caamhash.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_AHASH_BASE (3 * CAAM_CMD_SZ)
  70. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  75. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  76. CAAM_MAX_HASH_KEY_SIZE)
  77. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  78. /* caam context sizes for hashes: running digest + 8 */
  79. #define HASH_MSG_LEN 8
  80. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  81. #ifdef DEBUG
  82. /* for print_hex_dumps with line references */
  83. #define debug(format, arg...) printk(format, arg)
  84. #else
  85. #define debug(format, arg...)
  86. #endif
  87. static struct list_head hash_list;
  88. /* ahash per-session context */
  89. struct caam_hash_ctx {
  90. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  91. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  92. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  93. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  94. dma_addr_t sh_desc_update_dma ____cacheline_aligned;
  95. dma_addr_t sh_desc_update_first_dma;
  96. dma_addr_t sh_desc_fin_dma;
  97. dma_addr_t sh_desc_digest_dma;
  98. enum dma_data_direction dir;
  99. struct device *jrdev;
  100. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  101. int ctx_len;
  102. struct alginfo adata;
  103. };
  104. /* ahash state */
  105. struct caam_hash_state {
  106. dma_addr_t buf_dma;
  107. dma_addr_t ctx_dma;
  108. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  109. int buflen_0;
  110. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  111. int buflen_1;
  112. u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
  113. int (*update)(struct ahash_request *req);
  114. int (*final)(struct ahash_request *req);
  115. int (*finup)(struct ahash_request *req);
  116. int current_buf;
  117. };
  118. struct caam_export_state {
  119. u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
  120. u8 caam_ctx[MAX_CTX_LEN];
  121. int buflen;
  122. int (*update)(struct ahash_request *req);
  123. int (*final)(struct ahash_request *req);
  124. int (*finup)(struct ahash_request *req);
  125. };
  126. static inline void switch_buf(struct caam_hash_state *state)
  127. {
  128. state->current_buf ^= 1;
  129. }
  130. static inline u8 *current_buf(struct caam_hash_state *state)
  131. {
  132. return state->current_buf ? state->buf_1 : state->buf_0;
  133. }
  134. static inline u8 *alt_buf(struct caam_hash_state *state)
  135. {
  136. return state->current_buf ? state->buf_0 : state->buf_1;
  137. }
  138. static inline int *current_buflen(struct caam_hash_state *state)
  139. {
  140. return state->current_buf ? &state->buflen_1 : &state->buflen_0;
  141. }
  142. static inline int *alt_buflen(struct caam_hash_state *state)
  143. {
  144. return state->current_buf ? &state->buflen_0 : &state->buflen_1;
  145. }
  146. /* Common job descriptor seq in/out ptr routines */
  147. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  148. static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  149. struct caam_hash_state *state,
  150. int ctx_len)
  151. {
  152. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  153. ctx_len, DMA_FROM_DEVICE);
  154. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  155. dev_err(jrdev, "unable to map ctx\n");
  156. state->ctx_dma = 0;
  157. return -ENOMEM;
  158. }
  159. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  160. return 0;
  161. }
  162. /* Map req->result, and append seq_out_ptr command that points to it */
  163. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  164. u8 *result, int digestsize)
  165. {
  166. dma_addr_t dst_dma;
  167. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  168. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  169. return dst_dma;
  170. }
  171. /* Map current buffer in state (if length > 0) and put it in link table */
  172. static inline int buf_map_to_sec4_sg(struct device *jrdev,
  173. struct sec4_sg_entry *sec4_sg,
  174. struct caam_hash_state *state)
  175. {
  176. int buflen = *current_buflen(state);
  177. if (!buflen)
  178. return 0;
  179. state->buf_dma = dma_map_single(jrdev, current_buf(state), buflen,
  180. DMA_TO_DEVICE);
  181. if (dma_mapping_error(jrdev, state->buf_dma)) {
  182. dev_err(jrdev, "unable to map buf\n");
  183. state->buf_dma = 0;
  184. return -ENOMEM;
  185. }
  186. dma_to_sec4_sg_one(sec4_sg, state->buf_dma, buflen, 0);
  187. return 0;
  188. }
  189. /* Map state->caam_ctx, and add it to link table */
  190. static inline int ctx_map_to_sec4_sg(struct device *jrdev,
  191. struct caam_hash_state *state, int ctx_len,
  192. struct sec4_sg_entry *sec4_sg, u32 flag)
  193. {
  194. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  195. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  196. dev_err(jrdev, "unable to map ctx\n");
  197. state->ctx_dma = 0;
  198. return -ENOMEM;
  199. }
  200. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  201. return 0;
  202. }
  203. /*
  204. * For ahash update, final and finup (import_ctx = true)
  205. * import context, read and write to seqout
  206. * For ahash firsts and digest (import_ctx = false)
  207. * read and write to seqout
  208. */
  209. static inline void ahash_gen_sh_desc(u32 *desc, u32 state, int digestsize,
  210. struct caam_hash_ctx *ctx, bool import_ctx,
  211. int era)
  212. {
  213. u32 op = ctx->adata.algtype;
  214. u32 *skip_key_load;
  215. init_sh_desc(desc, HDR_SHARE_SERIAL);
  216. /* Append key if it has been set; ahash update excluded */
  217. if ((state != OP_ALG_AS_UPDATE) && (ctx->adata.keylen)) {
  218. /* Skip key loading if already shared */
  219. skip_key_load = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  220. JUMP_COND_SHRD);
  221. if (era < 6)
  222. append_key_as_imm(desc, ctx->key, ctx->adata.keylen_pad,
  223. ctx->adata.keylen, CLASS_2 |
  224. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  225. else
  226. append_proto_dkp(desc, &ctx->adata);
  227. set_jump_tgt_here(desc, skip_key_load);
  228. op |= OP_ALG_AAI_HMAC_PRECOMP;
  229. }
  230. /* If needed, import context from software */
  231. if (import_ctx)
  232. append_seq_load(desc, ctx->ctx_len, LDST_CLASS_2_CCB |
  233. LDST_SRCDST_BYTE_CONTEXT);
  234. /* Class 2 operation */
  235. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  236. /*
  237. * Load from buf and/or src and write to req->result or state->context
  238. * Calculate remaining bytes to read
  239. */
  240. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  241. /* Read remaining bytes */
  242. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  243. FIFOLD_TYPE_MSG | KEY_VLF);
  244. /* Store class2 context bytes */
  245. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  246. LDST_SRCDST_BYTE_CONTEXT);
  247. }
  248. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  249. {
  250. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  251. int digestsize = crypto_ahash_digestsize(ahash);
  252. struct device *jrdev = ctx->jrdev;
  253. struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent);
  254. u32 *desc;
  255. ctx->adata.key_virt = ctx->key;
  256. /* ahash_update shared descriptor */
  257. desc = ctx->sh_desc_update;
  258. ahash_gen_sh_desc(desc, OP_ALG_AS_UPDATE, ctx->ctx_len, ctx, true,
