dm-delay.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. /*
  2. * Copyright (C) 2005-2007 Red Hat GmbH
  3. *
  4. * A target that delays reads and/or writes and can send
  5. * them to different devices.
  6. *
  7. * This file is released under the GPL.
  8. */
  9. #include <linux/module.h>
  10. #include <linux/init.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/bio.h>
  13. #include <linux/slab.h>
  14. #include <linux/device-mapper.h>
  15. #define DM_MSG_PREFIX "delay"
  16. struct delay_class {
  17. struct dm_dev *dev;
  18. sector_t start;
  19. unsigned delay;
  20. unsigned ops;
  21. };
  22. struct delay_c {
  23. struct timer_list delay_timer;
  24. struct mutex timer_lock;
  25. struct workqueue_struct *kdelayd_wq;
  26. struct work_struct flush_expired_bios;
  27. struct list_head delayed_bios;
  28. atomic_t may_delay;
  29. struct delay_class read;
  30. struct delay_class write;
  31. struct delay_class flush;
  32. int argc;
  33. };
  34. struct dm_delay_info {
  35. struct delay_c *context;
  36. struct delay_class *class;
  37. struct list_head list;
  38. unsigned long expires;
  39. };
  40. static DEFINE_MUTEX(delayed_bios_lock);
  41. static void handle_delayed_timer(struct timer_list *t)
  42. {
  43. struct delay_c *dc = from_timer(dc, t, delay_timer);
  44. queue_work(dc->kdelayd_wq, &dc->flush_expired_bios);
  45. }
  46. static void queue_timeout(struct delay_c *dc, unsigned long expires)
  47. {
  48. mutex_lock(&dc->timer_lock);
  49. if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
  50. mod_timer(&dc->delay_timer, expires);
  51. mutex_unlock(&dc->timer_lock);
  52. }
  53. static void flush_bios(struct bio *bio)
  54. {
  55. struct bio *n;
  56. while (bio) {
  57. n = bio->bi_next;
  58. bio->bi_next = NULL;
  59. generic_make_request(bio);
  60. bio = n;
  61. }
  62. }
  63. static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all)
  64. {
  65. struct dm_delay_info *delayed, *next;
  66. unsigned long next_expires = 0;
  67. unsigned long start_timer = 0;
  68. struct bio_list flush_bios = { };
  69. mutex_lock(&delayed_bios_lock);
  70. list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
  71. if (flush_all || time_after_eq(jiffies, delayed->expires)) {
  72. struct bio *bio = dm_bio_from_per_bio_data(delayed,
  73. sizeof(struct dm_delay_info));
  74. list_del(&delayed->list);
  75. bio_list_add(&flush_bios, bio);
  76. delayed->class->ops--;
  77. continue;
  78. }
  79. if (!start_timer) {
  80. start_timer = 1;
  81. next_expires = delayed->expires;
  82. } else
  83. next_expires = min(next_expires, delayed->expires);
  84. }
  85. mutex_unlock(&delayed_bios_lock);
  86. if (start_timer)
  87. queue_timeout(dc, next_expires);
  88. return bio_list_get(&flush_bios);
  89. }
  90. static void flush_expired_bios(struct work_struct *work)
  91. {
  92. struct delay_c *dc;
  93. dc = container_of(work, struct delay_c, flush_expired_bios);
  94. flush_bios(flush_delayed_bios(dc, 0));
  95. }
  96. static void delay_dtr(struct dm_target *ti)
  97. {
  98. struct delay_c *dc = ti->private;
  99. destroy_workqueue(dc->kdelayd_wq);
  100. if (dc->read.dev)
  101. dm_put_device(ti, dc->read.dev);
  102. if (dc->write.dev)
  103. dm_put_device(ti, dc->write.dev);
  104. if (dc->flush.dev)
  105. dm_put_device(ti, dc->flush.dev);
  106. mutex_destroy(&dc->timer_lock);
  107. kfree(dc);
  108. }
  109. static int delay_class_ctr(struct dm_target *ti, struct delay_class *c, char **argv)
  110. {
  111. int ret;
  112. unsigned long long tmpll;
  113. char dummy;
  114. if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1) {
  115. ti->error = "Invalid device sector";
  116. return -EINVAL;
  117. }
  118. c->start = tmpll;
  119. if (sscanf(argv[2], "%u%c", &c->delay, &dummy) != 1) {
  120. ti->error = "Invalid delay";
  121. return -EINVAL;
  122. }
  123. ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &c->dev);
  124. if (ret) {
  125. ti->error = "Device lookup failed";
  126. return ret;
  127. }
  128. return 0;
  129. }
  130. /*
  131. * Mapping parameters:
  132. * <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
  133. *
  134. * With separate write parameters, the first set is only used for reads.
