xilinx-xadc-core.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342
  1. /*
  2. * Xilinx XADC driver
  3. *
  4. * Copyright 2013-2014 Analog Devices Inc.
  5. * Author: Lars-Peter Clauen <lars@metafoo.de>
  6. *
  7. * Licensed under the GPL-2.
  8. *
  9. * Documentation for the parts can be found at:
  10. * - XADC hardmacro: Xilinx UG480
  11. * - ZYNQ XADC interface: Xilinx UG585
  12. * - AXI XADC interface: Xilinx PG019
  13. */
  14. #include <linux/clk.h>
  15. #include <linux/device.h>
  16. #include <linux/err.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/io.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/of.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/slab.h>
  24. #include <linux/sysfs.h>
  25. #include <linux/iio/buffer.h>
  26. #include <linux/iio/events.h>
  27. #include <linux/iio/iio.h>
  28. #include <linux/iio/sysfs.h>
  29. #include <linux/iio/trigger.h>
  30. #include <linux/iio/trigger_consumer.h>
  31. #include <linux/iio/triggered_buffer.h>
  32. #include "xilinx-xadc.h"
  33. static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
  34. /* ZYNQ register definitions */
  35. #define XADC_ZYNQ_REG_CFG 0x00
  36. #define XADC_ZYNQ_REG_INTSTS 0x04
  37. #define XADC_ZYNQ_REG_INTMSK 0x08
  38. #define XADC_ZYNQ_REG_STATUS 0x0c
  39. #define XADC_ZYNQ_REG_CFIFO 0x10
  40. #define XADC_ZYNQ_REG_DFIFO 0x14
  41. #define XADC_ZYNQ_REG_CTL 0x18
  42. #define XADC_ZYNQ_CFG_ENABLE BIT(31)
  43. #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20)
  44. #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20
  45. #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16)
  46. #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16
  47. #define XADC_ZYNQ_CFG_WEDGE BIT(13)
  48. #define XADC_ZYNQ_CFG_REDGE BIT(12)
  49. #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8)
  50. #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8)
  51. #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8)
  52. #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8)
  53. #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8)
  54. #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f
  55. #define XADC_ZYNQ_CFG_IGAP(x) (x)
  56. #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9)
  57. #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8)
  58. #define XADC_ZYNQ_INT_ALARM_MASK 0xff
  59. #define XADC_ZYNQ_INT_ALARM_OFFSET 0
  60. #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16)
  61. #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16
  62. #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12)
  63. #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12
  64. #define XADC_ZYNQ_STATUS_CFIFOF BIT(11)
  65. #define XADC_ZYNQ_STATUS_CFIFOE BIT(10)
  66. #define XADC_ZYNQ_STATUS_DFIFOF BIT(9)
  67. #define XADC_ZYNQ_STATUS_DFIFOE BIT(8)
  68. #define XADC_ZYNQ_STATUS_OT BIT(7)
  69. #define XADC_ZYNQ_STATUS_ALM(x) BIT(x)
  70. #define XADC_ZYNQ_CTL_RESET BIT(4)
  71. #define XADC_ZYNQ_CMD_NOP 0x00
  72. #define XADC_ZYNQ_CMD_READ 0x01
  73. #define XADC_ZYNQ_CMD_WRITE 0x02
  74. #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
  75. /* AXI register definitions */
  76. #define XADC_AXI_REG_RESET 0x00
  77. #define XADC_AXI_REG_STATUS 0x04
  78. #define XADC_AXI_REG_ALARM_STATUS 0x08
  79. #define XADC_AXI_REG_CONVST 0x0c
  80. #define XADC_AXI_REG_XADC_RESET 0x10
  81. #define XADC_AXI_REG_GIER 0x5c
  82. #define XADC_AXI_REG_IPISR 0x60
  83. #define XADC_AXI_REG_IPIER 0x68
  84. #define XADC_AXI_ADC_REG_OFFSET 0x200
  85. #define XADC_AXI_RESET_MAGIC 0xa
  86. #define XADC_AXI_GIER_ENABLE BIT(31)
  87. #define XADC_AXI_INT_EOS BIT(4)
  88. #define XADC_AXI_INT_ALARM_MASK 0x3c0f
  89. #define XADC_FLAGS_BUFFERED BIT(0)
  90. static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
  91. uint32_t val)
  92. {
  93. writel(val, xadc->base + reg);
  94. }
  95. static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
  96. uint32_t *val)
  97. {
  98. *val = readl(xadc->base + reg);
  99. }
  100. /*
  101. * The ZYNQ interface uses two asynchronous FIFOs for communication with the
  102. * XADC. Reads and writes to the XADC register are performed by submitting a
  103. * request to the command FIFO (CFIFO), once the request has been completed the
  104. * result can be read from the data FIFO (DFIFO). The method currently used in
  105. * this driver is to submit the request for a read/write operation, then go to
  106. * sleep and wait for an interrupt that signals that a response is available in
  107. * the data FIFO.