  259. ctrlpriv->era);
  260. dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma,
  261. desc_bytes(desc), ctx->dir);
  262. #ifdef DEBUG
  263. print_hex_dump(KERN_ERR,
  264. "ahash update shdesc@"__stringify(__LINE__)": ",
  265. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  266. #endif
  267. /* ahash_update_first shared descriptor */
  268. desc = ctx->sh_desc_update_first;
  269. ahash_gen_sh_desc(desc, OP_ALG_AS_INIT, ctx->ctx_len, ctx, false,
  270. ctrlpriv->era);
  271. dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma,
  272. desc_bytes(desc), ctx->dir);
  273. #ifdef DEBUG
  274. print_hex_dump(KERN_ERR,
  275. "ahash update first shdesc@"__stringify(__LINE__)": ",
  276. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  277. #endif
  278. /* ahash_final shared descriptor */
  279. desc = ctx->sh_desc_fin;
  280. ahash_gen_sh_desc(desc, OP_ALG_AS_FINALIZE, digestsize, ctx, true,
  281. ctrlpriv->era);
  282. dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma,
  283. desc_bytes(desc), ctx->dir);
  284. #ifdef DEBUG
  285. print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
  286. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  287. desc_bytes(desc), 1);
  288. #endif
  289. /* ahash_digest shared descriptor */
  290. desc = ctx->sh_desc_digest;
  291. ahash_gen_sh_desc(desc, OP_ALG_AS_INITFINAL, digestsize, ctx, false,
  292. ctrlpriv->era);
  293. dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma,
  294. desc_bytes(desc), ctx->dir);
  295. #ifdef DEBUG
  296. print_hex_dump(KERN_ERR,
  297. "ahash digest shdesc@"__stringify(__LINE__)": ",
  298. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  299. desc_bytes(desc), 1);
  300. #endif
  301. return 0;
  302. }
  303. /* Digest hash size if it is too large */
  304. static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  305. u32 *keylen, u8 *key_out, u32 digestsize)
  306. {
  307. struct device *jrdev = ctx->jrdev;
  308. u32 *desc;
  309. struct split_key_result result;
  310. dma_addr_t src_dma, dst_dma;
  311. int ret;
  312. desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  313. if (!desc) {
  314. dev_err(jrdev, "unable to allocate key input memory\n");
  315. return -ENOMEM;
  316. }
  317. init_job_desc(desc, 0);
  318. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  319. DMA_TO_DEVICE);
  320. if (dma_mapping_error(jrdev, src_dma)) {
  321. dev_err(jrdev, "unable to map key input memory\n");
  322. kfree(desc);
  323. return -ENOMEM;
  324. }
  325. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  326. DMA_FROM_DEVICE);
  327. if (dma_mapping_error(jrdev, dst_dma)) {
  328. dev_err(jrdev, "unable to map key output memory\n");
  329. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  330. kfree(desc);
  331. return -ENOMEM;
  332. }
  333. /* Job descriptor to perform unkeyed hash on key_in */
  334. append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT |
  335. OP_ALG_AS_INITFINAL);
  336. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  337. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  338. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  339. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  340. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  341. LDST_SRCDST_BYTE_CONTEXT);
  342. #ifdef DEBUG
  343. print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
  344. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  345. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  346. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  347. #endif
  348. result.err = 0;
  349. init_completion(&result.completion);
  350. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  351. if (!ret) {
  352. /* in progress */
  353. wait_for_completion(&result.completion);
  354. ret = result.err;
  355. #ifdef DEBUG
  356. print_hex_dump(KERN_ERR,
  357. "digested key@"__stringify(__LINE__)": ",
  358. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  359. digestsize, 1);
  360. #endif
  361. }
  362. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  363. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  364. *keylen = digestsize;
  365. kfree(desc);
  366. return ret;
  367. }
  368. static int ahash_setkey(struct crypto_ahash *ahash,
  369. const u8 *key, unsigned int keylen)
  370. {
  371. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  372. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  373. int digestsize = crypto_ahash_digestsize(ahash);
  374. struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent);
  375. int ret;
  376. u8 *hashed_key = NULL;
  377. #ifdef DEBUG
  378. printk(KERN_ERR "keylen %d\n", keylen);
  379. #endif
  380. if (keylen > blocksize) {
  381. hashed_key = kmalloc_array(digestsize,
  382. sizeof(*hashed_key),
  383. GFP_KERNEL | GFP_DMA);
  384. if (!hashed_key)
  385. return -ENOMEM;
  386. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  387. digestsize);
  388. if (ret)
  389. goto bad_free_key;
  390. key = hashed_key;
  391. }
  392. /*
  393. * If DKP is supported, use it in the shared descriptor to generate
  394. * the split key.
  395. */
  396. if (ctrlpriv->era >= 6) {
  397. ctx->adata.key_inline = true;
  398. ctx->adata.keylen = keylen;
  399. ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
  400. OP_ALG_ALGSEL_MASK);
  401. if (ctx->adata.keylen_pad > CAAM_MAX_HASH_KEY_SIZE)
  402. goto bad_free_key;
  403. memcpy(ctx->key, key, keylen);
  404. } else {
  405. ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, key,
  406. keylen, CAAM_MAX_HASH_KEY_SIZE);
  407. if (ret)
  408. goto bad_free_key;
  409. }
  410. kfree(hashed_key);
  411. return ahash_set_sh_desc(ahash);
  412. bad_free_key:
  413. kfree(hashed_key);
  414. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  415. return -EINVAL;
  416. }
  417. /*
  418. * ahash_edesc - s/w-extended ahash descriptor
  419. * @dst_dma: physical mapped address of req->result
  420. * @sec4_sg_dma: physical mapped address of h/w link table
  421. * @src_nents: number of segments in input scatterlist
  422. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  423. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  424. * @sec4_sg: h/w link table
  425. */
  426. struct ahash_edesc {
  427. dma_addr_t dst_dma;
  428. dma_addr_t sec4_sg_dma;
  429. int src_nents;
  430. int sec4_sg_bytes;
  431. u32 hw_desc[DESC_JOB_IO_LEN / sizeof(u32)] ____cacheline_aligned;
  432. struct sec4_sg_entry sec4_sg[0];
  433. };
  434. static inline void ahash_unmap(struct device *dev,
  435. struct ahash_edesc *edesc,
  436. struct ahash_request *req, int dst_len)
  437. {
  438. struct caam_hash_state *state = ahash_request_ctx(req);
  439. if (edesc->src_nents)
  440. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  441. if (edesc->dst_dma)
  442. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  443. if (edesc->sec4_sg_bytes)
  444. dma_unmap_single(dev, edesc->sec4_sg_dma,
  445. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  446. if (state->buf_dma) {
  447. dma_unmap_single(dev, state->buf_dma, *current_buflen(state),
  448. DMA_TO_DEVICE);
  449. state->buf_dma = 0;
  450. }
  451. }
  452. static inline void ahash_unmap_ctx(struct device *dev,
  453. struct ahash_edesc *edesc,
