skx_edac.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189
  1. /*
  2. * EDAC driver for Intel(R) Xeon(R) Skylake processors
  3. * Copyright (c) 2016, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/acpi.h>
  17. #include <linux/dmi.h>
  18. #include <linux/pci.h>
  19. #include <linux/pci_ids.h>
  20. #include <linux/slab.h>
  21. #include <linux/delay.h>
  22. #include <linux/edac.h>
  23. #include <linux/mmzone.h>
  24. #include <linux/smp.h>
  25. #include <linux/bitmap.h>
  26. #include <linux/math64.h>
  27. #include <linux/mod_devicetable.h>
  28. #include <acpi/nfit.h>
  29. #include <asm/cpu_device_id.h>
  30. #include <asm/intel-family.h>
  31. #include <asm/processor.h>
  32. #include <asm/mce.h>
  33. #include "edac_module.h"
  34. #define EDAC_MOD_STR "skx_edac"
  35. /*
  36. * Debug macros
  37. */
  38. #define skx_printk(level, fmt, arg...) \
  39. edac_printk(level, "skx", fmt, ##arg)
  40. #define skx_mc_printk(mci, level, fmt, arg...) \
  41. edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
  42. /*
  43. * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  44. */
  45. #define GET_BITFIELD(v, lo, hi) \
  46. (((v) & GENMASK_ULL((hi), (lo))) >> (lo))
  47. static LIST_HEAD(skx_edac_list);
  48. static u64 skx_tolm, skx_tohm;
  49. #define NUM_IMC 2 /* memory controllers per socket */
  50. #define NUM_CHANNELS 3 /* channels per memory controller */
  51. #define NUM_DIMMS 2 /* Max DIMMS per channel */
  52. #define MASK26 0x3FFFFFF /* Mask for 2^26 */
  53. #define MASK29 0x1FFFFFFF /* Mask for 2^29 */
  54. /*
  55. * Each cpu socket contains some pci devices that provide global
  56. * information, and also some that are local to each of the two
  57. * memory controllers on the die.
  58. */
  59. struct skx_dev {
  60. struct list_head list;
  61. u8 bus[4];
  62. int seg;
  63. struct pci_dev *sad_all;
  64. struct pci_dev *util_all;
  65. u32 mcroute;
  66. struct skx_imc {
  67. struct mem_ctl_info *mci;
  68. u8 mc; /* system wide mc# */
  69. u8 lmc; /* socket relative mc# */
  70. u8 src_id, node_id;
  71. struct skx_channel {
  72. struct pci_dev *cdev;
  73. struct skx_dimm {
  74. u8 close_pg;
  75. u8 bank_xor_enable;
  76. u8 fine_grain_bank;
  77. u8 rowbits;
  78. u8 colbits;
  79. } dimms[NUM_DIMMS];
  80. } chan[NUM_CHANNELS];
  81. } imc[NUM_IMC];
  82. };
  83. static int skx_num_sockets;
  84. struct skx_pvt {
  85. struct skx_imc *imc;
  86. };
  87. struct decoded_addr {
  88. struct skx_dev *dev;
  89. u64 addr;
  90. int socket;
  91. int imc;
  92. int channel;
  93. u64 chan_addr;
  94. int sktways;
  95. int chanways;
  96. int dimm;
  97. int rank;
  98. int channel_rank;
  99. u64 rank_address;
  100. int row;
  101. int column;
  102. int bank_address;
  103. int bank_group;
  104. };
  105. static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
  106. {
  107. struct skx_dev *d;
  108. list_for_each_entry(d, &skx_edac_list, list) {
  109. if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
  110. return d;
  111. }
  112. return NULL;
  113. }
  114. enum munittype {
  115. CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
  116. };
  117. struct munit {
  118. u16 did;
  119. u16 devfn[NUM_IMC];
  120. u8 busidx;
  121. u8 per_socket;
  122. enum munittype mtype;
  123. };
  124. /*
  125. * List of PCI device ids that we need together with some device
  126. * number and function numbers to tell which memory controller the
  127. * device belongs to.
  128. */
  129. static const struct munit skx_all_munits[] = {
  130. { 0x2054, { }, 1, 1, SAD_ALL },
  131. { 0x2055, { }, 1, 1, UTIL_ALL },
  132. { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
  133. { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
  134. { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
  135. { 0x208e, { }, 1, 0, SAD },
  136. { }
  137. };
  138. /*
  139. * We use the per-socket device 0x2016 to count how many sockets are present,
  140. * and to detemine which PCI buses are associated with each socket. Allocate
  141. * and build the full list of all the skx_dev structures that we need here.
