hw.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835
  1. /*
  2. * Copyright 2006 Dave Airlie
  3. * Copyright 2007 Maarten Maathuis
  4. * Copyright 2007-2009 Stuart Bennett
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the "Software"),
  8. * to deal in the Software without restriction, including without limitation
  9. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10. * and/or sell copies of the Software, and to permit persons to whom the
  11. * Software is furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
  20. * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
  21. * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  22. * SOFTWARE.
  23. */
  24. #include <drm/drmP.h>
  25. #include "nouveau_drv.h"
  26. #include "hw.h"
  27. #include <subdev/bios/pll.h>
  28. #define CHIPSET_NFORCE 0x01a0
  29. #define CHIPSET_NFORCE2 0x01f0
  30. /*
  31. * misc hw access wrappers/control functions
  32. */
  33. void
  34. NVWriteVgaSeq(struct drm_device *dev, int head, uint8_t index, uint8_t value)
  35. {
  36. NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index);
  37. NVWritePRMVIO(dev, head, NV_PRMVIO_SR, value);
  38. }
  39. uint8_t
  40. NVReadVgaSeq(struct drm_device *dev, int head, uint8_t index)
  41. {
  42. NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index);
  43. return NVReadPRMVIO(dev, head, NV_PRMVIO_SR);
  44. }
  45. void
  46. NVWriteVgaGr(struct drm_device *dev, int head, uint8_t index, uint8_t value)
  47. {
  48. NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index);
  49. NVWritePRMVIO(dev, head, NV_PRMVIO_GX, value);
  50. }
  51. uint8_t
  52. NVReadVgaGr(struct drm_device *dev, int head, uint8_t index)
  53. {
  54. NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index);
  55. return NVReadPRMVIO(dev, head, NV_PRMVIO_GX);
  56. }
  57. /* CR44 takes values 0 (head A), 3 (head B) and 4 (heads tied)
  58. * it affects only the 8 bit vga io regs, which we access using mmio at
  59. * 0xc{0,2}3c*, 0x60{1,3}3*, and 0x68{1,3}3d*
  60. * in general, the set value of cr44 does not matter: reg access works as
  61. * expected and values can be set for the appropriate head by using a 0x2000
  62. * offset as required
  63. * however:
  64. * a) pre nv40, the head B range of PRMVIO regs at 0xc23c* was not exposed and
  65. * cr44 must be set to 0 or 3 for accessing values on the correct head
  66. * through the common 0xc03c* addresses
  67. * b) in tied mode (4) head B is programmed to the values set on head A, and
  68. * access using the head B addresses can have strange results, ergo we leave
  69. * tied mode in init once we know to what cr44 should be restored on exit
  70. *
  71. * the owner parameter is slightly abused:
  72. * 0 and 1 are treated as head values and so the set value is (owner * 3)
  73. * other values are treated as literal values to set
  74. */
  75. void
  76. NVSetOwner(struct drm_device *dev, int owner)
  77. {
  78. struct nouveau_drm *drm = nouveau_drm(dev);
  79. if (owner == 1)
  80. owner *= 3;
  81. if (drm->client.device.info.chipset == 0x11) {
  82. /* This might seem stupid, but the blob does it and
  83. * omitting it often locks the system up.
