binder_alloc.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058
  1. /* binder_alloc.c
  2. *
  3. * Android IPC Subsystem
  4. *
  5. * Copyright (C) 2007-2017 Google, Inc.
  6. *
  7. * This software is licensed under the terms of the GNU General Public
  8. * License version 2, as published by the Free Software Foundation, and
  9. * may be copied, distributed, and modified under those terms.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include <linux/list.h>
  19. #include <linux/sched/mm.h>
  20. #include <linux/module.h>
  21. #include <linux/rtmutex.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/seq_file.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/slab.h>
  26. #include <linux/sched.h>
  27. #include <linux/list_lru.h>
  28. #include <linux/ratelimit.h>
  29. #include <asm/cacheflush.h>
  30. #include "binder_alloc.h"
  31. #include "binder_trace.h"
  32. struct list_lru binder_alloc_lru;
  33. static DEFINE_MUTEX(binder_alloc_mmap_lock);
  34. enum {
  35. BINDER_DEBUG_USER_ERROR = 1U << 0,
  36. BINDER_DEBUG_OPEN_CLOSE = 1U << 1,
  37. BINDER_DEBUG_BUFFER_ALLOC = 1U << 2,
  38. BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3,
  39. };
  40. static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
  41. module_param_named(debug_mask, binder_alloc_debug_mask,
  42. uint, 0644);
  43. #define binder_alloc_debug(mask, x...) \
  44. do { \
  45. if (binder_alloc_debug_mask & mask) \
  46. pr_info_ratelimited(x); \
  47. } while (0)
  48. static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
  49. {
  50. return list_entry(buffer->entry.next, struct binder_buffer, entry);
  51. }
  52. static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
  53. {
  54. return list_entry(buffer->entry.prev, struct binder_buffer, entry);
  55. }
  56. static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
  57. struct binder_buffer *buffer)
  58. {
  59. if (list_is_last(&buffer->entry, &alloc->buffers))
  60. return (u8 *)alloc->buffer +
  61. alloc->buffer_size - (u8 *)buffer->data;
  62. return (u8 *)binder_buffer_next(buffer)->data - (u8 *)buffer->data;
  63. }
  64. static void binder_insert_free_buffer(struct binder_alloc *alloc,
  65. struct binder_buffer *new_buffer)
  66. {
  67. struct rb_node **p = &alloc->free_buffers.rb_node;
  68. struct rb_node *parent = NULL;
  69. struct binder_buffer *buffer;
  70. size_t buffer_size;
  71. size_t new_buffer_size;
  72. BUG_ON(!new_buffer->free);
  73. new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
  74. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  75. "%d: add free buffer, size %zd, at %pK\n",
  76. alloc->pid, new_buffer_size, new_buffer);
  77. while (*p) {
  78. parent = *p;
  79. buffer = rb_entry(parent, struct binder_buffer, rb_node);
  80. BUG_ON(!buffer->free);
  81. buffer_size = binder_alloc_buffer_size(alloc, buffer);
  82. if (new_buffer_size < buffer_size)
  83. p = &parent->rb_left;
  84. else
  85. p = &parent->rb_right;
  86. }
  87. rb_link_node(&new_buffer->rb_node, parent, p);
  88. rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
  89. }
  90. static void binder_insert_allocated_buffer_locked(
  91. struct binder_alloc *alloc, struct binder_buffer *new_buffer)
  92. {
  93. struct rb_node **p = &alloc->allocated_buffers.rb_node;
  94. struct rb_node *parent = NULL;
  95. struct binder_buffer *buffer;
  96. BUG_ON(new_buffer->free);
  97. while (*p) {
  98. parent = *p;
  99. buffer = rb_entry(parent, struct binder_buffer, rb_node);
  100. BUG_ON(buffer->free);
  101. if (new_buffer->data < buffer->data)
  102. p = &parent->rb_left;
  103. else if (new_buffer->data > buffer->data)
  104. p = &parent->rb_right;
  105. else
  106. BUG();
  107. }
  108. rb_link_node(&new_buffer->rb_node, parent, p);
  109. rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
  110. }
  111. static struct binder_buffer *binder_alloc_prepare_to_free_locked(
  112. struct binder_alloc *alloc,
  113. uintptr_t user_ptr)
  114. {
  115. struct rb_node *n = alloc->allocated_buffers.rb_node;
  116. struct binder_buffer *buffer;
  117. void *kern_ptr;
  118. kern_ptr = (void *)(user_ptr - alloc->user_buffer_offset);
  119. while (n) {
  120. buffer = rb_entry(n, struct binder_buffer, rb_node);
  121. BUG_ON(buffer->free);
  122. if (kern_ptr < buffer->data)
  123. n = n->rb_left;
  124. else if (kern_ptr > buffer->data)
  125. n = n->rb_right;
  126. else {
  127. /*
  128. * Guard against user threads attempting to
  129. * free the buffer twice
  130. */
  131. if (buffer->free_in_progress) {
  132. binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
  133. "%d:%d FREE_BUFFER u%016llx user freed buffer twice\n",
  134. alloc->pid, current->pid,
  135. (u64)user_ptr);
  136. return NULL;
  137. }
  138. buffer->free_in_progress = 1;
  139. return buffer;
  140. }
  141. }
  142. return NULL;
  143. }
  144. /**
  145. * binder_alloc_buffer_lookup() - get buffer given user ptr
  146. * @alloc: binder_alloc for this proc
  147. * @user_ptr: User pointer to buffer data
  148. *
  149. * Validate userspace pointer to buffer data and return buffer corresponding to
  150. * that user pointer. Search the rb tree for buffer that matches user data
  151. * pointer.
