bmc150-accel-core.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741
  1. /*
  2. * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
  3. * - BMC150
  4. * - BMI055
  5. * - BMA255
  6. * - BMA250E
  7. * - BMA222E
  8. * - BMA280
  9. *
  10. * Copyright (c) 2014, Intel Corporation.
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms and conditions of the GNU General Public License,
  14. * version 2, as published by the Free Software Foundation.
  15. *
  16. * This program is distributed in the hope it will be useful, but WITHOUT
  17. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  19. * more details.
  20. */
  21. #include <linux/module.h>
  22. #include <linux/i2c.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/delay.h>
  25. #include <linux/slab.h>
  26. #include <linux/acpi.h>
  27. #include <linux/pm.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/iio/iio.h>
  30. #include <linux/iio/sysfs.h>
  31. #include <linux/iio/buffer.h>
  32. #include <linux/iio/events.h>
  33. #include <linux/iio/trigger.h>
  34. #include <linux/iio/trigger_consumer.h>
  35. #include <linux/iio/triggered_buffer.h>
  36. #include <linux/regmap.h>
  37. #include "bmc150-accel.h"
  38. #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
  39. #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
  40. #define BMC150_ACCEL_REG_CHIP_ID 0x00
  41. #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
  42. #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
  43. #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
  44. #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
  45. #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
  46. #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
  47. #define BMC150_ACCEL_REG_PMU_LPW 0x11
  48. #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
  49. #define BMC150_ACCEL_PMU_MODE_SHIFT 5
  50. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
  51. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
  52. #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
  53. #define BMC150_ACCEL_DEF_RANGE_2G 0x03
  54. #define BMC150_ACCEL_DEF_RANGE_4G 0x05
  55. #define BMC150_ACCEL_DEF_RANGE_8G 0x08
  56. #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
  57. /* Default BW: 125Hz */
  58. #define BMC150_ACCEL_REG_PMU_BW 0x10
  59. #define BMC150_ACCEL_DEF_BW 125
  60. #define BMC150_ACCEL_REG_RESET 0x14
  61. #define BMC150_ACCEL_RESET_VAL 0xB6
  62. #define BMC150_ACCEL_REG_INT_MAP_0 0x19
  63. #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
  64. #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
  65. #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
  66. #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
  67. #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
  68. #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
  69. #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
  70. #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
  71. #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
  72. #define BMC150_ACCEL_REG_INT_EN_0 0x16
  73. #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
  74. #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
  75. #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
  76. #define BMC150_ACCEL_REG_INT_EN_1 0x17
  77. #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
  78. #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
  79. #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
  80. #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
  81. #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
  82. #define BMC150_ACCEL_REG_INT_5 0x27
  83. #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
  84. #define BMC150_ACCEL_REG_INT_6 0x28
  85. #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
  86. /* Slope duration in terms of number of samples */
  87. #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
  88. /* in terms of multiples of g's/LSB, based on range */
  89. #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
  90. #define BMC150_ACCEL_REG_XOUT_L 0x02
  91. #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
  92. /* Sleep Duration values */
  93. #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
  94. #define BMC150_ACCEL_SLEEP_1_MS 0x06
  95. #define BMC150_ACCEL_SLEEP_2_MS 0x07
  96. #define BMC150_ACCEL_SLEEP_4_MS 0x08
  97. #define BMC150_ACCEL_SLEEP_6_MS 0x09
  98. #define BMC150_ACCEL_SLEEP_10_MS 0x0A
  99. #define BMC150_ACCEL_SLEEP_25_MS 0x0B
  100. #define BMC150_ACCEL_SLEEP_50_MS 0x0C
  101. #define BMC150_ACCEL_SLEEP_100_MS 0x0D
  102. #define BMC150_ACCEL_SLEEP_500_MS 0x0E
  103. #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
  104. #define BMC150_ACCEL_REG_TEMP 0x08
  105. #define BMC150_ACCEL_TEMP_CENTER_VAL 24
  106. #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
  107. #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
  108. #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
  109. #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
  110. #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
  111. #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
  112. #define BMC150_ACCEL_FIFO_LENGTH 32
  113. enum bmc150_accel_axis {
  114. AXIS_X,
  115. AXIS_Y,
  116. AXIS_Z,
  117. AXIS_MAX,
  118. };
  119. enum bmc150_power_modes {
  120. BMC150_ACCEL_SLEEP_MODE_NORMAL,
  121. BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
  122. BMC150_ACCEL_SLEEP_MODE_LPM,
  123. BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
  124. };
  125. struct bmc150_scale_info {
  126. int scale;
  127. u8 reg_range;
  128. };
  129. struct bmc150_accel_chip_info {
  130. const char *name;
  131. u8 chip_id;
  132. const struct iio_chan_spec *channels;
  133. int num_channels;
  134. const struct bmc150_scale_info scale_table[4];
  135. };
  136. struct bmc150_accel_interrupt {
  137. const struct bmc150_accel_interrupt_info *info;
  138. atomic_t users;
  139. };
  140. struct bmc150_accel_trigger {
  141. struct bmc150_accel_data *data;
  142. struct iio_trigger *indio_trig;
  143. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  144. int intr;
  145. bool enabled;
  146. };
  147. enum bmc150_accel_interrupt_id {
  148. BMC150_ACCEL_INT_DATA_READY,
  149. BMC150_ACCEL_INT_ANY_MOTION,
  150. BMC150_ACCEL_INT_WATERMARK,
  151. BMC150_ACCEL_INTERRUPTS,
  152. };
  153. enum bmc150_accel_trigger_id {
  154. BMC150_ACCEL_TRIGGER_DATA_READY,
  155. BMC150_ACCEL_TRIGGER_ANY_MOTION,
  156. BMC150_ACCEL_TRIGGERS,
  157. };
  158. struct bmc150_accel_data {
  159. struct regmap *regmap;
  160. int irq;
  161. struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
  162. struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
  163. struct mutex mutex;
  164. u8 fifo_mode, watermark;
  165. s16 buffer[8];
  166. u8 bw_bits;
  167. u32 slope_dur;
  168. u32 slope_thres;
  169. u32 range;
  170. int ev_enable_state;
  171. int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
  172. const struct bmc150_accel_chip_info *chip_info;
  173. };
  174. static const struct {
  175. int val;
  176. int val2;
  177. u8 bw_bits;
  178. } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
