rcar-dmac.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Renesas R-Car Gen2 DMA Controller Driver
  4. *
  5. * Copyright (C) 2014 Renesas Electronics Inc.
  6. *
  7. * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
  8. */
  9. #include <linux/delay.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/dmaengine.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/list.h>
  14. #include <linux/module.h>
  15. #include <linux/mutex.h>
  16. #include <linux/of.h>
  17. #include <linux/of_dma.h>
  18. #include <linux/of_platform.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/pm_runtime.h>
  21. #include <linux/slab.h>
  22. #include <linux/spinlock.h>
  23. #include "../dmaengine.h"
  24. /*
  25. * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
  26. * @node: entry in the parent's chunks list
  27. * @src_addr: device source address
  28. * @dst_addr: device destination address
  29. * @size: transfer size in bytes
  30. */
  31. struct rcar_dmac_xfer_chunk {
  32. struct list_head node;
  33. dma_addr_t src_addr;
  34. dma_addr_t dst_addr;
  35. u32 size;
  36. };
  37. /*
  38. * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
  39. * @sar: value of the SAR register (source address)
  40. * @dar: value of the DAR register (destination address)
  41. * @tcr: value of the TCR register (transfer count)
  42. */
  43. struct rcar_dmac_hw_desc {
  44. u32 sar;
  45. u32 dar;
  46. u32 tcr;
  47. u32 reserved;
  48. } __attribute__((__packed__));
  49. /*
  50. * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
  51. * @async_tx: base DMA asynchronous transaction descriptor
  52. * @direction: direction of the DMA transfer
  53. * @xfer_shift: log2 of the transfer size
  54. * @chcr: value of the channel configuration register for this transfer
  55. * @node: entry in the channel's descriptors lists
  56. * @chunks: list of transfer chunks for this transfer
  57. * @running: the transfer chunk being currently processed
  58. * @nchunks: number of transfer chunks for this transfer
  59. * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
  60. * @hwdescs.mem: hardware descriptors memory for the transfer
  61. * @hwdescs.dma: device address of the hardware descriptors memory
  62. * @hwdescs.size: size of the hardware descriptors in bytes
  63. * @size: transfer size in bytes
  64. * @cyclic: when set indicates that the DMA transfer is cyclic
  65. */
  66. struct rcar_dmac_desc {
  67. struct dma_async_tx_descriptor async_tx;
  68. enum dma_transfer_direction direction;
  69. unsigned int xfer_shift;
  70. u32 chcr;
  71. struct list_head node;
  72. struct list_head chunks;
  73. struct rcar_dmac_xfer_chunk *running;
  74. unsigned int nchunks;
  75. struct {
  76. bool use;
  77. struct rcar_dmac_hw_desc *mem;
  78. dma_addr_t dma;
  79. size_t size;
  80. } hwdescs;
  81. unsigned int size;
  82. bool cyclic;
  83. };
  84. #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
  85. /*
  86. * struct rcar_dmac_desc_page - One page worth of descriptors
  87. * @node: entry in the channel's pages list
  88. * @descs: array of DMA descriptors
  89. * @chunks: array of transfer chunk descriptors
  90. */
  91. struct rcar_dmac_desc_page {
  92. struct list_head node;
  93. union {
  94. struct rcar_dmac_desc descs[0];
  95. struct rcar_dmac_xfer_chunk chunks[0];
  96. };
  97. };
  98. #define RCAR_DMAC_DESCS_PER_PAGE \
  99. ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
  100. sizeof(struct rcar_dmac_desc))
  101. #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
  102. ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
  103. sizeof(struct rcar_dmac_xfer_chunk))
  104. /*
  105. * struct rcar_dmac_chan_slave - Slave configuration
  106. * @slave_addr: slave memory address
  107. * @xfer_size: size (in bytes) of hardware transfers
  108. */
  109. struct rcar_dmac_chan_slave {
  110. phys_addr_t slave_addr;
  111. unsigned int xfer_size;
  112. };
  113. /*
  114. * struct rcar_dmac_chan_map - Map of slave device phys to dma address
  115. * @addr: slave dma address
  116. * @dir: direction of mapping
  117. * @slave: slave configuration that is mapped
  118. */
  119. struct rcar_dmac_chan_map {
  120. dma_addr_t addr;
  121. enum dma_data_direction dir;
  122. struct rcar_dmac_chan_slave slave;
  123. };
  124. /*
  125. * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
  126. * @chan: base DMA channel object
  127. * @iomem: channel I/O memory base
  128. * @index: index of this channel in the controller
  129. * @irq: channel IRQ
  130. * @src: slave memory address and size on the source side
  131. * @dst: slave memory address and size on the destination side
  132. * @mid_rid: hardware MID/RID for the DMA client using this channel
  133. * @lock: protects the channel CHCR register and the desc members
  134. * @desc.free: list of free descriptors
  135. * @desc.pending: list of pending descriptors (submitted with tx_submit)
  136. * @desc.active: list of active descriptors (activated with issue_pending)
  137. * @desc.done: list of completed descriptors
  138. * @desc.wait: list of descriptors waiting for an ack
  139. * @desc.running: the descriptor being processed (a member of the active list)
  140. * @desc.chunks_free: list of free transfer chunk descriptors
  141. * @desc.pages: list of pages used by allocated descriptors
  142. */
  143. struct rcar_dmac_chan {
  144. struct dma_chan chan;
  145. void __iomem *iomem;
  146. unsigned int index;
  147. int irq;
  148. struct rcar_dmac_chan_slave src;
  149. struct rcar_dmac_chan_slave dst;
  150. struct rcar_dmac_chan_map map;
  151. int mid_rid;
  152. spinlock_t lock;
  153. struct {
  154. struct list_head free;
  155. struct list_head pending;
  156. struct list_head active;
  157. struct list_head done;
  158. struct list_head wait;
  159. struct rcar_dmac_desc *running;
  160. struct list_head chunks_free;
  161. struct list_head pages;
  162. } desc;
  163. };
  164. #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
  165. /*
  166. * struct rcar_dmac - R-Car Gen2 DMA Controller
  167. * @engine: base DMA engine object
  168. * @dev: the hardware device
  169. * @iomem: remapped I/O memory base
  170. * @n_channels: number of available channels
  171. * @channels: array of DMAC channels
  172. * @modules: bitmask of client modules in use
  173. */
  174. struct rcar_dmac {
  175. struct dma_device engine;
  176. struct device *dev;
  177. void __iomem *iomem;
  178. unsigned int n_channels;
  179. struct rcar_dmac_chan *channels;
  180. DECLARE_BITMAP(modules, 256);
  181. };
  182. #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
  183. /* -----------------------------------------------------------------------------
  184. * Registers
  185. */
  186. #define RCAR_DMAC_CHAN_OFFSET(i) (0x8000 + 0x80 * (i))
  187. #define RCAR_DMAISTA 0x0020
  188. #define RCAR_DMASEC 0x0030
  189. #define RCAR_DMAOR 0x0060