  454. struct ahash_request *req, int dst_len, u32 flag)
  455. {
  456. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  457. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  458. struct caam_hash_state *state = ahash_request_ctx(req);
  459. if (state->ctx_dma) {
  460. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  461. state->ctx_dma = 0;
  462. }
  463. ahash_unmap(dev, edesc, req, dst_len);
  464. }
  465. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  466. void *context)
  467. {
  468. struct ahash_request *req = context;
  469. struct ahash_edesc *edesc;
  470. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  471. int digestsize = crypto_ahash_digestsize(ahash);
  472. #ifdef DEBUG
  473. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  474. struct caam_hash_state *state = ahash_request_ctx(req);
  475. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  476. #endif
  477. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  478. if (err)
  479. caam_jr_strstatus(jrdev, err);
  480. ahash_unmap(jrdev, edesc, req, digestsize);
  481. kfree(edesc);
  482. #ifdef DEBUG
  483. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  484. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  485. ctx->ctx_len, 1);
  486. if (req->result)
  487. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  488. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  489. digestsize, 1);
  490. #endif
  491. req->base.complete(&req->base, err);
  492. }
  493. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  494. void *context)
  495. {
  496. struct ahash_request *req = context;
  497. struct ahash_edesc *edesc;
  498. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  499. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  500. struct caam_hash_state *state = ahash_request_ctx(req);
  501. #ifdef DEBUG
  502. int digestsize = crypto_ahash_digestsize(ahash);
  503. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  504. #endif
  505. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  506. if (err)
  507. caam_jr_strstatus(jrdev, err);
  508. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  509. switch_buf(state);
  510. kfree(edesc);
  511. #ifdef DEBUG
  512. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  513. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  514. ctx->ctx_len, 1);
  515. if (req->result)
  516. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  517. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  518. digestsize, 1);
  519. #endif
  520. req->base.complete(&req->base, err);
  521. }
  522. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  523. void *context)
  524. {
  525. struct ahash_request *req = context;
  526. struct ahash_edesc *edesc;
  527. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  528. int digestsize = crypto_ahash_digestsize(ahash);
  529. #ifdef DEBUG
  530. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  531. struct caam_hash_state *state = ahash_request_ctx(req);
  532. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  533. #endif
  534. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  535. if (err)
  536. caam_jr_strstatus(jrdev, err);
  537. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_TO_DEVICE);
  538. kfree(edesc);
  539. #ifdef DEBUG
  540. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  541. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  542. ctx->ctx_len, 1);
  543. if (req->result)
  544. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  545. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  546. digestsize, 1);
  547. #endif
  548. req->base.complete(&req->base, err);
  549. }
  550. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  551. void *context)
  552. {
  553. struct ahash_request *req = context;
  554. struct ahash_edesc *edesc;
  555. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  556. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  557. struct caam_hash_state *state = ahash_request_ctx(req);
  558. #ifdef DEBUG
  559. int digestsize = crypto_ahash_digestsize(ahash);
  560. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  561. #endif
  562. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  563. if (err)
  564. caam_jr_strstatus(jrdev, err);
  565. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_FROM_DEVICE);
  566. switch_buf(state);
  567. kfree(edesc);
  568. #ifdef DEBUG
  569. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  570. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  571. ctx->ctx_len, 1);
  572. if (req->result)
  573. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  574. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  575. digestsize, 1);
  576. #endif
  577. req->base.complete(&req->base, err);
  578. }
  579. /*
  580. * Allocate an enhanced descriptor, which contains the hardware descriptor
  581. * and space for hardware scatter table containing sg_num entries.
  582. */
  583. static struct ahash_edesc *ahash_edesc_alloc(struct caam_hash_ctx *ctx,
  584. int sg_num, u32 *sh_desc,
  585. dma_addr_t sh_desc_dma,
  586. gfp_t flags)
  587. {
  588. struct ahash_edesc *edesc;
  589. unsigned int sg_size = sg_num * sizeof(struct sec4_sg_entry);
  590. edesc = kzalloc(sizeof(*edesc) + sg_size, GFP_DMA | flags);
  591. if (!edesc) {
  592. dev_err(ctx->jrdev, "could not allocate extended descriptor\n");
  593. return NULL;
  594. }
  595. init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc),
  596. HDR_SHARE_DEFER | HDR_REVERSE);
  597. return edesc;
  598. }
  599. static int ahash_edesc_add_src(struct caam_hash_ctx *ctx,
  600. struct ahash_edesc *edesc,
  601. struct ahash_request *req, int nents,
  602. unsigned int first_sg,
  603. unsigned int first_bytes, size_t to_hash)
  604. {
  605. dma_addr_t src_dma;
  606. u32 options;
  607. if (nents > 1 || first_sg) {
  608. struct sec4_sg_entry *sg = edesc->sec4_sg;
  609. unsigned int sgsize = sizeof(*sg) * (first_sg + nents);
  610. sg_to_sec4_sg_last(req->src, nents, sg + first_sg, 0);
  611. src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE);
  612. if (dma_mapping_error(ctx->jrdev, src_dma)) {
  613. dev_err(ctx->jrdev, "unable to map S/G table\n");
  614. return -ENOMEM;
  615. }
  616. edesc->sec4_sg_bytes = sgsize;
  617. edesc->sec4_sg_dma = src_dma;
  618. options = LDST_SGF;
  619. } else {
  620. src_dma = sg_dma_address(req->src);
  621. options = 0;
  622. }
  623. append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash,
  624. options);
  625. return 0;
  626. }
  627. /* submit update job descriptor */
  628. static int ahash_update_ctx(struct ahash_request *req)
  629. {
  630. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  631. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  632. struct caam_hash_state *state = ahash_request_ctx(req);
  633. struct device *jrdev = ctx->jrdev;
  634. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  635. GFP_KERNEL : GFP_ATOMIC;
  636. u8 *buf = current_buf(state);
  637. int *buflen = current_buflen(state);
  638. u8 *next_buf = alt_buf(state);
  639. int *next_buflen = alt_buflen(state), last_buflen;
  640. int in_len = *buflen + req->nbytes, to_hash;
  641. u32 *desc;
  642. int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index;