  84. */
  85. NVReadVgaCrtc(dev, 0, NV_CIO_SR_LOCK_INDEX);
  86. NVReadVgaCrtc(dev, 1, NV_CIO_SR_LOCK_INDEX);
  87. }
  88. /* CR44 is always changed on CRTC0 */
  89. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_44, owner);
  90. if (drm->client.device.info.chipset == 0x11) { /* set me harder */
  91. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner);
  92. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner);
  93. }
  94. }
  95. void
  96. NVBlankScreen(struct drm_device *dev, int head, bool blank)
  97. {
  98. unsigned char seq1;
  99. if (nv_two_heads(dev))
  100. NVSetOwner(dev, head);
  101. seq1 = NVReadVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX);
  102. NVVgaSeqReset(dev, head, true);
  103. if (blank)
  104. NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 | 0x20);
  105. else
  106. NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 & ~0x20);
  107. NVVgaSeqReset(dev, head, false);
  108. }
  109. /*
  110. * PLL getting
  111. */
  112. static void
  113. nouveau_hw_decode_pll(struct drm_device *dev, uint32_t reg1, uint32_t pll1,
  114. uint32_t pll2, struct nvkm_pll_vals *pllvals)
  115. {
  116. struct nouveau_drm *drm = nouveau_drm(dev);
  117. /* to force parsing as single stage (i.e. nv40 vplls) pass pll2 as 0 */
  118. /* log2P is & 0x7 as never more than 7, and nv30/35 only uses 3 bits */
  119. pllvals->log2P = (pll1 >> 16) & 0x7;
  120. pllvals->N2 = pllvals->M2 = 1;
  121. if (reg1 <= 0x405c) {
  122. pllvals->NM1 = pll2 & 0xffff;
  123. /* single stage NVPLL and VPLLs use 1 << 8, MPLL uses 1 << 12 */
  124. if (!(pll1 & 0x1100))
  125. pllvals->NM2 = pll2 >> 16;
  126. } else {
  127. pllvals->NM1 = pll1 & 0xffff;
  128. if (nv_two_reg_pll(dev) && pll2 & NV31_RAMDAC_ENABLE_VCO2)
  129. pllvals->NM2 = pll2 & 0xffff;
  130. else if (drm->client.device.info.chipset == 0x30 || drm->client.device.info.chipset == 0x35) {
  131. pllvals->M1 &= 0xf; /* only 4 bits */
  132. if (pll1 & NV30_RAMDAC_ENABLE_VCO2) {
  133. pllvals->M2 = (pll1 >> 4) & 0x7;
  134. pllvals->N2 = ((pll1 >> 21) & 0x18) |
  135. ((pll1 >> 19) & 0x7);
  136. }
  137. }
  138. }
  139. }
  140. int
  141. nouveau_hw_get_pllvals(struct drm_device *dev, enum nvbios_pll_type plltype,
  142. struct nvkm_pll_vals *pllvals)
  143. {
  144. struct nouveau_drm *drm = nouveau_drm(dev);
  145. struct nvif_object *device = &drm->client.device.object;
  146. struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
  147. uint32_t reg1, pll1, pll2 = 0;
  148. struct nvbios_pll pll_lim;
  149. int ret;
  150. ret = nvbios_pll_parse(bios, plltype, &pll_lim);
  151. if (ret || !(reg1 = pll_lim.reg))
  152. return -ENOENT;
  153. pll1 = nvif_rd32(device, reg1);
  154. if (reg1 <= 0x405c)
  155. pll2 = nvif_rd32(device, reg1 + 4);
  156. else if (nv_two_reg_pll(dev)) {
  157. uint32_t reg2 = reg1 + (reg1 == NV_RAMDAC_VPLL2 ? 0x5c : 0x70);
  158. pll2 = nvif_rd32(device, reg2);
  159. }
  160. if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS && reg1 >= NV_PRAMDAC_VPLL_COEFF) {
  161. uint32_t ramdac580 = NVReadRAMDAC(dev, 0, NV_PRAMDAC_580);
  162. /* check whether vpll has been forced into single stage mode */
  163. if (reg1 == NV_PRAMDAC_VPLL_COEFF) {
  164. if (ramdac580 & NV_RAMDAC_580_VPLL1_ACTIVE)
  165. pll2 = 0;
  166. } else
  167. if (ramdac580 & NV_RAMDAC_580_VPLL2_ACTIVE)
  168. pll2 = 0;
  169. }
  170. nouveau_hw_decode_pll(dev, reg1, pll1, pll2, pllvals);
  171. pllvals->refclk = pll_lim.refclk;
  172. return 0;
  173. }
  174. int
  175. nouveau_hw_pllvals_to_clk(struct nvkm_pll_vals *pv)
  176. {
  177. /* Avoid divide by zero if called at an inappropriate time */
  178. if (!pv->M1 || !pv->M2)
  179. return 0;
  180. return pv->N1 * pv->N2 * pv->refclk / (pv->M1 * pv->M2) >> pv->log2P;
  181. }
  182. int
  183. nouveau_hw_get_clock(struct drm_device *dev, enum nvbios_pll_type plltype)
  184. {
  185. struct nvkm_pll_vals pllvals;
  186. int ret;
  187. int domain;
  188. domain = pci_domain_nr(dev->pdev->bus);
  189. if (plltype == PLL_MEMORY &&