  152. *
  153. * Return: Pointer to buffer or NULL
  154. */
  155. struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
  156. uintptr_t user_ptr)
  157. {
  158. struct binder_buffer *buffer;
  159. mutex_lock(&alloc->mutex);
  160. buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
  161. mutex_unlock(&alloc->mutex);
  162. return buffer;
  163. }
  164. static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
  165. void *start, void *end)
  166. {
  167. void *page_addr;
  168. unsigned long user_page_addr;
  169. struct binder_lru_page *page;
  170. struct vm_area_struct *vma = NULL;
  171. struct mm_struct *mm = NULL;
  172. bool need_mm = false;
  173. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  174. "%d: %s pages %pK-%pK\n", alloc->pid,
  175. allocate ? "allocate" : "free", start, end);
  176. if (end <= start)
  177. return 0;
  178. trace_binder_update_page_range(alloc, allocate, start, end);
  179. if (allocate == 0)
  180. goto free_range;
  181. for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
  182. page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
  183. if (!page->page_ptr) {
  184. need_mm = true;
  185. break;
  186. }
  187. }
  188. if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
  189. mm = alloc->vma_vm_mm;
  190. if (mm) {
  191. down_read(&mm->mmap_sem);
  192. vma = alloc->vma;
  193. }
  194. if (!vma && need_mm) {
  195. binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
  196. "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
  197. alloc->pid);
  198. goto err_no_vma;
  199. }
  200. for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
  201. int ret;
  202. bool on_lru;
  203. size_t index;
  204. index = (page_addr - alloc->buffer) / PAGE_SIZE;
  205. page = &alloc->pages[index];
  206. if (page->page_ptr) {
  207. trace_binder_alloc_lru_start(alloc, index);
  208. on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
  209. WARN_ON(!on_lru);
  210. trace_binder_alloc_lru_end(alloc, index);
  211. continue;
  212. }
  213. if (WARN_ON(!vma))
  214. goto err_page_ptr_cleared;
  215. trace_binder_alloc_page_start(alloc, index);
  216. page->page_ptr = alloc_page(GFP_KERNEL |
  217. __GFP_HIGHMEM |
  218. __GFP_ZERO);
  219. if (!page->page_ptr) {
  220. pr_err("%d: binder_alloc_buf failed for page at %pK\n",
  221. alloc->pid, page_addr);
  222. goto err_alloc_page_failed;
  223. }
  224. page->alloc = alloc;
  225. INIT_LIST_HEAD(&page->lru);
  226. ret = map_kernel_range_noflush((unsigned long)page_addr,
  227. PAGE_SIZE, PAGE_KERNEL,
  228. &page->page_ptr);
  229. flush_cache_vmap((unsigned long)page_addr,
  230. (unsigned long)page_addr + PAGE_SIZE);
  231. if (ret != 1) {
  232. pr_err("%d: binder_alloc_buf failed to map page at %pK in kernel\n",
  233. alloc->pid, page_addr);
  234. goto err_map_kernel_failed;
  235. }
  236. user_page_addr =
  237. (uintptr_t)page_addr + alloc->user_buffer_offset;
  238. ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
  239. if (ret) {
  240. pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
  241. alloc->pid, user_page_addr);
  242. goto err_vm_insert_page_failed;
  243. }
  244. if (index + 1 > alloc->pages_high)
  245. alloc->pages_high = index + 1;
  246. trace_binder_alloc_page_end(alloc, index);
  247. /* vm_insert_page does not seem to increment the refcount */
  248. }
  249. if (mm) {
  250. up_read(&mm->mmap_sem);
  251. mmput(mm);
  252. }
  253. return 0;
  254. free_range:
  255. for (page_addr = end - PAGE_SIZE; page_addr >= start;
  256. page_addr -= PAGE_SIZE) {
  257. bool ret;
  258. size_t index;
  259. index = (page_addr - alloc->buffer) / PAGE_SIZE;
  260. page = &alloc->pages[index];
  261. trace_binder_free_lru_start(alloc, index);
  262. ret = list_lru_add(&binder_alloc_lru, &page->lru);
  263. WARN_ON(!ret);
  264. trace_binder_free_lru_end(alloc, index);
  265. continue;
  266. err_vm_insert_page_failed:
  267. unmap_kernel_range((unsigned long)page_addr, PAGE_SIZE);
  268. err_map_kernel_failed:
  269. __free_page(page->page_ptr);
  270. page->page_ptr = NULL;
  271. err_alloc_page_failed:
  272. err_page_ptr_cleared:
  273. ;
  274. }
  275. err_no_vma:
  276. if (mm) {
  277. up_read(&mm->mmap_sem);
  278. mmput(mm);
  279. }
  280. return vma ? -ENOMEM : -ESRCH;
  281. }
  282. static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
  283. struct vm_area_struct *vma)
  284. {
  285. if (vma)
  286. alloc->vma_vm_mm = vma->vm_mm;
  287. /*
  288. * If we see alloc->vma is not NULL, buffer data structures set up
  289. * completely. Look at smp_rmb side binder_alloc_get_vma.
  290. * We also want to guarantee new alloc->vma_vm_mm is always visible
  291. * if alloc->vma is set.
  292. */
  293. smp_wmb();
  294. alloc->vma = vma;
  295. }
  296. static inline struct vm_area_struct *binder_alloc_get_vma(
  297. struct binder_alloc *alloc)
  298. {
  299. struct vm_area_struct *vma = NULL;
  300. if (alloc->vma) {
  301. /* Look at description in binder_alloc_set_vma */
  302. smp_rmb();
  303. vma = alloc->vma;
  304. }
  305. return vma;
  306. }
  307. static struct binder_buffer *binder_alloc_new_buf_locked(
  308. struct binder_alloc *alloc,
  309. size_t data_size,
  310. size_t offsets_size,
  311. size_t extra_buffers_size,
  312. int is_async)
  313. {
  314. struct rb_node *n = alloc->free_buffers.rb_node;
  315. struct binder_buffer *buffer;
  316. size_t buffer_size;
  317. struct rb_node *best_fit = NULL;
  318. void *has_page_addr;
  319. void *end_page_addr;
  320. size_t size, data_offsets_size;
  321. int ret;
  322. if (!binder_alloc_get_vma(alloc)) {
  323. binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
  324. "%d: binder_alloc_buf, no vma\n",
  325. alloc->pid);
  326. return ERR_PTR(-ESRCH);
  327. }
  328. data_offsets_size = ALIGN(data_size, sizeof(void *)) +
  329. ALIGN(offsets_size, sizeof(void *));
  330. if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
  331. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  332. "%d: got transaction with invalid size %zd-%zd\n",
  333. alloc->pid, data_size, offsets_size);
  334. return ERR_PTR(-EINVAL);
  335. }
  336. size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
  337. if (size < data_offsets_size || size < extra_buffers_size) {
  338. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  339. "%d: got transaction with invalid extra_buffers_size %zd\n",
  340. alloc->pid, extra_buffers_size);
  341. return ERR_PTR(-EINVAL);
  342. }
  343. if (is_async &&
  344. alloc->free_async_space < size + sizeof(struct binder_buffer)) {
  345. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  346. "%d: binder_alloc_buf size %zd failed, no async space left\n",
  347. alloc->pid, size);
  348. return ERR_PTR(-ENOSPC);
  349. }
  350. /* Pad 0-size buffers so they get assigned unique addresses */
  351. size = max(size, sizeof(void *));
  352. while (n) {
  353. buffer = rb_entry(n, struct binder_buffer, rb_node);
  354. BUG_ON(!buffer->free);
  355. buffer_size = binder_alloc_buffer_size(alloc, buffer);
  356. if (size < buffer_size) {
  357. best_fit = n;
  358. n = n->rb_left;
  359. } else if (size > buffer_size)
  360. n = n->rb_right;
  361. else {
  362. best_fit = n;
  363. break;
  364. }
  365. }
  366. if (best_fit == NULL) {
  367. size_t allocated_buffers = 0;
  368. size_t largest_alloc_size = 0;
  369. size_t total_alloc_size = 0;
  370. size_t free_buffers = 0;
  371. size_t largest_free_size = 0;
  372. size_t total_free_size = 0;
  373. for (n = rb_first(&alloc->allocated_buffers); n != NULL;
  374. n = rb_next(n)) {
  375. buffer = rb_entry(n, struct binder_buffer, rb_node);
  376. buffer_size = binder_alloc_buffer_size(alloc, buffer);
  377. allocated_buffers++;
  378. total_alloc_size += buffer_size;
  379. if (buffer_size > largest_alloc_size)
  380. largest_alloc_size = buffer_size;
