cadence-quadspi.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480
  1. /*
  2. * Driver for Cadence QSPI Controller
  3. *
  4. * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/completion.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/err.h>
  24. #include <linux/errno.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/io.h>
  27. #include <linux/jiffies.h>
  28. #include <linux/kernel.h>
  29. #include <linux/module.h>
  30. #include <linux/mtd/mtd.h>
  31. #include <linux/mtd/partitions.h>
  32. #include <linux/mtd/spi-nor.h>
  33. #include <linux/of_device.h>
  34. #include <linux/of.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/sched.h>
  38. #include <linux/spi/spi.h>
  39. #include <linux/timer.h>
  40. #define CQSPI_NAME "cadence-qspi"
  41. #define CQSPI_MAX_CHIPSELECT 16
  42. /* Quirks */
  43. #define CQSPI_NEEDS_WR_DELAY BIT(0)
  44. struct cqspi_st;
  45. struct cqspi_flash_pdata {
  46. struct spi_nor nor;
  47. struct cqspi_st *cqspi;
  48. u32 clk_rate;
  49. u32 read_delay;
  50. u32 tshsl_ns;
  51. u32 tsd2d_ns;
  52. u32 tchsh_ns;
  53. u32 tslch_ns;
  54. u8 inst_width;
  55. u8 addr_width;
  56. u8 data_width;
  57. u8 cs;
  58. bool registered;
  59. bool use_direct_mode;
  60. };
  61. struct cqspi_st {
  62. struct platform_device *pdev;
  63. struct clk *clk;
  64. unsigned int sclk;
  65. void __iomem *iobase;
  66. void __iomem *ahb_base;
  67. resource_size_t ahb_size;
  68. struct completion transfer_complete;
  69. struct mutex bus_mutex;
  70. struct dma_chan *rx_chan;
  71. struct completion rx_dma_complete;
  72. dma_addr_t mmap_phys_base;
  73. int current_cs;
  74. int current_page_size;
  75. int current_erase_size;
  76. int current_addr_width;
  77. unsigned long master_ref_clk_hz;
  78. bool is_decoded_cs;
  79. u32 fifo_depth;
  80. u32 fifo_width;
  81. bool rclk_en;
  82. u32 trigger_address;
  83. u32 wr_delay;
  84. struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
  85. };
  86. /* Operation timeout value */
  87. #define CQSPI_TIMEOUT_MS 500
  88. #define CQSPI_READ_TIMEOUT_MS 10
  89. /* Instruction type */
  90. #define CQSPI_INST_TYPE_SINGLE 0
  91. #define CQSPI_INST_TYPE_DUAL 1
  92. #define CQSPI_INST_TYPE_QUAD 2
  93. #define CQSPI_DUMMY_CLKS_PER_BYTE 8
  94. #define CQSPI_DUMMY_BYTES_MAX 4
  95. #define CQSPI_DUMMY_CLKS_MAX 31
  96. #define CQSPI_STIG_DATA_LEN_MAX 8
  97. /* Register map */
  98. #define CQSPI_REG_CONFIG 0x00
  99. #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
  100. #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
  101. #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
  102. #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
  103. #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
  104. #define CQSPI_REG_CONFIG_BAUD_LSB 19
  105. #define CQSPI_REG_CONFIG_IDLE_LSB 31
  106. #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
  107. #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
  108. #define CQSPI_REG_RD_INSTR 0x04
  109. #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
  110. #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
  111. #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
  112. #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
  113. #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
  114. #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
  115. #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
  116. #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
  117. #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
  118. #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
  119. #define CQSPI_REG_WR_INSTR 0x08
  120. #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
  121. #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
  122. #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
  123. #define CQSPI_REG_DELAY 0x0C
  124. #define CQSPI_REG_DELAY_TSLCH_LSB 0
  125. #define CQSPI_REG_DELAY_TCHSH_LSB 8
  126. #define CQSPI_REG_DELAY_TSD2D_LSB 16
  127. #define CQSPI_REG_DELAY_TSHSL_LSB 24
  128. #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
  129. #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
  130. #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
  131. #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
  132. #define CQSPI_REG_READCAPTURE 0x10
  133. #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
  134. #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
  135. #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
  136. #define CQSPI_REG_SIZE 0x14
  137. #define CQSPI_REG_SIZE_ADDRESS_LSB 0
  138. #define CQSPI_REG_SIZE_PAGE_LSB 4
  139. #define CQSPI_REG_SIZE_BLOCK_LSB 16
  140. #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
  141. #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
  142. #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
  143. #define CQSPI_REG_SRAMPARTITION 0x18
  144. #define CQSPI_REG_INDIRECTTRIGGER 0x1C
  145. #define CQSPI_REG_DMA 0x20
  146. #define CQSPI_REG_DMA_SINGLE_LSB 0
  147. #define CQSPI_REG_DMA_BURST_LSB 8
  148. #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
  149. #define CQSPI_REG_DMA_BURST_MASK 0xFF
  150. #define CQSPI_REG_REMAP 0x24
  151. #define CQSPI_REG_MODE_BIT 0x28
  152. #define CQSPI_REG_SDRAMLEVEL 0x2C
  153. #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
  154. #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
  155. #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
  156. #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
  157. #define CQSPI_REG_IRQSTATUS 0x40
  158. #define CQSPI_REG_IRQMASK 0x44
  159. #define CQSPI_REG_INDIRECTRD 0x60
  160. #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
  161. #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
  162. #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