  108. */
  109. static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
  110. unsigned int n)
  111. {
  112. unsigned int i;
  113. for (i = 0; i < n; i++)
  114. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
  115. }
  116. static void xadc_zynq_drain_fifo(struct xadc *xadc)
  117. {
  118. uint32_t status, tmp;
  119. xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
  120. while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
  121. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
  122. xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
  123. }
  124. }
  125. static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
  126. unsigned int val)
  127. {
  128. xadc->zynq_intmask &= ~mask;
  129. xadc->zynq_intmask |= val;
  130. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
  131. xadc->zynq_intmask | xadc->zynq_masked_alarm);
  132. }
  133. static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
  134. uint16_t val)
  135. {
  136. uint32_t cmd[1];
  137. uint32_t tmp;
  138. int ret;
  139. spin_lock_irq(&xadc->lock);
  140. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
  141. XADC_ZYNQ_INT_DFIFO_GTH);
  142. reinit_completion(&xadc->completion);
  143. cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
  144. xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
  145. xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
  146. tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
  147. tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
  148. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
  149. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
  150. spin_unlock_irq(&xadc->lock);
  151. ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
  152. if (ret == 0)
  153. ret = -EIO;
  154. else
  155. ret = 0;
  156. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
  157. return ret;
  158. }
  159. static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
  160. uint16_t *val)
  161. {
  162. uint32_t cmd[2];
  163. uint32_t resp, tmp;
  164. int ret;
  165. cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
  166. cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
  167. spin_lock_irq(&xadc->lock);
  168. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
  169. XADC_ZYNQ_INT_DFIFO_GTH);
  170. xadc_zynq_drain_fifo(xadc);
  171. reinit_completion(&xadc->completion);
  172. xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
  173. xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
  174. tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
  175. tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
  176. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
  177. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
  178. spin_unlock_irq(&xadc->lock);
  179. ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
  180. if (ret == 0)
  181. ret = -EIO;
  182. if (ret < 0)
  183. return ret;
  184. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
  185. xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
  186. *val = resp & 0xffff;
  187. return 0;
  188. }
  189. static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
  190. {
  191. return ((alarm & 0x80) >> 4) |
  192. ((alarm & 0x78) << 1) |
  193. (alarm & 0x07);
  194. }
  195. /*
  196. * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
  197. * threshold condition go way from within the interrupt handler, this means as
  198. * soon as a threshold condition is present we would enter the interrupt handler
  199. * again and again. To work around this we mask all active thresholds interrupts
  200. * in the interrupt handler and start a timer. In this timer we poll the
  201. * interrupt status and only if the interrupt is inactive we unmask it again.
  202. */
  203. static void xadc_zynq_unmask_worker(struct work_struct *work)
  204. {
  205. struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
  206. unsigned int misc_sts, unmask;
  207. xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
  208. misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
  209. spin_lock_irq(&xadc->lock);
  210. /* Clear those bits which are not active anymore */
  211. unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
  212. xadc->zynq_masked_alarm &= misc_sts;
  213. /* Also clear those which are masked out anyway */
  214. xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
  215. /* Clear the interrupts before we unmask them */
  216. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
  217. xadc_zynq_update_intmsk(xadc, 0, 0);
  218. spin_unlock_irq(&xadc->lock);
  219. /* if still pending some alarm re-trigger the timer */
  220. if (xadc->zynq_masked_alarm) {
  221. schedule_delayed_work(&xadc->zynq_unmask_work,
  222. msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
  223. }
  224. }
  225. static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
  226. {
  227. struct iio_dev *indio_dev = devid;
  228. struct xadc *xadc = iio_priv(indio_dev);
  229. uint32_t status;
  230. xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
  231. status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
  232. if (!status)
  233. return IRQ_NONE;
  234. spin_lock(&xadc->lock);
  235. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
  236. if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
  237. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
  238. XADC_ZYNQ_INT_DFIFO_GTH);
  239. complete(&xadc->completion);
  240. }
  241. status &= XADC_ZYNQ_INT_ALARM_MASK;
  242. if (status) {
  243. xadc->zynq_masked_alarm |= status;
  244. /*
  245. * mask the current event interrupt,
  246. * unmask it when the interrupt is no more active.
