dm-log-writes.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022
  1. /*
  2. * Copyright (C) 2014 Facebook. All rights reserved.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include <linux/device-mapper.h>
  7. #include <linux/module.h>
  8. #include <linux/init.h>
  9. #include <linux/blkdev.h>
  10. #include <linux/bio.h>
  11. #include <linux/dax.h>
  12. #include <linux/slab.h>
  13. #include <linux/kthread.h>
  14. #include <linux/freezer.h>
  15. #include <linux/uio.h>
  16. #define DM_MSG_PREFIX "log-writes"
  17. /*
  18. * This target will sequentially log all writes to the target device onto the
  19. * log device. This is helpful for replaying writes to check for fs consistency
  20. * at all times. This target provides a mechanism to mark specific events to
  21. * check data at a later time. So for example you would:
  22. *
  23. * write data
  24. * fsync
  25. * dmsetup message /dev/whatever mark mymark
  26. * unmount /mnt/test
  27. *
  28. * Then replay the log up to mymark and check the contents of the replay to
  29. * verify it matches what was written.
  30. *
  31. * We log writes only after they have been flushed, this makes the log describe
  32. * close to the order in which the data hits the actual disk, not its cache. So
  33. * for example the following sequence (W means write, C means complete)
  34. *
  35. * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
  36. *
  37. * Would result in the log looking like this:
  38. *
  39. * c,a,flush,fuad,b,<other writes>,<next flush>
  40. *
  41. * This is meant to help expose problems where file systems do not properly wait
  42. * on data being written before invoking a FLUSH. FUA bypasses cache so once it
  43. * completes it is added to the log as it should be on disk.
  44. *
  45. * We treat DISCARDs as if they don't bypass cache so that they are logged in
  46. * order of completion along with the normal writes. If we didn't do it this
  47. * way we would process all the discards first and then write all the data, when
  48. * in fact we want to do the data and the discard in the order that they
  49. * completed.
  50. */
  51. #define LOG_FLUSH_FLAG (1 << 0)
  52. #define LOG_FUA_FLAG (1 << 1)
  53. #define LOG_DISCARD_FLAG (1 << 2)
  54. #define LOG_MARK_FLAG (1 << 3)
  55. #define LOG_METADATA_FLAG (1 << 4)
  56. #define WRITE_LOG_VERSION 1ULL
  57. #define WRITE_LOG_MAGIC 0x6a736677736872ULL
  58. /*
  59. * The disk format for this is braindead simple.
  60. *
  61. * At byte 0 we have our super, followed by the following sequence for
  62. * nr_entries:
  63. *
  64. * [ 1 sector ][ entry->nr_sectors ]
  65. * [log_write_entry][ data written ]
  66. *
  67. * The log_write_entry takes up a full sector so we can have arbitrary length
  68. * marks and it leaves us room for extra content in the future.
  69. */
  70. /*
  71. * Basic info about the log for userspace.
  72. */
  73. struct log_write_super {
  74. __le64 magic;
  75. __le64 version;
  76. __le64 nr_entries;
  77. __le32 sectorsize;
  78. };
  79. /*
  80. * sector - the sector we wrote.
  81. * nr_sectors - the number of sectors we wrote.
  82. * flags - flags for this log entry.
  83. * data_len - the size of the data in this log entry, this is for private log
  84. * entry stuff, the MARK data provided by userspace for example.