  163. #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
  164. #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
  165. #define CQSPI_REG_INDIRECTRDBYTES 0x6C
  166. #define CQSPI_REG_CMDCTRL 0x90
  167. #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
  168. #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
  169. #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
  170. #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
  171. #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
  172. #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
  173. #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
  174. #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
  175. #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
  176. #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
  177. #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
  178. #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
  179. #define CQSPI_REG_INDIRECTWR 0x70
  180. #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
  181. #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
  182. #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
  183. #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
  184. #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
  185. #define CQSPI_REG_INDIRECTWRBYTES 0x7C
  186. #define CQSPI_REG_CMDADDRESS 0x94
  187. #define CQSPI_REG_CMDREADDATALOWER 0xA0
  188. #define CQSPI_REG_CMDREADDATAUPPER 0xA4
  189. #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
  190. #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
  191. /* Interrupt status bits */
  192. #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
  193. #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
  194. #define CQSPI_REG_IRQ_IND_COMP BIT(2)
  195. #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
  196. #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
  197. #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
  198. #define CQSPI_REG_IRQ_WATERMARK BIT(6)
  199. #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
  200. #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
  201. CQSPI_REG_IRQ_IND_SRAM_FULL | \
  202. CQSPI_REG_IRQ_IND_COMP)
  203. #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
  204. CQSPI_REG_IRQ_WATERMARK | \
  205. CQSPI_REG_IRQ_UNDERFLOW)
  206. #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
  207. static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clear)
  208. {
  209. unsigned long end = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
  210. u32 val;
  211. while (1) {
  212. val = readl(reg);
  213. if (clear)
  214. val = ~val;
  215. val &= mask;
  216. if (val == mask)
  217. return 0;
  218. if (time_after(jiffies, end))
  219. return -ETIMEDOUT;
  220. }
  221. }
  222. static bool cqspi_is_idle(struct cqspi_st *cqspi)
  223. {
  224. u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
  225. return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
  226. }
  227. static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
  228. {
  229. u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
  230. reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
  231. return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
  232. }
  233. static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
  234. {
  235. struct cqspi_st *cqspi = dev;
  236. unsigned int irq_status;
  237. /* Read interrupt status */
  238. irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
  239. /* Clear interrupt */
  240. writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
  241. irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
  242. if (irq_status)
  243. complete(&cqspi->transfer_complete);
  244. return IRQ_HANDLED;
  245. }
  246. static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
  247. {
  248. struct cqspi_flash_pdata *f_pdata = nor->priv;
  249. u32 rdreg = 0;
  250. rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
  251. rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
  252. rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
  253. return rdreg;
  254. }
  255. static int cqspi_wait_idle(struct cqspi_st *cqspi)
  256. {
  257. const unsigned int poll_idle_retry = 3;
  258. unsigned int count = 0;
  259. unsigned long timeout;
  260. timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
  261. while (1) {
  262. /*
  263. * Read few times in succession to ensure the controller
  264. * is indeed idle, that is, the bit does not transition
  265. * low again.
  266. */
  267. if (cqspi_is_idle(cqspi))
  268. count++;
  269. else
  270. count = 0;
  271. if (count >= poll_idle_retry)
  272. return 0;
  273. if (time_after(jiffies, timeout)) {
  274. /* Timeout, in busy mode. */
  275. dev_err(&cqspi->pdev->dev,
  276. "QSPI is still busy after %dms timeout.\n",
  277. CQSPI_TIMEOUT_MS);
  278. return -ETIMEDOUT;
  279. }
  280. cpu_relax();
  281. }
  282. }
  283. static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
  284. {
  285. void __iomem *reg_base = cqspi->iobase;
  286. int ret;
  287. /* Write the CMDCTRL without start execution. */
  288. writel(reg, reg_base + CQSPI_REG_CMDCTRL);
  289. /* Start execute */
  290. reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
  291. writel(reg, reg_base + CQSPI_REG_CMDCTRL);
  292. /* Polling for completion. */
  293. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
  294. CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
  295. if (ret) {
  296. dev_err(&cqspi->pdev->dev,
  297. "Flash command execution timed out.\n");
  298. return ret;
  299. }
  300. /* Polling QSPI idle status. */
  301. return cqspi_wait_idle(cqspi);
  302. }
  303. static int cqspi_command_read(struct spi_nor *nor,
  304. const u8 *txbuf, const unsigned n_tx,
  305. u8 *rxbuf, const unsigned n_rx)