  247. */
  248. xadc_zynq_update_intmsk(xadc, 0, 0);
  249. xadc_handle_events(indio_dev,
  250. xadc_zynq_transform_alarm(status));
  251. /* unmask the required interrupts in timer. */
  252. schedule_delayed_work(&xadc->zynq_unmask_work,
  253. msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
  254. }
  255. spin_unlock(&xadc->lock);
  256. return IRQ_HANDLED;
  257. }
  258. #define XADC_ZYNQ_TCK_RATE_MAX 50000000
  259. #define XADC_ZYNQ_IGAP_DEFAULT 20
  260. #define XADC_ZYNQ_PCAP_RATE_MAX 200000000
  261. static int xadc_zynq_setup(struct platform_device *pdev,
  262. struct iio_dev *indio_dev, int irq)
  263. {
  264. struct xadc *xadc = iio_priv(indio_dev);
  265. unsigned long pcap_rate;
  266. unsigned int tck_div;
  267. unsigned int div;
  268. unsigned int igap;
  269. unsigned int tck_rate;
  270. int ret;
  271. /* TODO: Figure out how to make igap and tck_rate configurable */
  272. igap = XADC_ZYNQ_IGAP_DEFAULT;
  273. tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
  274. xadc->zynq_intmask = ~0;
  275. pcap_rate = clk_get_rate(xadc->clk);
  276. if (!pcap_rate)
  277. return -EINVAL;
  278. if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
  279. ret = clk_set_rate(xadc->clk,
  280. (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
  281. if (ret)
  282. return ret;
  283. }
  284. if (tck_rate > pcap_rate / 2) {
  285. div = 2;
  286. } else {
  287. div = pcap_rate / tck_rate;
  288. if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
  289. div++;
  290. }
  291. if (div <= 3)
  292. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
  293. else if (div <= 7)
  294. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
  295. else if (div <= 15)
  296. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
  297. else
  298. tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
  299. xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
  300. xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
  301. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
  302. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
  303. xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
  304. XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
  305. tck_div | XADC_ZYNQ_CFG_IGAP(igap));
  306. if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
  307. ret = clk_set_rate(xadc->clk, pcap_rate);
  308. if (ret)
  309. return ret;
  310. }
  311. return 0;
  312. }
  313. static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
  314. {
  315. unsigned int div;
  316. uint32_t val;
  317. xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
  318. switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
  319. case XADC_ZYNQ_CFG_TCKRATE_DIV4:
  320. div = 4;
  321. break;
  322. case XADC_ZYNQ_CFG_TCKRATE_DIV8:
  323. div = 8;
  324. break;
  325. case XADC_ZYNQ_CFG_TCKRATE_DIV16:
  326. div = 16;
  327. break;
  328. default:
  329. div = 2;
  330. break;
  331. }
  332. return clk_get_rate(xadc->clk) / div;
  333. }
  334. static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
  335. {
  336. unsigned long flags;
  337. uint32_t status;
  338. /* Move OT to bit 7 */
  339. alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
  340. spin_lock_irqsave(&xadc->lock, flags);
  341. /* Clear previous interrupts if any. */
  342. xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
  343. xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
  344. xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
  345. ~alarm & XADC_ZYNQ_INT_ALARM_MASK);
  346. spin_unlock_irqrestore(&xadc->lock, flags);
  347. }
  348. static const struct xadc_ops xadc_zynq_ops = {
  349. .read = xadc_zynq_read_adc_reg,
  350. .write = xadc_zynq_write_adc_reg,
  351. .setup = xadc_zynq_setup,
  352. .get_dclk_rate = xadc_zynq_get_dclk_rate,
  353. .interrupt_handler = xadc_zynq_interrupt_handler,
  354. .update_alarm = xadc_zynq_update_alarm,
  355. };
  356. static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
  357. uint16_t *val)
  358. {
  359. uint32_t val32;
  360. xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
  361. *val = val32 & 0xffff;
  362. return 0;
  363. }
  364. static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
  365. uint16_t val)
  366. {
  367. xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
  368. return 0;
  369. }
  370. static int xadc_axi_setup(struct platform_device *pdev,
  371. struct iio_dev *indio_dev, int irq)
  372. {
  373. struct xadc *xadc = iio_priv(indio_dev);
  374. xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
  375. xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
  376. return 0;
  377. }
  378. static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
  379. {
  380. struct iio_dev *indio_dev = devid;
  381. struct xadc *xadc = iio_priv(indio_dev);
  382. uint32_t status, mask;
  383. unsigned int events;
  384. xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
  385. xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
  386. status &= mask;
  387. if (!status)
  388. return IRQ_NONE;
  389. if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
  390. iio_trigger_poll(xadc->trigger);
  391. if (status & XADC_AXI_INT_ALARM_MASK) {
  392. /*
  393. * The order of the bits in the AXI-XADC status register does
  394. * not match the order of the bits in the XADC alarm enable
  395. * register. xadc_handle_events() expects the events to be in
  396. * the same order as the XADC alarm enable register.
  397. */
  398. events = (status & 0x000e) >> 1;
  399. events |= (status & 0x0001) << 3;
  400. events |= (status & 0x3c00) >> 6;
  401. xadc_handle_events(indio_dev, events);
  402. }
  403. xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
  404. return IRQ_HANDLED;
  405. }
  406. static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
  407. {
  408. uint32_t val;
  409. unsigned long flags;
  410. /*
  411. * The order of the bits in the AXI-XADC status register does not match
  412. * the order of the bits in the XADC alarm enable register. We get
  413. * passed the alarm mask in the same order as in the XADC alarm enable
  414. * register.