  85. */
  86. struct log_write_entry {
  87. __le64 sector;
  88. __le64 nr_sectors;
  89. __le64 flags;
  90. __le64 data_len;
  91. };
  92. struct log_writes_c {
  93. struct dm_dev *dev;
  94. struct dm_dev *logdev;
  95. u64 logged_entries;
  96. u32 sectorsize;
  97. u32 sectorshift;
  98. atomic_t io_blocks;
  99. atomic_t pending_blocks;
  100. sector_t next_sector;
  101. sector_t end_sector;
  102. bool logging_enabled;
  103. bool device_supports_discard;
  104. spinlock_t blocks_lock;
  105. struct list_head unflushed_blocks;
  106. struct list_head logging_blocks;
  107. wait_queue_head_t wait;
  108. struct task_struct *log_kthread;
  109. };
  110. struct pending_block {
  111. int vec_cnt;
  112. u64 flags;
  113. sector_t sector;
  114. sector_t nr_sectors;
  115. char *data;
  116. u32 datalen;
  117. struct list_head list;
  118. struct bio_vec vecs[0];
  119. };
  120. struct per_bio_data {
  121. struct pending_block *block;
  122. };
  123. static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
  124. sector_t sectors)
  125. {
  126. return sectors >> (lc->sectorshift - SECTOR_SHIFT);
  127. }
  128. static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
  129. sector_t sectors)
  130. {
  131. return sectors << (lc->sectorshift - SECTOR_SHIFT);
  132. }
  133. static void put_pending_block(struct log_writes_c *lc)
  134. {
  135. if (atomic_dec_and_test(&lc->pending_blocks)) {
  136. smp_mb__after_atomic();
  137. if (waitqueue_active(&lc->wait))
  138. wake_up(&lc->wait);
  139. }
  140. }
  141. static void put_io_block(struct log_writes_c *lc)
  142. {
  143. if (atomic_dec_and_test(&lc->io_blocks)) {
  144. smp_mb__after_atomic();
  145. if (waitqueue_active(&lc->wait))
  146. wake_up(&lc->wait);
  147. }
  148. }
  149. static void log_end_io(struct bio *bio)
  150. {
  151. struct log_writes_c *lc = bio->bi_private;
  152. if (bio->bi_status) {
  153. unsigned long flags;
  154. DMERR("Error writing log block, error=%d", bio->bi_status);
  155. spin_lock_irqsave(&lc->blocks_lock, flags);
  156. lc->logging_enabled = false;
  157. spin_unlock_irqrestore(&lc->blocks_lock, flags);
  158. }
  159. bio_free_pages(bio);
  160. put_io_block(lc);
  161. bio_put(bio);
  162. }
  163. /*
  164. * Meant to be called if there is an error, it will free all the pages
  165. * associated with the block.
  166. */
  167. static void free_pending_block(struct log_writes_c *lc,
  168. struct pending_block *block)
  169. {
  170. int i;
  171. for (i = 0; i < block->vec_cnt; i++) {
  172. if (block->vecs[i].bv_page)
  173. __free_page(block->vecs[i].bv_page);
  174. }
  175. kfree(block->data);
  176. kfree(block);
  177. put_pending_block(lc);
  178. }
  179. static int write_metadata(struct log_writes_c *lc, void *entry,
  180. size_t entrylen, void *data, size_t datalen,
  181. sector_t sector)
  182. {
  183. struct bio *bio;
  184. struct page *page;
  185. void *ptr;
  186. size_t ret;
  187. bio = bio_alloc(GFP_KERNEL, 1);
  188. if (!bio) {
  189. DMERR("Couldn't alloc log bio");
  190. goto error;
  191. }
  192. bio->bi_iter.bi_size = 0;
  193. bio->bi_iter.bi_sector = sector;
  194. bio_set_dev(bio, lc->logdev->bdev);
  195. bio->bi_end_io = log_end_io;
  196. bio->bi_private = lc;
  197. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  198. page = alloc_page(GFP_KERNEL);
  199. if (!page) {
  200. DMERR("Couldn't alloc log page");
  201. bio_put(bio);
  202. goto error;
  203. }
  204. ptr = kmap_atomic(page);
  205. memcpy(ptr, entry, entrylen);
  206. if (datalen)
  207. memcpy(ptr + entrylen, data, datalen);
  208. memset(ptr + entrylen + datalen, 0,
  209. lc->sectorsize - entrylen - datalen);
  210. kunmap_atomic(ptr);
  211. ret = bio_add_page(bio, page, lc->sectorsize, 0);