  142. */
  143. static int get_all_bus_mappings(void)
  144. {
  145. struct pci_dev *pdev, *prev;
  146. struct skx_dev *d;
  147. u32 reg;
  148. int ndev = 0;
  149. prev = NULL;
  150. for (;;) {
  151. pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev);
  152. if (!pdev)
  153. break;
  154. ndev++;
  155. d = kzalloc(sizeof(*d), GFP_KERNEL);
  156. if (!d) {
  157. pci_dev_put(pdev);
  158. return -ENOMEM;
  159. }
  160. d->seg = pci_domain_nr(pdev->bus);
  161. pci_read_config_dword(pdev, 0xCC, &reg);
  162. d->bus[0] = GET_BITFIELD(reg, 0, 7);
  163. d->bus[1] = GET_BITFIELD(reg, 8, 15);
  164. d->bus[2] = GET_BITFIELD(reg, 16, 23);
  165. d->bus[3] = GET_BITFIELD(reg, 24, 31);
  166. edac_dbg(2, "busses: %x, %x, %x, %x\n",
  167. d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
  168. list_add_tail(&d->list, &skx_edac_list);
  169. skx_num_sockets++;
  170. prev = pdev;
  171. }
  172. return ndev;
  173. }
  174. static int get_all_munits(const struct munit *m)
  175. {
  176. struct pci_dev *pdev, *prev;
  177. struct skx_dev *d;
  178. u32 reg;
  179. int i = 0, ndev = 0;
  180. prev = NULL;
  181. for (;;) {
  182. pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
  183. if (!pdev)
  184. break;
  185. ndev++;
  186. if (m->per_socket == NUM_IMC) {
  187. for (i = 0; i < NUM_IMC; i++)
  188. if (m->devfn[i] == pdev->devfn)
  189. break;
  190. if (i == NUM_IMC)
  191. goto fail;
  192. }
  193. d = get_skx_dev(pdev->bus, m->busidx);
  194. if (!d)
  195. goto fail;
  196. /* Be sure that the device is enabled */
  197. if (unlikely(pci_enable_device(pdev) < 0)) {
  198. skx_printk(KERN_ERR,
  199. "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did);
  200. goto fail;
  201. }
  202. switch (m->mtype) {
  203. case CHAN0: case CHAN1: case CHAN2:
  204. pci_dev_get(pdev);
  205. d->imc[i].chan[m->mtype].cdev = pdev;
  206. break;
  207. case SAD_ALL:
  208. pci_dev_get(pdev);
  209. d->sad_all = pdev;
  210. break;
  211. case UTIL_ALL:
  212. pci_dev_get(pdev);
  213. d->util_all = pdev;
  214. break;
  215. case SAD:
  216. /*
  217. * one of these devices per core, including cores
  218. * that don't exist on this SKU. Ignore any that
  219. * read a route table of zero, make sure all the
  220. * non-zero values match.