  179. {31, 260000, 0x09},
  180. {62, 500000, 0x0A},
  181. {125, 0, 0x0B},
  182. {250, 0, 0x0C},
  183. {500, 0, 0x0D},
  184. {1000, 0, 0x0E},
  185. {2000, 0, 0x0F} };
  186. static const struct {
  187. int bw_bits;
  188. int msec;
  189. } bmc150_accel_sample_upd_time[] = { {0x08, 64},
  190. {0x09, 32},
  191. {0x0A, 16},
  192. {0x0B, 8},
  193. {0x0C, 4},
  194. {0x0D, 2},
  195. {0x0E, 1},
  196. {0x0F, 1} };
  197. static const struct {
  198. int sleep_dur;
  199. u8 reg_value;
  200. } bmc150_accel_sleep_value_table[] = { {0, 0},
  201. {500, BMC150_ACCEL_SLEEP_500_MICRO},
  202. {1000, BMC150_ACCEL_SLEEP_1_MS},
  203. {2000, BMC150_ACCEL_SLEEP_2_MS},
  204. {4000, BMC150_ACCEL_SLEEP_4_MS},
  205. {6000, BMC150_ACCEL_SLEEP_6_MS},
  206. {10000, BMC150_ACCEL_SLEEP_10_MS},
  207. {25000, BMC150_ACCEL_SLEEP_25_MS},
  208. {50000, BMC150_ACCEL_SLEEP_50_MS},
  209. {100000, BMC150_ACCEL_SLEEP_100_MS},
  210. {500000, BMC150_ACCEL_SLEEP_500_MS},
  211. {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
  212. const struct regmap_config bmc150_regmap_conf = {
  213. .reg_bits = 8,
  214. .val_bits = 8,
  215. .max_register = 0x3f,
  216. };
  217. EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
  218. static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
  219. enum bmc150_power_modes mode,
  220. int dur_us)
  221. {
  222. struct device *dev = regmap_get_device(data->regmap);
  223. int i;
  224. int ret;
  225. u8 lpw_bits;
  226. int dur_val = -1;
  227. if (dur_us > 0) {
  228. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
  229. ++i) {
  230. if (bmc150_accel_sleep_value_table[i].sleep_dur ==
  231. dur_us)
  232. dur_val =
  233. bmc150_accel_sleep_value_table[i].reg_value;
  234. }
  235. } else {
  236. dur_val = 0;
  237. }
  238. if (dur_val < 0)
  239. return -EINVAL;
  240. lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
  241. lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
  242. dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
  243. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
  244. if (ret < 0) {
  245. dev_err(dev, "Error writing reg_pmu_lpw\n");
  246. return ret;
  247. }
  248. return 0;
  249. }
  250. static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
  251. int val2)
  252. {
  253. int i;
  254. int ret;
  255. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  256. if (bmc150_accel_samp_freq_table[i].val == val &&
  257. bmc150_accel_samp_freq_table[i].val2 == val2) {
  258. ret = regmap_write(data->regmap,
  259. BMC150_ACCEL_REG_PMU_BW,
  260. bmc150_accel_samp_freq_table[i].bw_bits);
  261. if (ret < 0)
  262. return ret;
  263. data->bw_bits =
  264. bmc150_accel_samp_freq_table[i].bw_bits;
  265. return 0;
  266. }
  267. }
  268. return -EINVAL;
  269. }
  270. static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
  271. {
  272. struct device *dev = regmap_get_device(data->regmap);
  273. int ret;
  274. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
  275. data->slope_thres);
  276. if (ret < 0) {
  277. dev_err(dev, "Error writing reg_int_6\n");
  278. return ret;
  279. }
  280. ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
  281. BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
  282. if (ret < 0) {
  283. dev_err(dev, "Error updating reg_int_5\n");
  284. return ret;
  285. }
  286. dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
  287. return ret;
  288. }
  289. static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
  290. bool state)
  291. {
  292. if (state)
  293. return bmc150_accel_update_slope(t->data);
  294. return 0;
  295. }
  296. static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
  297. int *val2)
  298. {
  299. int i;
  300. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  301. if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
  302. *val = bmc150_accel_samp_freq_table[i].val;
  303. *val2 = bmc150_accel_samp_freq_table[i].val2;
  304. return IIO_VAL_INT_PLUS_MICRO;
  305. }
  306. }
  307. return -EINVAL;
  308. }
  309. #ifdef CONFIG_PM
  310. static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
  311. {
  312. int i;
  313. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
  314. if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
  315. return bmc150_accel_sample_upd_time[i].msec;
  316. }
  317. return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
  318. }
  319. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  320. {
  321. struct device *dev = regmap_get_device(data->regmap);
  322. int ret;
  323. if (on) {
  324. ret = pm_runtime_get_sync(dev);
  325. } else {
  326. pm_runtime_mark_last_busy(dev);
  327. ret = pm_runtime_put_autosuspend(dev);
  328. }
  329. if (ret < 0) {
  330. dev_err(dev,
  331. "Failed: bmc150_accel_set_power_state for %d\n", on);
  332. if (on)
  333. pm_runtime_put_noidle(dev);
  334. return ret;
  335. }
  336. return 0;
  337. }
  338. #else
  339. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  340. {
  341. return 0;
  342. }
  343. #endif
  344. static const struct bmc150_accel_interrupt_info {
  345. u8 map_reg;
  346. u8 map_bitmask;
  347. u8 en_reg;
  348. u8 en_bitmask;
  349. } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
  350. { /* data ready interrupt */
  351. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  352. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
  353. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  354. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
  355. },
  356. { /* motion interrupt */
  357. .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
  358. .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
  359. .en_reg = BMC150_ACCEL_REG_INT_EN_0,
  360. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
  361. BMC150_ACCEL_INT_EN_BIT_SLP_Y |
  362. BMC150_ACCEL_INT_EN_BIT_SLP_Z
  363. },
  364. { /* fifo watermark interrupt */
  365. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  366. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
  367. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  368. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
  369. },
  370. };
  371. static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
  372. struct bmc150_accel_data *data)
  373. {
  374. int i;
  375. for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
  376. data->interrupts[i].info = &bmc150_accel_interrupts[i];
  377. }
  378. static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
  379. bool state)
  380. {
  381. struct device *dev = regmap_get_device(data->regmap);
  382. struct bmc150_accel_interrupt *intr = &data->interrupts[i];
  383. const struct bmc150_accel_interrupt_info *info = intr->info;
  384. int ret;
  385. if (state) {
  386. if (atomic_inc_return(&intr->users) > 1)
  387. return 0;
  388. } else {
  389. if (atomic_dec_return(&intr->users) > 0)
  390. return 0;
  391. }
  392. /*
  393. * We will expect the enable and disable to do operation in reverse
  394. * order. This will happen here anyway, as our resume operation uses
  395. * sync mode runtime pm calls. The suspend operation will be delayed
  396. * by autosuspend delay.
