data exchanged between host and device is exchanged in host byte order,
  68. * thanks to the struct gs_host_config byte_order member, which is sent first
  69. * to indicate the desired byte order.
  70. */
  71. struct gs_device_config {
  72. u8 reserved1;
  73. u8 reserved2;
  74. u8 reserved3;
  75. u8 icount;
  76. u32 sw_version;
  77. u32 hw_version;
  78. } __packed;
  79. #define GS_CAN_MODE_NORMAL 0
  80. #define GS_CAN_MODE_LISTEN_ONLY BIT(0)
  81. #define GS_CAN_MODE_LOOP_BACK BIT(1)
  82. #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
  83. #define GS_CAN_MODE_ONE_SHOT BIT(3)
  84. struct gs_device_mode {
  85. u32 mode;
  86. u32 flags;
  87. } __packed;
  88. struct gs_device_state {
  89. u32 state;
  90. u32 rxerr;
  91. u32 txerr;
  92. } __packed;
  93. struct gs_device_bittiming {
  94. u32 prop_seg;
  95. u32 phase_seg1;
  96. u32 phase_seg2;
  97. u32 sjw;
  98. u32 brp;
  99. } __packed;
  100. struct gs_identify_mode {
  101. u32 mode;
  102. } __packed;
  103. #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
  104. #define GS_CAN_FEATURE_LOOP_BACK BIT(1)
  105. #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
  106. #define GS_CAN_FEATURE_ONE_SHOT BIT(3)
  107. #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
  108. #define GS_CAN_FEATURE_IDENTIFY BIT(5)
  109. struct gs_device_bt_const {
  110. u32 feature;
  111. u32 fclk_can;
  112. u32 tseg1_min;
  113. u32 tseg1_max;
  114. u32 tseg2_min;
  115. u32 tseg2_max;
  116. u32 sjw_max;
  117. u32 brp_min;
  118. u32 brp_max;
  119. u32 brp_inc;
  120. } __packed;
  121. #define GS_CAN_FLAG_OVERFLOW 1
  122. struct gs_host_frame {
  123. u32 echo_id;
  124. u32 can_id;
  125. u8 can_dlc;
  126. u8 channel;
  127. u8 flags;
  128. u8 reserved;
  129. u8 data[8];
  130. } __packed;
  131. /* The GS USB devices make use of the same flags and masks as in
  132. * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
  133. */
  134. /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
  135. #define GS_MAX_TX_URBS 10
  136. /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
  137. #define GS_MAX_RX_URBS 30
  138. /* Maximum number of interfaces the driver supports per device.
  139. * Current hardware only supports 2 interfaces. The future may vary.
  140. */
  141. #define GS_MAX_INTF 2
  142. struct gs_tx_context {
  143. struct gs_can *dev;
  144. unsigned int echo_id;
  145. };
  146. struct gs_can {
  147. struct can_priv can; /* must be the first member */
  148. struct gs_usb *parent;
  149. struct net_device *netdev;
  150. struct usb_device *udev;
  151. struct usb_interface *iface;
  152. struct can_bittiming_const bt_const;
  153. unsigned int channel; /* channel number */
  154. /* This lock prevents a race condition between xmit and receive. */
  155. spinlock_t tx_ctx_lock;
  156. struct gs_tx_context tx_context[GS_MAX_TX_URBS];
  157. struct usb_anchor tx_submitted;
  158. atomic_t active_tx_urbs;
  159. };
  160. /* usb interface struct */
  161. struct gs_usb {
  162. struct gs_can *canch[GS_MAX_INTF];
  163. struct usb_anchor rx_submitted;
  164. atomic_t active_channels;
  165. struct usb_device *udev;
  166. };
  167. /* 'allocate' a tx context.
  168. * returns a valid tx context or NULL if there is no space.
