mlx90632.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
  4. *
  5. * Copyright (c) 2017 Melexis <cmo@melexis.com>
  6. *
  7. * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
  8. */
  9. #include <linux/delay.h>
  10. #include <linux/err.h>
  11. #include <linux/gpio/consumer.h>
  12. #include <linux/i2c.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/math64.h>
  16. #include <linux/of.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/regmap.h>
  19. #include <linux/iio/iio.h>
  20. #include <linux/iio/sysfs.h>
  21. /* Memory sections addresses */
  22. #define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */
  23. #define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */
  24. /* EEPROM addresses - used at startup */
  25. #define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */
  26. #define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */
  27. #define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */
  28. #define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */
  29. #define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */
  30. #define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */
  31. #define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */
  32. #define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */
  33. #define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */
  34. #define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */
  35. #define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */
  36. #define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */
  37. #define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */
  38. #define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */
  39. #define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */
  40. #define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */
  41. #define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */
  42. #define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */
  43. #define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */
  44. #define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */
  45. #define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */
  46. #define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */
  47. #define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */
  48. #define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */
  49. /* Register addresses - volatile */
  50. #define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */
  51. /* Control register address - volatile */
  52. #define MLX90632_REG_CONTROL 0x3001 /* Control Register address */
  53. #define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */
  54. /* PowerModes statuses */
  55. #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
  56. #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
  57. #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
  58. #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
  59. #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
  60. /* Device status register - volatile */
  61. #define MLX90632_REG_STATUS 0x3fff /* Device status register */
  62. #define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */
  63. #define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */
  64. #define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */
  65. #define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */
  66. #define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */
  67. /* RAM_MEAS address-es for each channel */
  68. #define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num)
  69. #define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1)
  70. #define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2)
  71. /* Magic constants */
  72. #define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */
  73. #define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */
  74. #define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */
  75. #define MLX90632_REF_12 12LL /**< ResCtrlRef value of Ch 1 or Ch 2 */
  76. #define MLX90632_REF_3 12LL /**< ResCtrlRef value of Channel 3 */
  77. #define MLX90632_MAX_MEAS_NUM 31 /**< Maximum measurements in list */
  78. #define MLX90632_SLEEP_DELAY_MS 3000 /**< Autosleep delay */
  79. struct mlx90632_data {
  80. struct i2c_client *client;
  81. struct mutex lock; /* Multiple reads for single measurement */
  82. struct regmap *regmap;
  83. u16 emissivity;
  84. };
  85. static const struct regmap_range mlx90632_volatile_reg_range[] = {
  86. regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
  87. regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
  88. regmap_reg_range(MLX90632_RAM_1(0),
  89. MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
  90. };
  91. static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
  92. .yes_ranges = mlx90632_volatile_reg_range,
  93. .n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
  94. };
  95. static const struct regmap_range mlx90632_read_reg_range[] = {
  96. regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
  97. regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
  98. regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
  99. regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
  100. regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
  101. regmap_reg_range(MLX90632_RAM_1(0),
  102. MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
  103. };
  104. static const struct regmap_access_table mlx90632_readable_regs_tbl = {
  105. .yes_ranges = mlx90632_read_reg_range,
  106. .n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
  107. };
  108. static const struct regmap_range mlx90632_no_write_reg_range[] = {
  109. regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
  110. regmap_reg_range(MLX90632_RAM_1(0),
  111. MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
  112. };
  113. static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
  114. .no_ranges = mlx90632_no_write_reg_range,
  115. .n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
  116. };
  117. static const struct regmap_config mlx90632_regmap = {
  118. .reg_bits = 16,
  119. .val_bits = 16,
  120. .volatile_table = &mlx90632_volatile_regs_tbl,
  121. .rd_table = &mlx90632_readable_regs_tbl,
  122. .wr_table = &mlx90632_writeable_regs_tbl,
  123. .use_single_rw = true,
  124. .reg_format_endian = REGMAP_ENDIAN_BIG,
  125. .val_format_endian = REGMAP_ENDIAN_BIG,
  126. .cache_type = REGCACHE_RBTREE,
  127. };
  128. static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap)
  129. {
  130. return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
  131. MLX90632_CFG_PWR_MASK,
  132. MLX90632_PWR_STATUS_SLEEP_STEP);
  133. }
  134. static s32 mlx90632_pwr_continuous(struct regmap *regmap)
  135. {
  136. return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
  137. MLX90632_CFG_PWR_MASK,
  138. MLX90632_PWR_STATUS_CONTINUOUS);
  139. }
  140. /**
  141. * mlx90632_perform_measurement - Trigger and retrieve current measurement cycle
  142. * @*data: pointer to mlx90632_data object containing regmap information
  143. *
  144. * Perform a measurement and return latest measurement cycle position reported
  145. * by sensor. This is a blocking function for 500ms, as that is default sensor
  146. * refresh rate.
