kcs_bmc.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (c) 2015-2018, Intel Corporation.
  4. */
  5. #define pr_fmt(fmt) "kcs-bmc: " fmt
  6. #include <linux/errno.h>
  7. #include <linux/io.h>
  8. #include <linux/ipmi_bmc.h>
  9. #include <linux/module.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/poll.h>
  12. #include <linux/sched.h>
  13. #include <linux/slab.h>
  14. #include "kcs_bmc.h"
  15. #define DEVICE_NAME "ipmi-kcs"
  16. #define KCS_MSG_BUFSIZ 1000
  17. #define KCS_ZERO_DATA 0
  18. /* IPMI 2.0 - Table 9-1, KCS Interface Status Register Bits */
  19. #define KCS_STATUS_STATE(state) (state << 6)
  20. #define KCS_STATUS_STATE_MASK GENMASK(7, 6)
  21. #define KCS_STATUS_CMD_DAT BIT(3)
  22. #define KCS_STATUS_SMS_ATN BIT(2)
  23. #define KCS_STATUS_IBF BIT(1)
  24. #define KCS_STATUS_OBF BIT(0)
  25. /* IPMI 2.0 - Table 9-2, KCS Interface State Bits */
  26. enum kcs_states {
  27. IDLE_STATE = 0,
  28. READ_STATE = 1,
  29. WRITE_STATE = 2,
  30. ERROR_STATE = 3,
  31. };
  32. /* IPMI 2.0 - Table 9-3, KCS Interface Control Codes */
  33. #define KCS_CMD_GET_STATUS_ABORT 0x60
  34. #define KCS_CMD_WRITE_START 0x61
  35. #define KCS_CMD_WRITE_END 0x62
  36. #define KCS_CMD_READ_BYTE 0x68
  37. static inline u8 read_data(struct kcs_bmc *kcs_bmc)
  38. {
  39. return kcs_bmc->io_inputb(kcs_bmc, kcs_bmc->ioreg.idr);
  40. }
  41. static inline void write_data(struct kcs_bmc *kcs_bmc, u8 data)
  42. {
  43. kcs_bmc->io_outputb(kcs_bmc, kcs_bmc->ioreg.odr, data);
  44. }
  45. static inline u8 read_status(struct kcs_bmc *kcs_bmc)
  46. {
  47. return kcs_bmc->io_inputb(kcs_bmc, kcs_bmc->ioreg.str);
  48. }
  49. static inline void write_status(struct kcs_bmc *kcs_bmc, u8 data)
  50. {
  51. kcs_bmc->io_outputb(kcs_bmc, kcs_bmc->ioreg.str, data);
  52. }
  53. static void update_status_bits(struct kcs_bmc *kcs_bmc, u8 mask, u8 val)
  54. {
  55. u8 tmp = read_status(kcs_bmc);
  56. tmp &= ~mask;
  57. tmp |= val & mask;
  58. write_status(kcs_bmc, tmp);
  59. }
  60. static inline void set_state(struct kcs_bmc *kcs_bmc, u8 state)
  61. {
  62. update_status_bits(kcs_bmc, KCS_STATUS_STATE_MASK,
  63. KCS_STATUS_STATE(state));
  64. }
  65. static void kcs_force_abort(struct kcs_bmc *kcs_bmc)
  66. {
  67. set_state(kcs_bmc, ERROR_STATE);
  68. read_data(kcs_bmc);
  69. write_data(kcs_bmc, KCS_ZERO_DATA);
  70. kcs_bmc->phase = KCS_PHASE_ERROR;
  71. kcs_bmc->data_in_avail = false;
  72. kcs_bmc->data_in_idx = 0;
  73. }
  74. static void kcs_bmc_handle_data(struct kcs_bmc *kcs_bmc)
  75. {
  76. u8 data;
  77. switch (kcs_bmc->phase) {
  78. case KCS_PHASE_WRITE_START:
  79. kcs_bmc->phase = KCS_PHASE_WRITE_DATA;
  80. /* fall through */
  81. case KCS_PHASE_WRITE_DATA:
  82. if (kcs_bmc->data_in_idx < KCS_MSG_BUFSIZ) {
  83. set_state(kcs_bmc, WRITE_STATE);
  84. write_data(kcs_bmc, KCS_ZERO_DATA);
  85. kcs_bmc->data_in[kcs_bmc->data_in_idx++] =
  86. read_data(kcs_bmc);
  87. } else {
  88. kcs_force_abort(kcs_bmc);