  643. struct ahash_edesc *edesc;
  644. int ret = 0;
  645. last_buflen = *next_buflen;
  646. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  647. to_hash = in_len - *next_buflen;
  648. if (to_hash) {
  649. src_nents = sg_nents_for_len(req->src,
  650. req->nbytes - (*next_buflen));
  651. if (src_nents < 0) {
  652. dev_err(jrdev, "Invalid number of src SG.\n");
  653. return src_nents;
  654. }
  655. if (src_nents) {
  656. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  657. DMA_TO_DEVICE);
  658. if (!mapped_nents) {
  659. dev_err(jrdev, "unable to DMA map source\n");
  660. return -ENOMEM;
  661. }
  662. } else {
  663. mapped_nents = 0;
  664. }
  665. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  666. sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
  667. sizeof(struct sec4_sg_entry);
  668. /*
  669. * allocate space for base edesc and hw desc commands,
  670. * link tables
  671. */
  672. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  673. ctx->sh_desc_update,
  674. ctx->sh_desc_update_dma, flags);
  675. if (!edesc) {
  676. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  677. return -ENOMEM;
  678. }
  679. edesc->src_nents = src_nents;
  680. edesc->sec4_sg_bytes = sec4_sg_bytes;
  681. ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len,
  682. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  683. if (ret)
  684. goto unmap_ctx;
  685. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
  686. if (ret)
  687. goto unmap_ctx;
  688. if (mapped_nents) {
  689. sg_to_sec4_sg_last(req->src, mapped_nents,
  690. edesc->sec4_sg + sec4_sg_src_index,
  691. 0);
  692. if (*next_buflen)
  693. scatterwalk_map_and_copy(next_buf, req->src,
  694. to_hash - *buflen,
  695. *next_buflen, 0);
  696. } else {
  697. sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index -
  698. 1);
  699. }
  700. desc = edesc->hw_desc;
  701. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  702. sec4_sg_bytes,
  703. DMA_TO_DEVICE);
  704. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  705. dev_err(jrdev, "unable to map S/G table\n");
  706. ret = -ENOMEM;
  707. goto unmap_ctx;
  708. }
  709. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  710. to_hash, LDST_SGF);
  711. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  712. #ifdef DEBUG
  713. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  714. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  715. desc_bytes(desc), 1);
  716. #endif
  717. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  718. if (ret)
  719. goto unmap_ctx;
  720. ret = -EINPROGRESS;
  721. } else if (*next_buflen) {
  722. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  723. req->nbytes, 0);
  724. *buflen = *next_buflen;
  725. *next_buflen = last_buflen;
  726. }
  727. #ifdef DEBUG
  728. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  729. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  730. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  731. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  732. *next_buflen, 1);
  733. #endif
  734. return ret;
  735. unmap_ctx:
  736. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  737. kfree(edesc);
  738. return ret;
  739. }
  740. static int ahash_final_ctx(struct ahash_request *req)
  741. {
  742. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  743. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  744. struct caam_hash_state *state = ahash_request_ctx(req);
  745. struct device *jrdev = ctx->jrdev;
  746. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  747. GFP_KERNEL : GFP_ATOMIC;
  748. int buflen = *current_buflen(state);
  749. u32 *desc;
  750. int sec4_sg_bytes, sec4_sg_src_index;
  751. int digestsize = crypto_ahash_digestsize(ahash);
  752. struct ahash_edesc *edesc;
  753. int ret;
  754. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  755. sec4_sg_bytes = sec4_sg_src_index * sizeof(struct sec4_sg_entry);
  756. /* allocate space for base edesc and hw desc commands, link tables */
  757. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index,
  758. ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
  759. flags);
  760. if (!edesc)
  761. return -ENOMEM;
  762. desc = edesc->hw_desc;
  763. edesc->sec4_sg_bytes = sec4_sg_bytes;
  764. ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len,
  765. edesc->sec4_sg, DMA_TO_DEVICE);
  766. if (ret)
  767. goto unmap_ctx;
  768. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
  769. if (ret)
  770. goto unmap_ctx;
  771. sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index - 1);
  772. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  773. sec4_sg_bytes, DMA_TO_DEVICE);
  774. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  775. dev_err(jrdev, "unable to map S/G table\n");
  776. ret = -ENOMEM;
  777. goto unmap_ctx;
  778. }
  779. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  780. LDST_SGF);
  781. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  782. digestsize);
  783. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  784. dev_err(jrdev, "unable to map dst\n");
  785. ret = -ENOMEM;
  786. goto unmap_ctx;
  787. }
  788. #ifdef DEBUG
  789. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  790. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  791. #endif
  792. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  793. if (ret)
  794. goto unmap_ctx;
  795. return -EINPROGRESS;
  796. unmap_ctx:
  797. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  798. kfree(edesc);
  799. return ret;
  800. }
  801. static int ahash_finup_ctx(struct ahash_request *req)
  802. {
  803. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  804. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  805. struct caam_hash_state *state = ahash_request_ctx(req);
  806. struct device *jrdev = ctx->jrdev;
  807. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  808. GFP_KERNEL : GFP_ATOMIC;
  809. int buflen = *current_buflen(state);
  810. u32 *desc;
  811. int sec4_sg_src_index;
  812. int src_nents, mapped_nents;
  813. int digestsize = crypto_ahash_digestsize(ahash);
  814. struct ahash_edesc *edesc;
  815. int ret;
  816. src_nents = sg_nents_for_len(req->src, req->nbytes);
  817. if (src_nents < 0) {
  818. dev_err(jrdev, "Invalid number of src SG.\n");
  819. return src_nents;
  820. }
  821. if (src_nents) {
  822. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  823. DMA_TO_DEVICE);
  824. if (!mapped_nents) {
  825. dev_err(jrdev, "unable to DMA map source\n");
  826. return -ENOMEM;
  827. }
  828. } else {
  829. mapped_nents = 0;
  830. }
  831. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  832. /* allocate space for base edesc and hw desc commands, link tables */
  833. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  834. ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
  835. flags);
  836. if (!edesc) {
  837. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  838. return -ENOMEM;
  839. }
  840. desc = edesc->hw_desc;
  841. edesc->src_nents = src_nents;
  842. ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len,
  843. edesc->sec4_sg, DMA_TO_DEVICE);
  844. if (ret)
  845. goto unmap_ctx;
  846. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
  847. if (ret)