  381. }
  382. for (n = rb_first(&alloc->free_buffers); n != NULL;
  383. n = rb_next(n)) {
  384. buffer = rb_entry(n, struct binder_buffer, rb_node);
  385. buffer_size = binder_alloc_buffer_size(alloc, buffer);
  386. free_buffers++;
  387. total_free_size += buffer_size;
  388. if (buffer_size > largest_free_size)
  389. largest_free_size = buffer_size;
  390. }
  391. binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
  392. "%d: binder_alloc_buf size %zd failed, no address space\n",
  393. alloc->pid, size);
  394. binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
  395. "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
  396. total_alloc_size, allocated_buffers,
  397. largest_alloc_size, total_free_size,
  398. free_buffers, largest_free_size);
  399. return ERR_PTR(-ENOSPC);
  400. }
  401. if (n == NULL) {
  402. buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
  403. buffer_size = binder_alloc_buffer_size(alloc, buffer);
  404. }
  405. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  406. "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
  407. alloc->pid, size, buffer, buffer_size);
  408. has_page_addr =
  409. (void *)(((uintptr_t)buffer->data + buffer_size) & PAGE_MASK);
  410. WARN_ON(n && buffer_size != size);
  411. end_page_addr =
  412. (void *)PAGE_ALIGN((uintptr_t)buffer->data + size);
  413. if (end_page_addr > has_page_addr)
  414. end_page_addr = has_page_addr;
  415. ret = binder_update_page_range(alloc, 1,
  416. (void *)PAGE_ALIGN((uintptr_t)buffer->data), end_page_addr);
  417. if (ret)
  418. return ERR_PTR(ret);
  419. if (buffer_size != size) {
  420. struct binder_buffer *new_buffer;
  421. new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
  422. if (!new_buffer) {
  423. pr_err("%s: %d failed to alloc new buffer struct\n",
  424. __func__, alloc->pid);
  425. goto err_alloc_buf_struct_failed;
  426. }
  427. new_buffer->data = (u8 *)buffer->data + size;
  428. list_add(&new_buffer->entry, &buffer->entry);
  429. new_buffer->free = 1;
  430. binder_insert_free_buffer(alloc, new_buffer);
  431. }
  432. rb_erase(best_fit, &alloc->free_buffers);
  433. buffer->free = 0;
  434. buffer->free_in_progress = 0;
  435. binder_insert_allocated_buffer_locked(alloc, buffer);
  436. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  437. "%d: binder_alloc_buf size %zd got %pK\n",
  438. alloc->pid, size, buffer);
  439. buffer->data_size = data_size;
  440. buffer->offsets_size = offsets_size;
  441. buffer->async_transaction = is_async;
  442. buffer->extra_buffers_size = extra_buffers_size;
  443. if (is_async) {
  444. alloc->free_async_space -= size + sizeof(struct binder_buffer);
  445. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
  446. "%d: binder_alloc_buf size %zd async free %zd\n",
  447. alloc->pid, size, alloc->free_async_space);
  448. }
  449. return buffer;
  450. err_alloc_buf_struct_failed:
  451. binder_update_page_range(alloc, 0,
  452. (void *)PAGE_ALIGN((uintptr_t)buffer->data),
  453. end_page_addr);
  454. return ERR_PTR(-ENOMEM);
  455. }
  456. /**
  457. * binder_alloc_new_buf() - Allocate a new binder buffer
  458. * @alloc: binder_alloc for this proc
  459. * @data_size: size of user data buffer
  460. * @offsets_size: user specified buffer offset
  461. * @extra_buffers_size: size of extra space for meta-data (eg, security context)
  462. * @is_async: buffer for async transaction
  463. *
  464. * Allocate a new buffer given the requested sizes. Returns
  465. * the kernel version of the buffer pointer. The size allocated
  466. * is the sum of the three given sizes (each rounded up to
  467. * pointer-sized boundary)
  468. *
  469. * Return: The allocated buffer or %NULL if error
  470. */
  471. struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
  472. size_t data_size,
  473. size_t offsets_size,
  474. size_t extra_buffers_size,
  475. int is_async)
  476. {