  169. */
  170. static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
  171. {
  172. int i = 0;
  173. unsigned long flags;
  174. spin_lock_irqsave(&dev->tx_ctx_lock, flags);
  175. for (; i < GS_MAX_TX_URBS; i++) {
  176. if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
  177. dev->tx_context[i].echo_id = i;
  178. spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
  179. return &dev->tx_context[i];
  180. }
  181. }
  182. spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
  183. return NULL;
  184. }
  185. /* releases a tx context
  186. */
  187. static void gs_free_tx_context(struct gs_tx_context *txc)
  188. {
  189. txc->echo_id = GS_MAX_TX_URBS;
  190. }
  191. /* Get a tx context by id.
  192. */
  193. static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
  194. unsigned int id)
  195. {
  196. unsigned long flags;
  197. if (id < GS_MAX_TX_URBS) {
  198. spin_lock_irqsave(&dev->tx_ctx_lock, flags);
  199. if (dev->tx_context[id].echo_id == id) {
  200. spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
  201. return &dev->tx_context[id];
  202. }
  203. spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
  204. }
  205. return NULL;
  206. }
  207. static int gs_cmd_reset(struct gs_can *gsdev)
  208. {
  209. struct gs_device_mode *dm;
  210. struct usb_interface *intf = gsdev->iface;
  211. int rc;
  212. dm = kzalloc(sizeof(*dm), GFP_KERNEL);
  213. if (!dm)
  214. return -ENOMEM;
  215. dm->mode = GS_CAN_MODE_RESET;
  216. rc = usb_control_msg(interface_to_usbdev(intf),
  217. usb_sndctrlpipe(interface_to_usbdev(intf), 0),
  218. GS_USB_BREQ_MODE,
  219. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
  220. gsdev->channel,
  221. 0,
  222. dm,
  223. sizeof(*dm),
  224. 1000);
  225. kfree(dm);
  226. return rc;
  227. }
  228. static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
  229. {
  230. struct can_device_stats *can_stats = &dev->can.can_stats;
  231. if (cf->can_id & CAN_ERR_RESTARTED) {
  232. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  233. can_stats->restarts++;
  234. } else if (cf->can_id & CAN_ERR_BUSOFF) {
  235. dev->can.state = CAN_STATE_BUS_OFF;
  236. can_stats->bus_off++;
  237. } else if (cf->can_id & CAN_ERR_CRTL) {
  238. if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
  239. (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
  240. dev->can.state = CAN_STATE_ERROR_WARNING;
  241. can_stats->error_warning++;
  242. } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
  243. (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
  244. dev->can.state = CAN_STATE_ERROR_PASSIVE;
  245. can_stats->error_passive++;
  246. } else {
  247. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  248. }
  249. }
  250. }
  251. static void gs_usb_receive_bulk_callback(struct urb *urb)
  252. {
  253. struct gs_usb *usbcan = urb->context;
  254. struct gs_can *dev;
  255. struct net_device *netdev;
  256. int rc;
  257. struct net_device_stats *stats;
  258. struct gs_host_frame *hf = urb->transfer_buffer;
  259. struct gs_tx_context *txc;
  260. struct can_frame *cf;
  261. struct sk_buff *skb;
  262. BUG_ON(!usbcan);
  263. switch (urb->status) {
  264. case 0: /* success */
  265. break;
  266. case -ENOENT:
  267. case -ESHUTDOWN:
  268. return;
  269. default:
  270. /* do not resubmit aborted urbs. eg: when device goes down */
  271. return;
  272. }
  273. /* device reports out of range channel id */
  274. if (hf->channel >= GS_MAX_INTF)
  275. goto resubmit_urb;
  276. dev = usbcan->canch[hf->channel];
  277. netdev = dev->netdev;
  278. stats = &netdev->stats;
  279. if (!netif_device_present(netdev))
  280. return;
  281. if (hf->echo_id == -1) { /* normal rx */
  282. skb = alloc_can_skb(dev->netdev, &cf);
  283. if (!skb)
  284. return;
  285. cf->can_id = hf->can_id;
  286. cf->can_dlc = get_can_dlc(hf->can_dlc);
  287. memcpy(cf->data, hf->data, 8);
  288. /* ERROR frames tell us information about the controller */
  289. if (hf->can_id & CAN_ERR_FLAG)
  290. gs_update_state(dev, cf);
  291. netdev->stats.rx_packets++;
  292. netdev->stats.rx_bytes += hf->can_dlc;
  293. netif_rx(skb);
  294. } else { /* echo_id == hf->echo_id */
  295. if (hf->echo_id >= GS_MAX_TX_URBS) {
  296. netdev_err(netdev,
  297. "Unexpected out of range echo id %d\n",
  298. hf->echo_id);
  299. goto resubmit_urb;
  300. }
  301. netdev->stats.tx_packets++;
  302. netdev->stats.tx_bytes += hf->can_dlc;
  303. txc = gs_get_tx_context(dev, hf->echo_id);
  304. /* bad devices send bad echo_ids. */
  305. if (!txc) {
  306. netdev_err(netdev,
  307. "Unexpected unused echo id %d\n",
  308. hf->echo_id);
  309. goto resubmit_urb;
  310. }
  311. can_get_echo_skb(netdev, hf->echo_id);
  312. gs_free_tx_context(txc);
  313. atomic_dec(&dev->active_tx_urbs);
  314. netif_wake_queue(netdev);
  315. }
  316. if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
  317. skb = alloc_can_err_skb(netdev, &cf);
  318. if (!skb)
  319. goto resubmit_urb;
  320. cf->can_id |= CAN_ERR_CRTL;
  321. cf->can_dlc = CAN_ERR_DLC;
  322. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  323. stats->rx_over_errors++;
  324. stats->rx_errors++;
  325. netif_rx(skb);
  326. }
  327. resubmit_urb:
  328. usb_fill_bulk_urb(urb,
  329. usbcan->udev,
  330. usb_rcvbulkpipe(usbcan->udev, GSUSB_ENDPOINT_IN),
  331. hf,
  332. sizeof(struct gs_host_frame),
  333. gs_usb_receive_bulk_callback,
  334. usbcan
  335. );
  336. rc = usb_submit_urb(urb, GFP_ATOMIC);
  337. /* USB failure take down all interfaces */
  338. if (rc == -ENODEV) {
  339. for (rc = 0; rc < GS_MAX_INTF; rc++) {
  340. if (usbcan->canch[rc])
  341. netif_device_detach(usbcan->canch[rc]->netdev);
  342. }
  343. }
  344. }
  345. static int gs_usb_set_bittiming(struct net_device *netdev)
  346. {
  347. struct gs_can *dev = netdev_priv(netdev);
  348. struct can_bittiming *bt = &dev->can.bittiming;
  349. struct usb_interface *intf = dev->iface;
  350. int rc;
  351. struct gs_device_bittiming *dbt;
  352. dbt = kmalloc(sizeof(*dbt), GFP_KERNEL);
  353. if (!dbt)
  354. return -ENOMEM;
  355. dbt->prop_seg = bt->prop_seg;
  356. dbt->phase_seg1 = bt->phase_seg1;
  357. dbt->phase_seg2 = bt->phase_seg2;
  358. dbt->sjw = bt->sjw;
  359. dbt->brp = bt->brp;
  360. /* request bit timings */
  361. rc = usb_control_msg(interface_to_usbdev(intf),
  362. usb_sndctrlpipe(interface_to_usbdev(intf), 0),
  363. GS_USB_BREQ_BITTIMING,
  364. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
  365. dev->channel,
  366. 0,
  367. dbt,