  190. #define RCAR_DMAOR_PRI_FIXED (0 << 8)
  191. #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
  192. #define RCAR_DMAOR_AE (1 << 2)
  193. #define RCAR_DMAOR_DME (1 << 0)
  194. #define RCAR_DMACHCLR 0x0080
  195. #define RCAR_DMADPSEC 0x00a0
  196. #define RCAR_DMASAR 0x0000
  197. #define RCAR_DMADAR 0x0004
  198. #define RCAR_DMATCR 0x0008
  199. #define RCAR_DMATCR_MASK 0x00ffffff
  200. #define RCAR_DMATSR 0x0028
  201. #define RCAR_DMACHCR 0x000c
  202. #define RCAR_DMACHCR_CAE (1 << 31)
  203. #define RCAR_DMACHCR_CAIE (1 << 30)
  204. #define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
  205. #define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
  206. #define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
  207. #define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
  208. #define RCAR_DMACHCR_RPT_SAR (1 << 27)
  209. #define RCAR_DMACHCR_RPT_DAR (1 << 26)
  210. #define RCAR_DMACHCR_RPT_TCR (1 << 25)
  211. #define RCAR_DMACHCR_DPB (1 << 22)
  212. #define RCAR_DMACHCR_DSE (1 << 19)
  213. #define RCAR_DMACHCR_DSIE (1 << 18)
  214. #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
  215. #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
  216. #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
  217. #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
  218. #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
  219. #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
  220. #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
  221. #define RCAR_DMACHCR_DM_FIXED (0 << 14)
  222. #define RCAR_DMACHCR_DM_INC (1 << 14)
  223. #define RCAR_DMACHCR_DM_DEC (2 << 14)
  224. #define RCAR_DMACHCR_SM_FIXED (0 << 12)
  225. #define RCAR_DMACHCR_SM_INC (1 << 12)
  226. #define RCAR_DMACHCR_SM_DEC (2 << 12)
  227. #define RCAR_DMACHCR_RS_AUTO (4 << 8)
  228. #define RCAR_DMACHCR_RS_DMARS (8 << 8)
  229. #define RCAR_DMACHCR_IE (1 << 2)
  230. #define RCAR_DMACHCR_TE (1 << 1)
  231. #define RCAR_DMACHCR_DE (1 << 0)
  232. #define RCAR_DMATCRB 0x0018
  233. #define RCAR_DMATSRB 0x0038
  234. #define RCAR_DMACHCRB 0x001c
  235. #define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
  236. #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
  237. #define RCAR_DMACHCRB_DPTR_SHIFT 16
  238. #define RCAR_DMACHCRB_DRST (1 << 15)
  239. #define RCAR_DMACHCRB_DTS (1 << 8)
  240. #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
  241. #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
  242. #define RCAR_DMACHCRB_PRI(n) ((n) << 0)
  243. #define RCAR_DMARS 0x0040
  244. #define RCAR_DMABUFCR 0x0048
  245. #define RCAR_DMABUFCR_MBU(n) ((n) << 16)
  246. #define RCAR_DMABUFCR_ULB(n) ((n) << 0)
  247. #define RCAR_DMADPBASE 0x0050
  248. #define RCAR_DMADPBASE_MASK 0xfffffff0
  249. #define RCAR_DMADPBASE_SEL (1 << 0)
  250. #define RCAR_DMADPCR 0x0054
  251. #define RCAR_DMADPCR_DIPT(n) ((n) << 24)
  252. #define RCAR_DMAFIXSAR 0x0010
  253. #define RCAR_DMAFIXDAR 0x0014
  254. #define RCAR_DMAFIXDPBASE 0x0060
  255. /* Hardcode the MEMCPY transfer size to 4 bytes. */
  256. #define RCAR_DMAC_MEMCPY_XFER_SIZE 4
  257. /* -----------------------------------------------------------------------------
  258. * Device access
  259. */
  260. static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
  261. {
  262. if (reg == RCAR_DMAOR)
  263. writew(data, dmac->iomem + reg);
  264. else
  265. writel(data, dmac->iomem + reg);
  266. }
  267. static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
  268. {
  269. if (reg == RCAR_DMAOR)
  270. return readw(dmac->iomem + reg);
  271. else
  272. return readl(dmac->iomem + reg);
  273. }
  274. static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
  275. {
  276. if (reg == RCAR_DMARS)
  277. return readw(chan->iomem + reg);
  278. else
  279. return readl(chan->iomem + reg);
  280. }
  281. static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
  282. {
  283. if (reg == RCAR_DMARS)
  284. writew(data, chan->iomem + reg);
  285. else
  286. writel(data, chan->iomem + reg);
  287. }
  288. /* -----------------------------------------------------------------------------
  289. * Initialization and configuration
  290. */
  291. static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
  292. {
  293. u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
  294. return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
  295. }
  296. static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
  297. {
  298. struct rcar_dmac_desc *desc = chan->desc.running;
  299. u32 chcr = desc->chcr;
  300. WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
  301. if (chan->mid_rid >= 0)
  302. rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
  303. if (desc->hwdescs.use) {
  304. struct rcar_dmac_xfer_chunk *chunk =
  305. list_first_entry(&desc->chunks,
  306. struct rcar_dmac_xfer_chunk, node);
  307. dev_dbg(chan->chan.device->dev,
  308. "chan%u: queue desc %p: %u@%pad\n",
  309. chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
  310. #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
  311. rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
  312. chunk->src_addr >> 32);
  313. rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
  314. chunk->dst_addr >> 32);
  315. rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
  316. desc->hwdescs.dma >> 32);
  317. #endif
  318. rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
  319. (desc->hwdescs.dma & 0xfffffff0) |
  320. RCAR_DMADPBASE_SEL);
  321. rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
  322. RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
  323. RCAR_DMACHCRB_DRST);
  324. /*
  325. * Errata: When descriptor memory is accessed through an IOMMU
  326. * the DMADAR register isn't initialized automatically from the
  327. * first descriptor at beginning of transfer by the DMAC like it
  328. * should. Initialize it manually with the destination address
  329. * of the first chunk.
  330. */
  331. rcar_dmac_chan_write(chan, RCAR_DMADAR,
  332. chunk->dst_addr & 0xffffffff);
  333. /*
  334. * Program the descriptor stage interrupt to occur after the end
  335. * of the first stage.
  336. */
  337. rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
  338. chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
  339. | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
  340. /*
  341. * If the descriptor isn't cyclic enable normal descriptor mode
  342. * and the transfer completion interrupt.
  343. */
  344. if (!desc->cyclic)
  345. chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
  346. /*
  347. * If the descriptor is cyclic and has a callback enable the
  348. * descriptor stage interrupt in infinite repeat mode.
  349. */
  350. else if (desc->async_tx.callback)
  351. chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
  352. /*
  353. * Otherwise just select infinite repeat mode without any
  354. * interrupt.