  477. struct binder_buffer *buffer;
  478. mutex_lock(&alloc->mutex);
  479. buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
  480. extra_buffers_size, is_async);
  481. mutex_unlock(&alloc->mutex);
  482. return buffer;
  483. }
  484. static void *buffer_start_page(struct binder_buffer *buffer)
  485. {
  486. return (void *)((uintptr_t)buffer->data & PAGE_MASK);
  487. }
  488. static void *prev_buffer_end_page(struct binder_buffer *buffer)
  489. {
  490. return (void *)(((uintptr_t)(buffer->data) - 1) & PAGE_MASK);
  491. }
  492. static void binder_delete_free_buffer(struct binder_alloc *alloc,
  493. struct binder_buffer *buffer)
  494. {
  495. struct binder_buffer *prev, *next = NULL;
  496. bool to_free = true;
  497. BUG_ON(alloc->buffers.next == &buffer->entry);
  498. prev = binder_buffer_prev(buffer);
  499. BUG_ON(!prev->free);
  500. if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
  501. to_free = false;
  502. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  503. "%d: merge free, buffer %pK share page with %pK\n",
  504. alloc->pid, buffer->data, prev->data);
  505. }
  506. if (!list_is_last(&buffer->entry, &alloc->buffers)) {
  507. next = binder_buffer_next(buffer);
  508. if (buffer_start_page(next) == buffer_start_page(buffer)) {
  509. to_free = false;
  510. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  511. "%d: merge free, buffer %pK share page with %pK\n",
  512. alloc->pid,
  513. buffer->data,
  514. next->data);
  515. }
  516. }
  517. if (PAGE_ALIGNED(buffer->data)) {
  518. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  519. "%d: merge free, buffer start %pK is page aligned\n",
  520. alloc->pid, buffer->data);
  521. to_free = false;
  522. }
  523. if (to_free) {
  524. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  525. "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
  526. alloc->pid, buffer->data,
  527. prev->data, next ? next->data : NULL);
  528. binder_update_page_range(alloc, 0, buffer_start_page(buffer),
  529. buffer_start_page(buffer) + PAGE_SIZE);
  530. }
  531. list_del(&buffer->entry);
  532. kfree(buffer);
  533. }
  534. static void binder_free_buf_locked(struct binder_alloc *alloc,
  535. struct binder_buffer *buffer)
  536. {
  537. size_t size, buffer_size;
  538. buffer_size = binder_alloc_buffer_size(alloc, buffer);
  539. size = ALIGN(buffer->data_size, sizeof(void *)) +
  540. ALIGN(buffer->offsets_size, sizeof(void *)) +
  541. ALIGN(buffer->extra_buffers_size, sizeof(void *));
  542. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  543. "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
  544. alloc->pid, buffer, size, buffer_size);
  545. BUG_ON(buffer->free);
  546. BUG_ON(size > buffer_size);
  547. BUG_ON(buffer->transaction != NULL);
  548. BUG_ON(buffer->data < alloc->buffer);
  549. BUG_ON(buffer->data > alloc->buffer + alloc->buffer_size);
  550. if (buffer->async_transaction) {
  551. alloc->free_async_space += size + sizeof(struct binder_buffer);
  552. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
  553. "%d: binder_free_buf size %zd async free %zd\n",
  554. alloc->pid, size, alloc->free_async_space);
  555. }
  556. binder_update_page_range(alloc, 0,
  557. (void *)PAGE_ALIGN((uintptr_t)buffer->data),
  558. (void *)(((uintptr_t)buffer->data + buffer_size) & PAGE_MASK));
  559. rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
  560. buffer->free = 1;
  561. if (!list_is_last(&buffer->entry, &alloc->buffers)) {
  562. struct binder_buffer *next = binder_buffer_next(buffer);
  563. if (next->free) {
  564. rb_erase(&next->rb_node, &alloc->free_buffers);
  565. binder_delete_free_buffer(alloc, next);
  566. }
  567. }
  568. if (alloc->buffers.next != &buffer->entry) {
  569. struct binder_buffer *prev = binder_buffer_prev(buffer);
  570. if (prev->free) {
  571. binder_delete_free_buffer(alloc, buffer);
  572. rb_erase(&prev->rb_node, &alloc->free_buffers);