  368. sizeof(*dbt),
  369. 1000);
  370. kfree(dbt);
  371. if (rc < 0)
  372. dev_err(netdev->dev.parent, "Couldn't set bittimings (err=%d)",
  373. rc);
  374. return (rc > 0) ? 0 : rc;
  375. }
  376. static void gs_usb_xmit_callback(struct urb *urb)
  377. {
  378. struct gs_tx_context *txc = urb->context;
  379. struct gs_can *dev = txc->dev;
  380. struct net_device *netdev = dev->netdev;
  381. if (urb->status)
  382. netdev_info(netdev, "usb xmit fail %d\n", txc->echo_id);
  383. usb_free_coherent(urb->dev,
  384. urb->transfer_buffer_length,
  385. urb->transfer_buffer,
  386. urb->transfer_dma);
  387. }
  388. static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
  389. struct net_device *netdev)
  390. {
  391. struct gs_can *dev = netdev_priv(netdev);
  392. struct net_device_stats *stats = &dev->netdev->stats;
  393. struct urb *urb;
  394. struct gs_host_frame *hf;
  395. struct can_frame *cf;
  396. int rc;
  397. unsigned int idx;
  398. struct gs_tx_context *txc;
  399. if (can_dropped_invalid_skb(netdev, skb))
  400. return NETDEV_TX_OK;
  401. /* find an empty context to keep track of transmission */
  402. txc = gs_alloc_tx_context(dev);
  403. if (!txc)
  404. return NETDEV_TX_BUSY;
  405. /* create a URB, and a buffer for it */
  406. urb = usb_alloc_urb(0, GFP_ATOMIC);
  407. if (!urb)
  408. goto nomem_urb;
  409. hf = usb_alloc_coherent(dev->udev, sizeof(*hf), GFP_ATOMIC,
  410. &urb->transfer_dma);
  411. if (!hf) {
  412. netdev_err(netdev, "No memory left for USB buffer\n");
  413. goto nomem_hf;
  414. }
  415. idx = txc->echo_id;
  416. if (idx >= GS_MAX_TX_URBS) {
  417. netdev_err(netdev, "Invalid tx context %d\n", idx);
  418. goto badidx;
  419. }
  420. hf->echo_id = idx;
  421. hf->channel = dev->channel;
  422. cf = (struct can_frame *)skb->data;
  423. hf->can_id = cf->can_id;
  424. hf->can_dlc = cf->can_dlc;
  425. memcpy(hf->data, cf->data, cf->can_dlc);
  426. usb_fill_bulk_urb(urb, dev->udev,
  427. usb_sndbulkpipe(dev->udev, GSUSB_ENDPOINT_OUT),
  428. hf,
  429. sizeof(*hf),
  430. gs_usb_xmit_callback,
  431. txc);
  432. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  433. usb_anchor_urb(urb, &dev->tx_submitted);
  434. can_put_echo_skb(skb, netdev, idx);
  435. atomic_inc(&dev->active_tx_urbs);
  436. rc = usb_submit_urb(urb, GFP_ATOMIC);
  437. if (unlikely(rc)) { /* usb send failed */
  438. atomic_dec(&dev->active_tx_urbs);
  439. can_free_echo_skb(netdev, idx);
  440. gs_free_tx_context(txc);
  441. usb_unanchor_urb(urb);
  442. usb_free_coherent(dev->udev,
  443. sizeof(*hf),
  444. hf,
  445. urb->transfer_dma);
  446. if (rc == -ENODEV) {
  447. netif_device_detach(netdev);
  448. } else {
  449. netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
  450. stats->tx_dropped++;
  451. }
  452. } else {
  453. /* Slow down tx path */
  454. if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
  455. netif_stop_queue(netdev);
  456. }
  457. /* let usb core take care of this urb */
  458. usb_free_urb(urb);
  459. return NETDEV_TX_OK;
  460. badidx:
  461. usb_free_coherent(dev->udev,
  462. sizeof(*hf),
  463. hf,
  464. urb->transfer_dma);
  465. nomem_hf:
  466. usb_free_urb(urb);
  467. nomem_urb:
  468. gs_free_tx_context(txc);
  469. dev_kfree_skb(skb);