  221. */
  222. pci_read_config_dword(pdev, 0xB4, &reg);
  223. if (reg != 0) {
  224. if (d->mcroute == 0)
  225. d->mcroute = reg;
  226. else if (d->mcroute != reg) {
  227. skx_printk(KERN_ERR,
  228. "mcroute mismatch\n");
  229. goto fail;
  230. }
  231. }
  232. ndev--;
  233. break;
  234. }
  235. prev = pdev;
  236. }
  237. return ndev;
  238. fail:
  239. pci_dev_put(pdev);
  240. return -ENODEV;
  241. }
  242. static const struct x86_cpu_id skx_cpuids[] = {
  243. { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
  244. { }
  245. };
  246. MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
  247. static u8 get_src_id(struct skx_dev *d)
  248. {
  249. u32 reg;
  250. pci_read_config_dword(d->util_all, 0xF0, &reg);
  251. return GET_BITFIELD(reg, 12, 14);
  252. }
  253. static u8 skx_get_node_id(struct skx_dev *d)
  254. {
  255. u32 reg;
  256. pci_read_config_dword(d->util_all, 0xF4, &reg);
  257. return GET_BITFIELD(reg, 0, 2);
  258. }
  259. static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
  260. int maxval, char *name)
  261. {
  262. u32 val = GET_BITFIELD(reg, lobit, hibit);
  263. if (val < minval || val > maxval) {
  264. edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg);
  265. return -EINVAL;
  266. }
  267. return val + add;
  268. }
  269. #define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15)
  270. #define IS_NVDIMM_PRESENT(mcddrtcfg, i) GET_BITFIELD((mcddrtcfg), (i), (i))
  271. #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 0, 2, "ranks")
  272. #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows")
  273. #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols")
  274. static int get_width(u32 mtr)
  275. {
  276. switch (GET_BITFIELD(mtr, 8, 9)) {
  277. case 0:
  278. return DEV_X4;
  279. case 1:
  280. return DEV_X8;
  281. case 2:
  282. return DEV_X16;
  283. }
  284. return DEV_UNKNOWN;
  285. }
  286. static int skx_get_hi_lo(void)
  287. {
  288. struct pci_dev *pdev;
  289. u32 reg;
  290. pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL);
  291. if (!pdev) {
  292. edac_dbg(0, "Can't get tolm/tohm\n");
  293. return -ENODEV;
  294. }
  295. pci_read_config_dword(pdev, 0xD0, &reg);
  296. skx_tolm = reg;
  297. pci_read_config_dword(pdev, 0xD4, &reg);
  298. skx_tohm = reg;
  299. pci_read_config_dword(pdev, 0xD8, &reg);
  300. skx_tohm |= (u64)reg << 32;
  301. pci_dev_put(pdev);
  302. edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm);
  303. return 0;
  304. }
  305. static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
  306. struct skx_imc *imc, int chan, int dimmno)
  307. {
  308. int banks = 16, ranks, rows, cols, npages;
  309. u64 size;
  310. ranks = numrank(mtr);
  311. rows = numrow(mtr);
  312. cols = numcol(mtr);
  313. /*
  314. * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
  315. */
  316. size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
  317. npages = MiB_TO_PAGES(size);
  318. edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
  319. imc->mc, chan, dimmno, size, npages,
  320. banks, 1 << ranks, rows, cols);
  321. imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
  322. imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
  323. imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
  324. imc->chan[chan].dimms[dimmno].rowbits = rows;
  325. imc->chan[chan].dimms[dimmno].colbits = cols;
  326. dimm->nr_pages = npages;
  327. dimm->grain = 32;
  328. dimm->dtype = get_width(mtr);
  329. dimm->mtype = MEM_DDR4;
  330. dimm->edac_mode = EDAC_SECDED; /* likely better than this */
  331. snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
  332. imc->src_id, imc->lmc, chan, dimmno);
  333. return 1;
  334. }
  335. static int get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
  336. int chan, int dimmno)
  337. {
  338. int smbios_handle;
  339. u32 dev_handle;
  340. u16 flags;
  341. u64 size = 0;
  342. dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
  343. imc->src_id, 0);
  344. smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
  345. if (smbios_handle == -EOPNOTSUPP) {
  346. pr_warn_once(EDAC_MOD_STR ": Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n");
  347. goto unknown_size;
  348. }
  349. if (smbios_handle < 0) {
  350. skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=%x\n", dev_handle);
  351. goto unknown_size;
  352. }
  353. if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
  354. skx_printk(KERN_ERR, "NVDIMM ADR=%x is not mapped\n", dev_handle);
  355. goto unknown_size;
  356. }
  357. size = dmi_memdev_size(smbios_handle);
  358. if (size == ~0ull)
  359. skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=%x/SMBIOS=%x\n",
  360. dev_handle, smbios_handle);
  361. unknown_size:
  362. dimm->nr_pages = size >> PAGE_SHIFT;
  363. dimm->grain = 32;
  364. dimm->dtype = DEV_UNKNOWN;
  365. dimm->mtype = MEM_NVDIMM;
  366. dimm->edac_mode = EDAC_SECDED; /* likely better than this */