  212. if (ret != lc->sectorsize) {
  213. DMERR("Couldn't add page to the log block");
  214. goto error_bio;
  215. }
  216. submit_bio(bio);
  217. return 0;
  218. error_bio:
  219. bio_put(bio);
  220. __free_page(page);
  221. error:
  222. put_io_block(lc);
  223. return -1;
  224. }
  225. static int write_inline_data(struct log_writes_c *lc, void *entry,
  226. size_t entrylen, void *data, size_t datalen,
  227. sector_t sector)
  228. {
  229. int num_pages, bio_pages, pg_datalen, pg_sectorlen, i;
  230. struct page *page;
  231. struct bio *bio;
  232. size_t ret;
  233. void *ptr;
  234. while (datalen) {
  235. num_pages = ALIGN(datalen, PAGE_SIZE) >> PAGE_SHIFT;
  236. bio_pages = min(num_pages, BIO_MAX_PAGES);
  237. atomic_inc(&lc->io_blocks);
  238. bio = bio_alloc(GFP_KERNEL, bio_pages);
  239. if (!bio) {
  240. DMERR("Couldn't alloc inline data bio");
  241. goto error;
  242. }
  243. bio->bi_iter.bi_size = 0;
  244. bio->bi_iter.bi_sector = sector;
  245. bio_set_dev(bio, lc->logdev->bdev);
  246. bio->bi_end_io = log_end_io;
  247. bio->bi_private = lc;
  248. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  249. for (i = 0; i < bio_pages; i++) {
  250. pg_datalen = min_t(int, datalen, PAGE_SIZE);
  251. pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
  252. page = alloc_page(GFP_KERNEL);
  253. if (!page) {
  254. DMERR("Couldn't alloc inline data page");
  255. goto error_bio;
  256. }
  257. ptr = kmap_atomic(page);
  258. memcpy(ptr, data, pg_datalen);
  259. if (pg_sectorlen > pg_datalen)
  260. memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
  261. kunmap_atomic(ptr);
  262. ret = bio_add_page(bio, page, pg_sectorlen, 0);
  263. if (ret != pg_sectorlen) {
  264. DMERR("Couldn't add page of inline data");
  265. __free_page(page);
  266. goto error_bio;
  267. }
  268. datalen -= pg_datalen;
  269. data += pg_datalen;
  270. }
  271. submit_bio(bio);
  272. sector += bio_pages * PAGE_SECTORS;
  273. }
  274. return 0;
  275. error_bio:
  276. bio_free_pages(bio);
  277. bio_put(bio);
  278. error:
  279. put_io_block(lc);
  280. return -1;
  281. }
  282. static int log_one_block(struct log_writes_c *lc,
  283. struct pending_block *block, sector_t sector)
  284. {
  285. struct bio *bio;
  286. struct log_write_entry entry;
  287. size_t metadatalen, ret;
  288. int i;
  289. entry.sector = cpu_to_le64(block->sector);
  290. entry.nr_sectors = cpu_to_le64(block->nr_sectors);
  291. entry.flags = cpu_to_le64(block->flags);
  292. entry.data_len = cpu_to_le64(block->datalen);
  293. metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
  294. if (write_metadata(lc, &entry, sizeof(entry), block->data,
  295. metadatalen, sector)) {
  296. free_pending_block(lc, block);
  297. return -1;
  298. }
  299. sector += dev_to_bio_sectors(lc, 1);
  300. if (block->datalen && metadatalen == 0) {
  301. if (write_inline_data(lc, &entry, sizeof(entry), block->data,
  302. block->datalen, sector)) {
  303. free_pending_block(lc, block);
  304. return -1;
  305. }
  306. /* we don't support both inline data & bio data */
  307. goto out;
  308. }
  309. if (!block->vec_cnt)
  310. goto out;
  311. atomic_inc(&lc->io_blocks);
  312. bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt, BIO_MAX_PAGES));
  313. if (!bio) {
  314. DMERR("Couldn't alloc log bio");
  315. goto error;
  316. }
  317. bio->bi_iter.bi_size = 0;
  318. bio->bi_iter.bi_sector = sector;
  319. bio_set_dev(bio, lc->logdev->bdev);
  320. bio->bi_end_io = log_end_io;
  321. bio->bi_private = lc;
  322. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  323. for (i = 0; i < block->vec_cnt; i++) {
  324. /*
  325. * The page offset is always 0 because we allocate a new page
  326. * for every bvec in the original bio for simplicity sake.