  848. goto unmap_ctx;
  849. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents,
  850. sec4_sg_src_index, ctx->ctx_len + buflen,
  851. req->nbytes);
  852. if (ret)
  853. goto unmap_ctx;
  854. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  855. digestsize);
  856. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  857. dev_err(jrdev, "unable to map dst\n");
  858. ret = -ENOMEM;
  859. goto unmap_ctx;
  860. }
  861. #ifdef DEBUG
  862. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  863. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  864. #endif
  865. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  866. if (ret)
  867. goto unmap_ctx;
  868. return -EINPROGRESS;
  869. unmap_ctx:
  870. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  871. kfree(edesc);
  872. return ret;
  873. }
  874. static int ahash_digest(struct ahash_request *req)
  875. {
  876. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  877. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  878. struct caam_hash_state *state = ahash_request_ctx(req);
  879. struct device *jrdev = ctx->jrdev;
  880. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  881. GFP_KERNEL : GFP_ATOMIC;
  882. u32 *desc;
  883. int digestsize = crypto_ahash_digestsize(ahash);
  884. int src_nents, mapped_nents;
  885. struct ahash_edesc *edesc;
  886. int ret;
  887. state->buf_dma = 0;
  888. src_nents = sg_nents_for_len(req->src, req->nbytes);
  889. if (src_nents < 0) {
  890. dev_err(jrdev, "Invalid number of src SG.\n");
  891. return src_nents;
  892. }
  893. if (src_nents) {
  894. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  895. DMA_TO_DEVICE);
  896. if (!mapped_nents) {
  897. dev_err(jrdev, "unable to map source for DMA\n");
  898. return -ENOMEM;
  899. }
  900. } else {
  901. mapped_nents = 0;
  902. }
  903. /* allocate space for base edesc and hw desc commands, link tables */
  904. edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ? mapped_nents : 0,
  905. ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
  906. flags);
  907. if (!edesc) {
  908. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  909. return -ENOMEM;
  910. }
  911. edesc->src_nents = src_nents;
  912. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
  913. req->nbytes);
  914. if (ret) {
  915. ahash_unmap(jrdev, edesc, req, digestsize);
  916. kfree(edesc);
  917. return ret;
  918. }
  919. desc = edesc->hw_desc;
  920. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  921. digestsize);
  922. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  923. dev_err(jrdev, "unable to map dst\n");
  924. ahash_unmap(jrdev, edesc, req, digestsize);
  925. kfree(edesc);
  926. return -ENOMEM;
  927. }
  928. #ifdef DEBUG
  929. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  930. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  931. #endif
  932. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  933. if (!ret) {
  934. ret = -EINPROGRESS;
  935. } else {
  936. ahash_unmap(jrdev, edesc, req, digestsize);
  937. kfree(edesc);
  938. }
  939. return ret;
  940. }
  941. /* submit ahash final if it the first job descriptor */
  942. static int ahash_final_no_ctx(struct ahash_request *req)
  943. {
  944. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  945. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  946. struct caam_hash_state *state = ahash_request_ctx(req);
  947. struct device *jrdev = ctx->jrdev;
  948. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  949. GFP_KERNEL : GFP_ATOMIC;
  950. u8 *buf = current_buf(state);
  951. int buflen = *current_buflen(state);
  952. u32 *desc;
  953. int digestsize = crypto_ahash_digestsize(ahash);
  954. struct ahash_edesc *edesc;
  955. int ret;
  956. /* allocate space for base edesc and hw desc commands, link tables */
  957. edesc = ahash_edesc_alloc(ctx, 0, ctx->sh_desc_digest,
  958. ctx->sh_desc_digest_dma, flags);
  959. if (!edesc)
  960. return -ENOMEM;
  961. desc = edesc->hw_desc;
  962. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  963. if (dma_mapping_error(jrdev, state->buf_dma)) {
  964. dev_err(jrdev, "unable to map src\n");
  965. goto unmap;
  966. }
  967. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  968. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  969. digestsize);
  970. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  971. dev_err(jrdev, "unable to map dst\n");
  972. goto unmap;
  973. }
  974. #ifdef DEBUG
  975. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  976. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  977. #endif
  978. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  979. if (!ret) {
  980. ret = -EINPROGRESS;
  981. } else {
  982. ahash_unmap(jrdev, edesc, req, digestsize);
  983. kfree(edesc);
  984. }
  985. return ret;
  986. unmap:
  987. ahash_unmap(jrdev, edesc, req, digestsize);
  988. kfree(edesc);
  989. return -ENOMEM;
  990. }
  991. /* submit ahash update if it the first job descriptor after update */
  992. static int ahash_update_no_ctx(struct ahash_request *req)
  993. {
  994. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  995. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  996. struct caam_hash_state *state = ahash_request_ctx(req);
  997. struct device *jrdev = ctx->jrdev;
  998. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  999. GFP_KERNEL : GFP_ATOMIC;
  1000. u8 *buf = current_buf(state);
  1001. int *buflen = current_buflen(state);
  1002. u8 *next_buf = alt_buf(state);
  1003. int *next_buflen = alt_buflen(state);
  1004. int in_len = *buflen + req->nbytes, to_hash;
  1005. int sec4_sg_bytes, src_nents, mapped_nents;
  1006. struct ahash_edesc *edesc;
  1007. u32 *desc;
  1008. int ret = 0;
  1009. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  1010. to_hash = in_len - *next_buflen;
  1011. if (to_hash) {
  1012. src_nents = sg_nents_for_len(req->src,
  1013. req->nbytes - *next_buflen);
  1014. if (src_nents < 0) {
  1015. dev_err(jrdev, "Invalid number of src SG.\n");
  1016. return src_nents;
  1017. }
  1018. if (src_nents) {
  1019. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1020. DMA_TO_DEVICE);
  1021. if (!mapped_nents) {
  1022. dev_err(jrdev, "unable to DMA map source\n");
  1023. return -ENOMEM;
  1024. }
  1025. } else {
  1026. mapped_nents = 0;
  1027. }
  1028. sec4_sg_bytes = (1 + mapped_nents) *
  1029. sizeof(struct sec4_sg_entry);
  1030. /*
  1031. * allocate space for base edesc and hw desc commands,
  1032. * link tables
  1033. */
  1034. edesc = ahash_edesc_alloc(ctx, 1 + mapped_nents,
  1035. ctx->sh_desc_update_first,
  1036. ctx->sh_desc_update_first_dma,
  1037. flags);
  1038. if (!edesc) {
  1039. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1040. return -ENOMEM;
  1041. }
  1042. edesc->src_nents = src_nents;
  1043. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1044. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state);
  1045. if (ret)
  1046. goto unmap_ctx;
  1047. sg_to_sec4_sg_last(req->src, mapped_nents,
  1048. edesc->sec4_sg + 1, 0);
  1049. if (*next_buflen) {
  1050. scatterwalk_map_and_copy(next_buf, req->src,
  1051. to_hash - *buflen,
  1052. *next_buflen, 0);
  1053. }
  1054. desc = edesc->hw_desc;