  367. edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu Mb (%u pages)\n",
  368. imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
  369. snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
  370. imc->src_id, imc->lmc, chan, dimmno);
  371. return (size == 0 || size == ~0ull) ? 0 : 1;
  372. }
  373. #define SKX_GET_MTMTR(dev, reg) \
  374. pci_read_config_dword((dev), 0x87c, &reg)
  375. static bool skx_check_ecc(struct pci_dev *pdev)
  376. {
  377. u32 mtmtr;
  378. SKX_GET_MTMTR(pdev, mtmtr);
  379. return !!GET_BITFIELD(mtmtr, 2, 2);
  380. }
  381. static int skx_get_dimm_config(struct mem_ctl_info *mci)
  382. {
  383. struct skx_pvt *pvt = mci->pvt_info;
  384. struct skx_imc *imc = pvt->imc;
  385. u32 mtr, amap, mcddrtcfg;
  386. struct dimm_info *dimm;
  387. int i, j;
  388. int ndimms;
  389. for (i = 0; i < NUM_CHANNELS; i++) {
  390. ndimms = 0;
  391. pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
  392. pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
  393. for (j = 0; j < NUM_DIMMS; j++) {
  394. dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
  395. mci->n_layers, i, j, 0);
  396. pci_read_config_dword(imc->chan[i].cdev,
  397. 0x80 + 4*j, &mtr);
  398. if (IS_DIMM_PRESENT(mtr))
  399. ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j);
  400. else if (IS_NVDIMM_PRESENT(mcddrtcfg, j))
  401. ndimms += get_nvdimm_info(dimm, imc, i, j);
  402. }
  403. if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
  404. skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
  405. return -ENODEV;
  406. }
  407. }
  408. return 0;
  409. }
  410. static void skx_unregister_mci(struct skx_imc *imc)
  411. {
  412. struct mem_ctl_info *mci = imc->mci;
  413. if (!mci)
  414. return;
  415. edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
  416. /* Remove MC sysfs nodes */
  417. edac_mc_del_mc(mci->pdev);
  418. edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
  419. kfree(mci->ctl_name);
  420. edac_mc_free(mci);
  421. }
  422. static int skx_register_mci(struct skx_imc *imc)
  423. {
  424. struct mem_ctl_info *mci;
  425. struct edac_mc_layer layers[2];
  426. struct pci_dev *pdev = imc->chan[0].cdev;
  427. struct skx_pvt *pvt;
  428. int rc;
  429. /* allocate a new MC control structure */
  430. layers[0].type = EDAC_MC_LAYER_CHANNEL;
  431. layers[0].size = NUM_CHANNELS;
  432. layers[0].is_virt_csrow = false;
  433. layers[1].type = EDAC_MC_LAYER_SLOT;
  434. layers[1].size = NUM_DIMMS;
  435. layers[1].is_virt_csrow = true;
  436. mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
  437. sizeof(struct skx_pvt));
  438. if (unlikely(!mci))
  439. return -ENOMEM;
  440. edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
  441. /* Associate skx_dev and mci for future usage */
  442. imc->mci = mci;
  443. pvt = mci->pvt_info;
  444. pvt->imc = imc;
  445. mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d",
  446. imc->node_id, imc->lmc);
  447. if (!mci->ctl_name) {
  448. rc = -ENOMEM;
  449. goto fail0;
  450. }
  451. mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
  452. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  453. mci->edac_cap = EDAC_FLAG_NONE;
  454. mci->mod_name = EDAC_MOD_STR;
  455. mci->dev_name = pci_name(imc->chan[0].cdev);
  456. mci->ctl_page_to_phys = NULL;
  457. rc = skx_get_dimm_config(mci);
  458. if (rc < 0)
  459. goto fail;
  460. /* record ptr to the generic device */
  461. mci->pdev = &pdev->dev;
  462. /* add this new MC control structure to EDAC's list of MCs */
  463. if (unlikely(edac_mc_add_mc(mci))) {
  464. edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
  465. rc = -EINVAL;
  466. goto fail;
  467. }
  468. return 0;
  469. fail:
  470. kfree(mci->ctl_name);
  471. fail0:
  472. edac_mc_free(mci);
  473. imc->mci = NULL;
  474. return rc;
  475. }
  476. #define SKX_MAX_SAD 24
  477. #define SKX_GET_SAD(d, i, reg) \
  478. pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &reg)
  479. #define SKX_GET_ILV(d, i, reg) \
  480. pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &reg)
  481. #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
  482. #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
  483. #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
  484. #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
  485. #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
  486. #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
  487. #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
  488. #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
  489. #define SKX_ILV_TARGET(tgt) ((tgt) & 7)
  490. static bool skx_sad_decode(struct decoded_addr *res)
  491. {
  492. struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list);
  493. u64 addr = res->addr;
  494. int i, idx, tgt, lchan, shift;
  495. u32 sad, ilv;
  496. u64 limit, prev_limit;
  497. int remote = 0;
  498. /* Simple sanity check for I/O space or out of range */