  470. stats->tx_dropped++;
  471. return NETDEV_TX_OK;
  472. }
  473. static int gs_can_open(struct net_device *netdev)
  474. {
  475. struct gs_can *dev = netdev_priv(netdev);
  476. struct gs_usb *parent = dev->parent;
  477. int rc, i;
  478. struct gs_device_mode *dm;
  479. u32 ctrlmode;
  480. rc = open_candev(netdev);
  481. if (rc)
  482. return rc;
  483. if (atomic_add_return(1, &parent->active_channels) == 1) {
  484. for (i = 0; i < GS_MAX_RX_URBS; i++) {
  485. struct urb *urb;
  486. u8 *buf;
  487. /* alloc rx urb */
  488. urb = usb_alloc_urb(0, GFP_KERNEL);
  489. if (!urb)
  490. return -ENOMEM;
  491. /* alloc rx buffer */
  492. buf = usb_alloc_coherent(dev->udev,
  493. sizeof(struct gs_host_frame),
  494. GFP_KERNEL,
  495. &urb->transfer_dma);
  496. if (!buf) {
  497. netdev_err(netdev,
  498. "No memory left for USB buffer\n");
  499. usb_free_urb(urb);
  500. return -ENOMEM;
  501. }
  502. /* fill, anchor, and submit rx urb */
  503. usb_fill_bulk_urb(urb,
  504. dev->udev,
  505. usb_rcvbulkpipe(dev->udev,
  506. GSUSB_ENDPOINT_IN),
  507. buf,
  508. sizeof(struct gs_host_frame),
  509. gs_usb_receive_bulk_callback,
  510. parent);
  511. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  512. usb_anchor_urb(urb, &parent->rx_submitted);
  513. rc = usb_submit_urb(urb, GFP_KERNEL);
  514. if (rc) {
  515. if (rc == -ENODEV)
  516. netif_device_detach(dev->netdev);
  517. netdev_err(netdev,
  518. "usb_submit failed (err=%d)\n",
  519. rc);
  520. usb_unanchor_urb(urb);
  521. break;
  522. }
  523. /* Drop reference,
  524. * USB core will take care of freeing it
  525. */
  526. usb_free_urb(urb);
  527. }
  528. }
  529. dm = kmalloc(sizeof(*dm), GFP_KERNEL);
  530. if (!dm)
  531. return -ENOMEM;
  532. /* flags */
  533. ctrlmode = dev->can.ctrlmode;
  534. dm->flags = 0;
  535. if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
  536. dm->flags |= GS_CAN_MODE_LOOP_BACK;
  537. else if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
  538. dm->flags |= GS_CAN_MODE_LISTEN_ONLY;
  539. /* Controller is not allowed to retry TX
  540. * this mode is unavailable on atmels uc3c hardware
  541. */
  542. if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
  543. dm->flags |= GS_CAN_MODE_ONE_SHOT;
  544. if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
  545. dm->flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
  546. /* finally start device */
  547. dm->mode = GS_CAN_MODE_START;
  548. rc = usb_control_msg(interface_to_usbdev(dev->iface),
  549. usb_sndctrlpipe(interface_to_usbdev(dev->iface), 0),
  550. GS_USB_BREQ_MODE,
  551. USB_DIR_OUT | USB_TYPE_VENDOR |
  552. USB_RECIP_INTERFACE,
  553. dev->channel,
  554. 0,
  555. dm,
  556. sizeof(*dm),
  557. 1000);
  558. if (rc < 0) {
  559. netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
  560. kfree(dm);
  561. return rc;
  562. }
  563. kfree(dm);
  564. dev->can.state = CAN_STATE_ERROR_ACTIVE;
  565. if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
  566. netif_start_queue(netdev);
  567. return 0;
  568. }
  569. static int gs_can_close(struct net_device *netdev)
  570. {
  571. int rc;
  572. struct gs_can *dev = netdev_priv(netdev);
  573. struct gs_usb *parent = dev->parent;
  574. netif_stop_queue(netdev);