  135. * Offsets are specified in sectors.
  136. * Delays are specified in milliseconds.
  137. */
  138. static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
  139. {
  140. struct delay_c *dc;
  141. int ret;
  142. if (argc != 3 && argc != 6 && argc != 9) {
  143. ti->error = "Requires exactly 3, 6 or 9 arguments";
  144. return -EINVAL;
  145. }
  146. dc = kzalloc(sizeof(*dc), GFP_KERNEL);
  147. if (!dc) {
  148. ti->error = "Cannot allocate context";
  149. return -ENOMEM;
  150. }
  151. ti->private = dc;
  152. timer_setup(&dc->delay_timer, handle_delayed_timer, 0);
  153. INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
  154. INIT_LIST_HEAD(&dc->delayed_bios);
  155. mutex_init(&dc->timer_lock);
  156. atomic_set(&dc->may_delay, 1);
  157. dc->argc = argc;
  158. ret = delay_class_ctr(ti, &dc->read, argv);
  159. if (ret)
  160. goto bad;
  161. if (argc == 3) {
  162. ret = delay_class_ctr(ti, &dc->write, argv);
  163. if (ret)
  164. goto bad;
  165. ret = delay_class_ctr(ti, &dc->flush, argv);
  166. if (ret)
  167. goto bad;
  168. goto out;
  169. }
  170. ret = delay_class_ctr(ti, &dc->write, argv + 3);
  171. if (ret)
  172. goto bad;
  173. if (argc == 6) {
  174. ret = delay_class_ctr(ti, &dc->flush, argv + 3);
  175. if (ret)
  176. goto bad;
  177. goto out;
  178. }
  179. ret = delay_class_ctr(ti, &dc->flush, argv + 6);
  180. if (ret)
  181. goto bad;
  182. out:
  183. dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
  184. if (!dc->kdelayd_wq) {
  185. ret = -EINVAL;
  186. DMERR("Couldn't start kdelayd");
  187. goto bad;
  188. }
  189. ti->num_flush_bios = 1;
  190. ti->num_discard_bios = 1;
  191. ti->per_io_data_size = sizeof(struct dm_delay_info);
  192. return 0;
  193. bad:
  194. delay_dtr(ti);
  195. return ret;
  196. }
  197. static int delay_bio(struct delay_c *dc, struct delay_class *c, struct bio *bio)
  198. {
  199. struct dm_delay_info *delayed;
  200. unsigned long expires = 0;
  201. if (!c->delay || !atomic_read(&dc->may_delay))
  202. return DM_MAPIO_REMAPPED;
  203. delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
  204. delayed->context = dc;
  205. delayed->expires = expires = jiffies + msecs_to_jiffies(c->delay);
  206. mutex_lock(&delayed_bios_lock);
  207. c->ops++;
  208. list_add_tail(&delayed->list, &dc->delayed_bios);
  209. mutex_unlock(&delayed_bios_lock);
  210. queue_timeout(dc, expires);
  211. return DM_MAPIO_SUBMITTED;
  212. }
  213. static void delay_presuspend(struct dm_target *ti)
  214. {
  215. struct delay_c *dc = ti->private;
  216. atomic_set(&dc->may_delay, 0);
  217. del_timer_sync(&dc->delay_timer);
  218. flush_bios(flush_delayed_bios(dc, 1));
  219. }
  220. static void delay_resume(struct dm_target *ti)
  221. {
  222. struct delay_c *dc = ti->private;
  223. atomic_set(&dc->may_delay, 1);
  224. }
  225. static int delay_map(struct dm_target *ti, struct bio *bio)