  573. buffer = prev;
  574. }
  575. }
  576. binder_insert_free_buffer(alloc, buffer);
  577. }
  578. /**
  579. * binder_alloc_free_buf() - free a binder buffer
  580. * @alloc: binder_alloc for this proc
  581. * @buffer: kernel pointer to buffer
  582. *
  583. * Free the buffer allocated via binder_alloc_new_buffer()
  584. */
  585. void binder_alloc_free_buf(struct binder_alloc *alloc,
  586. struct binder_buffer *buffer)
  587. {
  588. mutex_lock(&alloc->mutex);
  589. binder_free_buf_locked(alloc, buffer);
  590. mutex_unlock(&alloc->mutex);
  591. }
  592. /**
  593. * binder_alloc_mmap_handler() - map virtual address space for proc
  594. * @alloc: alloc structure for this proc
  595. * @vma: vma passed to mmap()
  596. *
  597. * Called by binder_mmap() to initialize the space specified in
  598. * vma for allocating binder buffers
  599. *
  600. * Return:
  601. * 0 = success
  602. * -EBUSY = address space already mapped
  603. * -ENOMEM = failed to map memory to given address space
  604. */
  605. int binder_alloc_mmap_handler(struct binder_alloc *alloc,
  606. struct vm_area_struct *vma)
  607. {
  608. int ret;
  609. struct vm_struct *area;
  610. const char *failure_string;
  611. struct binder_buffer *buffer;
  612. mutex_lock(&binder_alloc_mmap_lock);
  613. if (alloc->buffer) {
  614. ret = -EBUSY;
  615. failure_string = "already mapped";
  616. goto err_already_mapped;
  617. }
  618. area = get_vm_area(vma->vm_end - vma->vm_start, VM_ALLOC);
  619. if (area == NULL) {
  620. ret = -ENOMEM;
  621. failure_string = "get_vm_area";
  622. goto err_get_vm_area_failed;
  623. }
  624. alloc->buffer = area->addr;
  625. alloc->user_buffer_offset =
  626. vma->vm_start - (uintptr_t)alloc->buffer;
  627. mutex_unlock(&binder_alloc_mmap_lock);
  628. #ifdef CONFIG_CPU_CACHE_VIPT
  629. if (cache_is_vipt_aliasing()) {
  630. while (CACHE_COLOUR(
  631. (vma->vm_start ^ (uint32_t)alloc->buffer))) {
  632. pr_info("%s: %d %lx-%lx maps %pK bad alignment\n",
  633. __func__, alloc->pid, vma->vm_start,
  634. vma->vm_end, alloc->buffer);
  635. vma->vm_start += PAGE_SIZE;
  636. }
  637. }
  638. #endif
  639. alloc->pages = kcalloc((vma->vm_end - vma->vm_start) / PAGE_SIZE,
  640. sizeof(alloc->pages[0]),
  641. GFP_KERNEL);
  642. if (alloc->pages == NULL) {
  643. ret = -ENOMEM;
  644. failure_string = "alloc page array";
  645. goto err_alloc_pages_failed;
  646. }
  647. alloc->buffer_size = vma->vm_end - vma->vm_start;
  648. buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
  649. if (!buffer) {
  650. ret = -ENOMEM;
  651. failure_string = "alloc buffer struct";
  652. goto err_alloc_buf_struct_failed;
  653. }
  654. buffer->data = alloc->buffer;
  655. list_add(&buffer->entry, &alloc->buffers);
  656. buffer->free = 1;
  657. binder_insert_free_buffer(alloc, buffer);
  658. alloc->free_async_space = alloc->buffer_size / 2;
  659. binder_alloc_set_vma(alloc, vma);
  660. mmgrab(alloc->vma_vm_mm);
  661. return 0;
  662. err_alloc_buf_struct_failed:
  663. kfree(alloc->pages);
  664. alloc->pages = NULL;
  665. err_alloc_pages_failed:
  666. mutex_lock(&binder_alloc_mmap_lock);
  667. vfree(alloc->buffer);
  668. alloc->buffer = NULL;
  669. err_get_vm_area_failed:
  670. err_already_mapped:
  671. mutex_unlock(&binder_alloc_mmap_lock);
  672. binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
  673. "%s: %d %lx-%lx %s failed %d\n", __func__,
  674. alloc->pid, vma->vm_start, vma->vm_end,
  675. failure_string, ret);
  676. return ret;
  677. }
  678. void binder_alloc_deferred_release(struct binder_alloc *alloc)
  679. {
  680. struct rb_node *n;
  681. int buffers, page_count;
  682. struct binder_buffer *buffer;
  683. buffers = 0;
  684. mutex_lock(&alloc->mutex);
  685. BUG_ON(alloc->vma);
  686. while ((n = rb_first(&alloc->allocated_buffers))) {
  687. buffer = rb_entry(n, struct binder_buffer, rb_node);
  688. /* Transaction should already have been freed */