  306. {
  307. struct cqspi_flash_pdata *f_pdata = nor->priv;
  308. struct cqspi_st *cqspi = f_pdata->cqspi;
  309. void __iomem *reg_base = cqspi->iobase;
  310. unsigned int rdreg;
  311. unsigned int reg;
  312. unsigned int read_len;
  313. int status;
  314. if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
  315. dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
  316. n_rx, rxbuf);
  317. return -EINVAL;
  318. }
  319. reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  320. rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
  321. writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
  322. reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
  323. /* 0 means 1 byte. */
  324. reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
  325. << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
  326. status = cqspi_exec_flash_cmd(cqspi, reg);
  327. if (status)
  328. return status;
  329. reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
  330. /* Put the read value into rx_buf */
  331. read_len = (n_rx > 4) ? 4 : n_rx;
  332. memcpy(rxbuf, &reg, read_len);
  333. rxbuf += read_len;
  334. if (n_rx > 4) {
  335. reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
  336. read_len = n_rx - read_len;
  337. memcpy(rxbuf, &reg, read_len);
  338. }
  339. return 0;
  340. }
  341. static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
  342. const u8 *txbuf, const unsigned n_tx)
  343. {
  344. struct cqspi_flash_pdata *f_pdata = nor->priv;
  345. struct cqspi_st *cqspi = f_pdata->cqspi;
  346. void __iomem *reg_base = cqspi->iobase;
  347. unsigned int reg;
  348. unsigned int data;
  349. int ret;
  350. if (n_tx > 4 || (n_tx && !txbuf)) {
  351. dev_err(nor->dev,
  352. "Invalid input argument, cmdlen %d txbuf 0x%p\n",
  353. n_tx, txbuf);
  354. return -EINVAL;
  355. }
  356. reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  357. if (n_tx) {
  358. reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
  359. reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
  360. << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
  361. data = 0;
  362. memcpy(&data, txbuf, n_tx);
  363. writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
  364. }
  365. ret = cqspi_exec_flash_cmd(cqspi, reg);
  366. return ret;
  367. }
  368. static int cqspi_command_write_addr(struct spi_nor *nor,
  369. const u8 opcode, const unsigned int addr)
  370. {
  371. struct cqspi_flash_pdata *f_pdata = nor->priv;
  372. struct cqspi_st *cqspi = f_pdata->cqspi;
  373. void __iomem *reg_base = cqspi->iobase;
  374. unsigned int reg;
  375. reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  376. reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
  377. reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
  378. << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
  379. writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
  380. return cqspi_exec_flash_cmd(cqspi, reg);
  381. }
  382. static int cqspi_read_setup(struct spi_nor *nor)
  383. {
  384. struct cqspi_flash_pdata *f_pdata = nor->priv;
  385. struct cqspi_st *cqspi = f_pdata->cqspi;
  386. void __iomem *reg_base = cqspi->iobase;
  387. unsigned int dummy_clk = 0;
  388. unsigned int reg;
  389. reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
  390. reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
  391. /* Setup dummy clock cycles */
  392. dummy_clk = nor->read_dummy;
  393. if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
  394. dummy_clk = CQSPI_DUMMY_CLKS_MAX;
  395. if (dummy_clk / 8) {
  396. reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
  397. /* Set mode bits high to ensure chip doesn't enter XIP */
  398. writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
  399. /* Need to subtract the mode byte (8 clocks). */
  400. if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
  401. dummy_clk -= 8;
  402. if (dummy_clk)
  403. reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
  404. << CQSPI_REG_RD_INSTR_DUMMY_LSB;
  405. }
  406. writel(reg, reg_base + CQSPI_REG_RD_INSTR);
  407. /* Set address width */
  408. reg = readl(reg_base + CQSPI_REG_SIZE);
  409. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  410. reg |= (nor->addr_width - 1);
  411. writel(reg, reg_base + CQSPI_REG_SIZE);
  412. return 0;
  413. }
  414. static int cqspi_indirect_read_execute(struct spi_nor *nor, u8 *rxbuf,
  415. loff_t from_addr, const size_t n_rx)
  416. {
  417. struct cqspi_flash_pdata *f_pdata = nor->priv;
  418. struct cqspi_st *cqspi = f_pdata->cqspi;
  419. void __iomem *reg_base = cqspi->iobase;
  420. void __iomem *ahb_base = cqspi->ahb_base;
  421. unsigned int remaining = n_rx;
  422. unsigned int mod_bytes = n_rx % 4;
  423. unsigned int bytes_to_read = 0;
  424. u8 *rxbuf_end = rxbuf + n_rx;
  425. int ret = 0;
  426. writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
  427. writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
  428. /* Clear all interrupts. */
  429. writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
  430. writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
  431. reinit_completion(&cqspi->transfer_complete);
  432. writel(CQSPI_REG_INDIRECTRD_START_MASK,
  433. reg_base + CQSPI_REG_INDIRECTRD);
  434. while (remaining > 0) {
  435. if (!wait_for_completion_timeout(&cqspi->transfer_complete,
  436. msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
  437. ret = -ETIMEDOUT;
  438. bytes_to_read = cqspi_get_rd_sram_level(cqspi);
  439. if (ret && bytes_to_read == 0) {
  440. dev_err(nor->dev, "Indirect read timeout, no bytes\n");
  441. goto failrd;
  442. }
  443. while (bytes_to_read != 0) {
  444. unsigned int word_remain = round_down(remaining, 4);
  445. bytes_to_read *= cqspi->fifo_width;
  446. bytes_to_read = bytes_to_read > remaining ?