  355. */
  356. else
  357. chcr |= RCAR_DMACHCR_DPM_INFINITE;
  358. } else {
  359. struct rcar_dmac_xfer_chunk *chunk = desc->running;
  360. dev_dbg(chan->chan.device->dev,
  361. "chan%u: queue chunk %p: %u@%pad -> %pad\n",
  362. chan->index, chunk, chunk->size, &chunk->src_addr,
  363. &chunk->dst_addr);
  364. #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
  365. rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
  366. chunk->src_addr >> 32);
  367. rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
  368. chunk->dst_addr >> 32);
  369. #endif
  370. rcar_dmac_chan_write(chan, RCAR_DMASAR,
  371. chunk->src_addr & 0xffffffff);
  372. rcar_dmac_chan_write(chan, RCAR_DMADAR,
  373. chunk->dst_addr & 0xffffffff);
  374. rcar_dmac_chan_write(chan, RCAR_DMATCR,
  375. chunk->size >> desc->xfer_shift);
  376. chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
  377. }
  378. rcar_dmac_chan_write(chan, RCAR_DMACHCR,
  379. chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE);
  380. }
  381. static int rcar_dmac_init(struct rcar_dmac *dmac)
  382. {
  383. u16 dmaor;
  384. /* Clear all channels and enable the DMAC globally. */
  385. rcar_dmac_write(dmac, RCAR_DMACHCLR, GENMASK(dmac->n_channels - 1, 0));
  386. rcar_dmac_write(dmac, RCAR_DMAOR,
  387. RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
  388. dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
  389. if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
  390. dev_warn(dmac->dev, "DMAOR initialization failed.\n");
  391. return -EIO;
  392. }
  393. return 0;
  394. }
  395. /* -----------------------------------------------------------------------------
  396. * Descriptors submission
  397. */
  398. static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
  399. {
  400. struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
  401. struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
  402. unsigned long flags;
  403. dma_cookie_t cookie;
  404. spin_lock_irqsave(&chan->lock, flags);
  405. cookie = dma_cookie_assign(tx);
  406. dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
  407. chan->index, tx->cookie, desc);
  408. list_add_tail(&desc->node, &chan->desc.pending);
  409. desc->running = list_first_entry(&desc->chunks,
  410. struct rcar_dmac_xfer_chunk, node);
  411. spin_unlock_irqrestore(&chan->lock, flags);
  412. return cookie;
  413. }
  414. /* -----------------------------------------------------------------------------
  415. * Descriptors allocation and free
  416. */
  417. /*
  418. * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
  419. * @chan: the DMA channel
  420. * @gfp: allocation flags
  421. */
  422. static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
  423. {
  424. struct rcar_dmac_desc_page *page;
  425. unsigned long flags;
  426. LIST_HEAD(list);
  427. unsigned int i;
  428. page = (void *)get_zeroed_page(gfp);
  429. if (!page)
  430. return -ENOMEM;
  431. for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
  432. struct rcar_dmac_desc *desc = &page->descs[i];
  433. dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
  434. desc->async_tx.tx_submit = rcar_dmac_tx_submit;
  435. INIT_LIST_HEAD(&desc->chunks);
  436. list_add_tail(&desc->node, &list);
  437. }
  438. spin_lock_irqsave(&chan->lock, flags);
  439. list_splice_tail(&list, &chan->desc.free);
  440. list_add_tail(&page->node, &chan->desc.pages);
  441. spin_unlock_irqrestore(&chan->lock, flags);
  442. return 0;
  443. }
  444. /*
  445. * rcar_dmac_desc_put - Release a DMA transfer descriptor
  446. * @chan: the DMA channel
  447. * @desc: the descriptor
  448. *
  449. * Put the descriptor and its transfer chunk descriptors back in the channel's
  450. * free descriptors lists. The descriptor's chunks list will be reinitialized to
  451. * an empty list as a result.
  452. *
  453. * The descriptor must have been removed from the channel's lists before calling
  454. * this function.
  455. */
  456. static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
  457. struct rcar_dmac_desc *desc)
  458. {
  459. unsigned long flags;
  460. spin_lock_irqsave(&chan->lock, flags);
  461. list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
  462. list_add(&desc->node, &chan->desc.free);
  463. spin_unlock_irqrestore(&chan->lock, flags);
  464. }
  465. static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
  466. {
  467. struct rcar_dmac_desc *desc, *_desc;
  468. unsigned long flags;
  469. LIST_HEAD(list);
  470. /*
  471. * We have to temporarily move all descriptors from the wait list to a
  472. * local list as iterating over the wait list, even with
  473. * list_for_each_entry_safe, isn't safe if we release the channel lock
  474. * around the rcar_dmac_desc_put() call.
  475. */
  476. spin_lock_irqsave(&chan->lock, flags);
  477. list_splice_init(&chan->desc.wait, &list);
  478. spin_unlock_irqrestore(&chan->lock, flags);
  479. list_for_each_entry_safe(desc, _desc, &list, node) {
  480. if (async_tx_test_ack(&desc->async_tx)) {
  481. list_del(&desc->node);
  482. rcar_dmac_desc_put(chan, desc);
  483. }
  484. }
  485. if (list_empty(&list))
  486. return;
  487. /* Put the remaining descriptors back in the wait list. */
  488. spin_lock_irqsave(&chan->lock, flags);
  489. list_splice(&list, &chan->desc.wait);
  490. spin_unlock_irqrestore(&chan->lock, flags);
  491. }
  492. /*
  493. * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
  494. * @chan: the DMA channel
  495. *
  496. * Locking: This function must be called in a non-atomic context.
  497. *
  498. * Return: A pointer to the allocated descriptor or NULL if no descriptor can
  499. * be allocated.
  500. */
  501. static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
  502. {
  503. struct rcar_dmac_desc *desc;
  504. unsigned long flags;
  505. int ret;
  506. /* Recycle acked descriptors before attempting allocation. */
  507. rcar_dmac_desc_recycle_acked(chan);
  508. spin_lock_irqsave(&chan->lock, flags);
  509. while (list_empty(&chan->desc.free)) {
  510. /*
  511. * No free descriptors, allocate a page worth of them and try
  512. * again, as someone else could race us to get the newly
  513. * allocated descriptors. If the allocation fails return an
  514. * error.
  515. */
  516. spin_unlock_irqrestore(&chan->lock, flags);
  517. ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
  518. if (ret < 0)
  519. return NULL;
  520. spin_lock_irqsave(&chan->lock, flags);
  521. }
  522. desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
  523. list_del(&desc->node);
  524. spin_unlock_irqrestore(&chan->lock, flags);
  525. return desc;
  526. }
  527. /*
  528. * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
  529. * @chan: the DMA channel
  530. * @gfp: allocation flags
  531. */
  532. static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
  533. {
  534. struct rcar_dmac_desc_page *page;
  535. unsigned long flags;
  536. LIST_HEAD(list);
  537. unsigned int i;
  538. page = (void *)get_zeroed_page(gfp);
  539. if (!page)
  540. return -ENOMEM;
  541. for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
  542. struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
  543. list_add_tail(&chunk->node, &list);
  544. }
  545. spin_lock_irqsave(&chan->lock, flags);
  546. list_splice_tail(&list, &chan->desc.chunks_free);
  547. list_add_tail(&page->node, &chan->desc.pages);
  548. spin_unlock_irqrestore(&chan->lock, flags);
  549. return 0;
  550. }
  551. /*
  552. * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
  553. * @chan: the DMA channel
  554. *
  555. * Locking: This function must be called in a non-atomic context.
  556. *
  557. * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
  558. * descriptor can be allocated.
  559. */
  560. static struct rcar_dmac_xfer_chunk *
  561. rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
  562. {
  563. struct rcar_dmac_xfer_chunk *chunk;
  564. unsigned long flags;
  565. int ret;
  566. spin_lock_irqsave(&chan->lock, flags);
  567. while (list_empty(&chan->desc.chunks_free)) {
  568. /*
  569. * No free descriptors, allocate a page worth of them and try
  570. * again, as someone else could race us to get the newly
  571. * allocated descriptors. If the allocation fails return an
  572. * error.
  573. */
  574. spin_unlock_irqrestore(&chan->lock, flags);
  575. ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
  576. if (ret < 0)
  577. return NULL;
  578. spin_lock_irqsave(&chan->lock, flags);
  579. }
  580. chunk = list_first_entry(&chan->desc.chunks_free,
  581. struct rcar_dmac_xfer_chunk, node);
  582. list_del(&chunk->node);
  583. spin_unlock_irqrestore(&chan->lock, flags);
  584. return chunk;
  585. }
  586. static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
  587. struct rcar_dmac_desc *desc, size_t size)
  588. {
  589. /*
  590. * dma_alloc_coherent() allocates memory in page size increments. To
  591. * avoid reallocating the hardware descriptors when the allocated size
  592. * wouldn't change align the requested size to a multiple of the page
  593. * size.