  689. BUG_ON(buffer->transaction);
  690. binder_free_buf_locked(alloc, buffer);
  691. buffers++;
  692. }
  693. while (!list_empty(&alloc->buffers)) {
  694. buffer = list_first_entry(&alloc->buffers,
  695. struct binder_buffer, entry);
  696. WARN_ON(!buffer->free);
  697. list_del(&buffer->entry);
  698. WARN_ON_ONCE(!list_empty(&alloc->buffers));
  699. kfree(buffer);
  700. }
  701. page_count = 0;
  702. if (alloc->pages) {
  703. int i;
  704. for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
  705. void *page_addr;
  706. bool on_lru;
  707. if (!alloc->pages[i].page_ptr)
  708. continue;
  709. on_lru = list_lru_del(&binder_alloc_lru,
  710. &alloc->pages[i].lru);
  711. page_addr = alloc->buffer + i * PAGE_SIZE;
  712. binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  713. "%s: %d: page %d at %pK %s\n",
  714. __func__, alloc->pid, i, page_addr,
  715. on_lru ? "on lru" : "active");
  716. unmap_kernel_range((unsigned long)page_addr, PAGE_SIZE);
  717. __free_page(alloc->pages[i].page_ptr);
  718. page_count++;
  719. }
  720. kfree(alloc->pages);
  721. vfree(alloc->buffer);
  722. }
  723. mutex_unlock(&alloc->mutex);
  724. if (alloc->vma_vm_mm)
  725. mmdrop(alloc->vma_vm_mm);
  726. binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
  727. "%s: %d buffers %d, pages %d\n",
  728. __func__, alloc->pid, buffers, page_count);
  729. }
  730. static void print_binder_buffer(struct seq_file *m, const char *prefix,
  731. struct binder_buffer *buffer)
  732. {
  733. seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
  734. prefix, buffer->debug_id, buffer->data,
  735. buffer->data_size, buffer->offsets_size,
  736. buffer->extra_buffers_size,
  737. buffer->transaction ? "active" : "delivered");
  738. }
  739. /**
  740. * binder_alloc_print_allocated() - print buffer info
  741. * @m: seq_file for output via seq_printf()
  742. * @alloc: binder_alloc for this proc
  743. *
  744. * Prints information about every buffer associated with
  745. * the binder_alloc state to the given seq_file
  746. */
  747. void binder_alloc_print_allocated(struct seq_file *m,
  748. struct binder_alloc *alloc)
  749. {
  750. struct rb_node *n;
  751. mutex_lock(&alloc->mutex);
  752. for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
  753. print_binder_buffer(m, " buffer",
  754. rb_entry(n, struct binder_buffer, rb_node));
  755. mutex_unlock(&alloc->mutex);
  756. }
  757. /**
  758. * binder_alloc_print_pages() - print page usage
  759. * @m: seq_file for output via seq_printf()
  760. * @alloc: binder_alloc for this proc
  761. */
  762. void binder_alloc_print_pages(struct seq_file *m,
  763. struct binder_alloc *alloc)
  764. {
  765. struct binder_lru_page *page;
  766. int i;
  767. int active = 0;
  768. int lru = 0;
  769. int free = 0;
  770. mutex_lock(&alloc->mutex);
  771. for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
  772. page = &alloc->pages[i];
  773. if (!page->page_ptr)
  774. free++;
  775. else if (list_empty(&page->lru))
  776. active++;
  777. else
  778. lru++;
  779. }
  780. mutex_unlock(&alloc->mutex);
  781. seq_printf(m, " pages: %d:%d:%d\n", active, lru, free);
  782. seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high);
  783. }
  784. /**
  785. * binder_alloc_get_allocated_count() - return count of buffers
  786. * @alloc: binder_alloc for this proc
  787. *
  788. * Return: count of allocated buffers
  789. */
  790. int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
  791. {
  792. struct rb_node *n;
  793. int count = 0;
  794. mutex_lock(&alloc->mutex);
  795. for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
  796. count++;
  797. mutex_unlock(&alloc->mutex);
  798. return count;
  799. }
  800. /**
  801. * binder_alloc_vma_close() - invalidate address space
  802. * @alloc: binder_alloc for this proc
  803. *
  804. * Called from binder_vma_close() when releasing address space.
