coresight-etm-perf.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright(C) 2015 Linaro Limited. All rights reserved.
  4. * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
  5. */
  6. #include <linux/coresight.h>
  7. #include <linux/coresight-pmu.h>
  8. #include <linux/cpumask.h>
  9. #include <linux/device.h>
  10. #include <linux/list.h>
  11. #include <linux/mm.h>
  12. #include <linux/init.h>
  13. #include <linux/perf_event.h>
  14. #include <linux/slab.h>
  15. #include <linux/types.h>
  16. #include <linux/workqueue.h>
  17. #include "coresight-etm-perf.h"
  18. #include "coresight-priv.h"
  19. static struct pmu etm_pmu;
  20. static bool etm_perf_up;
  21. /**
  22. * struct etm_event_data - Coresight specifics associated to an event
  23. * @work: Handle to free allocated memory outside IRQ context.
  24. * @mask: Hold the CPU(s) this event was set for.
  25. * @snk_config: The sink configuration.
  26. * @path: An array of path, each slot for one CPU.
  27. */
  28. struct etm_event_data {
  29. struct work_struct work;
  30. cpumask_t mask;
  31. void *snk_config;
  32. struct list_head **path;
  33. };
  34. static DEFINE_PER_CPU(struct perf_output_handle, ctx_handle);
  35. static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
  36. /* ETMv3.5/PTM's ETMCR is 'config' */
  37. PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC));
  38. PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS));
  39. PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK));
  40. static struct attribute *etm_config_formats_attr[] = {
  41. &format_attr_cycacc.attr,
  42. &format_attr_timestamp.attr,
  43. &format_attr_retstack.attr,
  44. NULL,
  45. };
  46. static const struct attribute_group etm_pmu_format_group = {
  47. .name = "format",
  48. .attrs = etm_config_formats_attr,
  49. };
  50. static const struct attribute_group *etm_pmu_attr_groups[] = {
  51. &etm_pmu_format_group,
  52. NULL,
  53. };
  54. static void etm_event_read(struct perf_event *event) {}
  55. static int etm_addr_filters_alloc(struct perf_event *event)
  56. {
  57. struct etm_filters *filters;
  58. int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
  59. filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
  60. if (!filters)
  61. return -ENOMEM;
  62. if (event->parent)
  63. memcpy(filters, event->parent->hw.addr_filters,
  64. sizeof(*filters));
  65. event->hw.addr_filters = filters;
  66. return 0;
  67. }
  68. static void etm_event_destroy(struct perf_event *event)
  69. {
  70. kfree(event->hw.addr_filters);
  71. event->hw.addr_filters = NULL;
  72. }
  73. static int etm_event_init(struct perf_event *event)
  74. {
  75. int ret = 0;
  76. if (event->attr.type != etm_pmu.type) {
  77. ret = -ENOENT;
  78. goto out;
  79. }
  80. ret = etm_addr_filters_alloc(event);
  81. if (ret)
  82. goto out;
  83. event->destroy = etm_event_destroy;
  84. out:
  85. return ret;
  86. }
  87. static void free_event_data(struct work_struct *work)
  88. {
  89. int cpu;
  90. cpumask_t *mask;
  91. struct etm_event_data *event_data;
  92. struct coresight_device *sink;
  93. event_data = container_of(work, struct etm_event_data, work);
  94. mask = &event_data->mask;
  95. /*
  96. * First deal with the sink configuration. See comment in
  97. * etm_setup_aux() about why we take the first available path.