  594. */
  595. size = PAGE_ALIGN(size);
  596. if (desc->hwdescs.size == size)
  597. return;
  598. if (desc->hwdescs.mem) {
  599. dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
  600. desc->hwdescs.mem, desc->hwdescs.dma);
  601. desc->hwdescs.mem = NULL;
  602. desc->hwdescs.size = 0;
  603. }
  604. if (!size)
  605. return;
  606. desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
  607. &desc->hwdescs.dma, GFP_NOWAIT);
  608. if (!desc->hwdescs.mem)
  609. return;
  610. desc->hwdescs.size = size;
  611. }
  612. static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
  613. struct rcar_dmac_desc *desc)
  614. {
  615. struct rcar_dmac_xfer_chunk *chunk;
  616. struct rcar_dmac_hw_desc *hwdesc;
  617. rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
  618. hwdesc = desc->hwdescs.mem;
  619. if (!hwdesc)
  620. return -ENOMEM;
  621. list_for_each_entry(chunk, &desc->chunks, node) {
  622. hwdesc->sar = chunk->src_addr;
  623. hwdesc->dar = chunk->dst_addr;
  624. hwdesc->tcr = chunk->size >> desc->xfer_shift;
  625. hwdesc++;
  626. }
  627. return 0;
  628. }
  629. /* -----------------------------------------------------------------------------
  630. * Stop and reset
  631. */
  632. static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan)
  633. {
  634. u32 chcr;
  635. unsigned int i;
  636. /*
  637. * Ensure that the setting of the DE bit is actually 0 after
  638. * clearing it.
  639. */
  640. for (i = 0; i < 1024; i++) {
  641. chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
  642. if (!(chcr & RCAR_DMACHCR_DE))
  643. return;
  644. udelay(1);
  645. }
  646. dev_err(chan->chan.device->dev, "CHCR DE check error\n");
  647. }
  648. static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan)
  649. {
  650. u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
  651. /* set DE=0 and flush remaining data */
  652. rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE));
  653. /* make sure all remaining data was flushed */
  654. rcar_dmac_chcr_de_barrier(chan);
  655. }
  656. static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
  657. {
  658. u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
  659. chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
  660. RCAR_DMACHCR_TE | RCAR_DMACHCR_DE |
  661. RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE);
  662. rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
  663. rcar_dmac_chcr_de_barrier(chan);
  664. }
  665. static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
  666. {
  667. struct rcar_dmac_desc *desc, *_desc;
  668. unsigned long flags;
  669. LIST_HEAD(descs);
  670. spin_lock_irqsave(&chan->lock, flags);
  671. /* Move all non-free descriptors to the local lists. */
  672. list_splice_init(&chan->desc.pending, &descs);
  673. list_splice_init(&chan->desc.active, &descs);
  674. list_splice_init(&chan->desc.done, &descs);
  675. list_splice_init(&chan->desc.wait, &descs);
  676. chan->desc.running = NULL;
  677. spin_unlock_irqrestore(&chan->lock, flags);
  678. list_for_each_entry_safe(desc, _desc, &descs, node) {
  679. list_del(&desc->node);
  680. rcar_dmac_desc_put(chan, desc);
  681. }
  682. }
  683. static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac)
  684. {
  685. unsigned int i;
  686. /* Stop all channels. */
  687. for (i = 0; i < dmac->n_channels; ++i) {
  688. struct rcar_dmac_chan *chan = &dmac->channels[i];
  689. /* Stop and reinitialize the channel. */
  690. spin_lock_irq(&chan->lock);
  691. rcar_dmac_chan_halt(chan);
  692. spin_unlock_irq(&chan->lock);
  693. }
  694. }
  695. static int rcar_dmac_chan_pause(struct dma_chan *chan)
  696. {
  697. unsigned long flags;
  698. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  699. spin_lock_irqsave(&rchan->lock, flags);
  700. rcar_dmac_clear_chcr_de(rchan);
  701. spin_unlock_irqrestore(&rchan->lock, flags);
  702. return 0;
  703. }
  704. /* -----------------------------------------------------------------------------
  705. * Descriptors preparation
  706. */
  707. static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
  708. struct rcar_dmac_desc *desc)
  709. {
  710. static const u32 chcr_ts[] = {
  711. RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
  712. RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
  713. RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
  714. RCAR_DMACHCR_TS_64B,
  715. };
  716. unsigned int xfer_size;
  717. u32 chcr;
  718. switch (desc->direction) {
  719. case DMA_DEV_TO_MEM:
  720. chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
  721. | RCAR_DMACHCR_RS_DMARS;
  722. xfer_size = chan->src.xfer_size;
  723. break;
  724. case DMA_MEM_TO_DEV:
  725. chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
  726. | RCAR_DMACHCR_RS_DMARS;
  727. xfer_size = chan->dst.xfer_size;
  728. break;
  729. case DMA_MEM_TO_MEM:
  730. default:
  731. chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
  732. | RCAR_DMACHCR_RS_AUTO;
  733. xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
  734. break;
  735. }
  736. desc->xfer_shift = ilog2(xfer_size);
  737. desc->chcr = chcr | chcr_ts[desc->xfer_shift];
  738. }
  739. /*
  740. * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
  741. *
  742. * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
  743. * converted to scatter-gather to guarantee consistent locking and a correct
  744. * list manipulation. For slave DMA direction carries the usual meaning, and,
  745. * logically, the SG list is RAM and the addr variable contains slave address,
  746. * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
  747. * and the SG list contains only one element and points at the source buffer.
  748. */
  749. static struct dma_async_tx_descriptor *
  750. rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
  751. unsigned int sg_len, dma_addr_t dev_addr,
  752. enum dma_transfer_direction dir, unsigned long dma_flags,
  753. bool cyclic)
  754. {
  755. struct rcar_dmac_xfer_chunk *chunk;
  756. struct rcar_dmac_desc *desc;
  757. struct scatterlist *sg;
  758. unsigned int nchunks = 0;
  759. unsigned int max_chunk_size;
  760. unsigned int full_size = 0;
  761. bool cross_boundary = false;
  762. unsigned int i;
  763. #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
  764. u32 high_dev_addr;
  765. u32 high_mem_addr;
  766. #endif
  767. desc = rcar_dmac_desc_get(chan);
  768. if (!desc)
  769. return NULL;
  770. desc->async_tx.flags = dma_flags;
  771. desc->async_tx.cookie = -EBUSY;
  772. desc->cyclic = cyclic;
  773. desc->direction = dir;
  774. rcar_dmac_chan_configure_desc(chan, desc);
  775. max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
  776. /*
  777. * Allocate and fill the transfer chunk descriptors. We own the only
  778. * reference to the DMA descriptor, there's no need for locking.
  779. */
  780. for_each_sg(sgl, sg, sg_len, i) {
  781. dma_addr_t mem_addr = sg_dma_address(sg);
  782. unsigned int len = sg_dma_len(sg);
  783. full_size += len;
  784. #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
  785. if (i == 0) {
  786. high_dev_addr = dev_addr >> 32;
  787. high_mem_addr = mem_addr >> 32;
  788. }
  789. if ((dev_addr >> 32 != high_dev_addr) ||
  790. (mem_addr >> 32 != high_mem_addr))
  791. cross_boundary = true;
  792. #endif
  793. while (len) {
  794. unsigned int size = min(len, max_chunk_size);
  795. #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
  796. /*
  797. * Prevent individual transfers from crossing 4GB
  798. * boundaries.