  1055. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1056. sec4_sg_bytes,
  1057. DMA_TO_DEVICE);
  1058. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1059. dev_err(jrdev, "unable to map S/G table\n");
  1060. ret = -ENOMEM;
  1061. goto unmap_ctx;
  1062. }
  1063. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1064. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1065. if (ret)
  1066. goto unmap_ctx;
  1067. #ifdef DEBUG
  1068. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1069. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1070. desc_bytes(desc), 1);
  1071. #endif
  1072. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1073. if (ret)
  1074. goto unmap_ctx;
  1075. ret = -EINPROGRESS;
  1076. state->update = ahash_update_ctx;
  1077. state->finup = ahash_finup_ctx;
  1078. state->final = ahash_final_ctx;
  1079. } else if (*next_buflen) {
  1080. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  1081. req->nbytes, 0);
  1082. *buflen = *next_buflen;
  1083. *next_buflen = 0;
  1084. }
  1085. #ifdef DEBUG
  1086. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  1087. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1088. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1089. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1090. *next_buflen, 1);
  1091. #endif
  1092. return ret;
  1093. unmap_ctx:
  1094. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  1095. kfree(edesc);
  1096. return ret;
  1097. }
  1098. /* submit ahash finup if it the first job descriptor after update */
  1099. static int ahash_finup_no_ctx(struct ahash_request *req)
  1100. {
  1101. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1102. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1103. struct caam_hash_state *state = ahash_request_ctx(req);
  1104. struct device *jrdev = ctx->jrdev;
  1105. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  1106. GFP_KERNEL : GFP_ATOMIC;
  1107. int buflen = *current_buflen(state);
  1108. u32 *desc;
  1109. int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents;
  1110. int digestsize = crypto_ahash_digestsize(ahash);
  1111. struct ahash_edesc *edesc;
  1112. int ret;
  1113. src_nents = sg_nents_for_len(req->src, req->nbytes);
  1114. if (src_nents < 0) {
  1115. dev_err(jrdev, "Invalid number of src SG.\n");
  1116. return src_nents;
  1117. }
  1118. if (src_nents) {
  1119. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1120. DMA_TO_DEVICE);
  1121. if (!mapped_nents) {
  1122. dev_err(jrdev, "unable to DMA map source\n");
  1123. return -ENOMEM;
  1124. }
  1125. } else {
  1126. mapped_nents = 0;
  1127. }
  1128. sec4_sg_src_index = 2;
  1129. sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
  1130. sizeof(struct sec4_sg_entry);
  1131. /* allocate space for base edesc and hw desc commands, link tables */
  1132. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  1133. ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
  1134. flags);
  1135. if (!edesc) {
  1136. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1137. return -ENOMEM;
  1138. }
  1139. desc = edesc->hw_desc;
  1140. edesc->src_nents = src_nents;
  1141. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1142. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state);
  1143. if (ret)
  1144. goto unmap;
  1145. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen,
  1146. req->nbytes);
  1147. if (ret) {
  1148. dev_err(jrdev, "unable to map S/G table\n");
  1149. goto unmap;
  1150. }
  1151. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1152. digestsize);
  1153. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1154. dev_err(jrdev, "unable to map dst\n");
  1155. goto unmap;
  1156. }
  1157. #ifdef DEBUG
  1158. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1159. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1160. #endif
  1161. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1162. if (!ret) {
  1163. ret = -EINPROGRESS;
  1164. } else {
  1165. ahash_unmap(jrdev, edesc, req, digestsize);
  1166. kfree(edesc);
  1167. }
  1168. return ret;
  1169. unmap:
  1170. ahash_unmap(jrdev, edesc, req, digestsize);
  1171. kfree(edesc);
  1172. return -ENOMEM;
  1173. }
  1174. /* submit first update job descriptor after init */
  1175. static int ahash_update_first(struct ahash_request *req)
  1176. {
  1177. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1178. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1179. struct caam_hash_state *state = ahash_request_ctx(req);
  1180. struct device *jrdev = ctx->jrdev;
  1181. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  1182. GFP_KERNEL : GFP_ATOMIC;
  1183. u8 *next_buf = alt_buf(state);
  1184. int *next_buflen = alt_buflen(state);
  1185. int to_hash;
  1186. u32 *desc;
  1187. int src_nents, mapped_nents;
  1188. struct ahash_edesc *edesc;
  1189. int ret = 0;
  1190. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1191. 1);
  1192. to_hash = req->nbytes - *next_buflen;
  1193. if (to_hash) {
  1194. src_nents = sg_nents_for_len(req->src,
  1195. req->nbytes - *next_buflen);
  1196. if (src_nents < 0) {
  1197. dev_err(jrdev, "Invalid number of src SG.\n");
  1198. return src_nents;
  1199. }
  1200. if (src_nents) {
  1201. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1202. DMA_TO_DEVICE);
  1203. if (!mapped_nents) {
  1204. dev_err(jrdev, "unable to map source for DMA\n");
  1205. return -ENOMEM;
  1206. }
  1207. } else {
  1208. mapped_nents = 0;
  1209. }
  1210. /*
  1211. * allocate space for base edesc and hw desc commands,
  1212. * link tables
  1213. */
  1214. edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ?
  1215. mapped_nents : 0,
  1216. ctx->sh_desc_update_first,
  1217. ctx->sh_desc_update_first_dma,
  1218. flags);
  1219. if (!edesc) {
  1220. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1221. return -ENOMEM;
  1222. }
  1223. edesc->src_nents = src_nents;
  1224. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
  1225. to_hash);
  1226. if (ret)
  1227. goto unmap_ctx;
  1228. if (*next_buflen)
  1229. scatterwalk_map_and_copy(next_buf, req->src, to_hash,
  1230. *next_buflen, 0);
  1231. desc = edesc->hw_desc;
  1232. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1233. if (ret)
  1234. goto unmap_ctx;
  1235. #ifdef DEBUG
  1236. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1237. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1238. desc_bytes(desc), 1);
  1239. #endif
  1240. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1241. if (ret)
  1242. goto unmap_ctx;
  1243. ret = -EINPROGRESS;
  1244. state->update = ahash_update_ctx;
  1245. state->finup = ahash_finup_ctx;
  1246. state->final = ahash_final_ctx;
  1247. } else if (*next_buflen) {
  1248. state->update = ahash_update_no_ctx;
  1249. state->finup = ahash_finup_no_ctx;
  1250. state->final = ahash_final_no_ctx;
  1251. scatterwalk_map_and_copy(next_buf, req->src, 0,
  1252. req->nbytes, 0);
  1253. switch_buf(state);
  1254. }
  1255. #ifdef DEBUG
  1256. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1257. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1258. *next_buflen, 1);
  1259. #endif
  1260. return ret;
  1261. unmap_ctx:
  1262. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  1263. kfree(edesc);
  1264. return ret;