  226. {
  227. struct delay_c *dc = ti->private;
  228. struct delay_class *c;
  229. struct dm_delay_info *delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
  230. if (bio_data_dir(bio) == WRITE) {
  231. if (unlikely(bio->bi_opf & REQ_PREFLUSH))
  232. c = &dc->flush;
  233. else
  234. c = &dc->write;
  235. } else {
  236. c = &dc->read;
  237. }
  238. delayed->class = c;
  239. bio_set_dev(bio, c->dev->bdev);
  240. if (bio_sectors(bio))
  241. bio->bi_iter.bi_sector = c->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
  242. return delay_bio(dc, c, bio);
  243. }
  244. #define DMEMIT_DELAY_CLASS(c) \
  245. DMEMIT("%s %llu %u", (c)->dev->name, (unsigned long long)(c)->start, (c)->delay)
  246. static void delay_status(struct dm_target *ti, status_type_t type,
  247. unsigned status_flags, char *result, unsigned maxlen)
  248. {
  249. struct delay_c *dc = ti->private;
  250. int sz = 0;
  251. switch (type) {
  252. case STATUSTYPE_INFO:
  253. DMEMIT("%u %u %u", dc->read.ops, dc->write.ops, dc->flush.ops);
  254. break;
  255. case STATUSTYPE_TABLE:
  256. DMEMIT_DELAY_CLASS(&dc->read);
  257. if (dc->argc >= 6) {
  258. DMEMIT(" ");
  259. DMEMIT_DELAY_CLASS(&dc->write);
  260. }
  261. if (dc->argc >= 9) {
  262. DMEMIT(" ");
  263. DMEMIT_DELAY_CLASS(&dc->flush);
  264. }
  265. break;
  266. }
  267. }
  268. static int delay_iterate_devices(struct dm_target *ti,
  269. iterate_devices_callout_fn fn, void *data)
  270. {
  271. struct delay_c *dc = ti->private;
  272. int ret = 0;
  273. ret = fn(ti, dc->read.dev, dc->read.start, ti->len, data);
  274. if (ret)
  275. goto out;
  276. ret = fn(ti, dc->write.dev, dc->write.start, ti->len, data);
  277. if (ret)
  278. goto out;
  279. ret = fn(ti, dc->flush.dev, dc->flush.start, ti->len, data);
  280. if (ret)
  281. goto out;
  282. out:
  283. return ret;
  284. }
  285. static struct target_type delay_target = {
  286. .name = "delay",
  287. .version = {1, 2, 1},
  288. .features = DM_TARGET_PASSES_INTEGRITY,
  289. .module = THIS_MODULE,
  290. .ctr = delay_ctr,
  291. .dtr = delay_dtr,
  292. .map = delay_map,
  293. .presuspend = delay_presuspend,
  294. .resume = delay_resume,
  295. .status = delay_status,
  296. .iterate_devices = delay_iterate_devices,
  297. };
  298. static int __init dm_delay_init(void)
  299. {
  300. int r;
  301. r = dm_register_target(&delay_target);
  302. if (r < 0) {
  303. DMERR("register failed %d", r);
  304. goto bad_register;
  305. }
  306. return 0;
  307. bad_register:
  308. return r;
  309. }
  310. static void __exit dm_delay_exit(void)
  311. {
  312. dm_unregister_target(&delay_target);
  313. }
  314. /* Module hooks */
  315. module_init(dm_delay_init);
  316. module_exit(dm_delay_exit);
  317. MODULE_DESCRIPTION(DM_NAME " delay target");
  318. MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
  319. MODULE_LICENSE("GPL");