  415. */
  416. alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
  417. ((alarm & 0xf0) << 6);
  418. spin_lock_irqsave(&xadc->lock, flags);
  419. xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
  420. val &= ~XADC_AXI_INT_ALARM_MASK;
  421. val |= alarm;
  422. xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
  423. spin_unlock_irqrestore(&xadc->lock, flags);
  424. }
  425. static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
  426. {
  427. return clk_get_rate(xadc->clk);
  428. }
  429. static const struct xadc_ops xadc_axi_ops = {
  430. .read = xadc_axi_read_adc_reg,
  431. .write = xadc_axi_write_adc_reg,
  432. .setup = xadc_axi_setup,
  433. .get_dclk_rate = xadc_axi_get_dclk,
  434. .update_alarm = xadc_axi_update_alarm,
  435. .interrupt_handler = xadc_axi_interrupt_handler,
  436. .flags = XADC_FLAGS_BUFFERED,
  437. };
  438. static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
  439. uint16_t mask, uint16_t val)
  440. {
  441. uint16_t tmp;
  442. int ret;
  443. ret = _xadc_read_adc_reg(xadc, reg, &tmp);
  444. if (ret)
  445. return ret;
  446. return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
  447. }
  448. static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
  449. uint16_t mask, uint16_t val)
  450. {
  451. int ret;
  452. mutex_lock(&xadc->mutex);
  453. ret = _xadc_update_adc_reg(xadc, reg, mask, val);
  454. mutex_unlock(&xadc->mutex);
  455. return ret;
  456. }
  457. static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
  458. {
  459. return xadc->ops->get_dclk_rate(xadc);
  460. }
  461. static int xadc_update_scan_mode(struct iio_dev *indio_dev,
  462. const unsigned long *mask)
  463. {
  464. struct xadc *xadc = iio_priv(indio_dev);
  465. unsigned int n;
  466. n = bitmap_weight(mask, indio_dev->masklength);
  467. kfree(xadc->data);
  468. xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
  469. if (!xadc->data)
  470. return -ENOMEM;
  471. return 0;
  472. }
  473. static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
  474. {
  475. switch (scan_index) {
  476. case 5:
  477. return XADC_REG_VCCPINT;
  478. case 6:
  479. return XADC_REG_VCCPAUX;
  480. case 7:
  481. return XADC_REG_VCCO_DDR;
  482. case 8:
  483. return XADC_REG_TEMP;
  484. case 9:
  485. return XADC_REG_VCCINT;
  486. case 10:
  487. return XADC_REG_VCCAUX;
  488. case 11:
  489. return XADC_REG_VPVN;
  490. case 12:
  491. return XADC_REG_VREFP;
  492. case 13:
  493. return XADC_REG_VREFN;
  494. case 14:
  495. return XADC_REG_VCCBRAM;
  496. default:
  497. return XADC_REG_VAUX(scan_index - 16);
  498. }
  499. }
  500. static irqreturn_t xadc_trigger_handler(int irq, void *p)
  501. {
  502. struct iio_poll_func *pf = p;
  503. struct iio_dev *indio_dev = pf->indio_dev;
  504. struct xadc *xadc = iio_priv(indio_dev);
  505. unsigned int chan;
  506. int i, j;
  507. if (!xadc->data)
  508. goto out;
  509. j = 0;
  510. for_each_set_bit(i, indio_dev->active_scan_mask,
  511. indio_dev->masklength) {
  512. chan = xadc_scan_index_to_channel(i);
  513. xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
  514. j++;
  515. }
  516. iio_push_to_buffers(indio_dev, xadc->data);
  517. out:
  518. iio_trigger_notify_done(indio_dev->trig);
  519. return IRQ_HANDLED;
  520. }
  521. static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
  522. {
  523. struct xadc *xadc = iio_trigger_get_drvdata(trigger);
  524. unsigned long flags;
  525. unsigned int convst;
  526. unsigned int val;
  527. int ret = 0;
  528. mutex_lock(&xadc->mutex);
  529. if (state) {
  530. /* Only one of the two triggers can be active at the a time. */
  531. if (xadc->trigger != NULL) {
  532. ret = -EBUSY;
  533. goto err_out;
  534. } else {
  535. xadc->trigger = trigger;
  536. if (trigger == xadc->convst_trigger)
  537. convst = XADC_CONF0_EC;
  538. else
  539. convst = 0;
  540. }
  541. ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
  542. convst);
  543. if (ret)
  544. goto err_out;
  545. } else {
  546. xadc->trigger = NULL;
  547. }
  548. spin_lock_irqsave(&xadc->lock, flags);
  549. xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
  550. xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
  551. if (state)
  552. val |= XADC_AXI_INT_EOS;
  553. else
  554. val &= ~XADC_AXI_INT_EOS;
  555. xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
  556. spin_unlock_irqrestore(&xadc->lock, flags);
  557. err_out:
  558. mutex_unlock(&xadc->mutex);
  559. return ret;
  560. }
  561. static const struct iio_trigger_ops xadc_trigger_ops = {
  562. .set_trigger_state = &xadc_trigger_set_state,
  563. };
  564. static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
  565. const char *name)
  566. {
  567. struct iio_trigger *trig;
  568. int ret;
  569. trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