  397. * So the disable operation will still happen in reverse order of
  398. * enable operation. When runtime pm is disabled the mode is always on,
  399. * so sequence doesn't matter.
  400. */
  401. ret = bmc150_accel_set_power_state(data, state);
  402. if (ret < 0)
  403. return ret;
  404. /* map the interrupt to the appropriate pins */
  405. ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
  406. (state ? info->map_bitmask : 0));
  407. if (ret < 0) {
  408. dev_err(dev, "Error updating reg_int_map\n");
  409. goto out_fix_power_state;
  410. }
  411. /* enable/disable the interrupt */
  412. ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
  413. (state ? info->en_bitmask : 0));
  414. if (ret < 0) {
  415. dev_err(dev, "Error updating reg_int_en\n");
  416. goto out_fix_power_state;
  417. }
  418. return 0;
  419. out_fix_power_state:
  420. bmc150_accel_set_power_state(data, false);
  421. return ret;
  422. }
  423. static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
  424. {
  425. struct device *dev = regmap_get_device(data->regmap);
  426. int ret, i;
  427. for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
  428. if (data->chip_info->scale_table[i].scale == val) {
  429. ret = regmap_write(data->regmap,
  430. BMC150_ACCEL_REG_PMU_RANGE,
  431. data->chip_info->scale_table[i].reg_range);
  432. if (ret < 0) {
  433. dev_err(dev, "Error writing pmu_range\n");
  434. return ret;
  435. }
  436. data->range = data->chip_info->scale_table[i].reg_range;
  437. return 0;
  438. }
  439. }
  440. return -EINVAL;
  441. }
  442. static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
  443. {
  444. struct device *dev = regmap_get_device(data->regmap);
  445. int ret;
  446. unsigned int value;
  447. mutex_lock(&data->mutex);
  448. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
  449. if (ret < 0) {
  450. dev_err(dev, "Error reading reg_temp\n");
  451. mutex_unlock(&data->mutex);
  452. return ret;
  453. }
  454. *val = sign_extend32(value, 7);
  455. mutex_unlock(&data->mutex);
  456. return IIO_VAL_INT;
  457. }
  458. static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
  459. struct iio_chan_spec const *chan,
  460. int *val)
  461. {
  462. struct device *dev = regmap_get_device(data->regmap);
  463. int ret;
  464. int axis = chan->scan_index;
  465. __le16 raw_val;
  466. mutex_lock(&data->mutex);
  467. ret = bmc150_accel_set_power_state(data, true);
  468. if (ret < 0) {
  469. mutex_unlock(&data->mutex);
  470. return ret;
  471. }
  472. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
  473. &raw_val, sizeof(raw_val));
  474. if (ret < 0) {
  475. dev_err(dev, "Error reading axis %d\n", axis);
  476. bmc150_accel_set_power_state(data, false);
  477. mutex_unlock(&data->mutex);
  478. return ret;
  479. }
  480. *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
  481. chan->scan_type.realbits - 1);
  482. ret = bmc150_accel_set_power_state(data, false);
  483. mutex_unlock(&data->mutex);
  484. if (ret < 0)
  485. return ret;
  486. return IIO_VAL_INT;
  487. }
  488. static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
  489. struct iio_chan_spec const *chan,
  490. int *val, int *val2, long mask)
  491. {
  492. struct bmc150_accel_data *data = iio_priv(indio_dev);
  493. int ret;
  494. switch (mask) {
  495. case IIO_CHAN_INFO_RAW:
  496. switch (chan->type) {
  497. case IIO_TEMP:
  498. return bmc150_accel_get_temp(data, val);
  499. case IIO_ACCEL:
  500. if (iio_buffer_enabled(indio_dev))
  501. return -EBUSY;
  502. else
  503. return bmc150_accel_get_axis(data, chan, val);
  504. default:
  505. return -EINVAL;
  506. }
  507. case IIO_CHAN_INFO_OFFSET:
  508. if (chan->type == IIO_TEMP) {
  509. *val = BMC150_ACCEL_TEMP_CENTER_VAL;
  510. return IIO_VAL_INT;
  511. } else {
  512. return -EINVAL;
  513. }
  514. case IIO_CHAN_INFO_SCALE:
  515. *val = 0;
  516. switch (chan->type) {
  517. case IIO_TEMP:
  518. *val2 = 500000;
  519. return IIO_VAL_INT_PLUS_MICRO;
  520. case IIO_ACCEL:
  521. {
  522. int i;
  523. const struct bmc150_scale_info *si;
  524. int st_size = ARRAY_SIZE(data->chip_info->scale_table);
  525. for (i = 0; i < st_size; ++i) {
  526. si = &data->chip_info->scale_table[i];
  527. if (si->reg_range == data->range) {
  528. *val2 = si->scale;
  529. return IIO_VAL_INT_PLUS_MICRO;
  530. }
  531. }
  532. return -EINVAL;
  533. }
  534. default:
  535. return -EINVAL;
  536. }
  537. case IIO_CHAN_INFO_SAMP_FREQ:
  538. mutex_lock(&data->mutex);
  539. ret = bmc150_accel_get_bw(data, val, val2);
  540. mutex_unlock(&data->mutex);
  541. return ret;
  542. default:
  543. return -EINVAL;
  544. }
  545. }
  546. static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
  547. struct iio_chan_spec const *chan,
  548. int val, int val2, long mask)
  549. {
  550. struct bmc150_accel_data *data = iio_priv(indio_dev);
  551. int ret;
  552. switch (mask) {
  553. case IIO_CHAN_INFO_SAMP_FREQ:
  554. mutex_lock(&data->mutex);
  555. ret = bmc150_accel_set_bw(data, val, val2);
  556. mutex_unlock(&data->mutex);
  557. break;
  558. case IIO_CHAN_INFO_SCALE:
  559. if (val)
  560. return -EINVAL;
  561. mutex_lock(&data->mutex);
  562. ret = bmc150_accel_set_scale(data, val2);
  563. mutex_unlock(&data->mutex);
  564. return ret;
  565. default:
  566. ret = -EINVAL;
  567. }
  568. return ret;
  569. }
  570. static int bmc150_accel_read_event(struct iio_dev *indio_dev,
  571. const struct iio_chan_spec *chan,
  572. enum iio_event_type type,
  573. enum iio_event_direction dir,
  574. enum iio_event_info info,
  575. int *val, int *val2)
  576. {
  577. struct bmc150_accel_data *data = iio_priv(indio_dev);
  578. *val2 = 0;
  579. switch (info) {
  580. case IIO_EV_INFO_VALUE:
  581. *val = data->slope_thres;
  582. break;
  583. case IIO_EV_INFO_PERIOD:
  584. *val = data->slope_dur;
  585. break;
  586. default:
  587. return -EINVAL;
  588. }
  589. return IIO_VAL_INT;
  590. }
  591. static int bmc150_accel_write_event(struct iio_dev *indio_dev,
  592. const struct iio_chan_spec *chan,
  593. enum iio_event_type type,
  594. enum iio_event_direction dir,
  595. enum iio_event_info info,
  596. int val, int val2)
  597. {
  598. struct bmc150_accel_data *data = iio_priv(indio_dev);
  599. if (data->ev_enable_state)
  600. return -EBUSY;
  601. switch (info) {
  602. case IIO_EV_INFO_VALUE:
  603. data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
  604. break;
  605. case IIO_EV_INFO_PERIOD:
  606. data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
  607. break;
  608. default:
  609. return -EINVAL;
  610. }
  611. return 0;
  612. }
  613. static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
  614. const struct iio_chan_spec *chan,
  615. enum iio_event_type type,
  616. enum iio_event_direction dir)
  617. {
  618. struct bmc150_accel_data *data = iio_priv(indio_dev);
  619. return data->ev_enable_state;
  620. }
  621. static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
  622. const struct iio_chan_spec *chan,
  623. enum iio_event_type type,
  624. enum iio_event_direction dir,
  625. int state)
  626. {
  627. struct bmc150_accel_data *data = iio_priv(indio_dev);
  628. int ret;
  629. if (state == data->ev_enable_state)
  630. return 0;
  631. mutex_lock(&data->mutex);
  632. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
  633. state);
  634. if (ret < 0) {
  635. mutex_unlock(&data->mutex);
  636. return ret;
  637. }
  638. data->ev_enable_state = state;
  639. mutex_unlock(&data->mutex);
  640. return 0;
  641. }
  642. static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
  643. struct iio_trigger *trig)
  644. {
  645. struct bmc150_accel_data *data = iio_priv(indio_dev);
  646. int i;
  647. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  648. if (data->triggers[i].indio_trig == trig)
  649. return 0;
  650. }
  651. return -EINVAL;
  652. }
  653. static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
  654. struct device_attribute *attr,
  655. char *buf)
  656. {
  657. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  658. struct bmc150_accel_data *data = iio_priv(indio_dev);
  659. int wm;
  660. mutex_lock(&data->mutex);
  661. wm = data->watermark;
  662. mutex_unlock(&data->mutex);
  663. return sprintf(buf, "%d\n", wm);
  664. }
  665. static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
  666. struct device_attribute *attr,
  667. char *buf)
  668. {
  669. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  670. struct bmc150_accel_data *data = iio_priv(indio_dev);
  671. bool state;
  672. mutex_lock(&data->mutex);
  673. state = data->fifo_mode;
  674. mutex_unlock(&data->mutex);
  675. return sprintf(buf, "%d\n", state);
  676. }
  677. static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
  678. static IIO_CONST_ATTR(hwfifo_watermark_max,
  679. __stringify(BMC150_ACCEL_FIFO_LENGTH));
  680. static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
  681. bmc150_accel_get_fifo_state, NULL, 0);
  682. static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
  683. bmc150_accel_get_fifo_watermark, NULL, 0);
  684. static const struct attribute *bmc150_accel_fifo_attributes[] = {
  685. &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
  686. &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
  687. &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
  688. &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
  689. NULL,
  690. };
  691. static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
  692. {
  693. struct bmc150_accel_data *data = iio_priv(indio_dev);
  694. if (val > BMC150_ACCEL_FIFO_LENGTH)
  695. val = BMC150_ACCEL_FIFO_LENGTH;
  696. mutex_lock(&data->mutex);
  697. data->watermark = val;
  698. mutex_unlock(&data->mutex);
  699. return 0;
  700. }
  701. /*
  702. * We must read at least one full frame in one burst, otherwise the rest of the
  703. * frame data is discarded.
  704. */
  705. static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
  706. char *buffer, int samples)
  707. {
  708. struct device *dev = regmap_get_device(data->regmap);
  709. int sample_length = 3 * 2;
  710. int ret;
  711. int total_length = samples * sample_length;
  712. ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
  713. buffer, total_length);
  714. if (ret)
  715. dev_err(dev,
  716. "Error transferring data from fifo: %d\n", ret);
  717. return ret;
  718. }
  719. static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
  720. unsigned samples, bool irq)
  721. {
  722. struct bmc150_accel_data *data = iio_priv(indio_dev);
  723. struct device *dev = regmap_get_device(data->regmap);
  724. int ret, i;
  725. u8 count;
  726. u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
  727. int64_t tstamp;
  728. uint64_t sample_period;
  729. unsigned int val;
  730. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
  731. if (ret < 0) {
  732. dev_err(dev, "Error reading reg_fifo_status\n");
  733. return ret;
  734. }
  735. count = val & 0x7F;
  736. if (!count)
  737. return 0;
  738. /*
  739. * If we getting called from IRQ handler we know the stored timestamp is
  740. * fairly accurate for the last stored sample. Otherwise, if we are
  741. * called as a result of a read operation from userspace and hence
  742. * before the watermark interrupt was triggered, take a timestamp
  743. * now. We can fall anywhere in between two samples so the error in this
  744. * case is at most one sample period.