  499. if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
  500. edac_dbg(0, "Address %llx out of range\n", addr);
  501. return false;
  502. }
  503. restart:
  504. prev_limit = 0;
  505. for (i = 0; i < SKX_MAX_SAD; i++) {
  506. SKX_GET_SAD(d, i, sad);
  507. limit = SKX_SAD_LIMIT(sad);
  508. if (SKX_SAD_ENABLE(sad)) {
  509. if (addr >= prev_limit && addr <= limit)
  510. goto sad_found;
  511. }
  512. prev_limit = limit + 1;
  513. }
  514. edac_dbg(0, "No SAD entry for %llx\n", addr);
  515. return false;
  516. sad_found:
  517. SKX_GET_ILV(d, i, ilv);
  518. switch (SKX_SAD_INTERLEAVE(sad)) {
  519. case 0:
  520. idx = GET_BITFIELD(addr, 6, 8);
  521. break;
  522. case 1:
  523. idx = GET_BITFIELD(addr, 8, 10);
  524. break;
  525. case 2:
  526. idx = GET_BITFIELD(addr, 12, 14);
  527. break;
  528. case 3:
  529. idx = GET_BITFIELD(addr, 30, 32);
  530. break;
  531. }
  532. tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
  533. /* If point to another node, find it and start over */
  534. if (SKX_ILV_REMOTE(tgt)) {
  535. if (remote) {
  536. edac_dbg(0, "Double remote!\n");
  537. return false;
  538. }
  539. remote = 1;
  540. list_for_each_entry(d, &skx_edac_list, list) {
  541. if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
  542. goto restart;
  543. }
  544. edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
  545. return false;
  546. }
  547. if (SKX_SAD_MOD3(sad) == 0)
  548. lchan = SKX_ILV_TARGET(tgt);
  549. else {
  550. switch (SKX_SAD_MOD3MODE(sad)) {
  551. case 0:
  552. shift = 6;
  553. break;
  554. case 1:
  555. shift = 8;
  556. break;
  557. case 2:
  558. shift = 12;
  559. break;
  560. default:
  561. edac_dbg(0, "illegal mod3mode\n");
  562. return false;
  563. }
  564. switch (SKX_SAD_MOD3ASMOD2(sad)) {
  565. case 0:
  566. lchan = (addr >> shift) % 3;
  567. break;
  568. case 1:
  569. lchan = (addr >> shift) % 2;
  570. break;
  571. case 2:
  572. lchan = (addr >> shift) % 2;
  573. lchan = (lchan << 1) | ~lchan;
  574. break;
  575. case 3:
  576. lchan = ((addr >> shift) % 2) << 1;
  577. break;
  578. }
  579. lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
  580. }
  581. res->dev = d;
  582. res->socket = d->imc[0].src_id;
  583. res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
  584. res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
  585. edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n",
  586. res->addr, res->socket, res->imc, res->channel);
  587. return true;
  588. }
  589. #define SKX_MAX_TAD 8
  590. #define SKX_GET_TADBASE(d, mc, i, reg) \
  591. pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &reg)
  592. #define SKX_GET_TADWAYNESS(d, mc, i, reg) \
  593. pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &reg)
  594. #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
  595. pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &reg)
  596. #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
  597. #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
  598. #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
  599. #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
  600. #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
  601. #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
  602. #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
  603. /* which bit used for both socket and channel interleave */
  604. static int skx_granularity[] = { 6, 8, 12, 30 };
  605. static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
  606. {
  607. addr >>= shift;
  608. addr /= ways;
  609. addr <<= shift;
  610. return addr | (lowbits & ((1ull << shift) - 1));
  611. }
  612. static bool skx_tad_decode(struct decoded_addr *res)
  613. {
  614. int i;
  615. u32 base, wayness, chnilvoffset;
  616. int skt_interleave_bit, chn_interleave_bit;
  617. u64 channel_addr;
  618. for (i = 0; i < SKX_MAX_TAD; i++) {
  619. SKX_GET_TADBASE(res->dev, res->imc, i, base);
  620. SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
  621. if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
  622. goto tad_found;
  623. }
  624. edac_dbg(0, "No TAD entry for %llx\n", res->addr);
  625. return false;
  626. tad_found:
  627. res->sktways = SKX_TAD_SKTWAYS(wayness);
  628. res->chanways = SKX_TAD_CHNWAYS(wayness);
  629. skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
  630. chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
  631. SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
  632. channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
  633. if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
  634. /* Must handle channel first, then socket */
  635. channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
  636. res->chanways, channel_addr);
  637. channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
  638. res->sktways, channel_addr);
  639. } else {
  640. /* Handle socket then channel. Preserve low bits from original address */