  190. (dev->pdev->device & 0x0ff0) == CHIPSET_NFORCE) {
  191. uint32_t mpllP;
  192. pci_read_config_dword(pci_get_domain_bus_and_slot(domain, 0, 3),
  193. 0x6c, &mpllP);
  194. mpllP = (mpllP >> 8) & 0xf;
  195. if (!mpllP)
  196. mpllP = 4;
  197. return 400000 / mpllP;
  198. } else
  199. if (plltype == PLL_MEMORY &&
  200. (dev->pdev->device & 0xff0) == CHIPSET_NFORCE2) {
  201. uint32_t clock;
  202. pci_read_config_dword(pci_get_domain_bus_and_slot(domain, 0, 5),
  203. 0x4c, &clock);
  204. return clock / 1000;
  205. }
  206. ret = nouveau_hw_get_pllvals(dev, plltype, &pllvals);
  207. if (ret)
  208. return ret;
  209. return nouveau_hw_pllvals_to_clk(&pllvals);
  210. }
  211. static void
  212. nouveau_hw_fix_bad_vpll(struct drm_device *dev, int head)
  213. {
  214. /* the vpll on an unused head can come up with a random value, way
  215. * beyond the pll limits. for some reason this causes the chip to
  216. * lock up when reading the dac palette regs, so set a valid pll here
  217. * when such a condition detected. only seen on nv11 to date
  218. */
  219. struct nouveau_drm *drm = nouveau_drm(dev);
  220. struct nvif_device *device = &drm->client.device;
  221. struct nvkm_clk *clk = nvxx_clk(device);
  222. struct nvkm_bios *bios = nvxx_bios(device);
  223. struct nvbios_pll pll_lim;
  224. struct nvkm_pll_vals pv;
  225. enum nvbios_pll_type pll = head ? PLL_VPLL1 : PLL_VPLL0;
  226. if (nvbios_pll_parse(bios, pll, &pll_lim))
  227. return;
  228. nouveau_hw_get_pllvals(dev, pll, &pv);
  229. if (pv.M1 >= pll_lim.vco1.min_m && pv.M1 <= pll_lim.vco1.max_m &&
  230. pv.N1 >= pll_lim.vco1.min_n && pv.N1 <= pll_lim.vco1.max_n &&
  231. pv.log2P <= pll_lim.max_p)
  232. return;
  233. NV_WARN(drm, "VPLL %d outwith limits, attempting to fix\n", head + 1);
  234. /* set lowest clock within static limits */
  235. pv.M1 = pll_lim.vco1.max_m;
  236. pv.N1 = pll_lim.vco1.min_n;
  237. pv.log2P = pll_lim.max_p_usable;
  238. clk->pll_prog(clk, pll_lim.reg, &pv);
  239. }
  240. /*
  241. * vga font save/restore
  242. */
  243. static void nouveau_vga_font_io(struct drm_device *dev,
  244. void __iomem *iovram,
  245. bool save, unsigned plane)
  246. {
  247. unsigned i;
  248. NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, 1 << plane);
  249. NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, plane);
  250. for (i = 0; i < 16384; i++) {
  251. if (save) {
  252. nv04_display(dev)->saved_vga_font[plane][i] =
  253. ioread32_native(iovram + i * 4);
  254. } else {
  255. iowrite32_native(nv04_display(dev)->saved_vga_font[plane][i],
  256. iovram + i * 4);
  257. }
  258. }
  259. }
  260. void
  261. nouveau_hw_save_vga_fonts(struct drm_device *dev, bool save)
  262. {
  263. struct nouveau_drm *drm = nouveau_drm(dev);
  264. uint8_t misc, gr4, gr5, gr6, seq2, seq4;
  265. bool graphicsmode;
  266. unsigned plane;
  267. void __iomem *iovram;
  268. if (nv_two_heads(dev))
  269. NVSetOwner(dev, 0);
  270. NVSetEnablePalette(dev, 0, true);
  271. graphicsmode = NVReadVgaAttr(dev, 0, NV_CIO_AR_MODE_INDEX) & 1;
  272. NVSetEnablePalette(dev, 0, false);
  273. if (graphicsmode) /* graphics mode => framebuffer => no need to save */
  274. return;
  275. NV_INFO(drm, "%sing VGA fonts\n", save ? "Sav" : "Restor");
  276. /* map first 64KiB of VRAM, holds VGA fonts etc */
  277. iovram = ioremap(pci_resource_start(dev->pdev, 1), 65536);
  278. if (!iovram) {
  279. NV_ERROR(drm, "Failed to map VRAM, "
  280. "cannot save/restore VGA fonts.\n");
  281. return;
  282. }
  283. if (nv_two_heads(dev))
  284. NVBlankScreen(dev, 1, true);
  285. NVBlankScreen(dev, 0, true);
  286. /* save control regs */
  287. misc = NVReadPRMVIO(dev, 0, NV_PRMVIO_MISC__READ);
  288. seq2 = NVReadVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX);
  289. seq4 = NVReadVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX);
  290. gr4 = NVReadVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX);
  291. gr5 = NVReadVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX);