  147. */
  148. static int mlx90632_perform_measurement(struct mlx90632_data *data)
  149. {
  150. int ret, tries = 100;
  151. unsigned int reg_status;
  152. ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
  153. MLX90632_STAT_DATA_RDY, 0);
  154. if (ret < 0)
  155. return ret;
  156. while (tries-- > 0) {
  157. ret = regmap_read(data->regmap, MLX90632_REG_STATUS,
  158. &reg_status);
  159. if (ret < 0)
  160. return ret;
  161. if (reg_status & MLX90632_STAT_DATA_RDY)
  162. break;
  163. usleep_range(10000, 11000);
  164. }
  165. if (tries < 0) {
  166. dev_err(&data->client->dev, "data not ready");
  167. return -ETIMEDOUT;
  168. }
  169. return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
  170. }
  171. static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
  172. uint8_t *channel_old)
  173. {
  174. switch (perform_ret) {
  175. case 1:
  176. *channel_new = 1;
  177. *channel_old = 2;
  178. break;
  179. case 2:
  180. *channel_new = 2;
  181. *channel_old = 1;
  182. break;
  183. default:
  184. return -EINVAL;
  185. }
  186. return 0;
  187. }
  188. static int mlx90632_read_ambient_raw(struct regmap *regmap,
  189. s16 *ambient_new_raw, s16 *ambient_old_raw)
  190. {
  191. int ret;
  192. unsigned int read_tmp;
  193. ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
  194. if (ret < 0)
  195. return ret;
  196. *ambient_new_raw = (s16)read_tmp;
  197. ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
  198. if (ret < 0)
  199. return ret;
  200. *ambient_old_raw = (s16)read_tmp;
  201. return ret;
  202. }
  203. static int mlx90632_read_object_raw(struct regmap *regmap,
  204. int perform_measurement_ret,
  205. s16 *object_new_raw, s16 *object_old_raw)
  206. {
  207. int ret;
  208. unsigned int read_tmp;
  209. s16 read;
  210. u8 channel = 0;
  211. u8 channel_old = 0;
  212. ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
  213. &channel_old);
  214. if (ret != 0)
  215. return ret;
  216. ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
  217. if (ret < 0)
  218. return ret;
  219. read = (s16)read_tmp;
  220. ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
  221. if (ret < 0)
  222. return ret;
  223. *object_new_raw = (read + (s16)read_tmp) / 2;
  224. ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
  225. if (ret < 0)
  226. return ret;
  227. read = (s16)read_tmp;
  228. ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
  229. if (ret < 0)
  230. return ret;
  231. *object_old_raw = (read + (s16)read_tmp) / 2;
  232. return ret;
  233. }
  234. static int mlx90632_read_all_channel(struct mlx90632_data *data,
  235. s16 *ambient_new_raw, s16 *ambient_old_raw,
  236. s16 *object_new_raw, s16 *object_old_raw)
  237. {
  238. s32 ret, measurement;
  239. mutex_lock(&data->lock);
  240. measurement = mlx90632_perform_measurement(data);
  241. if (measurement < 0) {
  242. ret = measurement;
  243. goto read_unlock;
  244. }
  245. ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
  246. ambient_old_raw);
  247. if (ret < 0)
  248. goto read_unlock;
  249. ret = mlx90632_read_object_raw(data->regmap, measurement,
  250. object_new_raw, object_old_raw);
  251. read_unlock:
  252. mutex_unlock(&data->lock);
  253. return ret;
  254. }
  255. static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
  256. s32 *reg_value)
  257. {
  258. s32 ret;
  259. unsigned int read;
  260. u32 value;
  261. ret = regmap_read(regmap, reg_lsb, &read);
  262. if (ret < 0)
  263. return ret;
  264. value = read;
  265. ret = regmap_read(regmap, reg_lsb + 1, &read);
  266. if (ret < 0)
  267. return ret;
  268. *reg_value = (read << 16) | (value & 0xffff);
  269. return 0;
  270. }
  271. static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
  272. s16 ambient_old_raw, s16 Gb)
  273. {
  274. s64 VR_Ta, kGb, tmp;
  275. kGb = ((s64)Gb * 1000LL) >> 10ULL;
  276. VR_Ta = (s64)ambient_old_raw * 1000000LL +
  277. kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
  278. (MLX90632_REF_3));
  279. tmp = div64_s64(
  280. div64_s64(((s64)ambient_new_raw * 1000000000000LL),
  281. (MLX90632_REF_3)), VR_Ta);
  282. return div64_s64(tmp << 19ULL, 1000LL);
  283. }