  98. */
  99. if (event_data->snk_config) {
  100. cpu = cpumask_first(mask);
  101. sink = coresight_get_sink(event_data->path[cpu]);
  102. if (sink_ops(sink)->free_buffer)
  103. sink_ops(sink)->free_buffer(event_data->snk_config);
  104. }
  105. for_each_cpu(cpu, mask) {
  106. if (!(IS_ERR_OR_NULL(event_data->path[cpu])))
  107. coresight_release_path(event_data->path[cpu]);
  108. }
  109. kfree(event_data->path);
  110. kfree(event_data);
  111. }
  112. static void *alloc_event_data(int cpu)
  113. {
  114. int size;
  115. cpumask_t *mask;
  116. struct etm_event_data *event_data;
  117. /* First get memory for the session's data */
  118. event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
  119. if (!event_data)
  120. return NULL;
  121. /* Make sure nothing disappears under us */
  122. get_online_cpus();
  123. size = num_online_cpus();
  124. mask = &event_data->mask;
  125. if (cpu != -1)
  126. cpumask_set_cpu(cpu, mask);
  127. else
  128. cpumask_copy(mask, cpu_online_mask);
  129. put_online_cpus();
  130. /*
  131. * Each CPU has a single path between source and destination. As such
  132. * allocate an array using CPU numbers as indexes. That way a path
  133. * for any CPU can easily be accessed at any given time. We proceed
  134. * the same way for sessions involving a single CPU. The cost of
  135. * unused memory when dealing with single CPU trace scenarios is small
  136. * compared to the cost of searching through an optimized array.
  137. */
  138. event_data->path = kcalloc(size,
  139. sizeof(struct list_head *), GFP_KERNEL);
  140. if (!event_data->path) {
  141. kfree(event_data);
  142. return NULL;
  143. }
  144. return event_data;
  145. }
  146. static void etm_free_aux(void *data)
  147. {
  148. struct etm_event_data *event_data = data;
  149. schedule_work(&event_data->work);
  150. }
  151. static void *etm_setup_aux(int event_cpu, void **pages,
  152. int nr_pages, bool overwrite)
  153. {
  154. int cpu;
  155. cpumask_t *mask;
  156. struct coresight_device *sink;
  157. struct etm_event_data *event_data = NULL;
  158. event_data = alloc_event_data(event_cpu);
  159. if (!event_data)
  160. return NULL;
  161. INIT_WORK(&event_data->work, free_event_data);
  162. /*
  163. * In theory nothing prevent tracers in a trace session from being
  164. * associated with different sinks, nor having a sink per tracer. But
  165. * until we have HW with this kind of topology we need to assume tracers
  166. * in a trace session are using the same sink. Therefore go through
  167. * the coresight bus and pick the first enabled sink.
  168. *
  169. * When operated from sysFS users are responsible to enable the sink
  170. * while from perf, the perf tools will do it based on the choice made
  171. * on the cmd line. As such the "enable_sink" flag in sysFS is reset.
  172. */
  173. sink = coresight_get_enabled_sink(true);
  174. if (!sink)
  175. goto err;
  176. mask = &event_data->mask;
  177. /* Setup the path for each CPU in a trace session */
  178. for_each_cpu(cpu, mask) {
  179. struct coresight_device *csdev;
  180. csdev = per_cpu(csdev_src, cpu);
  181. if (!csdev)
  182. goto err;
  183. /*
  184. * Building a path doesn't enable it, it simply builds a
  185. * list of devices from source to sink that can be
  186. * referenced later when the path is actually needed.
  187. */
  188. event_data->path[cpu] = coresight_build_path(csdev, sink);
  189. if (IS_ERR(event_data->path[cpu]))
  190. goto err;
  191. }
  192. if (!sink_ops(sink)->alloc_buffer)
  193. goto err;
  194. cpu = cpumask_first(mask);
  195. /* Get the AUX specific data from the sink buffer */
  196. event_data->snk_config =
  197. sink_ops(sink)->alloc_buffer(sink, cpu, pages,
  198. nr_pages, overwrite);
  199. if (!event_data->snk_config)
  200. goto err;
  201. out:
  202. return event_data;
  203. err:
  204. etm_free_aux(event_data);
  205. event_data = NULL;
  206. goto out;
  207. }
  208. static void etm_event_start(struct perf_event *event, int flags)
  209. {
  210. int cpu = smp_processor_id();
  211. struct etm_event_data *event_data;
  212. struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
  213. struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
  214. if (!csdev)
  215. goto fail;
  216. /*
  217. * Deal with the ring buffer API and get a handle on the
  218. * session's information.