  575. /* Stop polling */
  576. if (atomic_dec_and_test(&parent->active_channels))
  577. usb_kill_anchored_urbs(&parent->rx_submitted);
  578. /* Stop sending URBs */
  579. usb_kill_anchored_urbs(&dev->tx_submitted);
  580. atomic_set(&dev->active_tx_urbs, 0);
  581. /* reset the device */
  582. rc = gs_cmd_reset(dev);
  583. if (rc < 0)
  584. netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc);
  585. /* reset tx contexts */
  586. for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
  587. dev->tx_context[rc].dev = dev;
  588. dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
  589. }
  590. /* close the netdev */
  591. close_candev(netdev);
  592. return 0;
  593. }
  594. static const struct net_device_ops gs_usb_netdev_ops = {
  595. .ndo_open = gs_can_open,
  596. .ndo_stop = gs_can_close,
  597. .ndo_start_xmit = gs_can_start_xmit,
  598. .ndo_change_mtu = can_change_mtu,
  599. };
  600. static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
  601. {
  602. struct gs_can *dev = netdev_priv(netdev);
  603. struct gs_identify_mode *imode;
  604. int rc;
  605. imode = kmalloc(sizeof(*imode), GFP_KERNEL);
  606. if (!imode)
  607. return -ENOMEM;
  608. if (do_identify)
  609. imode->mode = GS_CAN_IDENTIFY_ON;
  610. else
  611. imode->mode = GS_CAN_IDENTIFY_OFF;
  612. rc = usb_control_msg(interface_to_usbdev(dev->iface),
  613. usb_sndctrlpipe(interface_to_usbdev(dev->iface),
  614. 0),
  615. GS_USB_BREQ_IDENTIFY,
  616. USB_DIR_OUT | USB_TYPE_VENDOR |
  617. USB_RECIP_INTERFACE,
  618. dev->channel,
  619. 0,
  620. imode,
  621. sizeof(*imode),
  622. 100);
  623. kfree(imode);
  624. return (rc > 0) ? 0 : rc;
  625. }
  626. /* blink LED's for finding the this interface */
  627. static int gs_usb_set_phys_id(struct net_device *dev,
  628. enum ethtool_phys_id_state state)
  629. {
  630. int rc = 0;
  631. switch (state) {
  632. case ETHTOOL_ID_ACTIVE:
  633. rc = gs_usb_set_identify(dev, GS_CAN_IDENTIFY_ON);
  634. break;
  635. case ETHTOOL_ID_INACTIVE:
  636. rc = gs_usb_set_identify(dev, GS_CAN_IDENTIFY_OFF);
  637. break;
  638. default:
  639. break;
  640. }
  641. return rc;
  642. }
  643. static const struct ethtool_ops gs_usb_ethtool_ops = {
  644. .set_phys_id = gs_usb_set_phys_id,
  645. };
  646. static struct gs_can *gs_make_candev(unsigned int channel,
  647. struct usb_interface *intf,
  648. struct gs_device_config *dconf)
  649. {
  650. struct gs_can *dev;
  651. struct net_device *netdev;
  652. int rc;
  653. struct gs_device_bt_const *bt_const;
  654. bt_const = kmalloc(sizeof(*bt_const), GFP_KERNEL);
  655. if (!bt_const)
  656. return ERR_PTR(-ENOMEM);
  657. /* fetch bit timing constants */
  658. rc = usb_control_msg(interface_to_usbdev(intf),
  659. usb_rcvctrlpipe(interface_to_usbdev(intf), 0),
  660. GS_USB_BREQ_BT_CONST,
  661. USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
  662. channel,
  663. 0,
  664. bt_const,
  665. sizeof(*bt_const),
  666. 1000);
  667. if (rc < 0) {
  668. dev_err(&intf->dev,
  669. "Couldn't get bit timing const for channel (err=%d)\n",
  670. rc);
  671. kfree(bt_const);
  672. return ERR_PTR(rc);
  673. }
  674. /* create netdev */
  675. netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
  676. if (!netdev) {