  292. gr6 = NVReadVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX);
  293. NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, 0x67);
  294. NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, 0x6);
  295. NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, 0x0);
  296. NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, 0x5);
  297. /* store font in planes 0..3 */
  298. for (plane = 0; plane < 4; plane++)
  299. nouveau_vga_font_io(dev, iovram, save, plane);
  300. /* restore control regs */
  301. NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, misc);
  302. NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, gr4);
  303. NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, gr5);
  304. NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, gr6);
  305. NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, seq2);
  306. NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, seq4);
  307. if (nv_two_heads(dev))
  308. NVBlankScreen(dev, 1, false);
  309. NVBlankScreen(dev, 0, false);
  310. iounmap(iovram);
  311. }
  312. /*
  313. * mode state save/load
  314. */
  315. static void
  316. rd_cio_state(struct drm_device *dev, int head,
  317. struct nv04_crtc_reg *crtcstate, int index)
  318. {
  319. crtcstate->CRTC[index] = NVReadVgaCrtc(dev, head, index);
  320. }
  321. static void
  322. wr_cio_state(struct drm_device *dev, int head,
  323. struct nv04_crtc_reg *crtcstate, int index)
  324. {
  325. NVWriteVgaCrtc(dev, head, index, crtcstate->CRTC[index]);
  326. }
  327. static void
  328. nv_save_state_ramdac(struct drm_device *dev, int head,
  329. struct nv04_mode_state *state)
  330. {
  331. struct nouveau_drm *drm = nouveau_drm(dev);
  332. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  333. int i;
  334. if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
  335. regp->nv10_cursync = NVReadRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC);
  336. nouveau_hw_get_pllvals(dev, head ? PLL_VPLL1 : PLL_VPLL0, &regp->pllvals);
  337. state->pllsel = NVReadRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT);
  338. if (nv_two_heads(dev))
  339. state->sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
  340. if (drm->client.device.info.chipset == 0x11)
  341. regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11);
  342. regp->ramdac_gen_ctrl = NVReadRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL);
  343. if (nv_gf4_disp_arch(dev))
  344. regp->ramdac_630 = NVReadRAMDAC(dev, head, NV_PRAMDAC_630);
  345. if (drm->client.device.info.chipset >= 0x30)
  346. regp->ramdac_634 = NVReadRAMDAC(dev, head, NV_PRAMDAC_634);
  347. regp->tv_setup = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP);
  348. regp->tv_vtotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL);
  349. regp->tv_vskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW);
  350. regp->tv_vsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY);
  351. regp->tv_htotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL);
  352. regp->tv_hskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW);
  353. regp->tv_hsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY);
  354. regp->tv_hsync_delay2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2);
  355. for (i = 0; i < 7; i++) {
  356. uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4);
  357. regp->fp_vert_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg);
  358. regp->fp_horiz_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg + 0x20);
  359. }
  360. if (nv_gf4_disp_arch(dev)) {
  361. regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_FP_DITHER);
  362. for (i = 0; i < 3; i++) {
  363. regp->dither_regs[i] = NVReadRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4);
  364. regp->dither_regs[i + 3] = NVReadRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4);
  365. }
  366. }
  367. regp->fp_control = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
  368. regp->fp_debug_0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0);
  369. if (!nv_gf4_disp_arch(dev) && head == 0) {