  327. */
  328. ret = bio_add_page(bio, block->vecs[i].bv_page,
  329. block->vecs[i].bv_len, 0);
  330. if (ret != block->vecs[i].bv_len) {
  331. atomic_inc(&lc->io_blocks);
  332. submit_bio(bio);
  333. bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt - i, BIO_MAX_PAGES));
  334. if (!bio) {
  335. DMERR("Couldn't alloc log bio");
  336. goto error;
  337. }
  338. bio->bi_iter.bi_size = 0;
  339. bio->bi_iter.bi_sector = sector;
  340. bio_set_dev(bio, lc->logdev->bdev);
  341. bio->bi_end_io = log_end_io;
  342. bio->bi_private = lc;
  343. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  344. ret = bio_add_page(bio, block->vecs[i].bv_page,
  345. block->vecs[i].bv_len, 0);
  346. if (ret != block->vecs[i].bv_len) {
  347. DMERR("Couldn't add page on new bio?");
  348. bio_put(bio);
  349. goto error;
  350. }
  351. }
  352. sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
  353. }
  354. submit_bio(bio);
  355. out:
  356. kfree(block->data);
  357. kfree(block);
  358. put_pending_block(lc);
  359. return 0;
  360. error:
  361. free_pending_block(lc, block);
  362. put_io_block(lc);
  363. return -1;
  364. }
  365. static int log_super(struct log_writes_c *lc)
  366. {
  367. struct log_write_super super;
  368. super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
  369. super.version = cpu_to_le64(WRITE_LOG_VERSION);
  370. super.nr_entries = cpu_to_le64(lc->logged_entries);
  371. super.sectorsize = cpu_to_le32(lc->sectorsize);
  372. if (write_metadata(lc, &super, sizeof(super), NULL, 0, 0)) {
  373. DMERR("Couldn't write super");
  374. return -1;
  375. }
  376. return 0;
  377. }
  378. static inline sector_t logdev_last_sector(struct log_writes_c *lc)
  379. {
  380. return i_size_read(lc->logdev->bdev->bd_inode) >> SECTOR_SHIFT;
  381. }
  382. static int log_writes_kthread(void *arg)
  383. {
  384. struct log_writes_c *lc = (struct log_writes_c *)arg;
  385. sector_t sector = 0;
  386. while (!kthread_should_stop()) {
  387. bool super = false;
  388. bool logging_enabled;
  389. struct pending_block *block = NULL;
  390. int ret;
  391. spin_lock_irq(&lc->blocks_lock);
  392. if (!list_empty(&lc->logging_blocks)) {
  393. block = list_first_entry(&lc->logging_blocks,
  394. struct pending_block, list);
  395. list_del_init(&block->list);
  396. if (!lc->logging_enabled)
  397. goto next;
  398. sector = lc->next_sector;
  399. if (!(block->flags & LOG_DISCARD_FLAG))
  400. lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
  401. lc->next_sector += dev_to_bio_sectors(lc, 1);
  402. /*
  403. * Apparently the size of the device may not be known
  404. * right away, so handle this properly.
  405. */
  406. if (!lc->end_sector)
  407. lc->end_sector = logdev_last_sector(lc);
  408. if (lc->end_sector &&
  409. lc->next_sector >= lc->end_sector) {
  410. DMERR("Ran out of space on the logdev");
  411. lc->logging_enabled = false;
  412. goto next;
  413. }
  414. lc->logged_entries++;
  415. atomic_inc(&lc->io_blocks);
  416. super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
  417. if (super)
  418. atomic_inc(&lc->io_blocks);
  419. }
  420. next:
  421. logging_enabled = lc->logging_enabled;
  422. spin_unlock_irq(&lc->blocks_lock);
  423. if (block) {
  424. if (logging_enabled) {
  425. ret = log_one_block(lc, block, sector);
  426. if (!ret && super)
  427. ret = log_super(lc);
  428. if (ret) {
  429. spin_lock_irq(&lc->blocks_lock);
  430. lc->logging_enabled = false;
  431. spin_unlock_irq(&lc->blocks_lock);
  432. }
  433. } else
  434. free_pending_block(lc, block);
  435. continue;
  436. }
  437. if (!try_to_freeze()) {
  438. set_current_state(TASK_INTERRUPTIBLE);
  439. if (!kthread_should_stop() &&
  440. list_empty(&lc->logging_blocks))
  441. schedule();
  442. __set_current_state(TASK_RUNNING);
  443. }
  444. }
  445. return 0;
  446. }
  447. /*
  448. * Construct a log-writes mapping:
  449. * log-writes <dev_path> <log_dev_path>
  450. */
  451. static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
  452. {
  453. struct log_writes_c *lc;
  454. struct dm_arg_set as;
  455. const char *devname, *logdevname;
  456. int ret;
  457. as.argc = argc;
  458. as.argv = argv;
  459. if (argc < 2) {
  460. ti->error = "Invalid argument count";
  461. return -EINVAL;
  462. }
  463. lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
  464. if (!lc) {
  465. ti->error = "Cannot allocate context";