  677. dev_err(&intf->dev, "Couldn't allocate candev\n");
  678. kfree(bt_const);
  679. return ERR_PTR(-ENOMEM);
  680. }
  681. dev = netdev_priv(netdev);
  682. netdev->netdev_ops = &gs_usb_netdev_ops;
  683. netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
  684. /* dev settup */
  685. strcpy(dev->bt_const.name, "gs_usb");
  686. dev->bt_const.tseg1_min = bt_const->tseg1_min;
  687. dev->bt_const.tseg1_max = bt_const->tseg1_max;
  688. dev->bt_const.tseg2_min = bt_const->tseg2_min;
  689. dev->bt_const.tseg2_max = bt_const->tseg2_max;
  690. dev->bt_const.sjw_max = bt_const->sjw_max;
  691. dev->bt_const.brp_min = bt_const->brp_min;
  692. dev->bt_const.brp_max = bt_const->brp_max;
  693. dev->bt_const.brp_inc = bt_const->brp_inc;
  694. dev->udev = interface_to_usbdev(intf);
  695. dev->iface = intf;
  696. dev->netdev = netdev;
  697. dev->channel = channel;
  698. init_usb_anchor(&dev->tx_submitted);
  699. atomic_set(&dev->active_tx_urbs, 0);
  700. spin_lock_init(&dev->tx_ctx_lock);
  701. for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
  702. dev->tx_context[rc].dev = dev;
  703. dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
  704. }
  705. /* can settup */
  706. dev->can.state = CAN_STATE_STOPPED;
  707. dev->can.clock.freq = bt_const->fclk_can;
  708. dev->can.bittiming_const = &dev->bt_const;
  709. dev->can.do_set_bittiming = gs_usb_set_bittiming;
  710. dev->can.ctrlmode_supported = 0;
  711. if (bt_const->feature & GS_CAN_FEATURE_LISTEN_ONLY)
  712. dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
  713. if (bt_const->feature & GS_CAN_FEATURE_LOOP_BACK)
  714. dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
  715. if (bt_const->feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
  716. dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
  717. if (bt_const->feature & GS_CAN_FEATURE_ONE_SHOT)
  718. dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
  719. SET_NETDEV_DEV(netdev, &intf->dev);
  720. if (dconf->sw_version > 1)
  721. if (bt_const->feature & GS_CAN_FEATURE_IDENTIFY)
  722. netdev->ethtool_ops = &gs_usb_ethtool_ops;
  723. kfree(bt_const);
  724. rc = register_candev(dev->netdev);
  725. if (rc) {
  726. free_candev(dev->netdev);
  727. dev_err(&intf->dev, "Couldn't register candev (err=%d)\n", rc);
  728. return ERR_PTR(rc);
  729. }
  730. return dev;
  731. }
  732. static void gs_destroy_candev(struct gs_can *dev)
  733. {
  734. unregister_candev(dev->netdev);
  735. usb_kill_anchored_urbs(&dev->tx_submitted);
  736. free_candev(dev->netdev);
  737. }
  738. static int gs_usb_probe(struct usb_interface *intf,
  739. const struct usb_device_id *id)
  740. {
  741. struct gs_usb *dev;
  742. int rc = -ENOMEM;
  743. unsigned int icount, i;
  744. struct gs_host_config *hconf;
  745. struct gs_device_config *dconf;
  746. hconf = kmalloc(sizeof(*hconf), GFP_KERNEL);
  747. if (!hconf)
  748. return -ENOMEM;
  749. hconf->byte_order = 0x0000beef;
  750. /* send host config */
  751. rc = usb_control_msg(interface_to_usbdev(intf),
  752. usb_sndctrlpipe(interface_to_usbdev(intf), 0),
  753. GS_USB_BREQ_HOST_FORMAT,
  754. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
  755. 1,
  756. intf->altsetting[0].desc.bInterfaceNumber,
  757. hconf,
  758. sizeof(*hconf),