  799. */
  800. if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
  801. size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
  802. cross_boundary = true;
  803. }
  804. if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
  805. size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
  806. cross_boundary = true;
  807. }
  808. #endif
  809. chunk = rcar_dmac_xfer_chunk_get(chan);
  810. if (!chunk) {
  811. rcar_dmac_desc_put(chan, desc);
  812. return NULL;
  813. }
  814. if (dir == DMA_DEV_TO_MEM) {
  815. chunk->src_addr = dev_addr;
  816. chunk->dst_addr = mem_addr;
  817. } else {
  818. chunk->src_addr = mem_addr;
  819. chunk->dst_addr = dev_addr;
  820. }
  821. chunk->size = size;
  822. dev_dbg(chan->chan.device->dev,
  823. "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
  824. chan->index, chunk, desc, i, sg, size, len,
  825. &chunk->src_addr, &chunk->dst_addr);
  826. mem_addr += size;
  827. if (dir == DMA_MEM_TO_MEM)
  828. dev_addr += size;
  829. len -= size;
  830. list_add_tail(&chunk->node, &desc->chunks);
  831. nchunks++;
  832. }
  833. }
  834. desc->nchunks = nchunks;
  835. desc->size = full_size;
  836. /*
  837. * Use hardware descriptor lists if possible when more than one chunk
  838. * needs to be transferred (otherwise they don't make much sense).
  839. *
  840. * Source/Destination address should be located in same 4GiB region
  841. * in the 40bit address space when it uses Hardware descriptor,
  842. * and cross_boundary is checking it.
  843. */
  844. desc->hwdescs.use = !cross_boundary && nchunks > 1;
  845. if (desc->hwdescs.use) {
  846. if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
  847. desc->hwdescs.use = false;
  848. }
  849. return &desc->async_tx;
  850. }
  851. /* -----------------------------------------------------------------------------
  852. * DMA engine operations
  853. */
  854. static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
  855. {
  856. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  857. int ret;
  858. INIT_LIST_HEAD(&rchan->desc.chunks_free);
  859. INIT_LIST_HEAD(&rchan->desc.pages);
  860. /* Preallocate descriptors. */
  861. ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
  862. if (ret < 0)
  863. return -ENOMEM;
  864. ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
  865. if (ret < 0)
  866. return -ENOMEM;
  867. return pm_runtime_get_sync(chan->device->dev);
  868. }
  869. static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
  870. {
  871. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  872. struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
  873. struct rcar_dmac_chan_map *map = &rchan->map;
  874. struct rcar_dmac_desc_page *page, *_page;
  875. struct rcar_dmac_desc *desc;
  876. LIST_HEAD(list);
  877. /* Protect against ISR */
  878. spin_lock_irq(&rchan->lock);
  879. rcar_dmac_chan_halt(rchan);
  880. spin_unlock_irq(&rchan->lock);
  881. /*
  882. * Now no new interrupts will occur, but one might already be
  883. * running. Wait for it to finish before freeing resources.
  884. */
  885. synchronize_irq(rchan->irq);
  886. if (rchan->mid_rid >= 0) {
  887. /* The caller is holding dma_list_mutex */
  888. clear_bit(rchan->mid_rid, dmac->modules);
  889. rchan->mid_rid = -EINVAL;
  890. }
  891. list_splice_init(&rchan->desc.free, &list);
  892. list_splice_init(&rchan->desc.pending, &list);
  893. list_splice_init(&rchan->desc.active, &list);
  894. list_splice_init(&rchan->desc.done, &list);
  895. list_splice_init(&rchan->desc.wait, &list);
  896. rchan->desc.running = NULL;
  897. list_for_each_entry(desc, &list, node)
  898. rcar_dmac_realloc_hwdesc(rchan, desc, 0);
  899. list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
  900. list_del(&page->node);
  901. free_page((unsigned long)page);
  902. }
  903. /* Remove slave mapping if present. */
  904. if (map->slave.xfer_size) {
  905. dma_unmap_resource(chan->device->dev, map->addr,
  906. map->slave.xfer_size, map->dir, 0);
  907. map->slave.xfer_size = 0;
  908. }
  909. pm_runtime_put(chan->device->dev);
  910. }
  911. static struct dma_async_tx_descriptor *
  912. rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
  913. dma_addr_t dma_src, size_t len, unsigned long flags)
  914. {
  915. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  916. struct scatterlist sgl;
  917. if (!len)
  918. return NULL;
  919. sg_init_table(&sgl, 1);
  920. sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
  921. offset_in_page(dma_src));
  922. sg_dma_address(&sgl) = dma_src;
  923. sg_dma_len(&sgl) = len;
  924. return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
  925. DMA_MEM_TO_MEM, flags, false);
  926. }
  927. static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
  928. enum dma_transfer_direction dir)
  929. {
  930. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  931. struct rcar_dmac_chan_map *map = &rchan->map;
  932. phys_addr_t dev_addr;
  933. size_t dev_size;
  934. enum dma_data_direction dev_dir;
  935. if (dir == DMA_DEV_TO_MEM) {
  936. dev_addr = rchan->src.slave_addr;
  937. dev_size = rchan->src.xfer_size;
  938. dev_dir = DMA_TO_DEVICE;
  939. } else {
  940. dev_addr = rchan->dst.slave_addr;
  941. dev_size = rchan->dst.xfer_size;
  942. dev_dir = DMA_FROM_DEVICE;
  943. }
  944. /* Reuse current map if possible. */
  945. if (dev_addr == map->slave.slave_addr &&
  946. dev_size == map->slave.xfer_size &&
  947. dev_dir == map->dir)
  948. return 0;
  949. /* Remove old mapping if present. */
  950. if (map->slave.xfer_size)
  951. dma_unmap_resource(chan->device->dev, map->addr,
  952. map->slave.xfer_size, map->dir, 0);
  953. map->slave.xfer_size = 0;
  954. /* Create new slave address map. */
  955. map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
  956. dev_dir, 0);
  957. if (dma_mapping_error(chan->device->dev, map->addr)) {
  958. dev_err(chan->device->dev,
  959. "chan%u: failed to map %zx@%pap", rchan->index,
  960. dev_size, &dev_addr);
  961. return -EIO;
  962. }
  963. dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
  964. rchan->index, dev_size, &dev_addr, &map->addr,
  965. dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
  966. map->slave.slave_addr = dev_addr;
  967. map->slave.xfer_size = dev_size;
  968. map->dir = dev_dir;
  969. return 0;
  970. }
  971. static struct dma_async_tx_descriptor *
  972. rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  973. unsigned int sg_len, enum dma_transfer_direction dir,
  974. unsigned long flags, void *context)
  975. {
  976. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  977. /* Someone calling slave DMA on a generic channel? */
  978. if (rchan->mid_rid < 0 || !sg_len) {
  979. dev_warn(chan->device->dev,
  980. "%s: bad parameter: len=%d, id=%d\n",
  981. __func__, sg_len, rchan->mid_rid);
  982. return NULL;
  983. }
  984. if (rcar_dmac_map_slave_addr(chan, dir))
  985. return NULL;
  986. return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
  987. dir, flags, false);
  988. }
  989. #define RCAR_DMAC_MAX_SG_LEN 32
  990. static struct dma_async_tx_descriptor *
  991. rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
  992. size_t buf_len, size_t period_len,
  993. enum dma_transfer_direction dir, unsigned long flags)
  994. {
  995. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  996. struct dma_async_tx_descriptor *desc;
  997. struct scatterlist *sgl;
  998. unsigned int sg_len;
  999. unsigned int i;
  1000. /* Someone calling slave DMA on a generic channel? */
  1001. if (rchan->mid_rid < 0 || buf_len < period_len) {
  1002. dev_warn(chan->device->dev,
  1003. "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
  1004. __func__, buf_len, period_len, rchan->mid_rid);
  1005. return NULL;
  1006. }
  1007. if (rcar_dmac_map_slave_addr(chan, dir))
  1008. return NULL;
  1009. sg_len = buf_len / period_len;
  1010. if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
  1011. dev_err(chan->device->dev,
  1012. "chan%u: sg length %d exceds limit %d",
  1013. rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
  1014. return NULL;
  1015. }
  1016. /*
  1017. * Allocate the sg list dynamically as it would consume too much stack
  1018. * space.