  466. return -ENOMEM;
  467. }
  468. spin_lock_init(&lc->blocks_lock);
  469. INIT_LIST_HEAD(&lc->unflushed_blocks);
  470. INIT_LIST_HEAD(&lc->logging_blocks);
  471. init_waitqueue_head(&lc->wait);
  472. atomic_set(&lc->io_blocks, 0);
  473. atomic_set(&lc->pending_blocks, 0);
  474. devname = dm_shift_arg(&as);
  475. ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
  476. if (ret) {
  477. ti->error = "Device lookup failed";
  478. goto bad;
  479. }
  480. logdevname = dm_shift_arg(&as);
  481. ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
  482. &lc->logdev);
  483. if (ret) {
  484. ti->error = "Log device lookup failed";
  485. dm_put_device(ti, lc->dev);
  486. goto bad;
  487. }
  488. lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
  489. lc->sectorshift = ilog2(lc->sectorsize);
  490. lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
  491. if (IS_ERR(lc->log_kthread)) {
  492. ret = PTR_ERR(lc->log_kthread);
  493. ti->error = "Couldn't alloc kthread";
  494. dm_put_device(ti, lc->dev);
  495. dm_put_device(ti, lc->logdev);
  496. goto bad;
  497. }
  498. /*
  499. * next_sector is in 512b sectors to correspond to what bi_sector expects.
  500. * The super starts at sector 0, and the next_sector is the next logical
  501. * one based on the sectorsize of the device.
  502. */
  503. lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
  504. lc->logging_enabled = true;
  505. lc->end_sector = logdev_last_sector(lc);
  506. lc->device_supports_discard = true;
  507. ti->num_flush_bios = 1;
  508. ti->flush_supported = true;
  509. ti->num_discard_bios = 1;
  510. ti->discards_supported = true;
  511. ti->per_io_data_size = sizeof(struct per_bio_data);
  512. ti->private = lc;
  513. return 0;
  514. bad:
  515. kfree(lc);
  516. return ret;
  517. }
  518. static int log_mark(struct log_writes_c *lc, char *data)
  519. {
  520. struct pending_block *block;
  521. size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
  522. block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
  523. if (!block) {
  524. DMERR("Error allocating pending block");
  525. return -ENOMEM;
  526. }
  527. block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
  528. if (!block->data) {
  529. DMERR("Error copying mark data");
  530. kfree(block);
  531. return -ENOMEM;
  532. }
  533. atomic_inc(&lc->pending_blocks);
  534. block->datalen = strlen(block->data);
  535. block->flags |= LOG_MARK_FLAG;
  536. spin_lock_irq(&lc->blocks_lock);
  537. list_add_tail(&block->list, &lc->logging_blocks);
  538. spin_unlock_irq(&lc->blocks_lock);
  539. wake_up_process(lc->log_kthread);
  540. return 0;
  541. }
  542. static void log_writes_dtr(struct dm_target *ti)
  543. {
  544. struct log_writes_c *lc = ti->private;
  545. spin_lock_irq(&lc->blocks_lock);
  546. list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
  547. spin_unlock_irq(&lc->blocks_lock);
  548. /*
  549. * This is just nice to have since it'll update the super to include the
  550. * unflushed blocks, if it fails we don't really care.
  551. */
  552. log_mark(lc, "dm-log-writes-end");
  553. wake_up_process(lc->log_kthread);
  554. wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
  555. !atomic_read(&lc->pending_blocks));
  556. kthread_stop(lc->log_kthread);
  557. WARN_ON(!list_empty(&lc->logging_blocks));
  558. WARN_ON(!list_empty(&lc->unflushed_blocks));
  559. dm_put_device(ti, lc->dev);
  560. dm_put_device(ti, lc->logdev);
  561. kfree(lc);
  562. }
  563. static void normal_map_bio(struct dm_target *ti, struct bio *bio)
  564. {
  565. struct log_writes_c *lc = ti->private;
  566. bio_set_dev(bio, lc->dev->bdev);
  567. }
  568. static int log_writes_map(struct dm_target *ti, struct bio *bio)
  569. {
  570. struct log_writes_c *lc = ti->private;
  571. struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
  572. struct pending_block *block;
  573. struct bvec_iter iter;
  574. struct bio_vec bv;
  575. size_t alloc_size;
  576. int i = 0;
  577. bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
  578. bool fua_bio = (bio->bi_opf & REQ_FUA);
  579. bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
  580. bool meta_bio = (bio->bi_opf & REQ_META);
  581. pb->block = NULL;
  582. /* Don't bother doing anything if logging has been disabled */
  583. if (!lc->logging_enabled)
  584. goto map_bio;
  585. /*
  586. * Map reads as normal.