  89. kcs_bmc->error = KCS_LENGTH_ERROR;
  90. }
  91. break;
  92. case KCS_PHASE_WRITE_END_CMD:
  93. if (kcs_bmc->data_in_idx < KCS_MSG_BUFSIZ) {
  94. set_state(kcs_bmc, READ_STATE);
  95. kcs_bmc->data_in[kcs_bmc->data_in_idx++] =
  96. read_data(kcs_bmc);
  97. kcs_bmc->phase = KCS_PHASE_WRITE_DONE;
  98. kcs_bmc->data_in_avail = true;
  99. wake_up_interruptible(&kcs_bmc->queue);
  100. } else {
  101. kcs_force_abort(kcs_bmc);
  102. kcs_bmc->error = KCS_LENGTH_ERROR;
  103. }
  104. break;
  105. case KCS_PHASE_READ:
  106. if (kcs_bmc->data_out_idx == kcs_bmc->data_out_len)
  107. set_state(kcs_bmc, IDLE_STATE);
  108. data = read_data(kcs_bmc);
  109. if (data != KCS_CMD_READ_BYTE) {
  110. set_state(kcs_bmc, ERROR_STATE);
  111. write_data(kcs_bmc, KCS_ZERO_DATA);
  112. break;
  113. }
  114. if (kcs_bmc->data_out_idx == kcs_bmc->data_out_len) {
  115. write_data(kcs_bmc, KCS_ZERO_DATA);
  116. kcs_bmc->phase = KCS_PHASE_IDLE;
  117. break;
  118. }
  119. write_data(kcs_bmc,
  120. kcs_bmc->data_out[kcs_bmc->data_out_idx++]);
  121. break;
  122. case KCS_PHASE_ABORT_ERROR1:
  123. set_state(kcs_bmc, READ_STATE);
  124. read_data(kcs_bmc);
  125. write_data(kcs_bmc, kcs_bmc->error);
  126. kcs_bmc->phase = KCS_PHASE_ABORT_ERROR2;
  127. break;
  128. case KCS_PHASE_ABORT_ERROR2:
  129. set_state(kcs_bmc, IDLE_STATE);
  130. read_data(kcs_bmc);
  131. write_data(kcs_bmc, KCS_ZERO_DATA);
  132. kcs_bmc->phase = KCS_PHASE_IDLE;
  133. break;
  134. default:
  135. kcs_force_abort(kcs_bmc);
  136. break;
  137. }
  138. }
  139. static void kcs_bmc_handle_cmd(struct kcs_bmc *kcs_bmc)
  140. {
  141. u8 cmd;
  142. set_state(kcs_bmc, WRITE_STATE);
  143. write_data(kcs_bmc, KCS_ZERO_DATA);
  144. cmd = read_data(kcs_bmc);
  145. switch (cmd) {
  146. case KCS_CMD_WRITE_START:
  147. kcs_bmc->phase = KCS_PHASE_WRITE_START;
  148. kcs_bmc->error = KCS_NO_ERROR;
  149. kcs_bmc->data_in_avail = false;
  150. kcs_bmc->data_in_idx = 0;
  151. break;
  152. case KCS_CMD_WRITE_END:
  153. if (kcs_bmc->phase != KCS_PHASE_WRITE_DATA) {
  154. kcs_force_abort(kcs_bmc);
  155. break;
  156. }
  157. kcs_bmc->phase = KCS_PHASE_WRITE_END_CMD;
  158. break;
  159. case KCS_CMD_GET_STATUS_ABORT:
  160. if (kcs_bmc->error == KCS_NO_ERROR)
  161. kcs_bmc->error = KCS_ABORTED_BY_COMMAND;
  162. kcs_bmc->phase = KCS_PHASE_ABORT_ERROR1;
  163. kcs_bmc->data_in_avail = false;
  164. kcs_bmc->data_in_idx = 0;
  165. break;
  166. default:
  167. kcs_force_abort(kcs_bmc);
  168. kcs_bmc->error = KCS_ILLEGAL_CONTROL_CODE;
  169. break;
  170. }
  171. }
  172. int kcs_bmc_handle_event(struct kcs_bmc *kcs_bmc)
  173. {
  174. unsigned long flags;
  175. int ret = -ENODATA;
  176. u8 status;
  177. spin_lock_irqsave(&kcs_bmc->lock, flags);
  178. status = read_status(kcs_bmc);
  179. if (status & KCS_STATUS_IBF) {
  180. if (!kcs_bmc->running)
  181. kcs_force_abort(kcs_bmc);
  182. else if (status & KCS_STATUS_CMD_DAT)
  183. kcs_bmc_handle_cmd(kcs_bmc);
  184. else
  185. kcs_bmc_handle_data(kcs_bmc);