  370. /* early chips don't allow access to PRAMDAC_TMDS_* without
  371. * the head A FPCLK on (nv11 even locks up) */
  372. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0 &
  373. ~NV_PRAMDAC_FP_DEBUG_0_PWRDOWN_FPCLK);
  374. }
  375. regp->fp_debug_1 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1);
  376. regp->fp_debug_2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2);
  377. regp->fp_margin_color = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR);
  378. if (nv_gf4_disp_arch(dev))
  379. regp->ramdac_8c0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_8C0);
  380. if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) {
  381. regp->ramdac_a20 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A20);
  382. regp->ramdac_a24 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A24);
  383. regp->ramdac_a34 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A34);
  384. for (i = 0; i < 38; i++)
  385. regp->ctv_regs[i] = NVReadRAMDAC(dev, head,
  386. NV_PRAMDAC_CTV + 4*i);
  387. }
  388. }
  389. static void
  390. nv_load_state_ramdac(struct drm_device *dev, int head,
  391. struct nv04_mode_state *state)
  392. {
  393. struct nouveau_drm *drm = nouveau_drm(dev);
  394. struct nvkm_clk *clk = nvxx_clk(&drm->client.device);
  395. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  396. uint32_t pllreg = head ? NV_RAMDAC_VPLL2 : NV_PRAMDAC_VPLL_COEFF;
  397. int i;
  398. if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS)
  399. NVWriteRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC, regp->nv10_cursync);
  400. clk->pll_prog(clk, pllreg, &regp->pllvals);
  401. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT, state->pllsel);
  402. if (nv_two_heads(dev))
  403. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, state->sel_clk);
  404. if (drm->client.device.info.chipset == 0x11)
  405. NVWriteRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11, regp->dither);
  406. NVWriteRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL, regp->ramdac_gen_ctrl);
  407. if (nv_gf4_disp_arch(dev))
  408. NVWriteRAMDAC(dev, head, NV_PRAMDAC_630, regp->ramdac_630);
  409. if (drm->client.device.info.chipset >= 0x30)
  410. NVWriteRAMDAC(dev, head, NV_PRAMDAC_634, regp->ramdac_634);
  411. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP, regp->tv_setup);
  412. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL, regp->tv_vtotal);
  413. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW, regp->tv_vskew);
  414. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY, regp->tv_vsync_delay);
  415. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL, regp->tv_htotal);
  416. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW, regp->tv_hskew);
  417. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY, regp->tv_hsync_delay);
  418. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2, regp->tv_hsync_delay2);
  419. for (i = 0; i < 7; i++) {
  420. uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4);
  421. NVWriteRAMDAC(dev, head, ramdac_reg, regp->fp_vert_regs[i]);
  422. NVWriteRAMDAC(dev, head, ramdac_reg + 0x20, regp->fp_horiz_regs[i]);
  423. }
  424. if (nv_gf4_disp_arch(dev)) {
  425. NVWriteRAMDAC(dev, head, NV_RAMDAC_FP_DITHER, regp->dither);
  426. for (i = 0; i < 3; i++) {
  427. NVWriteRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4, regp->dither_regs[i]);
  428. NVWriteRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4, regp->dither_regs[i + 3]);
  429. }
  430. }
  431. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, regp->fp_control);
  432. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0);
  433. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1, regp->fp_debug_1);
  434. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2, regp->fp_debug_2);
  435. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR, regp->fp_margin_color);
  436. if (nv_gf4_disp_arch(dev))
  437. NVWriteRAMDAC(dev, head, NV_PRAMDAC_8C0, regp->ramdac_8c0);