  447. remaining : bytes_to_read;
  448. bytes_to_read = round_down(bytes_to_read, 4);
  449. /* Read 4 byte word chunks then single bytes */
  450. if (bytes_to_read) {
  451. ioread32_rep(ahb_base, rxbuf,
  452. (bytes_to_read / 4));
  453. } else if (!word_remain && mod_bytes) {
  454. unsigned int temp = ioread32(ahb_base);
  455. bytes_to_read = mod_bytes;
  456. memcpy(rxbuf, &temp, min((unsigned int)
  457. (rxbuf_end - rxbuf),
  458. bytes_to_read));
  459. }
  460. rxbuf += bytes_to_read;
  461. remaining -= bytes_to_read;
  462. bytes_to_read = cqspi_get_rd_sram_level(cqspi);
  463. }
  464. if (remaining > 0)
  465. reinit_completion(&cqspi->transfer_complete);
  466. }
  467. /* Check indirect done status */
  468. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
  469. CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
  470. if (ret) {
  471. dev_err(nor->dev,
  472. "Indirect read completion error (%i)\n", ret);
  473. goto failrd;
  474. }
  475. /* Disable interrupt */
  476. writel(0, reg_base + CQSPI_REG_IRQMASK);
  477. /* Clear indirect completion status */
  478. writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
  479. return 0;
  480. failrd:
  481. /* Disable interrupt */
  482. writel(0, reg_base + CQSPI_REG_IRQMASK);
  483. /* Cancel the indirect read */
  484. writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
  485. reg_base + CQSPI_REG_INDIRECTRD);
  486. return ret;
  487. }
  488. static int cqspi_write_setup(struct spi_nor *nor)
  489. {
  490. unsigned int reg;
  491. struct cqspi_flash_pdata *f_pdata = nor->priv;
  492. struct cqspi_st *cqspi = f_pdata->cqspi;
  493. void __iomem *reg_base = cqspi->iobase;
  494. /* Set opcode. */
  495. reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
  496. writel(reg, reg_base + CQSPI_REG_WR_INSTR);
  497. reg = cqspi_calc_rdreg(nor, nor->program_opcode);
  498. writel(reg, reg_base + CQSPI_REG_RD_INSTR);
  499. reg = readl(reg_base + CQSPI_REG_SIZE);
  500. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  501. reg |= (nor->addr_width - 1);
  502. writel(reg, reg_base + CQSPI_REG_SIZE);
  503. return 0;
  504. }
  505. static int cqspi_indirect_write_execute(struct spi_nor *nor, loff_t to_addr,
  506. const u8 *txbuf, const size_t n_tx)
  507. {
  508. const unsigned int page_size = nor->page_size;
  509. struct cqspi_flash_pdata *f_pdata = nor->priv;
  510. struct cqspi_st *cqspi = f_pdata->cqspi;
  511. void __iomem *reg_base = cqspi->iobase;
  512. unsigned int remaining = n_tx;
  513. unsigned int write_bytes;
  514. int ret;
  515. writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
  516. writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
  517. /* Clear all interrupts. */
  518. writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
  519. writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
  520. reinit_completion(&cqspi->transfer_complete);
  521. writel(CQSPI_REG_INDIRECTWR_START_MASK,
  522. reg_base + CQSPI_REG_INDIRECTWR);
  523. /*
  524. * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
  525. * Controller programming sequence, couple of cycles of
  526. * QSPI_REF_CLK delay is required for the above bit to
  527. * be internally synchronized by the QSPI module. Provide 5
  528. * cycles of delay.
  529. */
  530. if (cqspi->wr_delay)
  531. ndelay(cqspi->wr_delay);
  532. while (remaining > 0) {
  533. write_bytes = remaining > page_size ? page_size : remaining;
  534. iowrite32_rep(cqspi->ahb_base, txbuf,
  535. DIV_ROUND_UP(write_bytes, 4));
  536. if (!wait_for_completion_timeout(&cqspi->transfer_complete,
  537. msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
  538. dev_err(nor->dev, "Indirect write timeout\n");
  539. ret = -ETIMEDOUT;
  540. goto failwr;
  541. }
  542. txbuf += write_bytes;
  543. remaining -= write_bytes;
  544. if (remaining > 0)
  545. reinit_completion(&cqspi->transfer_complete);
  546. }
  547. /* Check indirect done status */
  548. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
  549. CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
  550. if (ret) {
  551. dev_err(nor->dev,
  552. "Indirect write completion error (%i)\n", ret);
  553. goto failwr;
  554. }
  555. /* Disable interrupt. */
  556. writel(0, reg_base + CQSPI_REG_IRQMASK);
  557. /* Clear indirect completion status */
  558. writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
  559. cqspi_wait_idle(cqspi);
  560. return 0;
  561. failwr:
  562. /* Disable interrupt. */
  563. writel(0, reg_base + CQSPI_REG_IRQMASK);
  564. /* Cancel the indirect write */
  565. writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
  566. reg_base + CQSPI_REG_INDIRECTWR);
  567. return ret;
  568. }
  569. static void cqspi_chipselect(struct spi_nor *nor)
  570. {
  571. struct cqspi_flash_pdata *f_pdata = nor->priv;
  572. struct cqspi_st *cqspi = f_pdata->cqspi;
  573. void __iomem *reg_base = cqspi->iobase;
  574. unsigned int chip_select = f_pdata->cs;
  575. unsigned int reg;
  576. reg = readl(reg_base + CQSPI_REG_CONFIG);
  577. if (cqspi->is_decoded_cs) {
  578. reg |= CQSPI_REG_CONFIG_DECODE_MASK;
  579. } else {
  580. reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
  581. /* Convert CS if without decoder.