  1265. }
  1266. static int ahash_finup_first(struct ahash_request *req)
  1267. {
  1268. return ahash_digest(req);
  1269. }
  1270. static int ahash_init(struct ahash_request *req)
  1271. {
  1272. struct caam_hash_state *state = ahash_request_ctx(req);
  1273. state->update = ahash_update_first;
  1274. state->finup = ahash_finup_first;
  1275. state->final = ahash_final_no_ctx;
  1276. state->ctx_dma = 0;
  1277. state->current_buf = 0;
  1278. state->buf_dma = 0;
  1279. state->buflen_0 = 0;
  1280. state->buflen_1 = 0;
  1281. return 0;
  1282. }
  1283. static int ahash_update(struct ahash_request *req)
  1284. {
  1285. struct caam_hash_state *state = ahash_request_ctx(req);
  1286. return state->update(req);
  1287. }
  1288. static int ahash_finup(struct ahash_request *req)
  1289. {
  1290. struct caam_hash_state *state = ahash_request_ctx(req);
  1291. return state->finup(req);
  1292. }
  1293. static int ahash_final(struct ahash_request *req)
  1294. {
  1295. struct caam_hash_state *state = ahash_request_ctx(req);
  1296. return state->final(req);
  1297. }
  1298. static int ahash_export(struct ahash_request *req, void *out)
  1299. {
  1300. struct caam_hash_state *state = ahash_request_ctx(req);
  1301. struct caam_export_state *export = out;
  1302. int len;
  1303. u8 *buf;
  1304. if (state->current_buf) {
  1305. buf = state->buf_1;
  1306. len = state->buflen_1;
  1307. } else {
  1308. buf = state->buf_0;
  1309. len = state->buflen_0;
  1310. }
  1311. memcpy(export->buf, buf, len);
  1312. memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
  1313. export->buflen = len;
  1314. export->update = state->update;
  1315. export->final = state->final;
  1316. export->finup = state->finup;
  1317. return 0;
  1318. }
  1319. static int ahash_import(struct ahash_request *req, const void *in)
  1320. {
  1321. struct caam_hash_state *state = ahash_request_ctx(req);
  1322. const struct caam_export_state *export = in;
  1323. memset(state, 0, sizeof(*state));
  1324. memcpy(state->buf_0, export->buf, export->buflen);
  1325. memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
  1326. state->buflen_0 = export->buflen;
  1327. state->update = export->update;
  1328. state->final = export->final;
  1329. state->finup = export->finup;
  1330. return 0;
  1331. }
  1332. struct caam_hash_template {
  1333. char name[CRYPTO_MAX_ALG_NAME];
  1334. char driver_name[CRYPTO_MAX_ALG_NAME];
  1335. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1336. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1337. unsigned int blocksize;
  1338. struct ahash_alg template_ahash;
  1339. u32 alg_type;
  1340. };
  1341. /* ahash descriptors */
  1342. static struct caam_hash_template driver_hash[] = {
  1343. {
  1344. .name = "sha1",
  1345. .driver_name = "sha1-caam",
  1346. .hmac_name = "hmac(sha1)",
  1347. .hmac_driver_name = "hmac-sha1-caam",
  1348. .blocksize = SHA1_BLOCK_SIZE,
  1349. .template_ahash = {
  1350. .init = ahash_init,
  1351. .update = ahash_update,
  1352. .final = ahash_final,
  1353. .finup = ahash_finup,
  1354. .digest = ahash_digest,
  1355. .export = ahash_export,
  1356. .import = ahash_import,
  1357. .setkey = ahash_setkey,
  1358. .halg = {
  1359. .digestsize = SHA1_DIGEST_SIZE,
  1360. .statesize = sizeof(struct caam_export_state),
  1361. },
  1362. },
  1363. .alg_type = OP_ALG_ALGSEL_SHA1,
  1364. }, {
  1365. .name = "sha224",
  1366. .driver_name = "sha224-caam",
  1367. .hmac_name = "hmac(sha224)",
  1368. .hmac_driver_name = "hmac-sha224-caam",
  1369. .blocksize = SHA224_BLOCK_SIZE,
  1370. .template_ahash = {
  1371. .init = ahash_init,
  1372. .update = ahash_update,
  1373. .final = ahash_final,
  1374. .finup = ahash_finup,
  1375. .digest = ahash_digest,
  1376. .export = ahash_export,
  1377. .import = ahash_import,
  1378. .setkey = ahash_setkey,
  1379. .halg = {
  1380. .digestsize = SHA224_DIGEST_SIZE,
  1381. .statesize = sizeof(struct caam_export_state),
  1382. },
  1383. },
  1384. .alg_type = OP_ALG_ALGSEL_SHA224,
  1385. }, {
  1386. .name = "sha256",
  1387. .driver_name = "sha256-caam",
  1388. .hmac_name = "hmac(sha256)",
  1389. .hmac_driver_name = "hmac-sha256-caam",
  1390. .blocksize = SHA256_BLOCK_SIZE,
  1391. .template_ahash = {
  1392. .init = ahash_init,
  1393. .update = ahash_update,
  1394. .final = ahash_final,
  1395. .finup = ahash_finup,
  1396. .digest = ahash_digest,
  1397. .export = ahash_export,
  1398. .import = ahash_import,
  1399. .setkey = ahash_setkey,
  1400. .halg = {
  1401. .digestsize = SHA256_DIGEST_SIZE,
  1402. .statesize = sizeof(struct caam_export_state),
  1403. },
  1404. },
  1405. .alg_type = OP_ALG_ALGSEL_SHA256,
  1406. }, {
  1407. .name = "sha384",
  1408. .driver_name = "sha384-caam",
  1409. .hmac_name = "hmac(sha384)",
  1410. .hmac_driver_name = "hmac-sha384-caam",
  1411. .blocksize = SHA384_BLOCK_SIZE,
  1412. .template_ahash = {
  1413. .init = ahash_init,
  1414. .update = ahash_update,
  1415. .final = ahash_final,
  1416. .finup = ahash_finup,
  1417. .digest = ahash_digest,
  1418. .export = ahash_export,
  1419. .import = ahash_import,
  1420. .setkey = ahash_setkey,
  1421. .halg = {
  1422. .digestsize = SHA384_DIGEST_SIZE,
  1423. .statesize = sizeof(struct caam_export_state),
  1424. },
  1425. },
  1426. .alg_type = OP_ALG_ALGSEL_SHA384,
  1427. }, {
  1428. .name = "sha512",
  1429. .driver_name = "sha512-caam",
  1430. .hmac_name = "hmac(sha512)",
  1431. .hmac_driver_name = "hmac-sha512-caam",
  1432. .blocksize = SHA512_BLOCK_SIZE,
  1433. .template_ahash = {
  1434. .init = ahash_init,
  1435. .update = ahash_update,
  1436. .final = ahash_final,
  1437. .finup = ahash_finup,
  1438. .digest = ahash_digest,
  1439. .export = ahash_export,
  1440. .import = ahash_import,
  1441. .setkey = ahash_setkey,
  1442. .halg = {
  1443. .digestsize = SHA512_DIGEST_SIZE,
  1444. .statesize = sizeof(struct caam_export_state),
  1445. },
  1446. },
  1447. .alg_type = OP_ALG_ALGSEL_SHA512,
  1448. }, {
  1449. .name = "md5",
  1450. .driver_name = "md5-caam",
  1451. .hmac_name = "hmac(md5)",
  1452. .hmac_driver_name = "hmac-md5-caam",
  1453. .blocksize = MD5_BLOCK_WORDS * 4,
  1454. .template_ahash = {
  1455. .init = ahash_init,
  1456. .update = ahash_update,
  1457. .final = ahash_final,
  1458. .finup = ahash_finup,
  1459. .digest = ahash_digest,
  1460. .export = ahash_export,
  1461. .import = ahash_import,
  1462. .setkey = ahash_setkey,
  1463. .halg = {
  1464. .digestsize = MD5_DIGEST_SIZE,
  1465. .statesize = sizeof(struct caam_export_state),
  1466. },
  1467. },
  1468. .alg_type = OP_ALG_ALGSEL_MD5,
  1469. },
  1470. };
  1471. struct caam_hash_alg {
  1472. struct list_head entry;
  1473. int alg_type;
  1474. struct ahash_alg ahash_alg;
  1475. };
  1476. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1477. {
  1478. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1479. struct crypto_alg *base = tfm->__crt_alg;
  1480. struct hash_alg_common *halg =
  1481. container_of(base, struct hash_alg_common, base);
  1482. struct ahash_alg *alg =
  1483. container_of(halg, struct ahash_alg, halg);
  1484. struct caam_hash_alg *caam_hash =
  1485. container_of(alg, struct caam_hash_alg, ahash_alg);