  186. ret = 0;
  187. }
  188. spin_unlock_irqrestore(&kcs_bmc->lock, flags);
  189. return ret;
  190. }
  191. EXPORT_SYMBOL(kcs_bmc_handle_event);
  192. static inline struct kcs_bmc *to_kcs_bmc(struct file *filp)
  193. {
  194. return container_of(filp->private_data, struct kcs_bmc, miscdev);
  195. }
  196. static int kcs_bmc_open(struct inode *inode, struct file *filp)
  197. {
  198. struct kcs_bmc *kcs_bmc = to_kcs_bmc(filp);
  199. int ret = 0;
  200. spin_lock_irq(&kcs_bmc->lock);
  201. if (!kcs_bmc->running)
  202. kcs_bmc->running = 1;
  203. else
  204. ret = -EBUSY;
  205. spin_unlock_irq(&kcs_bmc->lock);
  206. return ret;
  207. }
  208. static __poll_t kcs_bmc_poll(struct file *filp, poll_table *wait)
  209. {
  210. struct kcs_bmc *kcs_bmc = to_kcs_bmc(filp);
  211. __poll_t mask = 0;
  212. poll_wait(filp, &kcs_bmc->queue, wait);
  213. spin_lock_irq(&kcs_bmc->lock);
  214. if (kcs_bmc->data_in_avail)
  215. mask |= EPOLLIN;
  216. spin_unlock_irq(&kcs_bmc->lock);
  217. return mask;
  218. }
  219. static ssize_t kcs_bmc_read(struct file *filp, char __user *buf,
  220. size_t count, loff_t *ppos)
  221. {
  222. struct kcs_bmc *kcs_bmc = to_kcs_bmc(filp);
  223. bool data_avail;
  224. size_t data_len;
  225. ssize_t ret;
  226. if (!(filp->f_flags & O_NONBLOCK))
  227. wait_event_interruptible(kcs_bmc->queue,
  228. kcs_bmc->data_in_avail);
  229. mutex_lock(&kcs_bmc->mutex);
  230. spin_lock_irq(&kcs_bmc->lock);
  231. data_avail = kcs_bmc->data_in_avail;
  232. if (data_avail) {
  233. data_len = kcs_bmc->data_in_idx;
  234. memcpy(kcs_bmc->kbuffer, kcs_bmc->data_in, data_len);
  235. }
  236. spin_unlock_irq(&kcs_bmc->lock);
  237. if (!data_avail) {
  238. ret = -EAGAIN;
  239. goto out_unlock;
  240. }
  241. if (count < data_len) {
  242. pr_err("channel=%u with too large data : %zu\n",
  243. kcs_bmc->channel, data_len);
  244. spin_lock_irq(&kcs_bmc->lock);
  245. kcs_force_abort(kcs_bmc);
  246. spin_unlock_irq(&kcs_bmc->lock);
  247. ret = -EOVERFLOW;
  248. goto out_unlock;
  249. }
  250. if (copy_to_user(buf, kcs_bmc->kbuffer, data_len)) {
  251. ret = -EFAULT;
  252. goto out_unlock;
  253. }
  254. ret = data_len;
  255. spin_lock_irq(&kcs_bmc->lock);
  256. if (kcs_bmc->phase == KCS_PHASE_WRITE_DONE) {
  257. kcs_bmc->phase = KCS_PHASE_WAIT_READ;
  258. kcs_bmc->data_in_avail = false;
  259. kcs_bmc->data_in_idx = 0;
  260. } else {
  261. ret = -EAGAIN;
  262. }
  263. spin_unlock_irq(&kcs_bmc->lock);
  264. out_unlock:
  265. mutex_unlock(&kcs_bmc->mutex);
  266. return ret;
  267. }
  268. static ssize_t kcs_bmc_write(struct file *filp, const char __user *buf,
  269. size_t count, loff_t *ppos)
  270. {
  271. struct kcs_bmc *kcs_bmc = to_kcs_bmc(filp);
  272. ssize_t ret;
  273. /* a minimum response size '3' : netfn + cmd + ccode */
  274. if (count < 3 || count > KCS_MSG_BUFSIZ)
  275. return -EINVAL;
  276. mutex_lock(&kcs_bmc->mutex);
  277. if (copy_from_user(kcs_bmc->kbuffer, buf, count)) {
  278. ret = -EFAULT;