  587. */
  588. if (bio_data_dir(bio) == READ)
  589. goto map_bio;
  590. /* No sectors and not a flush? Don't care */
  591. if (!bio_sectors(bio) && !flush_bio)
  592. goto map_bio;
  593. /*
  594. * Discards will have bi_size set but there's no actual data, so just
  595. * allocate the size of the pending block.
  596. */
  597. if (discard_bio)
  598. alloc_size = sizeof(struct pending_block);
  599. else
  600. alloc_size = sizeof(struct pending_block) + sizeof(struct bio_vec) * bio_segments(bio);
  601. block = kzalloc(alloc_size, GFP_NOIO);
  602. if (!block) {
  603. DMERR("Error allocating pending block");
  604. spin_lock_irq(&lc->blocks_lock);
  605. lc->logging_enabled = false;
  606. spin_unlock_irq(&lc->blocks_lock);
  607. return DM_MAPIO_KILL;
  608. }
  609. INIT_LIST_HEAD(&block->list);
  610. pb->block = block;
  611. atomic_inc(&lc->pending_blocks);
  612. if (flush_bio)
  613. block->flags |= LOG_FLUSH_FLAG;
  614. if (fua_bio)
  615. block->flags |= LOG_FUA_FLAG;
  616. if (discard_bio)
  617. block->flags |= LOG_DISCARD_FLAG;
  618. if (meta_bio)
  619. block->flags |= LOG_METADATA_FLAG;
  620. block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
  621. block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
  622. /* We don't need the data, just submit */
  623. if (discard_bio) {
  624. WARN_ON(flush_bio || fua_bio);
  625. if (lc->device_supports_discard)
  626. goto map_bio;
  627. bio_endio(bio);
  628. return DM_MAPIO_SUBMITTED;
  629. }
  630. /* Flush bio, splice the unflushed blocks onto this list and submit */
  631. if (flush_bio && !bio_sectors(bio)) {
  632. spin_lock_irq(&lc->blocks_lock);
  633. list_splice_init(&lc->unflushed_blocks, &block->list);
  634. spin_unlock_irq(&lc->blocks_lock);
  635. goto map_bio;
  636. }
  637. /*
  638. * We will write this bio somewhere else way later so we need to copy
  639. * the actual contents into new pages so we know the data will always be
  640. * there.
  641. *
  642. * We do this because this could be a bio from O_DIRECT in which case we
  643. * can't just hold onto the page until some later point, we have to
  644. * manually copy the contents.