  745. */
  746. if (!irq) {
  747. data->old_timestamp = data->timestamp;
  748. data->timestamp = iio_get_time_ns(indio_dev);
  749. }
  750. /*
  751. * Approximate timestamps for each of the sample based on the sampling
  752. * frequency, timestamp for last sample and number of samples.
  753. *
  754. * Note that we can't use the current bandwidth settings to compute the
  755. * sample period because the sample rate varies with the device
  756. * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
  757. * small variation adds when we store a large number of samples and
  758. * creates significant jitter between the last and first samples in
  759. * different batches (e.g. 32ms vs 21ms).
  760. *
  761. * To avoid this issue we compute the actual sample period ourselves
  762. * based on the timestamp delta between the last two flush operations.
  763. */
  764. sample_period = (data->timestamp - data->old_timestamp);
  765. do_div(sample_period, count);
  766. tstamp = data->timestamp - (count - 1) * sample_period;
  767. if (samples && count > samples)
  768. count = samples;
  769. ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
  770. if (ret)
  771. return ret;
  772. /*
  773. * Ideally we want the IIO core to handle the demux when running in fifo
  774. * mode but not when running in triggered buffer mode. Unfortunately
  775. * this does not seem to be possible, so stick with driver demux for
  776. * now.
  777. */
  778. for (i = 0; i < count; i++) {
  779. u16 sample[8];
  780. int j, bit;
  781. j = 0;
  782. for_each_set_bit(bit, indio_dev->active_scan_mask,
  783. indio_dev->masklength)
  784. memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
  785. iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
  786. tstamp += sample_period;
  787. }
  788. return count;
  789. }
  790. static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
  791. {
  792. struct bmc150_accel_data *data = iio_priv(indio_dev);
  793. int ret;
  794. mutex_lock(&data->mutex);
  795. ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
  796. mutex_unlock(&data->mutex);
  797. return ret;
  798. }
  799. static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
  800. "15.620000 31.260000 62.50000 125 250 500 1000 2000");
  801. static struct attribute *bmc150_accel_attributes[] = {
  802. &iio_const_attr_sampling_frequency_available.dev_attr.attr,
  803. NULL,
  804. };
  805. static const struct attribute_group bmc150_accel_attrs_group = {
  806. .attrs = bmc150_accel_attributes,
  807. };
  808. static const struct iio_event_spec bmc150_accel_event = {
  809. .type = IIO_EV_TYPE_ROC,
  810. .dir = IIO_EV_DIR_EITHER,
  811. .mask_separate = BIT(IIO_EV_INFO_VALUE) |
  812. BIT(IIO_EV_INFO_ENABLE) |
  813. BIT(IIO_EV_INFO_PERIOD)
  814. };
  815. #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
  816. .type = IIO_ACCEL, \
  817. .modified = 1, \
  818. .channel2 = IIO_MOD_##_axis, \
  819. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  820. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
  821. BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  822. .scan_index = AXIS_##_axis, \
  823. .scan_type = { \
  824. .sign = 's', \
  825. .realbits = (bits), \
  826. .storagebits = 16, \
  827. .shift = 16 - (bits), \
  828. .endianness = IIO_LE, \
  829. }, \
  830. .event_spec = &bmc150_accel_event, \
  831. .num_event_specs = 1 \
  832. }
  833. #define BMC150_ACCEL_CHANNELS(bits) { \
  834. { \
  835. .type = IIO_TEMP, \
  836. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  837. BIT(IIO_CHAN_INFO_SCALE) | \
  838. BIT(IIO_CHAN_INFO_OFFSET), \
  839. .scan_index = -1, \
  840. }, \
  841. BMC150_ACCEL_CHANNEL(X, bits), \
  842. BMC150_ACCEL_CHANNEL(Y, bits), \
  843. BMC150_ACCEL_CHANNEL(Z, bits), \
  844. IIO_CHAN_SOFT_TIMESTAMP(3), \
  845. }
  846. static const struct iio_chan_spec bma222e_accel_channels[] =
  847. BMC150_ACCEL_CHANNELS(8);
  848. static const struct iio_chan_spec bma250e_accel_channels[] =
  849. BMC150_ACCEL_CHANNELS(10);
  850. static const struct iio_chan_spec bmc150_accel_channels[] =
  851. BMC150_ACCEL_CHANNELS(12);
  852. static const struct iio_chan_spec bma280_accel_channels[] =
  853. BMC150_ACCEL_CHANNELS(14);
  854. static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
  855. [bmc150] = {
  856. .name = "BMC150A",
  857. .chip_id = 0xFA,
  858. .channels = bmc150_accel_channels,
  859. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  860. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  861. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  862. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  863. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  864. },
  865. [bmi055] = {
  866. .name = "BMI055A",
  867. .chip_id = 0xFA,
  868. .channels = bmc150_accel_channels,
  869. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  870. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  871. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  872. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  873. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  874. },
  875. [bma255] = {
  876. .name = "BMA0255",
  877. .chip_id = 0xFA,
  878. .channels = bmc150_accel_channels,
  879. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  880. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  881. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  882. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  883. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  884. },
  885. [bma250e] = {
  886. .name = "BMA250E",
  887. .chip_id = 0xF9,
  888. .channels = bma250e_accel_channels,
  889. .num_channels = ARRAY_SIZE(bma250e_accel_channels),
  890. .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
  891. {76590, BMC150_ACCEL_DEF_RANGE_4G},
  892. {153277, BMC150_ACCEL_DEF_RANGE_8G},
  893. {306457, BMC150_ACCEL_DEF_RANGE_16G} },
  894. },
  895. [bma222e] = {
  896. .name = "BMA222E",
  897. .chip_id = 0xF8,
  898. .channels = bma222e_accel_channels,
  899. .num_channels = ARRAY_SIZE(bma222e_accel_channels),