  438. if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) {
  439. NVWriteRAMDAC(dev, head, NV_PRAMDAC_A20, regp->ramdac_a20);
  440. NVWriteRAMDAC(dev, head, NV_PRAMDAC_A24, regp->ramdac_a24);
  441. NVWriteRAMDAC(dev, head, NV_PRAMDAC_A34, regp->ramdac_a34);
  442. for (i = 0; i < 38; i++)
  443. NVWriteRAMDAC(dev, head,
  444. NV_PRAMDAC_CTV + 4*i, regp->ctv_regs[i]);
  445. }
  446. }
  447. static void
  448. nv_save_state_vga(struct drm_device *dev, int head,
  449. struct nv04_mode_state *state)
  450. {
  451. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  452. int i;
  453. regp->MiscOutReg = NVReadPRMVIO(dev, head, NV_PRMVIO_MISC__READ);
  454. for (i = 0; i < 25; i++)
  455. rd_cio_state(dev, head, regp, i);
  456. NVSetEnablePalette(dev, head, true);
  457. for (i = 0; i < 21; i++)
  458. regp->Attribute[i] = NVReadVgaAttr(dev, head, i);
  459. NVSetEnablePalette(dev, head, false);
  460. for (i = 0; i < 9; i++)
  461. regp->Graphics[i] = NVReadVgaGr(dev, head, i);
  462. for (i = 0; i < 5; i++)
  463. regp->Sequencer[i] = NVReadVgaSeq(dev, head, i);
  464. }
  465. static void
  466. nv_load_state_vga(struct drm_device *dev, int head,
  467. struct nv04_mode_state *state)
  468. {
  469. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  470. int i;
  471. NVWritePRMVIO(dev, head, NV_PRMVIO_MISC__WRITE, regp->MiscOutReg);
  472. for (i = 0; i < 5; i++)
  473. NVWriteVgaSeq(dev, head, i, regp->Sequencer[i]);
  474. nv_lock_vga_crtc_base(dev, head, false);
  475. for (i = 0; i < 25; i++)
  476. wr_cio_state(dev, head, regp, i);
  477. nv_lock_vga_crtc_base(dev, head, true);
  478. for (i = 0; i < 9; i++)
  479. NVWriteVgaGr(dev, head, i, regp->Graphics[i]);
  480. NVSetEnablePalette(dev, head, true);
  481. for (i = 0; i < 21; i++)
  482. NVWriteVgaAttr(dev, head, i, regp->Attribute[i]);
  483. NVSetEnablePalette(dev, head, false);
  484. }
  485. static void
  486. nv_save_state_ext(struct drm_device *dev, int head,
  487. struct nv04_mode_state *state)
  488. {
  489. struct nouveau_drm *drm = nouveau_drm(dev);
  490. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  491. int i;
  492. rd_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX);
  493. rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX);
  494. rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX);
  495. rd_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX);
  496. rd_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX);
  497. rd_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX);
  498. rd_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX);
  499. rd_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX);
  500. rd_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX);
  501. rd_cio_state(dev, head, regp, NV_CIO_CRE_21);
  502. if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_KELVIN)
  503. rd_cio_state(dev, head, regp, NV_CIO_CRE_47);
  504. if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
  505. rd_cio_state(dev, head, regp, 0x9f);
  506. rd_cio_state(dev, head, regp, NV_CIO_CRE_49);
  507. rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX);
  508. rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX);
  509. rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX);
  510. rd_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX);
  511. if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
  512. regp->crtc_830 = NVReadCRTC(dev, head, NV_PCRTC_830);
  513. regp->crtc_834 = NVReadCRTC(dev, head, NV_PCRTC_834);
  514. if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
  515. regp->gpio_ext = NVReadCRTC(dev, head, NV_PCRTC_GPIO_EXT);
  516. if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE)
  517. regp->crtc_850 = NVReadCRTC(dev, head, NV_PCRTC_850);
  518. if (nv_two_heads(dev))
  519. regp->crtc_eng_ctrl = NVReadCRTC(dev, head, NV_PCRTC_ENGINE_CTRL);
  520. regp->cursor_cfg = NVReadCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG);
  521. }
  522. regp->crtc_cfg = NVReadCRTC(dev, head, NV_PCRTC_CONFIG);