  641. channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
  642. res->sktways, res->addr);
  643. channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
  644. res->chanways, res->addr);
  645. }
  646. res->chan_addr = channel_addr;
  647. edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n",
  648. res->addr, res->chan_addr, res->sktways, res->chanways);
  649. return true;
  650. }
  651. #define SKX_MAX_RIR 4
  652. #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
  653. pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
  654. 0x108 + 4 * (i), &reg)
  655. #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
  656. pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
  657. 0x120 + 16 * idx + 4 * (i), &reg)
  658. #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
  659. #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
  660. #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
  661. #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
  662. #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
  663. static bool skx_rir_decode(struct decoded_addr *res)
  664. {
  665. int i, idx, chan_rank;
  666. int shift;
  667. u32 rirway, rirlv;
  668. u64 rank_addr, prev_limit = 0, limit;
  669. if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
  670. shift = 6;
  671. else
  672. shift = 13;
  673. for (i = 0; i < SKX_MAX_RIR; i++) {
  674. SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
  675. limit = SKX_RIR_LIMIT(rirway);
  676. if (SKX_RIR_VALID(rirway)) {
  677. if (prev_limit <= res->chan_addr &&
  678. res->chan_addr <= limit)
  679. goto rir_found;
  680. }
  681. prev_limit = limit;
  682. }
  683. edac_dbg(0, "No RIR entry for %llx\n", res->addr);
  684. return false;
  685. rir_found:
  686. rank_addr = res->chan_addr >> shift;
  687. rank_addr /= SKX_RIR_WAYS(rirway);
  688. rank_addr <<= shift;
  689. rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
  690. res->rank_address = rank_addr;
  691. idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
  692. SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
  693. res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
  694. chan_rank = SKX_RIR_CHAN_RANK(rirlv);
  695. res->channel_rank = chan_rank;
  696. res->dimm = chan_rank / 4;
  697. res->rank = chan_rank % 4;
  698. edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n",
  699. res->addr, res->dimm, res->rank,
  700. res->channel_rank, res->rank_address);
  701. return true;
  702. }
  703. static u8 skx_close_row[] = {
  704. 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
  705. };
  706. static u8 skx_close_column[] = {
  707. 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
  708. };
  709. static u8 skx_open_row[] = {
  710. 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
  711. };
  712. static u8 skx_open_column[] = {
  713. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
  714. };
  715. static u8 skx_open_fine_column[] = {
  716. 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
  717. };
  718. static int skx_bits(u64 addr, int nbits, u8 *bits)
  719. {
  720. int i, res = 0;
  721. for (i = 0; i < nbits; i++)
  722. res |= ((addr >> bits[i]) & 1) << i;
  723. return res;
  724. }
  725. static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
  726. {
  727. int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
  728. if (do_xor)
  729. ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
  730. return ret;
  731. }
  732. static bool skx_mad_decode(struct decoded_addr *r)
  733. {
  734. struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
  735. int bg0 = dimm->fine_grain_bank ? 6 : 13;
  736. if (dimm->close_pg) {
  737. r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
  738. r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
  739. r->column |= 0x400; /* C10 is autoprecharge, always set */
  740. r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
  741. r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
  742. } else {
  743. r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
  744. if (dimm->fine_grain_bank)
  745. r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
  746. else
  747. r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
  748. r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
  749. r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
  750. }
  751. r->row &= (1u << dimm->rowbits) - 1;
  752. edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n",
  753. r->addr, r->row, r->column, r->bank_address,
  754. r->bank_group);
  755. return true;
  756. }
  757. static bool skx_decode(struct decoded_addr *res)
  758. {
  759. return skx_sad_decode(res) && skx_tad_decode(res) &&
  760. skx_rir_decode(res) && skx_mad_decode(res);
  761. }
  762. #ifdef CONFIG_EDAC_DEBUG
  763. /*
  764. * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
  765. * Write an address to this file to exercise the address decode
  766. * logic in this driver.