  759. 1000);
  760. kfree(hconf);
  761. if (rc < 0) {
  762. dev_err(&intf->dev, "Couldn't send data format (err=%d)\n",
  763. rc);
  764. return rc;
  765. }
  766. dconf = kmalloc(sizeof(*dconf), GFP_KERNEL);
  767. if (!dconf)
  768. return -ENOMEM;
  769. /* read device config */
  770. rc = usb_control_msg(interface_to_usbdev(intf),
  771. usb_rcvctrlpipe(interface_to_usbdev(intf), 0),
  772. GS_USB_BREQ_DEVICE_CONFIG,
  773. USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
  774. 1,
  775. intf->altsetting[0].desc.bInterfaceNumber,
  776. dconf,
  777. sizeof(*dconf),
  778. 1000);
  779. if (rc < 0) {
  780. dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
  781. rc);
  782. kfree(dconf);
  783. return rc;
  784. }
  785. icount = dconf->icount + 1;
  786. dev_info(&intf->dev, "Configuring for %d interfaces\n", icount);
  787. if (icount > GS_MAX_INTF) {
  788. dev_err(&intf->dev,
  789. "Driver cannot handle more that %d CAN interfaces\n",
  790. GS_MAX_INTF);
  791. kfree(dconf);
  792. return -EINVAL;
  793. }
  794. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  795. if (!dev) {
  796. kfree(dconf);
  797. return -ENOMEM;
  798. }
  799. init_usb_anchor(&dev->rx_submitted);
  800. atomic_set(&dev->active_channels, 0);
  801. usb_set_intfdata(intf, dev);
  802. dev->udev = interface_to_usbdev(intf);
  803. for (i = 0; i < icount; i++) {
  804. dev->canch[i] = gs_make_candev(i, intf, dconf);
  805. if (IS_ERR_OR_NULL(dev->canch[i])) {
  806. /* save error code to return later */
  807. rc = PTR_ERR(dev->canch[i]);
  808. /* on failure destroy previously created candevs */
  809. icount = i;
  810. for (i = 0; i < icount; i++)
  811. gs_destroy_candev(dev->canch[i]);
  812. usb_kill_anchored_urbs(&dev->rx_submitted);
  813. kfree(dconf);
  814. kfree(dev);
  815. return rc;
  816. }
  817. dev->canch[i]->parent = dev;
  818. }
  819. kfree(dconf);
  820. return 0;
  821. }
  822. static void gs_usb_disconnect(struct usb_interface *intf)
  823. {
  824. unsigned i;
  825. struct gs_usb *dev = usb_get_intfdata(intf);
  826. usb_set_intfdata(intf, NULL);
  827. if (!dev) {
  828. dev_err(&intf->dev, "Disconnect (nodata)\n");
  829. return;
  830. }
  831. for (i = 0; i < GS_MAX_INTF; i++)
  832. if (dev->canch[i])
  833. gs_destroy_candev(dev->canch[i]);
  834. usb_kill_anchored_urbs(&dev->rx_submitted);
  835. kfree(dev);
  836. }
  837. static const struct usb_device_id gs_usb_table[] = {
  838. { USB_DEVICE_INTERFACE_NUMBER(USB_GSUSB_1_VENDOR_ID,
  839. USB_GSUSB_1_PRODUCT_ID, 0) },
  840. { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
  841. USB_CANDLELIGHT_PRODUCT_ID, 0) },
  842. {} /* Terminating entry */
  843. };
  844. MODULE_DEVICE_TABLE(usb, gs_usb_table);
  845. static struct usb_driver gs_usb_driver = {
  846. .name = "gs_usb",
  847. .probe = gs_usb_probe,
  848. .disconnect = gs_usb_disconnect,
  849. .id_table = gs_usb_table,
  850. };
  851. module_usb_driver(gs_usb_driver);
  852. MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
  853. MODULE_DESCRIPTION(
  854. "Socket CAN device driver for Geschwister Schneider Technologie-, "
  855. "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
  856. "and bytewerk.org candleLight USB CAN interfaces.");
  857. MODULE_LICENSE("GPL v2");