  523. rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX);
  524. rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX);
  525. if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
  526. rd_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX);
  527. rd_cio_state(dev, head, regp, NV_CIO_CRE_CSB);
  528. rd_cio_state(dev, head, regp, NV_CIO_CRE_4B);
  529. rd_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY);
  530. }
  531. /* NV11 and NV20 don't have this, they stop at 0x52. */
  532. if (nv_gf4_disp_arch(dev)) {
  533. rd_cio_state(dev, head, regp, NV_CIO_CRE_42);
  534. rd_cio_state(dev, head, regp, NV_CIO_CRE_53);
  535. rd_cio_state(dev, head, regp, NV_CIO_CRE_54);
  536. for (i = 0; i < 0x10; i++)
  537. regp->CR58[i] = NVReadVgaCrtc5758(dev, head, i);
  538. rd_cio_state(dev, head, regp, NV_CIO_CRE_59);
  539. rd_cio_state(dev, head, regp, NV_CIO_CRE_5B);
  540. rd_cio_state(dev, head, regp, NV_CIO_CRE_85);
  541. rd_cio_state(dev, head, regp, NV_CIO_CRE_86);
  542. }
  543. regp->fb_start = NVReadCRTC(dev, head, NV_PCRTC_START);
  544. }
  545. static void
  546. nv_load_state_ext(struct drm_device *dev, int head,
  547. struct nv04_mode_state *state)
  548. {
  549. struct nouveau_drm *drm = nouveau_drm(dev);
  550. struct nvif_object *device = &drm->client.device.object;
  551. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  552. uint32_t reg900;
  553. int i;
  554. if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
  555. if (nv_two_heads(dev))
  556. /* setting ENGINE_CTRL (EC) *must* come before
  557. * CIO_CRE_LCD, as writing CRE_LCD sets bits 16 & 17 in
  558. * EC that should not be overwritten by writing stale EC
  559. */
  560. NVWriteCRTC(dev, head, NV_PCRTC_ENGINE_CTRL, regp->crtc_eng_ctrl);
  561. nvif_wr32(device, NV_PVIDEO_STOP, 1);
  562. nvif_wr32(device, NV_PVIDEO_INTR_EN, 0);
  563. nvif_wr32(device, NV_PVIDEO_OFFSET_BUFF(0), 0);
  564. nvif_wr32(device, NV_PVIDEO_OFFSET_BUFF(1), 0);
  565. nvif_wr32(device, NV_PVIDEO_LIMIT(0), drm->client.device.info.ram_size - 1);
  566. nvif_wr32(device, NV_PVIDEO_LIMIT(1), drm->client.device.info.ram_size - 1);
  567. nvif_wr32(device, NV_PVIDEO_UVPLANE_LIMIT(0), drm->client.device.info.ram_size - 1);
  568. nvif_wr32(device, NV_PVIDEO_UVPLANE_LIMIT(1), drm->client.device.info.ram_size - 1);
  569. nvif_wr32(device, NV_PBUS_POWERCTRL_2, 0);
  570. NVWriteCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG, regp->cursor_cfg);
  571. NVWriteCRTC(dev, head, NV_PCRTC_830, regp->crtc_830);
  572. NVWriteCRTC(dev, head, NV_PCRTC_834, regp->crtc_834);
  573. if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
  574. NVWriteCRTC(dev, head, NV_PCRTC_GPIO_EXT, regp->gpio_ext);
  575. if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE) {
  576. NVWriteCRTC(dev, head, NV_PCRTC_850, regp->crtc_850);
  577. reg900 = NVReadRAMDAC(dev, head, NV_PRAMDAC_900);
  578. if (regp->crtc_cfg == NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC)
  579. NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 | 0x10000);
  580. else
  581. NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 & ~0x10000);
  582. }
  583. }
  584. NVWriteCRTC(dev, head, NV_PCRTC_CONFIG, regp->crtc_cfg);
  585. wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX);
  586. wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX);
  587. wr_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX);
  588. wr_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX);
  589. wr_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX);
  590. wr_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX);
  591. wr_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX);
  592. wr_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX);
  593. wr_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX);
  594. if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_KELVIN)
  595. wr_cio_state(dev, head, regp, NV_CIO_CRE_47);
  596. if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_RANKINE)
  597. wr_cio_state(dev, head, regp, 0x9f);