  570. indio_dev->id, name);
  571. if (trig == NULL)
  572. return ERR_PTR(-ENOMEM);
  573. trig->dev.parent = indio_dev->dev.parent;
  574. trig->ops = &xadc_trigger_ops;
  575. iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
  576. ret = iio_trigger_register(trig);
  577. if (ret)
  578. goto error_free_trig;
  579. return trig;
  580. error_free_trig:
  581. iio_trigger_free(trig);
  582. return ERR_PTR(ret);
  583. }
  584. static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
  585. {
  586. uint16_t val;
  587. switch (seq_mode) {
  588. case XADC_CONF1_SEQ_SIMULTANEOUS:
  589. case XADC_CONF1_SEQ_INDEPENDENT:
  590. val = XADC_CONF2_PD_ADC_B;
  591. break;
  592. default:
  593. val = 0;
  594. break;
  595. }
  596. return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
  597. val);
  598. }
  599. static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
  600. {
  601. unsigned int aux_scan_mode = scan_mode >> 16;
  602. if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
  603. return XADC_CONF1_SEQ_SIMULTANEOUS;
  604. if ((aux_scan_mode & 0xff00) == 0 ||
  605. (aux_scan_mode & 0x00ff) == 0)
  606. return XADC_CONF1_SEQ_CONTINUOUS;
  607. return XADC_CONF1_SEQ_SIMULTANEOUS;
  608. }
  609. static int xadc_postdisable(struct iio_dev *indio_dev)
  610. {
  611. struct xadc *xadc = iio_priv(indio_dev);
  612. unsigned long scan_mask;
  613. int ret;
  614. int i;
  615. scan_mask = 1; /* Run calibration as part of the sequence */
  616. for (i = 0; i < indio_dev->num_channels; i++)
  617. scan_mask |= BIT(indio_dev->channels[i].scan_index);
  618. /* Enable all channels and calibration */
  619. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
  620. if (ret)
  621. return ret;
  622. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
  623. if (ret)
  624. return ret;
  625. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
  626. XADC_CONF1_SEQ_CONTINUOUS);
  627. if (ret)
  628. return ret;
  629. return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
  630. }
  631. static int xadc_preenable(struct iio_dev *indio_dev)
  632. {
  633. struct xadc *xadc = iio_priv(indio_dev);
  634. unsigned long scan_mask;
  635. int seq_mode;
  636. int ret;
  637. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
  638. XADC_CONF1_SEQ_DEFAULT);
  639. if (ret)
  640. goto err;
  641. scan_mask = *indio_dev->active_scan_mask;
  642. seq_mode = xadc_get_seq_mode(xadc, scan_mask);
  643. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
  644. if (ret)
  645. goto err;
  646. ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
  647. if (ret)
  648. goto err;
  649. ret = xadc_power_adc_b(xadc, seq_mode);
  650. if (ret)
  651. goto err;
  652. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
  653. seq_mode);
  654. if (ret)
  655. goto err;
  656. return 0;
  657. err:
  658. xadc_postdisable(indio_dev);
  659. return ret;
  660. }
  661. static const struct iio_buffer_setup_ops xadc_buffer_ops = {
  662. .preenable = &xadc_preenable,
  663. .postenable = &iio_triggered_buffer_postenable,
  664. .predisable = &iio_triggered_buffer_predisable,
  665. .postdisable = &xadc_postdisable,
  666. };
  667. static int xadc_read_raw(struct iio_dev *indio_dev,
  668. struct iio_chan_spec const *chan, int *val, int *val2, long info)
  669. {
  670. struct xadc *xadc = iio_priv(indio_dev);
  671. unsigned int div;
  672. uint16_t val16;
  673. int ret;
  674. switch (info) {
  675. case IIO_CHAN_INFO_RAW:
  676. if (iio_buffer_enabled(indio_dev))
  677. return -EBUSY;
  678. ret = xadc_read_adc_reg(xadc, chan->address, &val16);
  679. if (ret < 0)
  680. return ret;
  681. val16 >>= 4;
  682. if (chan->scan_type.sign == 'u')
  683. *val = val16;
  684. else
  685. *val = sign_extend32(val16, 11);
  686. return IIO_VAL_INT;
  687. case IIO_CHAN_INFO_SCALE:
  688. switch (chan->type) {
  689. case IIO_VOLTAGE:
  690. /* V = (val * 3.0) / 4096 */
  691. switch (chan->address) {
  692. case XADC_REG_VCCINT:
  693. case XADC_REG_VCCAUX:
  694. case XADC_REG_VREFP:
  695. case XADC_REG_VREFN:
  696. case XADC_REG_VCCBRAM:
  697. case XADC_REG_VCCPINT:
  698. case XADC_REG_VCCPAUX:
  699. case XADC_REG_VCCO_DDR:
  700. *val = 3000;
  701. break;
  702. default:
  703. *val = 1000;
  704. break;
  705. }
  706. *val2 = 12;
  707. return IIO_VAL_FRACTIONAL_LOG2;
  708. case IIO_TEMP:
  709. /* Temp in C = (val * 503.975) / 4096 - 273.15 */
  710. *val = 503975;
  711. *val2 = 12;
  712. return IIO_VAL_FRACTIONAL_LOG2;
  713. default:
  714. return -EINVAL;
  715. }
  716. case IIO_CHAN_INFO_OFFSET:
  717. /* Only the temperature channel has an offset */
  718. *val = -((273150 << 12) / 503975);
  719. return IIO_VAL_INT;
  720. case IIO_CHAN_INFO_SAMP_FREQ:
  721. ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