  1019. */
  1020. sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
  1021. if (!sgl)
  1022. return NULL;
  1023. sg_init_table(sgl, sg_len);
  1024. for (i = 0; i < sg_len; ++i) {
  1025. dma_addr_t src = buf_addr + (period_len * i);
  1026. sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
  1027. offset_in_page(src));
  1028. sg_dma_address(&sgl[i]) = src;
  1029. sg_dma_len(&sgl[i]) = period_len;
  1030. }
  1031. desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
  1032. dir, flags, true);
  1033. kfree(sgl);
  1034. return desc;
  1035. }
  1036. static int rcar_dmac_device_config(struct dma_chan *chan,
  1037. struct dma_slave_config *cfg)
  1038. {
  1039. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  1040. /*
  1041. * We could lock this, but you shouldn't be configuring the
  1042. * channel, while using it...
  1043. */
  1044. rchan->src.slave_addr = cfg->src_addr;
  1045. rchan->dst.slave_addr = cfg->dst_addr;
  1046. rchan->src.xfer_size = cfg->src_addr_width;
  1047. rchan->dst.xfer_size = cfg->dst_addr_width;
  1048. return 0;
  1049. }
  1050. static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
  1051. {
  1052. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  1053. unsigned long flags;
  1054. spin_lock_irqsave(&rchan->lock, flags);
  1055. rcar_dmac_chan_halt(rchan);
  1056. spin_unlock_irqrestore(&rchan->lock, flags);
  1057. /*
  1058. * FIXME: No new interrupt can occur now, but the IRQ thread might still
  1059. * be running.
  1060. */
  1061. rcar_dmac_chan_reinit(rchan);
  1062. return 0;
  1063. }
  1064. static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
  1065. dma_cookie_t cookie)
  1066. {
  1067. struct rcar_dmac_desc *desc = chan->desc.running;
  1068. struct rcar_dmac_xfer_chunk *running = NULL;
  1069. struct rcar_dmac_xfer_chunk *chunk;
  1070. enum dma_status status;
  1071. unsigned int residue = 0;
  1072. unsigned int dptr = 0;
  1073. if (!desc)
  1074. return 0;
  1075. /*
  1076. * If the cookie corresponds to a descriptor that has been completed
  1077. * there is no residue. The same check has already been performed by the
  1078. * caller but without holding the channel lock, so the descriptor could
  1079. * now be complete.
  1080. */
  1081. status = dma_cookie_status(&chan->chan, cookie, NULL);
  1082. if (status == DMA_COMPLETE)
  1083. return 0;
  1084. /*
  1085. * If the cookie doesn't correspond to the currently running transfer
  1086. * then the descriptor hasn't been processed yet, and the residue is
  1087. * equal to the full descriptor size.
  1088. * Also, a client driver is possible to call this function before
  1089. * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
  1090. * will be the next descriptor, and the done list will appear. So, if
  1091. * the argument cookie matches the done list's cookie, we can assume
  1092. * the residue is zero.
  1093. */
  1094. if (cookie != desc->async_tx.cookie) {
  1095. list_for_each_entry(desc, &chan->desc.done, node) {
  1096. if (cookie == desc->async_tx.cookie)
  1097. return 0;
  1098. }
  1099. list_for_each_entry(desc, &chan->desc.pending, node) {
  1100. if (cookie == desc->async_tx.cookie)
  1101. return desc->size;
  1102. }
  1103. list_for_each_entry(desc, &chan->desc.active, node) {
  1104. if (cookie == desc->async_tx.cookie)
  1105. return desc->size;
  1106. }
  1107. /*
  1108. * No descriptor found for the cookie, there's thus no residue.
  1109. * This shouldn't happen if the calling driver passes a correct
  1110. * cookie value.
  1111. */
  1112. WARN(1, "No descriptor for cookie!");
  1113. return 0;
  1114. }
  1115. /*
  1116. * In descriptor mode the descriptor running pointer is not maintained
  1117. * by the interrupt handler, find the running descriptor from the
  1118. * descriptor pointer field in the CHCRB register. In non-descriptor
  1119. * mode just use the running descriptor pointer.
  1120. */
  1121. if (desc->hwdescs.use) {
  1122. dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
  1123. RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
  1124. if (dptr == 0)
  1125. dptr = desc->nchunks;
  1126. dptr--;
  1127. WARN_ON(dptr >= desc->nchunks);
  1128. } else {
  1129. running = desc->running;
  1130. }
  1131. /* Compute the size of all chunks still to be transferred. */
  1132. list_for_each_entry_reverse(chunk, &desc->chunks, node) {
  1133. if (chunk == running || ++dptr == desc->nchunks)
  1134. break;
  1135. residue += chunk->size;
  1136. }
  1137. /* Add the residue for the current chunk. */
  1138. residue += rcar_dmac_chan_read(chan, RCAR_DMATCRB) << desc->xfer_shift;
  1139. return residue;
  1140. }
  1141. static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
  1142. dma_cookie_t cookie,
  1143. struct dma_tx_state *txstate)
  1144. {
  1145. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  1146. enum dma_status status;
  1147. unsigned long flags;
  1148. unsigned int residue;
  1149. status = dma_cookie_status(chan, cookie, txstate);
  1150. if (status == DMA_COMPLETE || !txstate)
  1151. return status;
  1152. spin_lock_irqsave(&rchan->lock, flags);
  1153. residue = rcar_dmac_chan_get_residue(rchan, cookie);
  1154. spin_unlock_irqrestore(&rchan->lock, flags);
  1155. /* if there's no residue, the cookie is complete */
  1156. if (!residue)
  1157. return DMA_COMPLETE;
  1158. dma_set_residue(txstate, residue);
  1159. return status;
  1160. }
  1161. static void rcar_dmac_issue_pending(struct dma_chan *chan)
  1162. {
  1163. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  1164. unsigned long flags;
  1165. spin_lock_irqsave(&rchan->lock, flags);
  1166. if (list_empty(&rchan->desc.pending))
  1167. goto done;
  1168. /* Append the pending list to the active list. */
  1169. list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
  1170. /*
  1171. * If no transfer is running pick the first descriptor from the active
  1172. * list and start the transfer.
  1173. */
  1174. if (!rchan->desc.running) {
  1175. struct rcar_dmac_desc *desc;
  1176. desc = list_first_entry(&rchan->desc.active,
  1177. struct rcar_dmac_desc, node);
  1178. rchan->desc.running = desc;
  1179. rcar_dmac_chan_start_xfer(rchan);
  1180. }
  1181. done:
  1182. spin_unlock_irqrestore(&rchan->lock, flags);
  1183. }
  1184. static void rcar_dmac_device_synchronize(struct dma_chan *chan)
  1185. {
  1186. struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
  1187. synchronize_irq(rchan->irq);
  1188. }
  1189. /* -----------------------------------------------------------------------------
  1190. * IRQ handling
  1191. */
  1192. static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
  1193. {
  1194. struct rcar_dmac_desc *desc = chan->desc.running;
  1195. unsigned int stage;
  1196. if (WARN_ON(!desc || !desc->cyclic)) {
  1197. /*
  1198. * This should never happen, there should always be a running
  1199. * cyclic descriptor when a descriptor stage end interrupt is
  1200. * triggered. Warn and return.
  1201. */
  1202. return IRQ_NONE;
  1203. }
  1204. /* Program the interrupt pointer to the next stage. */
  1205. stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
  1206. RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
  1207. rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
  1208. return IRQ_WAKE_THREAD;
  1209. }
  1210. static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
  1211. {
  1212. struct rcar_dmac_desc *desc = chan->desc.running;
  1213. irqreturn_t ret = IRQ_WAKE_THREAD;
  1214. if (WARN_ON_ONCE(!desc)) {
  1215. /*
  1216. * This should never happen, there should always be a running
  1217. * descriptor when a transfer end interrupt is triggered. Warn
  1218. * and return.