  645. */
  646. bio_for_each_segment(bv, bio, iter) {
  647. struct page *page;
  648. void *src, *dst;
  649. page = alloc_page(GFP_NOIO);
  650. if (!page) {
  651. DMERR("Error allocing page");
  652. free_pending_block(lc, block);
  653. spin_lock_irq(&lc->blocks_lock);
  654. lc->logging_enabled = false;
  655. spin_unlock_irq(&lc->blocks_lock);
  656. return DM_MAPIO_KILL;
  657. }
  658. src = kmap_atomic(bv.bv_page);
  659. dst = kmap_atomic(page);
  660. memcpy(dst, src + bv.bv_offset, bv.bv_len);
  661. kunmap_atomic(dst);
  662. kunmap_atomic(src);
  663. block->vecs[i].bv_page = page;
  664. block->vecs[i].bv_len = bv.bv_len;
  665. block->vec_cnt++;
  666. i++;
  667. }
  668. /* Had a flush with data in it, weird */
  669. if (flush_bio) {
  670. spin_lock_irq(&lc->blocks_lock);
  671. list_splice_init(&lc->unflushed_blocks, &block->list);
  672. spin_unlock_irq(&lc->blocks_lock);
  673. }
  674. map_bio:
  675. normal_map_bio(ti, bio);
  676. return DM_MAPIO_REMAPPED;
  677. }
  678. static int normal_end_io(struct dm_target *ti, struct bio *bio,
  679. blk_status_t *error)
  680. {
  681. struct log_writes_c *lc = ti->private;
  682. struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
  683. if (bio_data_dir(bio) == WRITE && pb->block) {
  684. struct pending_block *block = pb->block;
  685. unsigned long flags;
  686. spin_lock_irqsave(&lc->blocks_lock, flags);
  687. if (block->flags & LOG_FLUSH_FLAG) {
  688. list_splice_tail_init(&block->list, &lc->logging_blocks);
  689. list_add_tail(&block->list, &lc->logging_blocks);
  690. wake_up_process(lc->log_kthread);
  691. } else if (block->flags & LOG_FUA_FLAG) {
  692. list_add_tail(&block->list, &lc->logging_blocks);
  693. wake_up_process(lc->log_kthread);
  694. } else
  695. list_add_tail(&block->list, &lc->unflushed_blocks);
  696. spin_unlock_irqrestore(&lc->blocks_lock, flags);
  697. }
  698. return DM_ENDIO_DONE;
  699. }
  700. /*
  701. * INFO format: <logged entries> <highest allocated sector>
  702. */
  703. static void log_writes_status(struct dm_target *ti, status_type_t type,
  704. unsigned status_flags, char *result,
  705. unsigned maxlen)
  706. {
  707. unsigned sz = 0;
  708. struct log_writes_c *lc = ti->private;
  709. switch (type) {
  710. case STATUSTYPE_INFO:
  711. DMEMIT("%llu %llu", lc->logged_entries,
  712. (unsigned long long)lc->next_sector - 1);
  713. if (!lc->logging_enabled)
  714. DMEMIT(" logging_disabled");
  715. break;
  716. case STATUSTYPE_TABLE:
  717. DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
  718. break;
  719. }
  720. }
  721. static int log_writes_prepare_ioctl(struct dm_target *ti,
  722. struct block_device **bdev)
  723. {
  724. struct log_writes_c *lc = ti->private;
  725. struct dm_dev *dev = lc->dev;
  726. *bdev = dev->bdev;
  727. /*
  728. * Only pass ioctls through if the device sizes match exactly.
  729. */
  730. if (ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT)
  731. return 1;
  732. return 0;
  733. }
  734. static int log_writes_iterate_devices(struct dm_target *ti,
  735. iterate_devices_callout_fn fn,
  736. void *data)
  737. {
  738. struct log_writes_c *lc = ti->private;
  739. return fn(ti, lc->dev, 0, ti->len, data);
  740. }
  741. /*
  742. * Messages supported:
  743. * mark <mark data> - specify the marked data.
  744. */
  745. static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv,
  746. char *result, unsigned maxlen)
  747. {
  748. int r = -EINVAL;
  749. struct log_writes_c *lc = ti->private;
  750. if (argc != 2) {
  751. DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
  752. return r;
  753. }
  754. if (!strcasecmp(argv[0], "mark"))
  755. r = log_mark(lc, argv[1]);
  756. else
  757. DMWARN("Unrecognised log writes target message received: %s", argv[0]);
  758. return r;
  759. }
  760. static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
  761. {
  762. struct log_writes_c *lc = ti->private;
  763. struct request_queue *q = bdev_get_queue(lc->dev->bdev);
  764. if (!q || !blk_queue_discard(q)) {
  765. lc->device_supports_discard = false;
  766. limits->discard_granularity = lc->sectorsize;
  767. limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
  768. }
  769. limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
  770. limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