  722. if (ret)
  723. return ret;
  724. div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
  725. if (div < 2)
  726. div = 2;
  727. *val = xadc_get_dclk_rate(xadc) / div / 26;
  728. return IIO_VAL_INT;
  729. default:
  730. return -EINVAL;
  731. }
  732. }
  733. static int xadc_write_raw(struct iio_dev *indio_dev,
  734. struct iio_chan_spec const *chan, int val, int val2, long info)
  735. {
  736. struct xadc *xadc = iio_priv(indio_dev);
  737. unsigned long clk_rate = xadc_get_dclk_rate(xadc);
  738. unsigned int div;
  739. if (!clk_rate)
  740. return -EINVAL;
  741. if (info != IIO_CHAN_INFO_SAMP_FREQ)
  742. return -EINVAL;
  743. if (val <= 0)
  744. return -EINVAL;
  745. /* Max. 150 kSPS */
  746. if (val > 150000)
  747. val = 150000;
  748. val *= 26;
  749. /* Min 1MHz */
  750. if (val < 1000000)
  751. val = 1000000;
  752. /*
  753. * We want to round down, but only if we do not exceed the 150 kSPS
  754. * limit.
  755. */
  756. div = clk_rate / val;
  757. if (clk_rate / div / 26 > 150000)
  758. div++;
  759. if (div < 2)
  760. div = 2;
  761. else if (div > 0xff)
  762. div = 0xff;
  763. return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
  764. div << XADC_CONF2_DIV_OFFSET);
  765. }
  766. static const struct iio_event_spec xadc_temp_events[] = {
  767. {
  768. .type = IIO_EV_TYPE_THRESH,
  769. .dir = IIO_EV_DIR_RISING,
  770. .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
  771. BIT(IIO_EV_INFO_VALUE) |
  772. BIT(IIO_EV_INFO_HYSTERESIS),
  773. },
  774. };
  775. /* Separate values for upper and lower thresholds, but only a shared enabled */
  776. static const struct iio_event_spec xadc_voltage_events[] = {
  777. {
  778. .type = IIO_EV_TYPE_THRESH,
  779. .dir = IIO_EV_DIR_RISING,
  780. .mask_separate = BIT(IIO_EV_INFO_VALUE),
  781. }, {
  782. .type = IIO_EV_TYPE_THRESH,
  783. .dir = IIO_EV_DIR_FALLING,
  784. .mask_separate = BIT(IIO_EV_INFO_VALUE),
  785. }, {
  786. .type = IIO_EV_TYPE_THRESH,
  787. .dir = IIO_EV_DIR_EITHER,
  788. .mask_separate = BIT(IIO_EV_INFO_ENABLE),
  789. },
  790. };
  791. #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
  792. .type = IIO_TEMP, \
  793. .indexed = 1, \
  794. .channel = (_chan), \
  795. .address = (_addr), \
  796. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  797. BIT(IIO_CHAN_INFO_SCALE) | \
  798. BIT(IIO_CHAN_INFO_OFFSET), \
  799. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  800. .event_spec = xadc_temp_events, \
  801. .num_event_specs = ARRAY_SIZE(xadc_temp_events), \
  802. .scan_index = (_scan_index), \
  803. .scan_type = { \
  804. .sign = 'u', \
  805. .realbits = 12, \
  806. .storagebits = 16, \
  807. .shift = 4, \
  808. .endianness = IIO_CPU, \
  809. }, \
  810. }
  811. #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
  812. .type = IIO_VOLTAGE, \
  813. .indexed = 1, \
  814. .channel = (_chan), \
  815. .address = (_addr), \
  816. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  817. BIT(IIO_CHAN_INFO_SCALE), \
  818. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  819. .event_spec = (_alarm) ? xadc_voltage_events : NULL, \
  820. .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
  821. .scan_index = (_scan_index), \
  822. .scan_type = { \
  823. .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
  824. .realbits = 12, \
  825. .storagebits = 16, \
  826. .shift = 4, \
  827. .endianness = IIO_CPU, \
  828. }, \
  829. .extend_name = _ext, \
  830. }
  831. static const struct iio_chan_spec xadc_channels[] = {
  832. XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
  833. XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
  834. XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
  835. XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
  836. XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
  837. XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
  838. XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
  839. XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
  840. XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
  841. XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
  842. XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
  843. XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
  844. XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
  845. XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
  846. XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
  847. XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
  848. XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
  849. XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
  850. XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
  851. XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