  1219. */
  1220. return IRQ_NONE;
  1221. }
  1222. /*
  1223. * The transfer end interrupt isn't generated for each chunk when using
  1224. * descriptor mode. Only update the running chunk pointer in
  1225. * non-descriptor mode.
  1226. */
  1227. if (!desc->hwdescs.use) {
  1228. /*
  1229. * If we haven't completed the last transfer chunk simply move
  1230. * to the next one. Only wake the IRQ thread if the transfer is
  1231. * cyclic.
  1232. */
  1233. if (!list_is_last(&desc->running->node, &desc->chunks)) {
  1234. desc->running = list_next_entry(desc->running, node);
  1235. if (!desc->cyclic)
  1236. ret = IRQ_HANDLED;
  1237. goto done;
  1238. }
  1239. /*
  1240. * We've completed the last transfer chunk. If the transfer is
  1241. * cyclic, move back to the first one.
  1242. */
  1243. if (desc->cyclic) {
  1244. desc->running =
  1245. list_first_entry(&desc->chunks,
  1246. struct rcar_dmac_xfer_chunk,
  1247. node);
  1248. goto done;
  1249. }
  1250. }
  1251. /* The descriptor is complete, move it to the done list. */
  1252. list_move_tail(&desc->node, &chan->desc.done);
  1253. /* Queue the next descriptor, if any. */
  1254. if (!list_empty(&chan->desc.active))
  1255. chan->desc.running = list_first_entry(&chan->desc.active,
  1256. struct rcar_dmac_desc,
  1257. node);
  1258. else
  1259. chan->desc.running = NULL;
  1260. done:
  1261. if (chan->desc.running)
  1262. rcar_dmac_chan_start_xfer(chan);
  1263. return ret;
  1264. }
  1265. static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
  1266. {
  1267. u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
  1268. struct rcar_dmac_chan *chan = dev;
  1269. irqreturn_t ret = IRQ_NONE;
  1270. bool reinit = false;
  1271. u32 chcr;
  1272. spin_lock(&chan->lock);
  1273. chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
  1274. if (chcr & RCAR_DMACHCR_CAE) {
  1275. struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device);
  1276. /*
  1277. * We don't need to call rcar_dmac_chan_halt()
  1278. * because channel is already stopped in error case.
  1279. * We need to clear register and check DE bit as recovery.
  1280. */
  1281. rcar_dmac_write(dmac, RCAR_DMACHCLR, 1 << chan->index);
  1282. rcar_dmac_chcr_de_barrier(chan);
  1283. reinit = true;
  1284. goto spin_lock_end;
  1285. }
  1286. if (chcr & RCAR_DMACHCR_TE)
  1287. mask |= RCAR_DMACHCR_DE;
  1288. rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
  1289. if (mask & RCAR_DMACHCR_DE)
  1290. rcar_dmac_chcr_de_barrier(chan);
  1291. if (chcr & RCAR_DMACHCR_DSE)
  1292. ret |= rcar_dmac_isr_desc_stage_end(chan);
  1293. if (chcr & RCAR_DMACHCR_TE)
  1294. ret |= rcar_dmac_isr_transfer_end(chan);
  1295. spin_lock_end:
  1296. spin_unlock(&chan->lock);
  1297. if (reinit) {
  1298. dev_err(chan->chan.device->dev, "Channel Address Error\n");
  1299. rcar_dmac_chan_reinit(chan);
  1300. ret = IRQ_HANDLED;
  1301. }
  1302. return ret;
  1303. }
  1304. static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
  1305. {
  1306. struct rcar_dmac_chan *chan = dev;
  1307. struct rcar_dmac_desc *desc;
  1308. struct dmaengine_desc_callback cb;
  1309. spin_lock_irq(&chan->lock);
  1310. /* For cyclic transfers notify the user after every chunk. */
  1311. if (chan->desc.running && chan->desc.running->cyclic) {
  1312. desc = chan->desc.running;
  1313. dmaengine_desc_get_callback(&desc->async_tx, &cb);
  1314. if (dmaengine_desc_callback_valid(&cb)) {
  1315. spin_unlock_irq(&chan->lock);
  1316. dmaengine_desc_callback_invoke(&cb, NULL);
  1317. spin_lock_irq(&chan->lock);
  1318. }
  1319. }
  1320. /*
  1321. * Call the callback function for all descriptors on the done list and
  1322. * move them to the ack wait list.
  1323. */
  1324. while (!list_empty(&chan->desc.done)) {
  1325. desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
  1326. node);
  1327. dma_cookie_complete(&desc->async_tx);
  1328. list_del(&desc->node);
  1329. dmaengine_desc_get_callback(&desc->async_tx, &cb);
  1330. if (dmaengine_desc_callback_valid(&cb)) {
  1331. spin_unlock_irq(&chan->lock);
  1332. /*
  1333. * We own the only reference to this descriptor, we can
  1334. * safely dereference it without holding the channel
  1335. * lock.
  1336. */
  1337. dmaengine_desc_callback_invoke(&cb, NULL);
  1338. spin_lock_irq(&chan->lock);
  1339. }
  1340. list_add_tail(&desc->node, &chan->desc.wait);
  1341. }
  1342. spin_unlock_irq(&chan->lock);
  1343. /* Recycle all acked descriptors. */
  1344. rcar_dmac_desc_recycle_acked(chan);
  1345. return IRQ_HANDLED;
  1346. }
  1347. /* -----------------------------------------------------------------------------
  1348. * OF xlate and channel filter
  1349. */
  1350. static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
  1351. {
  1352. struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
  1353. struct of_phandle_args *dma_spec = arg;
  1354. /*
  1355. * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
  1356. * function knows from which device it wants to allocate a channel from,
  1357. * and would be perfectly capable of selecting the channel it wants.
  1358. * Forcing it to call dma_request_channel() and iterate through all
  1359. * channels from all controllers is just pointless.
  1360. */
  1361. if (chan->device->device_config != rcar_dmac_device_config ||
  1362. dma_spec->np != chan->device->dev->of_node)
  1363. return false;
  1364. return !test_and_set_bit(dma_spec->args[0], dmac->modules);
  1365. }
  1366. static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
  1367. struct of_dma *ofdma)
  1368. {
  1369. struct rcar_dmac_chan *rchan;
  1370. struct dma_chan *chan;
  1371. dma_cap_mask_t mask;
  1372. if (dma_spec->args_count != 1)
  1373. return NULL;
  1374. /* Only slave DMA channels can be allocated via DT */
  1375. dma_cap_zero(mask);
  1376. dma_cap_set(DMA_SLAVE, mask);
  1377. chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
  1378. if (!chan)
  1379. return NULL;
  1380. rchan = to_rcar_dmac_chan(chan);
  1381. rchan->mid_rid = dma_spec->args[0];
  1382. return chan;
  1383. }
  1384. /* -----------------------------------------------------------------------------
  1385. * Power management
  1386. */
  1387. #ifdef CONFIG_PM
  1388. static int rcar_dmac_runtime_suspend(struct device *dev)
  1389. {
  1390. return 0;
  1391. }
  1392. static int rcar_dmac_runtime_resume(struct device *dev)
  1393. {
  1394. struct rcar_dmac *dmac = dev_get_drvdata(dev);
  1395. return rcar_dmac_init(dmac);
  1396. }
  1397. #endif
  1398. static const struct dev_pm_ops rcar_dmac_pm = {
  1399. /*
  1400. * TODO for system sleep/resume:
  1401. * - Wait for the current transfer to complete and stop the device,
  1402. * - Resume transfers, if any.