  805. * Clears alloc->vma to prevent new incoming transactions from
  806. * allocating more buffers.
  807. */
  808. void binder_alloc_vma_close(struct binder_alloc *alloc)
  809. {
  810. binder_alloc_set_vma(alloc, NULL);
  811. }
  812. /**
  813. * binder_alloc_free_page() - shrinker callback to free pages
  814. * @item: item to free
  815. * @lock: lock protecting the item
  816. * @cb_arg: callback argument
  817. *
  818. * Called from list_lru_walk() in binder_shrink_scan() to free
  819. * up pages when the system is under memory pressure.
  820. */
  821. enum lru_status binder_alloc_free_page(struct list_head *item,
  822. struct list_lru_one *lru,
  823. spinlock_t *lock,
  824. void *cb_arg)
  825. {
  826. struct mm_struct *mm = NULL;
  827. struct binder_lru_page *page = container_of(item,
  828. struct binder_lru_page,
  829. lru);
  830. struct binder_alloc *alloc;
  831. uintptr_t page_addr;
  832. size_t index;
  833. struct vm_area_struct *vma;
  834. alloc = page->alloc;
  835. if (!mutex_trylock(&alloc->mutex))
  836. goto err_get_alloc_mutex_failed;
  837. if (!page->page_ptr)
  838. goto err_page_already_freed;
  839. index = page - alloc->pages;
  840. page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
  841. vma = binder_alloc_get_vma(alloc);
  842. if (vma) {
  843. if (!mmget_not_zero(alloc->vma_vm_mm))
  844. goto err_mmget;
  845. mm = alloc->vma_vm_mm;
  846. if (!down_write_trylock(&mm->mmap_sem))
  847. goto err_down_write_mmap_sem_failed;
  848. }
  849. list_lru_isolate(lru, item);
  850. spin_unlock(lock);
  851. if (vma) {
  852. trace_binder_unmap_user_start(alloc, index);
  853. zap_page_range(vma,
  854. page_addr + alloc->user_buffer_offset,
  855. PAGE_SIZE);
  856. trace_binder_unmap_user_end(alloc, index);
  857. up_write(&mm->mmap_sem);
  858. mmput(mm);
  859. }
  860. trace_binder_unmap_kernel_start(alloc, index);
  861. unmap_kernel_range(page_addr, PAGE_SIZE);
  862. __free_page(page->page_ptr);
  863. page->page_ptr = NULL;
  864. trace_binder_unmap_kernel_end(alloc, index);
  865. spin_lock(lock);
  866. mutex_unlock(&alloc->mutex);
  867. return LRU_REMOVED_RETRY;
  868. err_down_write_mmap_sem_failed:
  869. mmput_async(mm);
  870. err_mmget:
  871. err_page_already_freed:
  872. mutex_unlock(&alloc->mutex);
  873. err_get_alloc_mutex_failed:
  874. return LRU_SKIP;
  875. }
  876. static unsigned long
  877. binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
  878. {
  879. unsigned long ret = list_lru_count(&binder_alloc_lru);
  880. return ret;
  881. }
  882. static unsigned long
  883. binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
  884. {
  885. unsigned long ret;
  886. ret = list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
  887. NULL, sc->nr_to_scan);
  888. return ret;
  889. }
  890. static struct shrinker binder_shrinker = {
  891. .count_objects = binder_shrink_count,
  892. .scan_objects = binder_shrink_scan,
  893. .seeks = DEFAULT_SEEKS,
  894. };
  895. /**
  896. * binder_alloc_init() - called by binder_open() for per-proc initialization
  897. * @alloc: binder_alloc for this proc
  898. *
  899. * Called from binder_open() to initialize binder_alloc fields for
  900. * new binder proc
  901. */
  902. void binder_alloc_init(struct binder_alloc *alloc)
  903. {
  904. alloc->pid = current->group_leader->pid;
  905. mutex_init(&alloc->mutex);
  906. INIT_LIST_HEAD(&alloc->buffers);
  907. }
  908. int binder_alloc_shrinker_init(void)
  909. {
  910. int ret = list_lru_init(&binder_alloc_lru);
  911. if (ret == 0) {
  912. ret = register_shrinker(&binder_shrinker);
  913. if (ret)
  914. list_lru_destroy(&binder_alloc_lru);
  915. }
  916. return ret;
  917. }