  852. XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
  853. XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
  854. XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
  855. XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
  856. XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
  857. XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
  858. };
  859. static const struct iio_info xadc_info = {
  860. .read_raw = &xadc_read_raw,
  861. .write_raw = &xadc_write_raw,
  862. .read_event_config = &xadc_read_event_config,
  863. .write_event_config = &xadc_write_event_config,
  864. .read_event_value = &xadc_read_event_value,
  865. .write_event_value = &xadc_write_event_value,
  866. .update_scan_mode = &xadc_update_scan_mode,
  867. };
  868. static const struct of_device_id xadc_of_match_table[] = {
  869. { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
  870. { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
  871. { },
  872. };
  873. MODULE_DEVICE_TABLE(of, xadc_of_match_table);
  874. static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
  875. unsigned int *conf)
  876. {
  877. struct xadc *xadc = iio_priv(indio_dev);
  878. struct iio_chan_spec *channels, *chan;
  879. struct device_node *chan_node, *child;
  880. unsigned int num_channels;
  881. const char *external_mux;
  882. u32 ext_mux_chan;
  883. u32 reg;
  884. int ret;
  885. *conf = 0;
  886. ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
  887. if (ret < 0 || strcasecmp(external_mux, "none") == 0)
  888. xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
  889. else if (strcasecmp(external_mux, "single") == 0)
  890. xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
  891. else if (strcasecmp(external_mux, "dual") == 0)
  892. xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
  893. else
  894. return -EINVAL;
  895. if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
  896. ret = of_property_read_u32(np, "xlnx,external-mux-channel",
  897. &ext_mux_chan);
  898. if (ret < 0)
  899. return ret;
  900. if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
  901. if (ext_mux_chan == 0)
  902. ext_mux_chan = XADC_REG_VPVN;
  903. else if (ext_mux_chan <= 16)
  904. ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
  905. else
  906. return -EINVAL;
  907. } else {
  908. if (ext_mux_chan > 0 && ext_mux_chan <= 8)
  909. ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
  910. else
  911. return -EINVAL;
  912. }
  913. *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
  914. }
  915. channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
  916. if (!channels)
  917. return -ENOMEM;
  918. num_channels = 9;
  919. chan = &channels[9];
  920. chan_node = of_get_child_by_name(np, "xlnx,channels");
  921. if (chan_node) {
  922. for_each_child_of_node(chan_node, child) {
  923. if (num_channels >= ARRAY_SIZE(xadc_channels)) {
  924. of_node_put(child);
  925. break;
  926. }
  927. ret = of_property_read_u32(child, "reg", &reg);
  928. if (ret || reg > 16)
  929. continue;
  930. if (of_property_read_bool(child, "xlnx,bipolar"))
  931. chan->scan_type.sign = 's';
  932. if (reg == 0) {
  933. chan->scan_index = 11;
  934. chan->address = XADC_REG_VPVN;
  935. } else {
  936. chan->scan_index = 15 + reg;
  937. chan->address = XADC_REG_VAUX(reg - 1);
  938. }
  939. num_channels++;
  940. chan++;
  941. }
  942. }
  943. of_node_put(chan_node);
  944. indio_dev->num_channels = num_channels;
  945. indio_dev->channels = krealloc(channels, sizeof(*channels) *
  946. num_channels, GFP_KERNEL);
  947. /* If we can't resize the channels array, just use the original */
  948. if (!indio_dev->channels)
  949. indio_dev->channels = channels;
  950. return 0;
  951. }
  952. static int xadc_probe(struct platform_device *pdev)
  953. {
  954. const struct of_device_id *id;
  955. struct iio_dev *indio_dev;
  956. unsigned int bipolar_mask;
  957. struct resource *mem;
  958. unsigned int conf0;
  959. struct xadc *xadc;
  960. int ret;
  961. int irq;
  962. int i;
  963. if (!pdev->dev.of_node)
  964. return -ENODEV;
  965. id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
  966. if (!id)
  967. return -EINVAL;
  968. irq = platform_get_irq(pdev, 0);
  969. if (irq <= 0)
  970. return -ENXIO;
  971. indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
  972. if (!indio_dev)
  973. return -ENOMEM;
  974. xadc = iio_priv(indio_dev);
  975. xadc->ops = id->data;
  976. xadc->irq = irq;
  977. init_completion(&xadc->completion);
  978. mutex_init(&xadc->mutex);
  979. spin_lock_init(&xadc->lock);
  980. INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
  981. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  982. xadc->base = devm_ioremap_resource(&pdev->dev, mem);
  983. if (IS_ERR(xadc->base))
  984. return PTR_ERR(xadc->base);