  219. */
  220. event_data = perf_aux_output_begin(handle, event);
  221. if (!event_data)
  222. goto fail;
  223. /* We need a sink, no need to continue without one */
  224. sink = coresight_get_sink(event_data->path[cpu]);
  225. if (WARN_ON_ONCE(!sink || !sink_ops(sink)->set_buffer))
  226. goto fail_end_stop;
  227. /* Configure the sink */
  228. if (sink_ops(sink)->set_buffer(sink, handle,
  229. event_data->snk_config))
  230. goto fail_end_stop;
  231. /* Nothing will happen without a path */
  232. if (coresight_enable_path(event_data->path[cpu], CS_MODE_PERF))
  233. goto fail_end_stop;
  234. /* Tell the perf core the event is alive */
  235. event->hw.state = 0;
  236. /* Finally enable the tracer */
  237. if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
  238. goto fail_end_stop;
  239. out:
  240. return;
  241. fail_end_stop:
  242. perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
  243. perf_aux_output_end(handle, 0);
  244. fail:
  245. event->hw.state = PERF_HES_STOPPED;
  246. goto out;
  247. }
  248. static void etm_event_stop(struct perf_event *event, int mode)
  249. {
  250. int cpu = smp_processor_id();
  251. unsigned long size;
  252. struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
  253. struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
  254. struct etm_event_data *event_data = perf_get_aux(handle);
  255. if (event->hw.state == PERF_HES_STOPPED)
  256. return;
  257. if (!csdev)
  258. return;
  259. sink = coresight_get_sink(event_data->path[cpu]);
  260. if (!sink)
  261. return;
  262. /* stop tracer */
  263. source_ops(csdev)->disable(csdev, event);
  264. /* tell the core */
  265. event->hw.state = PERF_HES_STOPPED;
  266. if (mode & PERF_EF_UPDATE) {
  267. if (WARN_ON_ONCE(handle->event != event))
  268. return;
  269. /* update trace information */
  270. if (!sink_ops(sink)->update_buffer)
  271. return;
  272. sink_ops(sink)->update_buffer(sink, handle,
  273. event_data->snk_config);
  274. if (!sink_ops(sink)->reset_buffer)
  275. return;
  276. size = sink_ops(sink)->reset_buffer(sink, handle,
  277. event_data->snk_config);
  278. perf_aux_output_end(handle, size);
  279. }
  280. /* Disabling the path make its elements available to other sessions */
  281. coresight_disable_path(event_data->path[cpu]);
  282. }
  283. static int etm_event_add(struct perf_event *event, int mode)
  284. {
  285. int ret = 0;
  286. struct hw_perf_event *hwc = &event->hw;
  287. if (mode & PERF_EF_START) {
  288. etm_event_start(event, 0);
  289. if (hwc->state & PERF_HES_STOPPED)
  290. ret = -EINVAL;
  291. } else {
  292. hwc->state = PERF_HES_STOPPED;
  293. }
  294. return ret;
  295. }
  296. static void etm_event_del(struct perf_event *event, int mode)
  297. {
  298. etm_event_stop(event, PERF_EF_UPDATE);
  299. }
  300. static int etm_addr_filters_validate(struct list_head *filters)
  301. {
  302. bool range = false, address = false;
  303. int index = 0;
  304. struct perf_addr_filter *filter;
  305. list_for_each_entry(filter, filters, entry) {
  306. /*
  307. * No need to go further if there's no more
  308. * room for filters.