  900. .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
  901. {306457, BMC150_ACCEL_DEF_RANGE_4G},
  902. {612915, BMC150_ACCEL_DEF_RANGE_8G},
  903. {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
  904. },
  905. [bma280] = {
  906. .name = "BMA0280",
  907. .chip_id = 0xFB,
  908. .channels = bma280_accel_channels,
  909. .num_channels = ARRAY_SIZE(bma280_accel_channels),
  910. .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
  911. {4785, BMC150_ACCEL_DEF_RANGE_4G},
  912. {9581, BMC150_ACCEL_DEF_RANGE_8G},
  913. {19152, BMC150_ACCEL_DEF_RANGE_16G} },
  914. },
  915. };
  916. static const struct iio_info bmc150_accel_info = {
  917. .attrs = &bmc150_accel_attrs_group,
  918. .read_raw = bmc150_accel_read_raw,
  919. .write_raw = bmc150_accel_write_raw,
  920. .read_event_value = bmc150_accel_read_event,
  921. .write_event_value = bmc150_accel_write_event,
  922. .write_event_config = bmc150_accel_write_event_config,
  923. .read_event_config = bmc150_accel_read_event_config,
  924. };
  925. static const struct iio_info bmc150_accel_info_fifo = {
  926. .attrs = &bmc150_accel_attrs_group,
  927. .read_raw = bmc150_accel_read_raw,
  928. .write_raw = bmc150_accel_write_raw,
  929. .read_event_value = bmc150_accel_read_event,
  930. .write_event_value = bmc150_accel_write_event,
  931. .write_event_config = bmc150_accel_write_event_config,
  932. .read_event_config = bmc150_accel_read_event_config,
  933. .validate_trigger = bmc150_accel_validate_trigger,
  934. .hwfifo_set_watermark = bmc150_accel_set_watermark,
  935. .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
  936. };
  937. static const unsigned long bmc150_accel_scan_masks[] = {
  938. BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
  939. 0};
  940. static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
  941. {
  942. struct iio_poll_func *pf = p;
  943. struct iio_dev *indio_dev = pf->indio_dev;
  944. struct bmc150_accel_data *data = iio_priv(indio_dev);
  945. int ret;
  946. mutex_lock(&data->mutex);
  947. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
  948. data->buffer, AXIS_MAX * 2);
  949. mutex_unlock(&data->mutex);
  950. if (ret < 0)
  951. goto err_read;
  952. iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
  953. pf->timestamp);
  954. err_read:
  955. iio_trigger_notify_done(indio_dev->trig);
  956. return IRQ_HANDLED;
  957. }
  958. static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
  959. {
  960. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  961. struct bmc150_accel_data *data = t->data;
  962. struct device *dev = regmap_get_device(data->regmap);
  963. int ret;
  964. /* new data interrupts don't need ack */
  965. if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
  966. return 0;
  967. mutex_lock(&data->mutex);
  968. /* clear any latched interrupt */
  969. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  970. BMC150_ACCEL_INT_MODE_LATCH_INT |
  971. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  972. mutex_unlock(&data->mutex);
  973. if (ret < 0) {
  974. dev_err(dev, "Error writing reg_int_rst_latch\n");
  975. return ret;
  976. }
  977. return 0;
  978. }
  979. static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
  980. bool state)
  981. {
  982. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  983. struct bmc150_accel_data *data = t->data;
  984. int ret;
  985. mutex_lock(&data->mutex);
  986. if (t->enabled == state) {
  987. mutex_unlock(&data->mutex);
  988. return 0;
  989. }
  990. if (t->setup) {
  991. ret = t->setup(t, state);
  992. if (ret < 0) {
  993. mutex_unlock(&data->mutex);
  994. return ret;
  995. }
  996. }
  997. ret = bmc150_accel_set_interrupt(data, t->intr, state);
  998. if (ret < 0) {
  999. mutex_unlock(&data->mutex);
  1000. return ret;
  1001. }
  1002. t->enabled = state;
  1003. mutex_unlock(&data->mutex);
  1004. return ret;
  1005. }
  1006. static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
  1007. .set_trigger_state = bmc150_accel_trigger_set_state,
  1008. .try_reenable = bmc150_accel_trig_try_reen,
  1009. };
  1010. static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
  1011. {
  1012. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1013. struct device *dev = regmap_get_device(data->regmap);
  1014. int dir;
  1015. int ret;
  1016. unsigned int val;
  1017. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
  1018. if (ret < 0) {
  1019. dev_err(dev, "Error reading reg_int_status_2\n");
  1020. return ret;
  1021. }
  1022. if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
  1023. dir = IIO_EV_DIR_FALLING;
  1024. else
  1025. dir = IIO_EV_DIR_RISING;
  1026. if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
  1027. iio_push_event(indio_dev,
  1028. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1029. 0,
  1030. IIO_MOD_X,
  1031. IIO_EV_TYPE_ROC,
  1032. dir),
  1033. data->timestamp);
  1034. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
  1035. iio_push_event(indio_dev,
  1036. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1037. 0,
  1038. IIO_MOD_Y,
  1039. IIO_EV_TYPE_ROC,
  1040. dir),
  1041. data->timestamp);
  1042. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
  1043. iio_push_event(indio_dev,
  1044. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1045. 0,
  1046. IIO_MOD_Z,
  1047. IIO_EV_TYPE_ROC,
  1048. dir),
  1049. data->timestamp);
  1050. return ret;
  1051. }
  1052. static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
  1053. {
  1054. struct iio_dev *indio_dev = private;
  1055. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1056. struct device *dev = regmap_get_device(data->regmap);
  1057. bool ack = false;
  1058. int ret;
  1059. mutex_lock(&data->mutex);
  1060. if (data->fifo_mode) {
  1061. ret = __bmc150_accel_fifo_flush(indio_dev,
  1062. BMC150_ACCEL_FIFO_LENGTH, true);
  1063. if (ret > 0)
  1064. ack = true;
  1065. }
  1066. if (data->ev_enable_state) {
  1067. ret = bmc150_accel_handle_roc_event(indio_dev);
  1068. if (ret > 0)
  1069. ack = true;
  1070. }