  985. indio_dev->dev.parent = &pdev->dev;
  986. indio_dev->dev.of_node = pdev->dev.of_node;
  987. indio_dev->name = "xadc";
  988. indio_dev->modes = INDIO_DIRECT_MODE;
  989. indio_dev->info = &xadc_info;
  990. ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
  991. if (ret)
  992. goto err_device_free;
  993. if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
  994. ret = iio_triggered_buffer_setup(indio_dev,
  995. &iio_pollfunc_store_time, &xadc_trigger_handler,
  996. &xadc_buffer_ops);
  997. if (ret)
  998. goto err_device_free;
  999. xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
  1000. if (IS_ERR(xadc->convst_trigger)) {
  1001. ret = PTR_ERR(xadc->convst_trigger);
  1002. goto err_triggered_buffer_cleanup;
  1003. }
  1004. xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
  1005. "samplerate");
  1006. if (IS_ERR(xadc->samplerate_trigger)) {
  1007. ret = PTR_ERR(xadc->samplerate_trigger);
  1008. goto err_free_convst_trigger;
  1009. }
  1010. }
  1011. xadc->clk = devm_clk_get(&pdev->dev, NULL);
  1012. if (IS_ERR(xadc->clk)) {
  1013. ret = PTR_ERR(xadc->clk);
  1014. goto err_free_samplerate_trigger;
  1015. }
  1016. ret = clk_prepare_enable(xadc->clk);
  1017. if (ret)
  1018. goto err_free_samplerate_trigger;
  1019. ret = request_irq(xadc->irq, xadc->ops->interrupt_handler, 0,
  1020. dev_name(&pdev->dev), indio_dev);
  1021. if (ret)
  1022. goto err_clk_disable_unprepare;
  1023. ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
  1024. if (ret)
  1025. goto err_free_irq;
  1026. for (i = 0; i < 16; i++)
  1027. xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
  1028. &xadc->threshold[i]);
  1029. ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
  1030. if (ret)
  1031. goto err_free_irq;
  1032. bipolar_mask = 0;
  1033. for (i = 0; i < indio_dev->num_channels; i++) {
  1034. if (indio_dev->channels[i].scan_type.sign == 's')
  1035. bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
  1036. }
  1037. ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
  1038. if (ret)
  1039. goto err_free_irq;
  1040. ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
  1041. bipolar_mask >> 16);
  1042. if (ret)
  1043. goto err_free_irq;
  1044. /* Disable all alarms */
  1045. ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
  1046. XADC_CONF1_ALARM_MASK);
  1047. if (ret)
  1048. goto err_free_irq;
  1049. /* Set thresholds to min/max */
  1050. for (i = 0; i < 16; i++) {
  1051. /*
  1052. * Set max voltage threshold and both temperature thresholds to
  1053. * 0xffff, min voltage threshold to 0.
  1054. */
  1055. if (i % 8 < 4 || i == 7)
  1056. xadc->threshold[i] = 0xffff;
  1057. else
  1058. xadc->threshold[i] = 0;
  1059. xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
  1060. xadc->threshold[i]);
  1061. }
  1062. /* Go to non-buffered mode */
  1063. xadc_postdisable(indio_dev);
  1064. ret = iio_device_register(indio_dev);
  1065. if (ret)
  1066. goto err_free_irq;
  1067. platform_set_drvdata(pdev, indio_dev);
  1068. return 0;
  1069. err_free_irq:
  1070. free_irq(xadc->irq, indio_dev);
  1071. err_clk_disable_unprepare:
  1072. clk_disable_unprepare(xadc->clk);
  1073. err_free_samplerate_trigger:
  1074. if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
  1075. iio_trigger_free(xadc->samplerate_trigger);
  1076. err_free_convst_trigger:
  1077. if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
  1078. iio_trigger_free(xadc->convst_trigger);
  1079. err_triggered_buffer_cleanup:
  1080. if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
  1081. iio_triggered_buffer_cleanup(indio_dev);
  1082. err_device_free:
  1083. kfree(indio_dev->channels);
  1084. return ret;
  1085. }
  1086. static int xadc_remove(struct platform_device *pdev)
  1087. {
  1088. struct iio_dev *indio_dev = platform_get_drvdata(pdev);
  1089. struct xadc *xadc = iio_priv(indio_dev);
  1090. iio_device_unregister(indio_dev);
  1091. if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
  1092. iio_trigger_free(xadc->samplerate_trigger);
  1093. iio_trigger_free(xadc->convst_trigger);
  1094. iio_triggered_buffer_cleanup(indio_dev);
  1095. }
  1096. free_irq(xadc->irq, indio_dev);
  1097. clk_disable_unprepare(xadc->clk);
  1098. cancel_delayed_work(&xadc->zynq_unmask_work);
  1099. kfree(xadc->data);
  1100. kfree(indio_dev->channels);
  1101. return 0;
  1102. }
  1103. static struct platform_driver xadc_driver = {
  1104. .probe = xadc_probe,
  1105. .remove = xadc_remove,
  1106. .driver = {
  1107. .name = "xadc",
  1108. .of_match_table = xadc_of_match_table,
  1109. },
  1110. };
  1111. module_platform_driver(xadc_driver);
  1112. MODULE_LICENSE("GPL v2");
  1113. MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
  1114. MODULE_DESCRIPTION("Xilinx XADC IIO driver");