  1403. */
  1404. SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
  1405. pm_runtime_force_resume)
  1406. SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
  1407. NULL)
  1408. };
  1409. /* -----------------------------------------------------------------------------
  1410. * Probe and remove
  1411. */
  1412. static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
  1413. struct rcar_dmac_chan *rchan,
  1414. unsigned int index)
  1415. {
  1416. struct platform_device *pdev = to_platform_device(dmac->dev);
  1417. struct dma_chan *chan = &rchan->chan;
  1418. char pdev_irqname[5];
  1419. char *irqname;
  1420. int ret;
  1421. rchan->index = index;
  1422. rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
  1423. rchan->mid_rid = -EINVAL;
  1424. spin_lock_init(&rchan->lock);
  1425. INIT_LIST_HEAD(&rchan->desc.free);
  1426. INIT_LIST_HEAD(&rchan->desc.pending);
  1427. INIT_LIST_HEAD(&rchan->desc.active);
  1428. INIT_LIST_HEAD(&rchan->desc.done);
  1429. INIT_LIST_HEAD(&rchan->desc.wait);
  1430. /* Request the channel interrupt. */
  1431. sprintf(pdev_irqname, "ch%u", index);
  1432. rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
  1433. if (rchan->irq < 0) {
  1434. dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
  1435. return -ENODEV;
  1436. }
  1437. irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
  1438. dev_name(dmac->dev), index);
  1439. if (!irqname)
  1440. return -ENOMEM;
  1441. /*
  1442. * Initialize the DMA engine channel and add it to the DMA engine
  1443. * channels list.
  1444. */
  1445. chan->device = &dmac->engine;
  1446. dma_cookie_init(chan);
  1447. list_add_tail(&chan->device_node, &dmac->engine.channels);
  1448. ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
  1449. rcar_dmac_isr_channel,
  1450. rcar_dmac_isr_channel_thread, 0,
  1451. irqname, rchan);
  1452. if (ret) {
  1453. dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
  1454. rchan->irq, ret);
  1455. return ret;
  1456. }
  1457. return 0;
  1458. }
  1459. static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
  1460. {
  1461. struct device_node *np = dev->of_node;
  1462. int ret;
  1463. ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
  1464. if (ret < 0) {
  1465. dev_err(dev, "unable to read dma-channels property\n");
  1466. return ret;
  1467. }
  1468. if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
  1469. dev_err(dev, "invalid number of channels %u\n",
  1470. dmac->n_channels);
  1471. return -EINVAL;
  1472. }
  1473. return 0;
  1474. }
  1475. static int rcar_dmac_probe(struct platform_device *pdev)
  1476. {
  1477. const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
  1478. DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
  1479. DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
  1480. DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
  1481. unsigned int channels_offset = 0;
  1482. struct dma_device *engine;
  1483. struct rcar_dmac *dmac;
  1484. struct resource *mem;
  1485. unsigned int i;
  1486. int ret;
  1487. dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
  1488. if (!dmac)
  1489. return -ENOMEM;
  1490. dmac->dev = &pdev->dev;
  1491. platform_set_drvdata(pdev, dmac);
  1492. dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
  1493. ret = rcar_dmac_parse_of(&pdev->dev, dmac);
  1494. if (ret < 0)
  1495. return ret;
  1496. /*
  1497. * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
  1498. * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
  1499. * is connected to microTLB 0 on currently supported platforms, so we
  1500. * can't use it with the IPMMU. As the IOMMU API operates at the device
  1501. * level we can't disable it selectively, so ignore channel 0 for now if
  1502. * the device is part of an IOMMU group.
  1503. */
  1504. if (pdev->dev.iommu_group) {
  1505. dmac->n_channels--;
  1506. channels_offset = 1;
  1507. }
  1508. dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
  1509. sizeof(*dmac->channels), GFP_KERNEL);
  1510. if (!dmac->channels)
  1511. return -ENOMEM;
  1512. /* Request resources. */
  1513. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1514. dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
  1515. if (IS_ERR(dmac->iomem))
  1516. return PTR_ERR(dmac->iomem);
  1517. /* Enable runtime PM and initialize the device. */
  1518. pm_runtime_enable(&pdev->dev);
  1519. ret = pm_runtime_get_sync(&pdev->dev);
  1520. if (ret < 0) {
  1521. dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
  1522. return ret;
  1523. }
  1524. ret = rcar_dmac_init(dmac);
  1525. pm_runtime_put(&pdev->dev);
  1526. if (ret) {
  1527. dev_err(&pdev->dev, "failed to reset device\n");
  1528. goto error;
  1529. }
  1530. /* Initialize engine */
  1531. engine = &dmac->engine;
  1532. dma_cap_set(DMA_MEMCPY, engine->cap_mask);
  1533. dma_cap_set(DMA_SLAVE, engine->cap_mask);
  1534. engine->dev = &pdev->dev;
  1535. engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
  1536. engine->src_addr_widths = widths;
  1537. engine->dst_addr_widths = widths;
  1538. engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
  1539. engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  1540. engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
  1541. engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
  1542. engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
  1543. engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
  1544. engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
  1545. engine->device_config = rcar_dmac_device_config;
  1546. engine->device_pause = rcar_dmac_chan_pause;
  1547. engine->device_terminate_all = rcar_dmac_chan_terminate_all;
  1548. engine->device_tx_status = rcar_dmac_tx_status;
  1549. engine->device_issue_pending = rcar_dmac_issue_pending;
  1550. engine->device_synchronize = rcar_dmac_device_synchronize;
  1551. INIT_LIST_HEAD(&engine->channels);
  1552. for (i = 0; i < dmac->n_channels; ++i) {
  1553. ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
  1554. i + channels_offset);
  1555. if (ret < 0)
  1556. goto error;
  1557. }
  1558. /* Register the DMAC as a DMA provider for DT. */
  1559. ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
  1560. NULL);
  1561. if (ret < 0)
  1562. goto error;
  1563. /*
  1564. * Register the DMA engine device.
  1565. *
  1566. * Default transfer size of 32 bytes requires 32-byte alignment.
  1567. */
  1568. ret = dma_async_device_register(engine);
  1569. if (ret < 0)
  1570. goto error;
  1571. return 0;
  1572. error:
  1573. of_dma_controller_free(pdev->dev.of_node);
  1574. pm_runtime_disable(&pdev->dev);
  1575. return ret;
  1576. }
  1577. static int rcar_dmac_remove(struct platform_device *pdev)
  1578. {
  1579. struct rcar_dmac *dmac = platform_get_drvdata(pdev);
  1580. of_dma_controller_free(pdev->dev.of_node);
  1581. dma_async_device_unregister(&dmac->engine);
  1582. pm_runtime_disable(&pdev->dev);
  1583. return 0;
  1584. }
  1585. static void rcar_dmac_shutdown(struct platform_device *pdev)
  1586. {
  1587. struct rcar_dmac *dmac = platform_get_drvdata(pdev);
  1588. rcar_dmac_stop_all_chan(dmac);
  1589. }
  1590. static const struct of_device_id rcar_dmac_of_ids[] = {
  1591. { .compatible = "renesas,rcar-dmac", },
  1592. { /* Sentinel */ }
  1593. };
  1594. MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
  1595. static struct platform_driver rcar_dmac_driver = {
  1596. .driver = {
  1597. .pm = &rcar_dmac_pm,
  1598. .name = "rcar-dmac",
  1599. .of_match_table = rcar_dmac_of_ids,
  1600. },
  1601. .probe = rcar_dmac_probe,
  1602. .remove = rcar_dmac_remove,
  1603. .shutdown = rcar_dmac_shutdown,
  1604. };
  1605. module_platform_driver(rcar_dmac_driver);
  1606. MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
  1607. MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
  1608. MODULE_LICENSE("GPL v2");