  767. */
  768. static struct dentry *skx_test;
  769. static u64 skx_fake_addr;
  770. static int debugfs_u64_set(void *data, u64 val)
  771. {
  772. struct decoded_addr res;
  773. res.addr = val;
  774. skx_decode(&res);
  775. return 0;
  776. }
  777. DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
  778. static struct dentry *mydebugfs_create(const char *name, umode_t mode,
  779. struct dentry *parent, u64 *value)
  780. {
  781. return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
  782. }
  783. static void setup_skx_debug(void)
  784. {
  785. skx_test = debugfs_create_dir("skx_edac_test", NULL);
  786. mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
  787. }
  788. static void teardown_skx_debug(void)
  789. {
  790. debugfs_remove_recursive(skx_test);
  791. }
  792. #else
  793. static void setup_skx_debug(void)
  794. {
  795. }
  796. static void teardown_skx_debug(void)
  797. {
  798. }
  799. #endif /*CONFIG_EDAC_DEBUG*/
  800. static void skx_mce_output_error(struct mem_ctl_info *mci,
  801. const struct mce *m,
  802. struct decoded_addr *res)
  803. {
  804. enum hw_event_mc_err_type tp_event;
  805. char *type, *optype, msg[256];
  806. bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
  807. bool overflow = GET_BITFIELD(m->status, 62, 62);
  808. bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
  809. bool recoverable;
  810. u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
  811. u32 mscod = GET_BITFIELD(m->status, 16, 31);
  812. u32 errcode = GET_BITFIELD(m->status, 0, 15);
  813. u32 optypenum = GET_BITFIELD(m->status, 4, 6);
  814. recoverable = GET_BITFIELD(m->status, 56, 56);
  815. if (uncorrected_error) {
  816. if (ripv) {
  817. type = "FATAL";
  818. tp_event = HW_EVENT_ERR_FATAL;
  819. } else {
  820. type = "NON_FATAL";
  821. tp_event = HW_EVENT_ERR_UNCORRECTED;
  822. }
  823. } else {
  824. type = "CORRECTED";
  825. tp_event = HW_EVENT_ERR_CORRECTED;
  826. }
  827. /*
  828. * According with Table 15-9 of the Intel Architecture spec vol 3A,
  829. * memory errors should fit in this mask:
  830. * 000f 0000 1mmm cccc (binary)
  831. * where:
  832. * f = Correction Report Filtering Bit. If 1, subsequent errors
  833. * won't be shown
  834. * mmm = error type
  835. * cccc = channel
  836. * If the mask doesn't match, report an error to the parsing logic
  837. */
  838. if (!((errcode & 0xef80) == 0x80)) {
  839. optype = "Can't parse: it is not a mem";
  840. } else {
  841. switch (optypenum) {
  842. case 0:
  843. optype = "generic undef request error";
  844. break;
  845. case 1:
  846. optype = "memory read error";
  847. break;
  848. case 2:
  849. optype = "memory write error";
  850. break;
  851. case 3:
  852. optype = "addr/cmd error";
  853. break;
  854. case 4:
  855. optype = "memory scrubbing error";
  856. break;
  857. default:
  858. optype = "reserved";
  859. break;
  860. }
  861. }
  862. snprintf(msg, sizeof(msg),
  863. "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x",
  864. overflow ? " OVERFLOW" : "",
  865. (uncorrected_error && recoverable) ? " recoverable" : "",
  866. mscod, errcode,
  867. res->socket, res->imc, res->rank,
  868. res->bank_group, res->bank_address, res->row, res->column);
  869. edac_dbg(0, "%s\n", msg);
  870. /* Call the helper to output message */
  871. edac_mc_handle_error(tp_event, mci, core_err_cnt,
  872. m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
  873. res->channel, res->dimm, -1,
  874. optype, msg);
  875. }
  876. static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
  877. void *data)
  878. {
  879. struct mce *mce = (struct mce *)data;
  880. struct decoded_addr res;
  881. struct mem_ctl_info *mci;
  882. char *type;
  883. if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
  884. return NOTIFY_DONE;
  885. /* ignore unless this is memory related with an address */