  1071. if (ack) {
  1072. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1073. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1074. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1075. if (ret)
  1076. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1077. ret = IRQ_HANDLED;
  1078. } else {
  1079. ret = IRQ_NONE;
  1080. }
  1081. mutex_unlock(&data->mutex);
  1082. return ret;
  1083. }
  1084. static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
  1085. {
  1086. struct iio_dev *indio_dev = private;
  1087. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1088. bool ack = false;
  1089. int i;
  1090. data->old_timestamp = data->timestamp;
  1091. data->timestamp = iio_get_time_ns(indio_dev);
  1092. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1093. if (data->triggers[i].enabled) {
  1094. iio_trigger_poll(data->triggers[i].indio_trig);
  1095. ack = true;
  1096. break;
  1097. }
  1098. }
  1099. if (data->ev_enable_state || data->fifo_mode)
  1100. return IRQ_WAKE_THREAD;
  1101. if (ack)
  1102. return IRQ_HANDLED;
  1103. return IRQ_NONE;
  1104. }
  1105. static const struct {
  1106. int intr;
  1107. const char *name;
  1108. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  1109. } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
  1110. {
  1111. .intr = 0,
  1112. .name = "%s-dev%d",
  1113. },
  1114. {
  1115. .intr = 1,
  1116. .name = "%s-any-motion-dev%d",
  1117. .setup = bmc150_accel_any_motion_setup,
  1118. },
  1119. };
  1120. static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
  1121. int from)
  1122. {
  1123. int i;
  1124. for (i = from; i >= 0; i--) {
  1125. if (data->triggers[i].indio_trig) {
  1126. iio_trigger_unregister(data->triggers[i].indio_trig);
  1127. data->triggers[i].indio_trig = NULL;
  1128. }
  1129. }
  1130. }
  1131. static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
  1132. struct bmc150_accel_data *data)
  1133. {
  1134. struct device *dev = regmap_get_device(data->regmap);
  1135. int i, ret;
  1136. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1137. struct bmc150_accel_trigger *t = &data->triggers[i];
  1138. t->indio_trig = devm_iio_trigger_alloc(dev,
  1139. bmc150_accel_triggers[i].name,
  1140. indio_dev->name,
  1141. indio_dev->id);
  1142. if (!t->indio_trig) {
  1143. ret = -ENOMEM;
  1144. break;
  1145. }
  1146. t->indio_trig->dev.parent = dev;
  1147. t->indio_trig->ops = &bmc150_accel_trigger_ops;
  1148. t->intr = bmc150_accel_triggers[i].intr;
  1149. t->data = data;
  1150. t->setup = bmc150_accel_triggers[i].setup;
  1151. iio_trigger_set_drvdata(t->indio_trig, t);
  1152. ret = iio_trigger_register(t->indio_trig);
  1153. if (ret)
  1154. break;
  1155. }
  1156. if (ret)
  1157. bmc150_accel_unregister_triggers(data, i - 1);
  1158. return ret;
  1159. }
  1160. #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
  1161. #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
  1162. #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
  1163. static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
  1164. {
  1165. struct device *dev = regmap_get_device(data->regmap);
  1166. u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
  1167. int ret;
  1168. ret = regmap_write(data->regmap, reg, data->fifo_mode);
  1169. if (ret < 0) {
  1170. dev_err(dev, "Error writing reg_fifo_config1\n");
  1171. return ret;
  1172. }
  1173. if (!data->fifo_mode)
  1174. return 0;
  1175. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
  1176. data->watermark);
  1177. if (ret < 0)
  1178. dev_err(dev, "Error writing reg_fifo_config0\n");
  1179. return ret;
  1180. }
  1181. static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
  1182. {
  1183. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1184. return bmc150_accel_set_power_state(data, true);
  1185. }
  1186. static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
  1187. {
  1188. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1189. int ret = 0;
  1190. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1191. return iio_triggered_buffer_postenable(indio_dev);
  1192. mutex_lock(&data->mutex);
  1193. if (!data->watermark)
  1194. goto out;
  1195. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1196. true);
  1197. if (ret)
  1198. goto out;
  1199. data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
  1200. ret = bmc150_accel_fifo_set_mode(data);
  1201. if (ret) {
  1202. data->fifo_mode = 0;
  1203. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1204. false);
  1205. }
  1206. out:
  1207. mutex_unlock(&data->mutex);
  1208. return ret;
  1209. }
  1210. static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
  1211. {
  1212. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1213. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1214. return iio_triggered_buffer_predisable(indio_dev);
  1215. mutex_lock(&data->mutex);
  1216. if (!data->fifo_mode)
  1217. goto out;
  1218. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
  1219. __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
  1220. data->fifo_mode = 0;
  1221. bmc150_accel_fifo_set_mode(data);
  1222. out:
  1223. mutex_unlock(&data->mutex);
  1224. return 0;
  1225. }
  1226. static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
  1227. {
  1228. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1229. return bmc150_accel_set_power_state(data, false);
  1230. }
  1231. static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
  1232. .preenable = bmc150_accel_buffer_preenable,
  1233. .postenable = bmc150_accel_buffer_postenable,
  1234. .predisable = bmc150_accel_buffer_predisable,
  1235. .postdisable = bmc150_accel_buffer_postdisable,
  1236. };
  1237. static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
  1238. {
  1239. struct device *dev = regmap_get_device(data->regmap);
  1240. int ret, i;
  1241. unsigned int val;
  1242. /*
  1243. * Reset chip to get it in a known good state. A delay of 1.8ms after
  1244. * reset is required according to the data sheets of supported chips.