  279. goto out_unlock;
  280. }
  281. spin_lock_irq(&kcs_bmc->lock);
  282. if (kcs_bmc->phase == KCS_PHASE_WAIT_READ) {
  283. kcs_bmc->phase = KCS_PHASE_READ;
  284. kcs_bmc->data_out_idx = 1;
  285. kcs_bmc->data_out_len = count;
  286. memcpy(kcs_bmc->data_out, kcs_bmc->kbuffer, count);
  287. write_data(kcs_bmc, kcs_bmc->data_out[0]);
  288. ret = count;
  289. } else {
  290. ret = -EINVAL;
  291. }
  292. spin_unlock_irq(&kcs_bmc->lock);
  293. out_unlock:
  294. mutex_unlock(&kcs_bmc->mutex);
  295. return ret;
  296. }
  297. static long kcs_bmc_ioctl(struct file *filp, unsigned int cmd,
  298. unsigned long arg)
  299. {
  300. struct kcs_bmc *kcs_bmc = to_kcs_bmc(filp);
  301. long ret = 0;
  302. spin_lock_irq(&kcs_bmc->lock);
  303. switch (cmd) {
  304. case IPMI_BMC_IOCTL_SET_SMS_ATN:
  305. update_status_bits(kcs_bmc, KCS_STATUS_SMS_ATN,
  306. KCS_STATUS_SMS_ATN);
  307. break;
  308. case IPMI_BMC_IOCTL_CLEAR_SMS_ATN:
  309. update_status_bits(kcs_bmc, KCS_STATUS_SMS_ATN,
  310. 0);
  311. break;
  312. case IPMI_BMC_IOCTL_FORCE_ABORT:
  313. kcs_force_abort(kcs_bmc);
  314. break;
  315. default:
  316. ret = -EINVAL;
  317. break;
  318. }
  319. spin_unlock_irq(&kcs_bmc->lock);
  320. return ret;
  321. }
  322. static int kcs_bmc_release(struct inode *inode, struct file *filp)
  323. {
  324. struct kcs_bmc *kcs_bmc = to_kcs_bmc(filp);
  325. spin_lock_irq(&kcs_bmc->lock);
  326. kcs_bmc->running = 0;
  327. kcs_force_abort(kcs_bmc);
  328. spin_unlock_irq(&kcs_bmc->lock);
  329. return 0;
  330. }
  331. static const struct file_operations kcs_bmc_fops = {
  332. .owner = THIS_MODULE,
  333. .open = kcs_bmc_open,
  334. .read = kcs_bmc_read,
  335. .write = kcs_bmc_write,
  336. .release = kcs_bmc_release,
  337. .poll = kcs_bmc_poll,
  338. .unlocked_ioctl = kcs_bmc_ioctl,
  339. };
  340. struct kcs_bmc *kcs_bmc_alloc(struct device *dev, int sizeof_priv, u32 channel)
  341. {
  342. struct kcs_bmc *kcs_bmc;
  343. kcs_bmc = devm_kzalloc(dev, sizeof(*kcs_bmc) + sizeof_priv, GFP_KERNEL);
  344. if (!kcs_bmc)
  345. return NULL;
  346. spin_lock_init(&kcs_bmc->lock);
  347. kcs_bmc->channel = channel;
  348. mutex_init(&kcs_bmc->mutex);
  349. init_waitqueue_head(&kcs_bmc->queue);
  350. kcs_bmc->data_in = devm_kmalloc(dev, KCS_MSG_BUFSIZ, GFP_KERNEL);
  351. kcs_bmc->data_out = devm_kmalloc(dev, KCS_MSG_BUFSIZ, GFP_KERNEL);
  352. kcs_bmc->kbuffer = devm_kmalloc(dev, KCS_MSG_BUFSIZ, GFP_KERNEL);
  353. if (!kcs_bmc->data_in || !kcs_bmc->data_out || !kcs_bmc->kbuffer)
  354. return NULL;
  355. kcs_bmc->miscdev.minor = MISC_DYNAMIC_MINOR;
  356. kcs_bmc->miscdev.name = devm_kasprintf(dev, GFP_KERNEL, "%s%u",
  357. DEVICE_NAME, channel);
  358. kcs_bmc->miscdev.fops = &kcs_bmc_fops;
  359. return kcs_bmc;
  360. }
  361. EXPORT_SYMBOL(kcs_bmc_alloc);
  362. MODULE_LICENSE("GPL v2");
  363. MODULE_AUTHOR("Haiyue Wang <haiyue.wang@linux.intel.com>");
  364. MODULE_DESCRIPTION("KCS BMC to handle the IPMI request from system software");