  886. if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
  887. return NOTIFY_DONE;
  888. res.addr = mce->addr;
  889. if (!skx_decode(&res))
  890. return NOTIFY_DONE;
  891. mci = res.dev->imc[res.imc].mci;
  892. if (mce->mcgstatus & MCG_STATUS_MCIP)
  893. type = "Exception";
  894. else
  895. type = "Event";
  896. skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
  897. skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
  898. "Bank %d: %016Lx\n", mce->extcpu, type,
  899. mce->mcgstatus, mce->bank, mce->status);
  900. skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
  901. skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
  902. skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
  903. skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
  904. "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
  905. mce->time, mce->socketid, mce->apicid);
  906. skx_mce_output_error(mci, mce, &res);
  907. return NOTIFY_DONE;
  908. }
  909. static struct notifier_block skx_mce_dec = {
  910. .notifier_call = skx_mce_check_error,
  911. .priority = MCE_PRIO_EDAC,
  912. };
  913. static void skx_remove(void)
  914. {
  915. int i, j;
  916. struct skx_dev *d, *tmp;
  917. edac_dbg(0, "\n");
  918. list_for_each_entry_safe(d, tmp, &skx_edac_list, list) {
  919. list_del(&d->list);
  920. for (i = 0; i < NUM_IMC; i++) {
  921. skx_unregister_mci(&d->imc[i]);
  922. for (j = 0; j < NUM_CHANNELS; j++)
  923. pci_dev_put(d->imc[i].chan[j].cdev);
  924. }
  925. pci_dev_put(d->util_all);
  926. pci_dev_put(d->sad_all);
  927. kfree(d);
  928. }
  929. }
  930. /*
  931. * skx_init:
  932. * make sure we are running on the correct cpu model
  933. * search for all the devices we need
  934. * check which DIMMs are present.
  935. */
  936. static int __init skx_init(void)
  937. {
  938. const struct x86_cpu_id *id;
  939. const struct munit *m;
  940. const char *owner;
  941. int rc = 0, i;
  942. u8 mc = 0, src_id, node_id;
  943. struct skx_dev *d;
  944. edac_dbg(2, "\n");
  945. owner = edac_get_owner();
  946. if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
  947. return -EBUSY;
  948. id = x86_match_cpu(skx_cpuids);
  949. if (!id)
  950. return -ENODEV;
  951. rc = skx_get_hi_lo();
  952. if (rc)
  953. return rc;
  954. rc = get_all_bus_mappings();
  955. if (rc < 0)
  956. goto fail;
  957. if (rc == 0) {
  958. edac_dbg(2, "No memory controllers found\n");
  959. return -ENODEV;
  960. }
  961. for (m = skx_all_munits; m->did; m++) {
  962. rc = get_all_munits(m);
  963. if (rc < 0)
  964. goto fail;
  965. if (rc != m->per_socket * skx_num_sockets) {
  966. edac_dbg(2, "Expected %d, got %d of %x\n",
  967. m->per_socket * skx_num_sockets, rc, m->did);
  968. rc = -ENODEV;
  969. goto fail;
  970. }
  971. }
  972. list_for_each_entry(d, &skx_edac_list, list) {
  973. src_id = get_src_id(d);
  974. node_id = skx_get_node_id(d);
  975. edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
  976. for (i = 0; i < NUM_IMC; i++) {
  977. d->imc[i].mc = mc++;
  978. d->imc[i].lmc = i;
  979. d->imc[i].src_id = src_id;
  980. d->imc[i].node_id = node_id;
  981. rc = skx_register_mci(&d->imc[i]);
  982. if (rc < 0)
  983. goto fail;
  984. }
  985. }
  986. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  987. opstate_init();
  988. setup_skx_debug();
  989. mce_register_decode_chain(&skx_mce_dec);
  990. return 0;
  991. fail:
  992. skx_remove();
  993. return rc;
  994. }
  995. static void __exit skx_exit(void)
  996. {
  997. edac_dbg(2, "\n");
  998. mce_unregister_decode_chain(&skx_mce_dec);
  999. skx_remove();
  1000. teardown_skx_debug();
  1001. }
  1002. module_init(skx_init);
  1003. module_exit(skx_exit);
  1004. module_param(edac_op_state, int, 0444);
  1005. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
  1006. MODULE_LICENSE("GPL v2");
  1007. MODULE_AUTHOR("Tony Luck");
  1008. MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");