  284. static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
  285. s16 ambient_new_raw,
  286. s16 ambient_old_raw, s16 Ka)
  287. {
  288. s64 VR_IR, kKa, tmp;
  289. kKa = ((s64)Ka * 1000LL) >> 10ULL;
  290. VR_IR = (s64)ambient_old_raw * 1000000LL +
  291. kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
  292. (MLX90632_REF_3));
  293. tmp = div64_s64(
  294. div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
  295. * 1000000000000LL), (MLX90632_REF_12)),
  296. VR_IR);
  297. return div64_s64((tmp << 19ULL), 1000LL);
  298. }
  299. static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
  300. s32 P_T, s32 P_R, s32 P_G, s32 P_O,
  301. s16 Gb)
  302. {
  303. s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
  304. AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
  305. Gb);
  306. Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
  307. Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
  308. Ablock = Asub * (Bsub * Bsub);
  309. Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
  310. Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
  311. sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
  312. return div64_s64(sum, 10000000LL);
  313. }
  314. static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
  315. s64 TAdut, s32 Fa, s32 Fb,
  316. s32 Ga, s16 Ha, s16 Hb,
  317. u16 emissivity)
  318. {
  319. s64 calcedKsTO, calcedKsTA, ir_Alpha, TAdut4, Alpha_corr;
  320. s64 Ha_customer, Hb_customer;
  321. Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
  322. Hb_customer = ((s64)Hb * 100) >> 10ULL;
  323. calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
  324. * 1000LL)) >> 36LL;
  325. calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
  326. Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
  327. * Ha_customer), 1000LL);
  328. Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
  329. Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
  330. Alpha_corr = div64_s64(Alpha_corr, 1000LL);
  331. ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
  332. TAdut4 = (div64_s64(TAdut, 10000LL) + 27315) *
  333. (div64_s64(TAdut, 10000LL) + 27315) *
  334. (div64_s64(TAdut, 10000LL) + 27315) *
  335. (div64_s64(TAdut, 10000LL) + 27315);
  336. return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
  337. - 27315 - Hb_customer) * 10;
  338. }
  339. static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
  340. s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
  341. u16 tmp_emi)
  342. {
  343. s64 kTA, kTA0, TAdut;
  344. s64 temp = 25000;
  345. s8 i;
  346. kTA = (Ea * 1000LL) >> 16LL;
  347. kTA0 = (Eb * 1000LL) >> 8LL;
  348. TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
  349. /* Iterations of calculation as described in datasheet */
  350. for (i = 0; i < 5; ++i) {
  351. temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut,
  352. Fa, Fb, Ga, Ha, Hb,
  353. tmp_emi);
  354. }
  355. return temp;
  356. }
  357. static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
  358. {
  359. s32 ret;
  360. s32 Ea, Eb, Fa, Fb, Ga;
  361. unsigned int read_tmp;
  362. s16 Ha, Hb, Gb, Ka;
  363. s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
  364. s64 object, ambient;
  365. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
  366. if (ret < 0)
  367. return ret;
  368. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
  369. if (ret < 0)
  370. return ret;
  371. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
  372. if (ret < 0)
  373. return ret;
  374. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
  375. if (ret < 0)
  376. return ret;
  377. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
  378. if (ret < 0)
  379. return ret;
  380. ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
  381. if (ret < 0)
  382. return ret;
  383. Ha = (s16)read_tmp;
  384. ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
  385. if (ret < 0)
  386. return ret;
  387. Hb = (s16)read_tmp;
  388. ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
  389. if (ret < 0)
  390. return ret;
  391. Gb = (s16)read_tmp;
  392. ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
  393. if (ret < 0)
  394. return ret;