  1486. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1487. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1488. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1489. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1490. HASH_MSG_LEN + 32,
  1491. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1492. HASH_MSG_LEN + 64,
  1493. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1494. dma_addr_t dma_addr;
  1495. struct caam_drv_private *priv;
  1496. /*
  1497. * Get a Job ring from Job Ring driver to ensure in-order
  1498. * crypto request processing per tfm
  1499. */
  1500. ctx->jrdev = caam_jr_alloc();
  1501. if (IS_ERR(ctx->jrdev)) {
  1502. pr_err("Job Ring Device allocation for transform failed\n");
  1503. return PTR_ERR(ctx->jrdev);
  1504. }
  1505. priv = dev_get_drvdata(ctx->jrdev->parent);
  1506. ctx->dir = priv->era >= 6 ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
  1507. dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_update,
  1508. offsetof(struct caam_hash_ctx,
  1509. sh_desc_update_dma),
  1510. ctx->dir, DMA_ATTR_SKIP_CPU_SYNC);
  1511. if (dma_mapping_error(ctx->jrdev, dma_addr)) {
  1512. dev_err(ctx->jrdev, "unable to map shared descriptors\n");
  1513. caam_jr_free(ctx->jrdev);
  1514. return -ENOMEM;
  1515. }
  1516. ctx->sh_desc_update_dma = dma_addr;
  1517. ctx->sh_desc_update_first_dma = dma_addr +
  1518. offsetof(struct caam_hash_ctx,
  1519. sh_desc_update_first);
  1520. ctx->sh_desc_fin_dma = dma_addr + offsetof(struct caam_hash_ctx,
  1521. sh_desc_fin);
  1522. ctx->sh_desc_digest_dma = dma_addr + offsetof(struct caam_hash_ctx,
  1523. sh_desc_digest);
  1524. /* copy descriptor header template value */
  1525. ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1526. ctx->ctx_len = runninglen[(ctx->adata.algtype &
  1527. OP_ALG_ALGSEL_SUBMASK) >>
  1528. OP_ALG_ALGSEL_SHIFT];
  1529. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1530. sizeof(struct caam_hash_state));
  1531. return ahash_set_sh_desc(ahash);
  1532. }
  1533. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1534. {
  1535. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1536. dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_update_dma,
  1537. offsetof(struct caam_hash_ctx,
  1538. sh_desc_update_dma),
  1539. ctx->dir, DMA_ATTR_SKIP_CPU_SYNC);
  1540. caam_jr_free(ctx->jrdev);
  1541. }
  1542. static void __exit caam_algapi_hash_exit(void)
  1543. {
  1544. struct caam_hash_alg *t_alg, *n;
  1545. if (!hash_list.next)
  1546. return;
  1547. list_for_each_entry_safe(t_alg, n, &hash_list, entry) {
  1548. crypto_unregister_ahash(&t_alg->ahash_alg);
  1549. list_del(&t_alg->entry);
  1550. kfree(t_alg);
  1551. }
  1552. }
  1553. static struct caam_hash_alg *
  1554. caam_hash_alloc(struct caam_hash_template *template,
  1555. bool keyed)
  1556. {
  1557. struct caam_hash_alg *t_alg;
  1558. struct ahash_alg *halg;
  1559. struct crypto_alg *alg;
  1560. t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
  1561. if (!t_alg) {
  1562. pr_err("failed to allocate t_alg\n");
  1563. return ERR_PTR(-ENOMEM);
  1564. }
  1565. t_alg->ahash_alg = template->template_ahash;
  1566. halg = &t_alg->ahash_alg;
  1567. alg = &halg->halg.base;
  1568. if (keyed) {
  1569. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1570. template->hmac_name);
  1571. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1572. template->hmac_driver_name);
  1573. } else {
  1574. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1575. template->name);
  1576. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1577. template->driver_name);
  1578. t_alg->ahash_alg.setkey = NULL;
  1579. }
  1580. alg->cra_module = THIS_MODULE;
  1581. alg->cra_init = caam_hash_cra_init;
  1582. alg->cra_exit = caam_hash_cra_exit;
  1583. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1584. alg->cra_priority = CAAM_CRA_PRIORITY;
  1585. alg->cra_blocksize = template->blocksize;
  1586. alg->cra_alignmask = 0;
  1587. alg->cra_flags = CRYPTO_ALG_ASYNC;
  1588. t_alg->alg_type = template->alg_type;
  1589. return t_alg;
  1590. }
  1591. static int __init caam_algapi_hash_init(void)
  1592. {
  1593. struct device_node *dev_node;
  1594. struct platform_device *pdev;
  1595. struct device *ctrldev;
  1596. int i = 0, err = 0;
  1597. struct caam_drv_private *priv;
  1598. unsigned int md_limit = SHA512_DIGEST_SIZE;
  1599. u32 cha_inst, cha_vid;
  1600. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1601. if (!dev_node) {
  1602. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1603. if (!dev_node)
  1604. return -ENODEV;
  1605. }
  1606. pdev = of_find_device_by_node(dev_node);
  1607. if (!pdev) {
  1608. of_node_put(dev_node);
  1609. return -ENODEV;
  1610. }
  1611. ctrldev = &pdev->dev;
  1612. priv = dev_get_drvdata(ctrldev);
  1613. of_node_put(dev_node);
  1614. /*
  1615. * If priv is NULL, it's probably because the caam driver wasn't
  1616. * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
  1617. */
  1618. if (!priv)
  1619. return -ENODEV;
  1620. /*
  1621. * Register crypto algorithms the device supports. First, identify
  1622. * presence and attributes of MD block.
  1623. */
  1624. cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
  1625. cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
  1626. /*
  1627. * Skip registration of any hashing algorithms if MD block
  1628. * is not present.
  1629. */
  1630. if (!((cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT))
  1631. return -ENODEV;
  1632. /* Limit digest size based on LP256 */
  1633. if ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256)
  1634. md_limit = SHA256_DIGEST_SIZE;
  1635. INIT_LIST_HEAD(&hash_list);
  1636. /* register crypto algorithms the device supports */
  1637. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1638. struct caam_hash_alg *t_alg;
  1639. struct caam_hash_template *alg = driver_hash + i;
  1640. /* If MD size is not supported by device, skip registration */
  1641. if (alg->template_ahash.halg.digestsize > md_limit)
  1642. continue;
  1643. /* register hmac version */
  1644. t_alg = caam_hash_alloc(alg, true);
  1645. if (IS_ERR(t_alg)) {
  1646. err = PTR_ERR(t_alg);
  1647. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1648. continue;
  1649. }
  1650. err = crypto_register_ahash(&t_alg->ahash_alg);
  1651. if (err) {
  1652. pr_warn("%s alg registration failed: %d\n",
  1653. t_alg->ahash_alg.halg.base.cra_driver_name,
  1654. err);
  1655. kfree(t_alg);
  1656. } else
  1657. list_add_tail(&t_alg->entry, &hash_list);
  1658. /* register unkeyed version */
  1659. t_alg = caam_hash_alloc(alg, false);
  1660. if (IS_ERR(t_alg)) {
  1661. err = PTR_ERR(t_alg);
  1662. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1663. continue;
  1664. }
  1665. err = crypto_register_ahash(&t_alg->ahash_alg);
  1666. if (err) {
  1667. pr_warn("%s alg registration failed: %d\n",
  1668. t_alg->ahash_alg.halg.base.cra_driver_name,
  1669. err);
  1670. kfree(t_alg);
  1671. } else
  1672. list_add_tail(&t_alg->entry, &hash_list);
  1673. }
  1674. return err;
  1675. }
  1676. module_init(caam_algapi_hash_init);
  1677. module_exit(caam_algapi_hash_exit);
  1678. MODULE_LICENSE("GPL");
  1679. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1680. MODULE_AUTHOR("Freescale Semiconductor - NMG");