  582. * CS0 to 4b'1110
  583. * CS1 to 4b'1101
  584. * CS2 to 4b'1011
  585. * CS3 to 4b'0111
  586. */
  587. chip_select = 0xF & ~(1 << chip_select);
  588. }
  589. reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
  590. << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
  591. reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
  592. << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
  593. writel(reg, reg_base + CQSPI_REG_CONFIG);
  594. }
  595. static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
  596. {
  597. struct cqspi_flash_pdata *f_pdata = nor->priv;
  598. struct cqspi_st *cqspi = f_pdata->cqspi;
  599. void __iomem *iobase = cqspi->iobase;
  600. unsigned int reg;
  601. /* configure page size and block size. */
  602. reg = readl(iobase + CQSPI_REG_SIZE);
  603. reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
  604. reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
  605. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  606. reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
  607. reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
  608. reg |= (nor->addr_width - 1);
  609. writel(reg, iobase + CQSPI_REG_SIZE);
  610. /* configure the chip select */
  611. cqspi_chipselect(nor);
  612. /* Store the new configuration of the controller */
  613. cqspi->current_page_size = nor->page_size;
  614. cqspi->current_erase_size = nor->mtd.erasesize;
  615. cqspi->current_addr_width = nor->addr_width;
  616. }
  617. static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
  618. const unsigned int ns_val)
  619. {
  620. unsigned int ticks;
  621. ticks = ref_clk_hz / 1000; /* kHz */
  622. ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
  623. return ticks;
  624. }
  625. static void cqspi_delay(struct spi_nor *nor)
  626. {
  627. struct cqspi_flash_pdata *f_pdata = nor->priv;
  628. struct cqspi_st *cqspi = f_pdata->cqspi;
  629. void __iomem *iobase = cqspi->iobase;
  630. const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
  631. unsigned int tshsl, tchsh, tslch, tsd2d;
  632. unsigned int reg;
  633. unsigned int tsclk;
  634. /* calculate the number of ref ticks for one sclk tick */
  635. tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
  636. tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
  637. /* this particular value must be at least one sclk */
  638. if (tshsl < tsclk)
  639. tshsl = tsclk;
  640. tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
  641. tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
  642. tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
  643. reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
  644. << CQSPI_REG_DELAY_TSHSL_LSB;
  645. reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
  646. << CQSPI_REG_DELAY_TCHSH_LSB;
  647. reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
  648. << CQSPI_REG_DELAY_TSLCH_LSB;
  649. reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
  650. << CQSPI_REG_DELAY_TSD2D_LSB;
  651. writel(reg, iobase + CQSPI_REG_DELAY);
  652. }
  653. static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
  654. {
  655. const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
  656. void __iomem *reg_base = cqspi->iobase;
  657. u32 reg, div;
  658. /* Recalculate the baudrate divisor based on QSPI specification. */
  659. div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
  660. reg = readl(reg_base + CQSPI_REG_CONFIG);
  661. reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
  662. reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
  663. writel(reg, reg_base + CQSPI_REG_CONFIG);
  664. }
  665. static void cqspi_readdata_capture(struct cqspi_st *cqspi,
  666. const bool bypass,
  667. const unsigned int delay)
  668. {
  669. void __iomem *reg_base = cqspi->iobase;
  670. unsigned int reg;
  671. reg = readl(reg_base + CQSPI_REG_READCAPTURE);
  672. if (bypass)
  673. reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
  674. else
  675. reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
  676. reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
  677. << CQSPI_REG_READCAPTURE_DELAY_LSB);
  678. reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
  679. << CQSPI_REG_READCAPTURE_DELAY_LSB;
  680. writel(reg, reg_base + CQSPI_REG_READCAPTURE);
  681. }
  682. static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
  683. {
  684. void __iomem *reg_base = cqspi->iobase;
  685. unsigned int reg;
  686. reg = readl(reg_base + CQSPI_REG_CONFIG);
  687. if (enable)
  688. reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
  689. else
  690. reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
  691. writel(reg, reg_base + CQSPI_REG_CONFIG);
  692. }
  693. static void cqspi_configure(struct spi_nor *nor)
  694. {
  695. struct cqspi_flash_pdata *f_pdata = nor->priv;
  696. struct cqspi_st *cqspi = f_pdata->cqspi;
  697. const unsigned int sclk = f_pdata->clk_rate;
  698. int switch_cs = (cqspi->current_cs != f_pdata->cs);
  699. int switch_ck = (cqspi->sclk != sclk);
  700. if ((cqspi->current_page_size != nor->page_size) ||
  701. (cqspi->current_erase_size != nor->mtd.erasesize) ||
  702. (cqspi->current_addr_width != nor->addr_width))
  703. switch_cs = 1;
  704. if (switch_cs || switch_ck)
  705. cqspi_controller_enable(cqspi, 0);
  706. /* Switch chip select. */
  707. if (switch_cs) {
  708. cqspi->current_cs = f_pdata->cs;
  709. cqspi_configure_cs_and_sizes(nor);
  710. }
  711. /* Setup baudrate divisor and delays */
  712. if (switch_ck) {
  713. cqspi->sclk = sclk;
  714. cqspi_config_baudrate_div(cqspi);
  715. cqspi_delay(nor);