  1245. */
  1246. regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
  1247. BMC150_ACCEL_RESET_VAL);
  1248. usleep_range(1800, 2500);
  1249. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
  1250. if (ret < 0) {
  1251. dev_err(dev, "Error: Reading chip id\n");
  1252. return ret;
  1253. }
  1254. dev_dbg(dev, "Chip Id %x\n", val);
  1255. for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
  1256. if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
  1257. data->chip_info = &bmc150_accel_chip_info_tbl[i];
  1258. break;
  1259. }
  1260. }
  1261. if (!data->chip_info) {
  1262. dev_err(dev, "Invalid chip %x\n", val);
  1263. return -ENODEV;
  1264. }
  1265. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1266. if (ret < 0)
  1267. return ret;
  1268. /* Set Bandwidth */
  1269. ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
  1270. if (ret < 0)
  1271. return ret;
  1272. /* Set Default Range */
  1273. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
  1274. BMC150_ACCEL_DEF_RANGE_4G);
  1275. if (ret < 0) {
  1276. dev_err(dev, "Error writing reg_pmu_range\n");
  1277. return ret;
  1278. }
  1279. data->range = BMC150_ACCEL_DEF_RANGE_4G;
  1280. /* Set default slope duration and thresholds */
  1281. data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
  1282. data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
  1283. ret = bmc150_accel_update_slope(data);
  1284. if (ret < 0)
  1285. return ret;
  1286. /* Set default as latched interrupts */
  1287. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1288. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1289. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1290. if (ret < 0) {
  1291. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1292. return ret;
  1293. }
  1294. return 0;
  1295. }
  1296. int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
  1297. const char *name, bool block_supported)
  1298. {
  1299. struct bmc150_accel_data *data;
  1300. struct iio_dev *indio_dev;
  1301. int ret;
  1302. indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
  1303. if (!indio_dev)
  1304. return -ENOMEM;
  1305. data = iio_priv(indio_dev);
  1306. dev_set_drvdata(dev, indio_dev);
  1307. data->irq = irq;
  1308. data->regmap = regmap;
  1309. ret = bmc150_accel_chip_init(data);
  1310. if (ret < 0)
  1311. return ret;
  1312. mutex_init(&data->mutex);
  1313. indio_dev->dev.parent = dev;
  1314. indio_dev->channels = data->chip_info->channels;
  1315. indio_dev->num_channels = data->chip_info->num_channels;
  1316. indio_dev->name = name ? name : data->chip_info->name;
  1317. indio_dev->available_scan_masks = bmc150_accel_scan_masks;
  1318. indio_dev->modes = INDIO_DIRECT_MODE;
  1319. indio_dev->info = &bmc150_accel_info;
  1320. ret = iio_triggered_buffer_setup(indio_dev,
  1321. &iio_pollfunc_store_time,
  1322. bmc150_accel_trigger_handler,
  1323. &bmc150_accel_buffer_ops);
  1324. if (ret < 0) {
  1325. dev_err(dev, "Failed: iio triggered buffer setup\n");
  1326. return ret;
  1327. }
  1328. if (data->irq > 0) {
  1329. ret = devm_request_threaded_irq(
  1330. dev, data->irq,
  1331. bmc150_accel_irq_handler,
  1332. bmc150_accel_irq_thread_handler,
  1333. IRQF_TRIGGER_RISING,
  1334. BMC150_ACCEL_IRQ_NAME,
  1335. indio_dev);
  1336. if (ret)
  1337. goto err_buffer_cleanup;
  1338. /*
  1339. * Set latched mode interrupt. While certain interrupts are
  1340. * non-latched regardless of this settings (e.g. new data) we
  1341. * want to use latch mode when we can to prevent interrupt
  1342. * flooding.
  1343. */
  1344. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1345. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1346. if (ret < 0) {
  1347. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1348. goto err_buffer_cleanup;
  1349. }
  1350. bmc150_accel_interrupts_setup(indio_dev, data);
  1351. ret = bmc150_accel_triggers_setup(indio_dev, data);
  1352. if (ret)
  1353. goto err_buffer_cleanup;
  1354. if (block_supported) {
  1355. indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
  1356. indio_dev->info = &bmc150_accel_info_fifo;
  1357. iio_buffer_set_attrs(indio_dev->buffer,
  1358. bmc150_accel_fifo_attributes);
  1359. }
  1360. }
  1361. ret = pm_runtime_set_active(dev);
  1362. if (ret)
  1363. goto err_trigger_unregister;
  1364. pm_runtime_enable(dev);
  1365. pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
  1366. pm_runtime_use_autosuspend(dev);
  1367. ret = iio_device_register(indio_dev);
  1368. if (ret < 0) {
  1369. dev_err(dev, "Unable to register iio device\n");
  1370. goto err_trigger_unregister;
  1371. }
  1372. return 0;
  1373. err_trigger_unregister:
  1374. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1375. err_buffer_cleanup:
  1376. iio_triggered_buffer_cleanup(indio_dev);
  1377. return ret;
  1378. }
  1379. EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
  1380. int bmc150_accel_core_remove(struct device *dev)
  1381. {
  1382. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1383. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1384. iio_device_unregister(indio_dev);
  1385. pm_runtime_disable(dev);
  1386. pm_runtime_set_suspended(dev);
  1387. pm_runtime_put_noidle(dev);
  1388. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1389. iio_triggered_buffer_cleanup(indio_dev);
  1390. mutex_lock(&data->mutex);
  1391. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
  1392. mutex_unlock(&data->mutex);
  1393. return 0;
  1394. }
  1395. EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
  1396. #ifdef CONFIG_PM_SLEEP
  1397. static int bmc150_accel_suspend(struct device *dev)
  1398. {
  1399. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1400. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1401. mutex_lock(&data->mutex);
  1402. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1403. mutex_unlock(&data->mutex);
  1404. return 0;
  1405. }
  1406. static int bmc150_accel_resume(struct device *dev)
  1407. {
  1408. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1409. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1410. mutex_lock(&data->mutex);
  1411. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1412. bmc150_accel_fifo_set_mode(data);
  1413. mutex_unlock(&data->mutex);
  1414. return 0;
  1415. }
  1416. #endif
  1417. #ifdef CONFIG_PM
  1418. static int bmc150_accel_runtime_suspend(struct device *dev)
  1419. {
  1420. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1421. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1422. int ret;
  1423. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1424. if (ret < 0)
  1425. return -EAGAIN;
  1426. return 0;
  1427. }
  1428. static int bmc150_accel_runtime_resume(struct device *dev)
  1429. {
  1430. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1431. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1432. int ret;
  1433. int sleep_val;
  1434. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1435. if (ret < 0)
  1436. return ret;
  1437. ret = bmc150_accel_fifo_set_mode(data);
  1438. if (ret < 0)
  1439. return ret;
  1440. sleep_val = bmc150_accel_get_startup_times(data);
  1441. if (sleep_val < 20)
  1442. usleep_range(sleep_val * 1000, 20000);
  1443. else
  1444. msleep_interruptible(sleep_val);
  1445. return 0;
  1446. }
  1447. #endif
  1448. const struct dev_pm_ops bmc150_accel_pm_ops = {
  1449. SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
  1450. SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
  1451. bmc150_accel_runtime_resume, NULL)
  1452. };
  1453. EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
  1454. MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
  1455. MODULE_LICENSE("GPL v2");
  1456. MODULE_DESCRIPTION("BMC150 accelerometer driver");