  771. limits->io_min = limits->physical_block_size;
  772. }
  773. #if IS_ENABLED(CONFIG_DAX_DRIVER)
  774. static int log_dax(struct log_writes_c *lc, sector_t sector, size_t bytes,
  775. struct iov_iter *i)
  776. {
  777. struct pending_block *block;
  778. if (!bytes)
  779. return 0;
  780. block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
  781. if (!block) {
  782. DMERR("Error allocating dax pending block");
  783. return -ENOMEM;
  784. }
  785. block->data = kzalloc(bytes, GFP_KERNEL);
  786. if (!block->data) {
  787. DMERR("Error allocating dax data space");
  788. kfree(block);
  789. return -ENOMEM;
  790. }
  791. /* write data provided via the iterator */
  792. if (!copy_from_iter(block->data, bytes, i)) {
  793. DMERR("Error copying dax data");
  794. kfree(block->data);
  795. kfree(block);
  796. return -EIO;
  797. }
  798. /* rewind the iterator so that the block driver can use it */
  799. iov_iter_revert(i, bytes);
  800. block->datalen = bytes;
  801. block->sector = bio_to_dev_sectors(lc, sector);
  802. block->nr_sectors = ALIGN(bytes, lc->sectorsize) >> lc->sectorshift;
  803. atomic_inc(&lc->pending_blocks);
  804. spin_lock_irq(&lc->blocks_lock);
  805. list_add_tail(&block->list, &lc->unflushed_blocks);
  806. spin_unlock_irq(&lc->blocks_lock);
  807. wake_up_process(lc->log_kthread);
  808. return 0;
  809. }
  810. static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
  811. long nr_pages, void **kaddr, pfn_t *pfn)
  812. {
  813. struct log_writes_c *lc = ti->private;
  814. sector_t sector = pgoff * PAGE_SECTORS;
  815. int ret;
  816. ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages * PAGE_SIZE, &pgoff);
  817. if (ret)
  818. return ret;
  819. return dax_direct_access(lc->dev->dax_dev, pgoff, nr_pages, kaddr, pfn);
  820. }
  821. static size_t log_writes_dax_copy_from_iter(struct dm_target *ti,
  822. pgoff_t pgoff, void *addr, size_t bytes,
  823. struct iov_iter *i)
  824. {
  825. struct log_writes_c *lc = ti->private;
  826. sector_t sector = pgoff * PAGE_SECTORS;
  827. int err;
  828. if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
  829. return 0;
  830. /* Don't bother doing anything if logging has been disabled */
  831. if (!lc->logging_enabled)
  832. goto dax_copy;
  833. err = log_dax(lc, sector, bytes, i);
  834. if (err) {
  835. DMWARN("Error %d logging DAX write", err);
  836. return 0;
  837. }
  838. dax_copy:
  839. return dax_copy_from_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
  840. }
  841. static size_t log_writes_dax_copy_to_iter(struct dm_target *ti,
  842. pgoff_t pgoff, void *addr, size_t bytes,
  843. struct iov_iter *i)
  844. {
  845. struct log_writes_c *lc = ti->private;
  846. sector_t sector = pgoff * PAGE_SECTORS;
  847. if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
  848. return 0;
  849. return dax_copy_to_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
  850. }
  851. #else
  852. #define log_writes_dax_direct_access NULL
  853. #define log_writes_dax_copy_from_iter NULL
  854. #define log_writes_dax_copy_to_iter NULL
  855. #endif
  856. static struct target_type log_writes_target = {
  857. .name = "log-writes",
  858. .version = {1, 1, 0},
  859. .module = THIS_MODULE,
  860. .ctr = log_writes_ctr,
  861. .dtr = log_writes_dtr,
  862. .map = log_writes_map,
  863. .end_io = normal_end_io,
  864. .status = log_writes_status,
  865. .prepare_ioctl = log_writes_prepare_ioctl,
  866. .message = log_writes_message,
  867. .iterate_devices = log_writes_iterate_devices,
  868. .io_hints = log_writes_io_hints,
  869. .direct_access = log_writes_dax_direct_access,
  870. .dax_copy_from_iter = log_writes_dax_copy_from_iter,
  871. .dax_copy_to_iter = log_writes_dax_copy_to_iter,
  872. };
  873. static int __init dm_log_writes_init(void)
  874. {
  875. int r = dm_register_target(&log_writes_target);
  876. if (r < 0)
  877. DMERR("register failed %d", r);
  878. return r;
  879. }
  880. static void __exit dm_log_writes_exit(void)
  881. {
  882. dm_unregister_target(&log_writes_target);
  883. }
  884. module_init(dm_log_writes_init);
  885. module_exit(dm_log_writes_exit);
  886. MODULE_DESCRIPTION(DM_NAME " log writes target");
  887. MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
  888. MODULE_LICENSE("GPL");