  716. cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
  717. f_pdata->read_delay);
  718. }
  719. if (switch_cs || switch_ck)
  720. cqspi_controller_enable(cqspi, 1);
  721. }
  722. static int cqspi_set_protocol(struct spi_nor *nor, const int read)
  723. {
  724. struct cqspi_flash_pdata *f_pdata = nor->priv;
  725. f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
  726. f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
  727. f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
  728. if (read) {
  729. switch (nor->read_proto) {
  730. case SNOR_PROTO_1_1_1:
  731. f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
  732. break;
  733. case SNOR_PROTO_1_1_2:
  734. f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
  735. break;
  736. case SNOR_PROTO_1_1_4:
  737. f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
  738. break;
  739. default:
  740. return -EINVAL;
  741. }
  742. }
  743. cqspi_configure(nor);
  744. return 0;
  745. }
  746. static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
  747. size_t len, const u_char *buf)
  748. {
  749. struct cqspi_flash_pdata *f_pdata = nor->priv;
  750. struct cqspi_st *cqspi = f_pdata->cqspi;
  751. int ret;
  752. ret = cqspi_set_protocol(nor, 0);
  753. if (ret)
  754. return ret;
  755. ret = cqspi_write_setup(nor);
  756. if (ret)
  757. return ret;
  758. if (f_pdata->use_direct_mode) {
  759. memcpy_toio(cqspi->ahb_base + to, buf, len);
  760. ret = cqspi_wait_idle(cqspi);
  761. } else {
  762. ret = cqspi_indirect_write_execute(nor, to, buf, len);
  763. }
  764. if (ret)
  765. return ret;
  766. return len;
  767. }
  768. static void cqspi_rx_dma_callback(void *param)
  769. {
  770. struct cqspi_st *cqspi = param;
  771. complete(&cqspi->rx_dma_complete);
  772. }
  773. static int cqspi_direct_read_execute(struct spi_nor *nor, u_char *buf,
  774. loff_t from, size_t len)
  775. {
  776. struct cqspi_flash_pdata *f_pdata = nor->priv;
  777. struct cqspi_st *cqspi = f_pdata->cqspi;
  778. enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
  779. dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
  780. int ret = 0;
  781. struct dma_async_tx_descriptor *tx;
  782. dma_cookie_t cookie;
  783. dma_addr_t dma_dst;
  784. if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
  785. memcpy_fromio(buf, cqspi->ahb_base + from, len);
  786. return 0;
  787. }
  788. dma_dst = dma_map_single(nor->dev, buf, len, DMA_DEV_TO_MEM);
  789. if (dma_mapping_error(nor->dev, dma_dst)) {
  790. dev_err(nor->dev, "dma mapping failed\n");
  791. return -ENOMEM;
  792. }
  793. tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
  794. len, flags);
  795. if (!tx) {
  796. dev_err(nor->dev, "device_prep_dma_memcpy error\n");
  797. ret = -EIO;
  798. goto err_unmap;
  799. }
  800. tx->callback = cqspi_rx_dma_callback;
  801. tx->callback_param = cqspi;
  802. cookie = tx->tx_submit(tx);
  803. reinit_completion(&cqspi->rx_dma_complete);
  804. ret = dma_submit_error(cookie);
  805. if (ret) {
  806. dev_err(nor->dev, "dma_submit_error %d\n", cookie);
  807. ret = -EIO;
  808. goto err_unmap;
  809. }
  810. dma_async_issue_pending(cqspi->rx_chan);
  811. if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
  812. msecs_to_jiffies(len))) {
  813. dmaengine_terminate_sync(cqspi->rx_chan);
  814. dev_err(nor->dev, "DMA wait_for_completion_timeout\n");
  815. ret = -ETIMEDOUT;
  816. goto err_unmap;
  817. }
  818. err_unmap:
  819. dma_unmap_single(nor->dev, dma_dst, len, DMA_DEV_TO_MEM);
  820. return 0;
  821. }
  822. static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
  823. size_t len, u_char *buf)
  824. {
  825. struct cqspi_flash_pdata *f_pdata = nor->priv;
  826. int ret;
  827. ret = cqspi_set_protocol(nor, 1);
  828. if (ret)
  829. return ret;
  830. ret = cqspi_read_setup(nor);
  831. if (ret)
  832. return ret;
  833. if (f_pdata->use_direct_mode)
  834. ret = cqspi_direct_read_execute(nor, buf, from, len);
  835. else
  836. ret = cqspi_indirect_read_execute(nor, buf, from, len);
  837. if (ret)
  838. return ret;
  839. return len;
  840. }
  841. static int cqspi_erase(struct spi_nor *nor, loff_t offs)
  842. {
  843. int ret;
  844. ret = cqspi_set_protocol(nor, 0);
  845. if (ret)
  846. return ret;
  847. /* Send write enable, then erase commands. */
  848. ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
  849. if (ret)
  850. return ret;
  851. /* Set up command buffer. */
  852. ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
  853. if (ret)
  854. return ret;
  855. return 0;
  856. }
  857. static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  858. {
  859. struct cqspi_flash_pdata *f_pdata = nor->priv;
  860. struct cqspi_st *cqspi = f_pdata->cqspi;
  861. mutex_lock(&cqspi->bus_mutex);
  862. return 0;
  863. }
  864. static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  865. {
  866. struct cqspi_flash_pdata *f_pdata = nor->priv;
  867. struct cqspi_st *cqspi = f_pdata->cqspi;
  868. mutex_unlock(&cqspi->bus_mutex);
  869. }
  870. static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  871. {
  872. int ret;
  873. ret = cqspi_set_protocol(nor, 0);
  874. if (!ret)
  875. ret = cqspi_command_read(nor, &opcode, 1, buf, len);
  876. return ret;
  877. }
  878. static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  879. {
  880. int ret;
  881. ret = cqspi_set_protocol(nor, 0);
  882. if (!ret)
  883. ret = cqspi_command_write(nor, opcode, buf, len);
  884. return ret;
  885. }
  886. static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
  887. struct cqspi_flash_pdata *f_pdata,
  888. struct device_node *np)