  395. Ka = (s16)read_tmp;
  396. ret = mlx90632_read_all_channel(data,
  397. &ambient_new_raw, &ambient_old_raw,
  398. &object_new_raw, &object_old_raw);
  399. if (ret < 0)
  400. return ret;
  401. ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
  402. ambient_old_raw, Gb);
  403. object = mlx90632_preprocess_temp_obj(object_new_raw,
  404. object_old_raw,
  405. ambient_new_raw,
  406. ambient_old_raw, Ka);
  407. *val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
  408. Ha, Hb, data->emissivity);
  409. return 0;
  410. }
  411. static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
  412. {
  413. s32 ret;
  414. unsigned int read_tmp;
  415. s32 PT, PR, PG, PO;
  416. s16 Gb;
  417. s16 ambient_new_raw, ambient_old_raw;
  418. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
  419. if (ret < 0)
  420. return ret;
  421. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
  422. if (ret < 0)
  423. return ret;
  424. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
  425. if (ret < 0)
  426. return ret;
  427. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
  428. if (ret < 0)
  429. return ret;
  430. ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
  431. if (ret < 0)
  432. return ret;
  433. Gb = (s16)read_tmp;
  434. ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
  435. &ambient_old_raw);
  436. if (ret < 0)
  437. return ret;
  438. *val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
  439. PT, PR, PG, PO, Gb);
  440. return ret;
  441. }
  442. static int mlx90632_read_raw(struct iio_dev *indio_dev,
  443. struct iio_chan_spec const *channel, int *val,
  444. int *val2, long mask)
  445. {
  446. struct mlx90632_data *data = iio_priv(indio_dev);
  447. int ret;
  448. switch (mask) {
  449. case IIO_CHAN_INFO_PROCESSED:
  450. switch (channel->channel2) {
  451. case IIO_MOD_TEMP_AMBIENT:
  452. ret = mlx90632_calc_ambient_dsp105(data, val);
  453. if (ret < 0)
  454. return ret;
  455. return IIO_VAL_INT;
  456. case IIO_MOD_TEMP_OBJECT:
  457. ret = mlx90632_calc_object_dsp105(data, val);
  458. if (ret < 0)
  459. return ret;
  460. return IIO_VAL_INT;
  461. default:
  462. return -EINVAL;
  463. }
  464. case IIO_CHAN_INFO_CALIBEMISSIVITY:
  465. if (data->emissivity == 1000) {
  466. *val = 1;
  467. *val2 = 0;
  468. } else {
  469. *val = 0;
  470. *val2 = data->emissivity * 1000;
  471. }
  472. return IIO_VAL_INT_PLUS_MICRO;
  473. default:
  474. return -EINVAL;
  475. }
  476. }
  477. static int mlx90632_write_raw(struct iio_dev *indio_dev,
  478. struct iio_chan_spec const *channel, int val,
  479. int val2, long mask)
  480. {
  481. struct mlx90632_data *data = iio_priv(indio_dev);
  482. switch (mask) {
  483. case IIO_CHAN_INFO_CALIBEMISSIVITY:
  484. /* Confirm we are within 0 and 1.0 */
  485. if (val < 0 || val2 < 0 || val > 1 ||
  486. (val == 1 && val2 != 0))
  487. return -EINVAL;
  488. data->emissivity = val * 1000 + val2 / 1000;
  489. return 0;
  490. default:
  491. return -EINVAL;
  492. }
  493. }
  494. static const struct iio_chan_spec mlx90632_channels[] = {
  495. {
  496. .type = IIO_TEMP,
  497. .modified = 1,
  498. .channel2 = IIO_MOD_TEMP_AMBIENT,
  499. .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
  500. },
  501. {
  502. .type = IIO_TEMP,
  503. .modified = 1,
  504. .channel2 = IIO_MOD_TEMP_OBJECT,
  505. .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
  506. BIT(IIO_CHAN_INFO_CALIBEMISSIVITY),
  507. },
  508. };
  509. static const struct iio_info mlx90632_info = {
  510. .read_raw = mlx90632_read_raw,
  511. .write_raw = mlx90632_write_raw,
  512. };
  513. static int mlx90632_sleep(struct mlx90632_data *data)
  514. {
  515. regcache_mark_dirty(data->regmap);
  516. dev_dbg(&data->client->dev, "Requesting sleep");
  517. return mlx90632_pwr_set_sleep_step(data->regmap);
  518. }
  519. static int mlx90632_wakeup(struct mlx90632_data *data)
  520. {
  521. int ret;
  522. ret = regcache_sync(data->regmap);
  523. if (ret < 0) {
  524. dev_err(&data->client->dev,
  525. "Failed to sync regmap registers: %d\n", ret);
  526. return ret;
  527. }
  528. dev_dbg(&data->client->dev, "Requesting wake-up\n");