  309. */
  310. if (++index > ETM_ADDR_CMP_MAX)
  311. return -EOPNOTSUPP;
  312. /* filter::size==0 means single address trigger */
  313. if (filter->size) {
  314. /*
  315. * The existing code relies on START/STOP filters
  316. * being address filters.
  317. */
  318. if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
  319. filter->action == PERF_ADDR_FILTER_ACTION_STOP)
  320. return -EOPNOTSUPP;
  321. range = true;
  322. } else
  323. address = true;
  324. /*
  325. * At this time we don't allow range and start/stop filtering
  326. * to cohabitate, they have to be mutually exclusive.
  327. */
  328. if (range && address)
  329. return -EOPNOTSUPP;
  330. }
  331. return 0;
  332. }
  333. static void etm_addr_filters_sync(struct perf_event *event)
  334. {
  335. struct perf_addr_filters_head *head = perf_event_addr_filters(event);
  336. unsigned long start, stop, *offs = event->addr_filters_offs;
  337. struct etm_filters *filters = event->hw.addr_filters;
  338. struct etm_filter *etm_filter;
  339. struct perf_addr_filter *filter;
  340. int i = 0;
  341. list_for_each_entry(filter, &head->list, entry) {
  342. start = filter->offset + offs[i];
  343. stop = start + filter->size;
  344. etm_filter = &filters->etm_filter[i];
  345. switch (filter->action) {
  346. case PERF_ADDR_FILTER_ACTION_FILTER:
  347. etm_filter->start_addr = start;
  348. etm_filter->stop_addr = stop;
  349. etm_filter->type = ETM_ADDR_TYPE_RANGE;
  350. break;
  351. case PERF_ADDR_FILTER_ACTION_START:
  352. etm_filter->start_addr = start;
  353. etm_filter->type = ETM_ADDR_TYPE_START;
  354. break;
  355. case PERF_ADDR_FILTER_ACTION_STOP:
  356. etm_filter->stop_addr = stop;
  357. etm_filter->type = ETM_ADDR_TYPE_STOP;
  358. break;
  359. }
  360. i++;
  361. }
  362. filters->nr_filters = i;
  363. }
  364. int etm_perf_symlink(struct coresight_device *csdev, bool link)
  365. {
  366. char entry[sizeof("cpu9999999")];
  367. int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
  368. struct device *pmu_dev = etm_pmu.dev;
  369. struct device *cs_dev = &csdev->dev;
  370. sprintf(entry, "cpu%d", cpu);
  371. if (!etm_perf_up)
  372. return -EPROBE_DEFER;
  373. if (link) {
  374. ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
  375. if (ret)
  376. return ret;
  377. per_cpu(csdev_src, cpu) = csdev;
  378. } else {
  379. sysfs_remove_link(&pmu_dev->kobj, entry);
  380. per_cpu(csdev_src, cpu) = NULL;
  381. }
  382. return 0;
  383. }
  384. static int __init etm_perf_init(void)
  385. {
  386. int ret;
  387. etm_pmu.capabilities = PERF_PMU_CAP_EXCLUSIVE;
  388. etm_pmu.attr_groups = etm_pmu_attr_groups;
  389. etm_pmu.task_ctx_nr = perf_sw_context;
  390. etm_pmu.read = etm_event_read;
  391. etm_pmu.event_init = etm_event_init;
  392. etm_pmu.setup_aux = etm_setup_aux;
  393. etm_pmu.free_aux = etm_free_aux;
  394. etm_pmu.start = etm_event_start;
  395. etm_pmu.stop = etm_event_stop;
  396. etm_pmu.add = etm_event_add;
  397. etm_pmu.del = etm_event_del;
  398. etm_pmu.addr_filters_sync = etm_addr_filters_sync;
  399. etm_pmu.addr_filters_validate = etm_addr_filters_validate;
  400. etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX;
  401. ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
  402. if (ret == 0)
  403. etm_perf_up = true;
  404. return ret;
  405. }
  406. device_initcall(etm_perf_init);