  889. {
  890. if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
  891. dev_err(&pdev->dev, "couldn't determine read-delay\n");
  892. return -ENXIO;
  893. }
  894. if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
  895. dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
  896. return -ENXIO;
  897. }
  898. if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
  899. dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
  900. return -ENXIO;
  901. }
  902. if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
  903. dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
  904. return -ENXIO;
  905. }
  906. if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
  907. dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
  908. return -ENXIO;
  909. }
  910. if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
  911. dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
  912. return -ENXIO;
  913. }
  914. return 0;
  915. }
  916. static int cqspi_of_get_pdata(struct platform_device *pdev)
  917. {
  918. struct device_node *np = pdev->dev.of_node;
  919. struct cqspi_st *cqspi = platform_get_drvdata(pdev);
  920. cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
  921. if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
  922. dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
  923. return -ENXIO;
  924. }
  925. if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
  926. dev_err(&pdev->dev, "couldn't determine fifo-width\n");
  927. return -ENXIO;
  928. }
  929. if (of_property_read_u32(np, "cdns,trigger-address",
  930. &cqspi->trigger_address)) {
  931. dev_err(&pdev->dev, "couldn't determine trigger-address\n");
  932. return -ENXIO;
  933. }
  934. cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
  935. return 0;
  936. }
  937. static void cqspi_controller_init(struct cqspi_st *cqspi)
  938. {
  939. u32 reg;
  940. cqspi_controller_enable(cqspi, 0);
  941. /* Configure the remap address register, no remap */
  942. writel(0, cqspi->iobase + CQSPI_REG_REMAP);
  943. /* Disable all interrupts. */
  944. writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
  945. /* Configure the SRAM split to 1:1 . */
  946. writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
  947. /* Load indirect trigger address. */
  948. writel(cqspi->trigger_address,
  949. cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
  950. /* Program read watermark -- 1/2 of the FIFO. */
  951. writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
  952. cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
  953. /* Program write watermark -- 1/8 of the FIFO. */
  954. writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
  955. cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
  956. /* Enable Direct Access Controller */
  957. reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
  958. reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
  959. writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
  960. cqspi_controller_enable(cqspi, 1);
  961. }
  962. static void cqspi_request_mmap_dma(struct cqspi_st *cqspi)
  963. {
  964. dma_cap_mask_t mask;
  965. dma_cap_zero(mask);
  966. dma_cap_set(DMA_MEMCPY, mask);
  967. cqspi->rx_chan = dma_request_chan_by_mask(&mask);
  968. if (IS_ERR(cqspi->rx_chan)) {
  969. dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
  970. cqspi->rx_chan = NULL;
  971. }
  972. init_completion(&cqspi->rx_dma_complete);
  973. }
  974. static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
  975. {
  976. const struct spi_nor_hwcaps hwcaps = {
  977. .mask = SNOR_HWCAPS_READ |
  978. SNOR_HWCAPS_READ_FAST |
  979. SNOR_HWCAPS_READ_1_1_2 |
  980. SNOR_HWCAPS_READ_1_1_4 |
  981. SNOR_HWCAPS_PP,
  982. };
  983. struct platform_device *pdev = cqspi->pdev;
  984. struct device *dev = &pdev->dev;
  985. struct cqspi_flash_pdata *f_pdata;
  986. struct spi_nor *nor;
  987. struct mtd_info *mtd;
  988. unsigned int cs;
  989. int i, ret;
  990. /* Get flash device data */
  991. for_each_available_child_of_node(dev->of_node, np) {
  992. ret = of_property_read_u32(np, "reg", &cs);
  993. if (ret) {
  994. dev_err(dev, "Couldn't determine chip select.\n");
  995. goto err;
  996. }
  997. if (cs >= CQSPI_MAX_CHIPSELECT) {
  998. ret = -EINVAL;
  999. dev_err(dev, "Chip select %d out of range.\n", cs);
  1000. goto err;
  1001. }
  1002. f_pdata = &cqspi->f_pdata[cs];
  1003. f_pdata->cqspi = cqspi;
  1004. f_pdata->cs = cs;
  1005. ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
  1006. if (ret)
  1007. goto err;
  1008. nor = &f_pdata->nor;
  1009. mtd = &nor->mtd;
  1010. mtd->priv = nor;
  1011. nor->dev = dev;
  1012. spi_nor_set_flash_node(nor, np);
  1013. nor->priv = f_pdata;
  1014. nor->read_reg = cqspi_read_reg;
  1015. nor->write_reg = cqspi_write_reg;
  1016. nor->read = cqspi_read;
  1017. nor->write = cqspi_write;
  1018. nor->erase = cqspi_erase;
  1019. nor->prepare = cqspi_prep;
  1020. nor->unprepare = cqspi_unprep;
  1021. mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
  1022. dev_name(dev), cs);
  1023. if (!mtd->name) {
  1024. ret = -ENOMEM;
  1025. goto err;
  1026. }
  1027. ret = spi_nor_scan(nor, NULL, &hwcaps);
  1028. if (ret)
  1029. goto err;
  1030. ret = mtd_device_register(mtd, NULL, 0);
  1031. if (ret)
  1032. goto err;
  1033. f_pdata->registered = true;
  1034. if (mtd->size <= cqspi->ahb_size) {
  1035. f_pdata->use_direct_mode = true;
  1036. dev_dbg(nor->dev, "using direct mode for %s\n",
  1037. mtd->name);
  1038. if (!cqspi->rx_chan)
  1039. cqspi_request_mmap_dma(cqspi);
  1040. }
  1041. }
  1042. return 0;
  1043. err:
  1044. for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
  1045. if (cqspi->f_pdata[i].registered)
  1046. mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
  1047. return ret;
  1048. }
  1049. static int cqspi_probe(struct platform_device *pdev)
  1050. {
  1051. struct device_node *np = pdev->dev.of_node;
  1052. struct device *dev = &pdev->dev;
  1053. struct cqspi_st *cqspi;
  1054. struct resource *res;
  1055. struct resource *res_ahb;
  1056. unsigned long data;
  1057. int ret;
  1058. int irq;
  1059. cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
  1060. if (!cqspi)
  1061. return -ENOMEM;
  1062. mutex_init(&cqspi->bus_mutex);
  1063. cqspi->pdev = pdev;
  1064. platform_set_drvdata(pdev, cqspi);
  1065. /* Obtain configuration from OF. */
  1066. ret = cqspi_of_get_pdata(pdev);
  1067. if (ret) {
  1068. dev_err(dev, "Cannot get mandatory OF data.\n");
  1069. return -ENODEV;
  1070. }
  1071. /* Obtain QSPI clock. */
  1072. cqspi->clk = devm_clk_get(dev, NULL);
  1073. if (IS_ERR(cqspi->clk)) {
  1074. dev_err(dev, "Cannot claim QSPI clock.\n");
  1075. return PTR_ERR(cqspi->clk);
  1076. }
  1077. /* Obtain and remap controller address. */
  1078. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1079. cqspi->iobase = devm_ioremap_resource(dev, res);
  1080. if (IS_ERR(cqspi->iobase)) {
  1081. dev_err(dev, "Cannot remap controller address.\n");
  1082. return PTR_ERR(cqspi->iobase);
  1083. }
  1084. /* Obtain and remap AHB address. */
  1085. res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1086. cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
  1087. if (IS_ERR(cqspi->ahb_base)) {
  1088. dev_err(dev, "Cannot remap AHB address.\n");
  1089. return PTR_ERR(cqspi->ahb_base);
  1090. }
  1091. cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
  1092. cqspi->ahb_size = resource_size(res_ahb);
  1093. init_completion(&cqspi->transfer_complete);
  1094. /* Obtain IRQ line. */
  1095. irq = platform_get_irq(pdev, 0);
  1096. if (irq < 0) {
  1097. dev_err(dev, "Cannot obtain IRQ.\n");
  1098. return -ENXIO;
  1099. }
  1100. pm_runtime_enable(dev);
  1101. ret = pm_runtime_get_sync(dev);
  1102. if (ret < 0) {
  1103. pm_runtime_put_noidle(dev);
  1104. return ret;
  1105. }
  1106. ret = clk_prepare_enable(cqspi->clk);
  1107. if (ret) {
  1108. dev_err(dev, "Cannot enable QSPI clock.\n");
  1109. goto probe_clk_failed;
  1110. }
  1111. cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
  1112. data = (unsigned long)of_device_get_match_data(dev);
  1113. if (data & CQSPI_NEEDS_WR_DELAY)
  1114. cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
  1115. cqspi->master_ref_clk_hz);
  1116. ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
  1117. pdev->name, cqspi);
  1118. if (ret) {
  1119. dev_err(dev, "Cannot request IRQ.\n");
  1120. goto probe_irq_failed;
  1121. }
  1122. cqspi_wait_idle(cqspi);
  1123. cqspi_controller_init(cqspi);
  1124. cqspi->current_cs = -1;
  1125. cqspi->sclk = 0;
  1126. ret = cqspi_setup_flash(cqspi, np);
  1127. if (ret) {
  1128. dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
  1129. goto probe_setup_failed;
  1130. }
  1131. return ret;
  1132. probe_setup_failed:
  1133. cqspi_controller_enable(cqspi, 0);
  1134. probe_irq_failed:
  1135. clk_disable_unprepare(cqspi->clk);
  1136. probe_clk_failed:
  1137. pm_runtime_put_sync(dev);
  1138. pm_runtime_disable(dev);
  1139. return ret;
  1140. }
  1141. static int cqspi_remove(struct platform_device *pdev)
  1142. {
  1143. struct cqspi_st *cqspi = platform_get_drvdata(pdev);
  1144. int i;
  1145. for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
  1146. if (cqspi->f_pdata[i].registered)
  1147. mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
  1148. cqspi_controller_enable(cqspi, 0);
  1149. if (cqspi->rx_chan)
  1150. dma_release_channel(cqspi->rx_chan);
  1151. clk_disable_unprepare(cqspi->clk);
  1152. pm_runtime_put_sync(&pdev->dev);
  1153. pm_runtime_disable(&pdev->dev);
  1154. return 0;
  1155. }
  1156. #ifdef CONFIG_PM_SLEEP
  1157. static int cqspi_suspend(struct device *dev)
  1158. {
  1159. struct cqspi_st *cqspi = dev_get_drvdata(dev);
  1160. cqspi_controller_enable(cqspi, 0);
  1161. return 0;
  1162. }
  1163. static int cqspi_resume(struct device *dev)
  1164. {
  1165. struct cqspi_st *cqspi = dev_get_drvdata(dev);
  1166. cqspi_controller_enable(cqspi, 1);
  1167. return 0;
  1168. }
  1169. static const struct dev_pm_ops cqspi__dev_pm_ops = {
  1170. .suspend = cqspi_suspend,
  1171. .resume = cqspi_resume,
  1172. };
  1173. #define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
  1174. #else
  1175. #define CQSPI_DEV_PM_OPS NULL
  1176. #endif
  1177. static const struct of_device_id cqspi_dt_ids[] = {
  1178. {
  1179. .compatible = "cdns,qspi-nor",
  1180. .data = (void *)0,
  1181. },
  1182. {
  1183. .compatible = "ti,k2g-qspi",
  1184. .data = (void *)CQSPI_NEEDS_WR_DELAY,
  1185. },
  1186. { /* end of table */ }
  1187. };
  1188. MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
  1189. static struct platform_driver cqspi_platform_driver = {
  1190. .probe = cqspi_probe,
  1191. .remove = cqspi_remove,
  1192. .driver = {
  1193. .name = CQSPI_NAME,
  1194. .pm = CQSPI_DEV_PM_OPS,
  1195. .of_match_table = cqspi_dt_ids,
  1196. },
  1197. };
  1198. module_platform_driver(cqspi_platform_driver);
  1199. MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
  1200. MODULE_LICENSE("GPL v2");
  1201. MODULE_ALIAS("platform:" CQSPI_NAME);
  1202. MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
  1203. MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");