  529. return mlx90632_pwr_continuous(data->regmap);
  530. }
  531. static int mlx90632_probe(struct i2c_client *client,
  532. const struct i2c_device_id *id)
  533. {
  534. struct iio_dev *indio_dev;
  535. struct mlx90632_data *mlx90632;
  536. struct regmap *regmap;
  537. int ret;
  538. unsigned int read;
  539. indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
  540. if (!indio_dev) {
  541. dev_err(&client->dev, "Failed to allocate device\n");
  542. return -ENOMEM;
  543. }
  544. regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
  545. if (IS_ERR(regmap)) {
  546. ret = PTR_ERR(regmap);
  547. dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
  548. return ret;
  549. }
  550. mlx90632 = iio_priv(indio_dev);
  551. i2c_set_clientdata(client, indio_dev);
  552. mlx90632->client = client;
  553. mlx90632->regmap = regmap;
  554. mutex_init(&mlx90632->lock);
  555. indio_dev->dev.parent = &client->dev;
  556. indio_dev->name = id->name;
  557. indio_dev->modes = INDIO_DIRECT_MODE;
  558. indio_dev->info = &mlx90632_info;
  559. indio_dev->channels = mlx90632_channels;
  560. indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
  561. ret = mlx90632_wakeup(mlx90632);
  562. if (ret < 0) {
  563. dev_err(&client->dev, "Wakeup failed: %d\n", ret);
  564. return ret;
  565. }
  566. ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
  567. if (ret < 0) {
  568. dev_err(&client->dev, "read of version failed: %d\n", ret);
  569. return ret;
  570. }
  571. if (read == MLX90632_ID_MEDICAL) {
  572. dev_dbg(&client->dev,
  573. "Detected Medical EEPROM calibration %x\n", read);
  574. } else if (read == MLX90632_ID_CONSUMER) {
  575. dev_dbg(&client->dev,
  576. "Detected Consumer EEPROM calibration %x\n", read);
  577. } else {
  578. dev_err(&client->dev,
  579. "EEPROM version mismatch %x (expected %x or %x)\n",
  580. read, MLX90632_ID_CONSUMER, MLX90632_ID_MEDICAL);
  581. return -EPROTONOSUPPORT;
  582. }
  583. mlx90632->emissivity = 1000;
  584. pm_runtime_disable(&client->dev);
  585. ret = pm_runtime_set_active(&client->dev);
  586. if (ret < 0) {
  587. mlx90632_sleep(mlx90632);
  588. return ret;
  589. }
  590. pm_runtime_enable(&client->dev);
  591. pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
  592. pm_runtime_use_autosuspend(&client->dev);
  593. return iio_device_register(indio_dev);
  594. }
  595. static int mlx90632_remove(struct i2c_client *client)
  596. {
  597. struct iio_dev *indio_dev = i2c_get_clientdata(client);
  598. struct mlx90632_data *data = iio_priv(indio_dev);
  599. iio_device_unregister(indio_dev);
  600. pm_runtime_disable(&client->dev);
  601. pm_runtime_set_suspended(&client->dev);
  602. pm_runtime_put_noidle(&client->dev);
  603. mlx90632_sleep(data);
  604. return 0;
  605. }
  606. static const struct i2c_device_id mlx90632_id[] = {
  607. { "mlx90632", 0 },
  608. { }
  609. };
  610. MODULE_DEVICE_TABLE(i2c, mlx90632_id);
  611. static const struct of_device_id mlx90632_of_match[] = {
  612. { .compatible = "melexis,mlx90632" },
  613. { }
  614. };
  615. MODULE_DEVICE_TABLE(of, mlx90632_of_match);
  616. static int __maybe_unused mlx90632_pm_suspend(struct device *dev)
  617. {
  618. struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
  619. struct mlx90632_data *data = iio_priv(indio_dev);
  620. return mlx90632_sleep(data);
  621. }
  622. static int __maybe_unused mlx90632_pm_resume(struct device *dev)
  623. {
  624. struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
  625. struct mlx90632_data *data = iio_priv(indio_dev);
  626. return mlx90632_wakeup(data);
  627. }
  628. static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend,
  629. mlx90632_pm_resume, NULL);
  630. static struct i2c_driver mlx90632_driver = {
  631. .driver = {
  632. .name = "mlx90632",
  633. .of_match_table = mlx90632_of_match,
  634. .pm = &mlx90632_pm_ops,
  635. },
  636. .probe = mlx90632_probe,
  637. .remove = mlx90632_remove,
  638. .id_table = mlx90632_id,
  639. };
  640. module_i2c_driver(mlx90632_driver);
  641. MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
  642. MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
  643. MODULE_LICENSE("GPL v2");