  598. wr_cio_state(dev, head, regp, NV_CIO_CRE_49);
  599. wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX);
  600. wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX);
  601. wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX);
  602. if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CURIE)
  603. nv_fix_nv40_hw_cursor(dev, head);
  604. wr_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX);
  605. wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX);
  606. wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX);
  607. if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
  608. wr_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX);
  609. wr_cio_state(dev, head, regp, NV_CIO_CRE_CSB);
  610. wr_cio_state(dev, head, regp, NV_CIO_CRE_4B);
  611. wr_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY);
  612. }
  613. /* NV11 and NV20 stop at 0x52. */
  614. if (nv_gf4_disp_arch(dev)) {
  615. if (drm->client.device.info.family < NV_DEVICE_INFO_V0_KELVIN) {
  616. /* Not waiting for vertical retrace before modifying
  617. CRE_53/CRE_54 causes lockups. */
  618. nvif_msec(&drm->client.device, 650,
  619. if ( (nvif_rd32(device, NV_PRMCIO_INP0__COLOR) & 8))
  620. break;
  621. );
  622. nvif_msec(&drm->client.device, 650,
  623. if (!(nvif_rd32(device, NV_PRMCIO_INP0__COLOR) & 8))
  624. break;
  625. );
  626. }
  627. wr_cio_state(dev, head, regp, NV_CIO_CRE_42);
  628. wr_cio_state(dev, head, regp, NV_CIO_CRE_53);
  629. wr_cio_state(dev, head, regp, NV_CIO_CRE_54);
  630. for (i = 0; i < 0x10; i++)
  631. NVWriteVgaCrtc5758(dev, head, i, regp->CR58[i]);
  632. wr_cio_state(dev, head, regp, NV_CIO_CRE_59);
  633. wr_cio_state(dev, head, regp, NV_CIO_CRE_5B);
  634. wr_cio_state(dev, head, regp, NV_CIO_CRE_85);
  635. wr_cio_state(dev, head, regp, NV_CIO_CRE_86);
  636. }
  637. NVWriteCRTC(dev, head, NV_PCRTC_START, regp->fb_start);
  638. }
  639. static void
  640. nv_save_state_palette(struct drm_device *dev, int head,
  641. struct nv04_mode_state *state)
  642. {
  643. struct nvif_object *device = &nouveau_drm(dev)->client.device.object;
  644. int head_offset = head * NV_PRMDIO_SIZE, i;
  645. nvif_wr08(device, NV_PRMDIO_PIXEL_MASK + head_offset,
  646. NV_PRMDIO_PIXEL_MASK_MASK);
  647. nvif_wr08(device, NV_PRMDIO_READ_MODE_ADDRESS + head_offset, 0x0);
  648. for (i = 0; i < 768; i++) {
  649. state->crtc_reg[head].DAC[i] = nvif_rd08(device,
  650. NV_PRMDIO_PALETTE_DATA + head_offset);
  651. }
  652. NVSetEnablePalette(dev, head, false);
  653. }
  654. void
  655. nouveau_hw_load_state_palette(struct drm_device *dev, int head,
  656. struct nv04_mode_state *state)
  657. {
  658. struct nvif_object *device = &nouveau_drm(dev)->client.device.object;
  659. int head_offset = head * NV_PRMDIO_SIZE, i;
  660. nvif_wr08(device, NV_PRMDIO_PIXEL_MASK + head_offset,
  661. NV_PRMDIO_PIXEL_MASK_MASK);
  662. nvif_wr08(device, NV_PRMDIO_WRITE_MODE_ADDRESS + head_offset, 0x0);
  663. for (i = 0; i < 768; i++) {
  664. nvif_wr08(device, NV_PRMDIO_PALETTE_DATA + head_offset,
  665. state->crtc_reg[head].DAC[i]);
  666. }
  667. NVSetEnablePalette(dev, head, false);
  668. }
  669. void nouveau_hw_save_state(struct drm_device *dev, int head,
  670. struct nv04_mode_state *state)
  671. {
  672. struct nouveau_drm *drm = nouveau_drm(dev);
  673. if (drm->client.device.info.chipset == 0x11)
  674. /* NB: no attempt is made to restore the bad pll later on */
  675. nouveau_hw_fix_bad_vpll(dev, head);
  676. nv_save_state_ramdac(dev, head, state);
  677. nv_save_state_vga(dev, head, state);
  678. nv_save_state_palette(dev, head, state);
  679. nv_save_state_ext(dev, head, state);
  680. }
  681. void nouveau_hw_load_state(struct drm_device *dev, int head,
  682. struct nv04_mode_state *state)
  683. {
  684. NVVgaProtect(dev, head, true);
  685. nv_load_state_ramdac(dev, head, state);
  686. nv_load_state_ext(dev, head, state);
  687. nouveau_hw_load_state_palette(dev, head, state);
  688. nv_load_state_vga(dev, head, state);
  689. NVVgaProtect(dev, head, false);
  690. }