interrupt.c 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * handling kvm guest interrupts
  4. *
  5. * Copyright IBM Corp. 2008, 2015
  6. *
  7. * Author(s): Carsten Otte <cotte@de.ibm.com>
  8. */
  9. #include <linux/interrupt.h>
  10. #include <linux/kvm_host.h>
  11. #include <linux/hrtimer.h>
  12. #include <linux/mmu_context.h>
  13. #include <linux/signal.h>
  14. #include <linux/slab.h>
  15. #include <linux/bitmap.h>
  16. #include <linux/vmalloc.h>
  17. #include <asm/asm-offsets.h>
  18. #include <asm/dis.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/sclp.h>
  21. #include <asm/isc.h>
  22. #include <asm/gmap.h>
  23. #include <asm/switch_to.h>
  24. #include <asm/nmi.h>
  25. #include "kvm-s390.h"
  26. #include "gaccess.h"
  27. #include "trace-s390.h"
  28. #define PFAULT_INIT 0x0600
  29. #define PFAULT_DONE 0x0680
  30. #define VIRTIO_PARAM 0x0d00
  31. /* handle external calls via sigp interpretation facility */
  32. static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
  33. {
  34. int c, scn;
  35. if (!kvm_s390_test_cpuflags(vcpu, CPUSTAT_ECALL_PEND))
  36. return 0;
  37. BUG_ON(!kvm_s390_use_sca_entries());
  38. read_lock(&vcpu->kvm->arch.sca_lock);
  39. if (vcpu->kvm->arch.use_esca) {
  40. struct esca_block *sca = vcpu->kvm->arch.sca;
  41. union esca_sigp_ctrl sigp_ctrl =
  42. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  43. c = sigp_ctrl.c;
  44. scn = sigp_ctrl.scn;
  45. } else {
  46. struct bsca_block *sca = vcpu->kvm->arch.sca;
  47. union bsca_sigp_ctrl sigp_ctrl =
  48. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  49. c = sigp_ctrl.c;
  50. scn = sigp_ctrl.scn;
  51. }
  52. read_unlock(&vcpu->kvm->arch.sca_lock);
  53. if (src_id)
  54. *src_id = scn;
  55. return c;
  56. }
  57. static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
  58. {
  59. int expect, rc;
  60. BUG_ON(!kvm_s390_use_sca_entries());
  61. read_lock(&vcpu->kvm->arch.sca_lock);
  62. if (vcpu->kvm->arch.use_esca) {
  63. struct esca_block *sca = vcpu->kvm->arch.sca;
  64. union esca_sigp_ctrl *sigp_ctrl =
  65. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  66. union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  67. new_val.scn = src_id;
  68. new_val.c = 1;
  69. old_val.c = 0;
  70. expect = old_val.value;
  71. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  72. } else {
  73. struct bsca_block *sca = vcpu->kvm->arch.sca;
  74. union bsca_sigp_ctrl *sigp_ctrl =
  75. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  76. union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  77. new_val.scn = src_id;
  78. new_val.c = 1;
  79. old_val.c = 0;
  80. expect = old_val.value;
  81. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  82. }
  83. read_unlock(&vcpu->kvm->arch.sca_lock);
  84. if (rc != expect) {
  85. /* another external call is pending */
  86. return -EBUSY;
  87. }
  88. kvm_s390_set_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
  89. return 0;
  90. }
  91. static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
  92. {
  93. int rc, expect;
  94. if (!kvm_s390_use_sca_entries())
  95. return;
  96. kvm_s390_clear_cpuflags(vcpu, CPUSTAT_ECALL_PEND);
  97. read_lock(&vcpu->kvm->arch.sca_lock);
  98. if (vcpu->kvm->arch.use_esca) {
  99. struct esca_block *sca = vcpu->kvm->arch.sca;
  100. union esca_sigp_ctrl *sigp_ctrl =
  101. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  102. union esca_sigp_ctrl old = *sigp_ctrl;
  103. expect = old.value;
  104. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  105. } else {
  106. struct bsca_block *sca = vcpu->kvm->arch.sca;
  107. union bsca_sigp_ctrl *sigp_ctrl =
  108. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  109. union bsca_sigp_ctrl old = *sigp_ctrl;
  110. expect = old.value;
  111. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  112. }
  113. read_unlock(&vcpu->kvm->arch.sca_lock);
  114. WARN_ON(rc != expect); /* cannot clear? */
  115. }
  116. int psw_extint_disabled(struct kvm_vcpu *vcpu)
  117. {
  118. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
  119. }
  120. static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
  121. {
  122. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
  123. }
  124. static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
  125. {
  126. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
  127. }
  128. static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
  129. {
  130. return psw_extint_disabled(vcpu) &&
  131. psw_ioint_disabled(vcpu) &&
  132. psw_mchk_disabled(vcpu);
  133. }
  134. static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
  135. {
  136. if (psw_extint_disabled(vcpu) ||
  137. !(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
  138. return 0;
  139. if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
  140. /* No timer interrupts when single stepping */
  141. return 0;
  142. return 1;
  143. }
  144. static int ckc_irq_pending(struct kvm_vcpu *vcpu)
  145. {
  146. const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
  147. const u64 ckc = vcpu->arch.sie_block->ckc;
  148. if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
  149. if ((s64)ckc >= (s64)now)
  150. return 0;
  151. } else if (ckc >= now) {
  152. return 0;
  153. }
  154. return ckc_interrupts_enabled(vcpu);
  155. }
  156. static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
  157. {
  158. return !psw_extint_disabled(vcpu) &&
  159. (vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK);
  160. }
  161. static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
  162. {
  163. if (!cpu_timer_interrupts_enabled(vcpu))
  164. return 0;
  165. return kvm_s390_get_cpu_timer(vcpu) >> 63;
  166. }
  167. static uint64_t isc_to_isc_bits(int isc)
  168. {
  169. return (0x80 >> isc) << 24;
  170. }
  171. static inline u32 isc_to_int_word(u8 isc)
  172. {
  173. return ((u32)isc << 27) | 0x80000000;
  174. }
  175. static inline u8 int_word_to_isc(u32 int_word)
  176. {
  177. return (int_word & 0x38000000) >> 27;
  178. }
  179. /*
  180. * To use atomic bitmap functions, we have to provide a bitmap address
  181. * that is u64 aligned. However, the ipm might be u32 aligned.
  182. * Therefore, we logically start the bitmap at the very beginning of the
  183. * struct and fixup the bit number.
  184. */
  185. #define IPM_BIT_OFFSET (offsetof(struct kvm_s390_gisa, ipm) * BITS_PER_BYTE)
  186. static inline void kvm_s390_gisa_set_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
  187. {
  188. set_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
  189. }
  190. static inline u8 kvm_s390_gisa_get_ipm(struct kvm_s390_gisa *gisa)
  191. {
  192. return READ_ONCE(gisa->ipm);
  193. }
  194. static inline void kvm_s390_gisa_clear_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
  195. {
  196. clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
  197. }
  198. static inline int kvm_s390_gisa_tac_ipm_gisc(struct kvm_s390_gisa *gisa, u32 gisc)
  199. {
  200. return test_and_clear_bit_inv(IPM_BIT_OFFSET + gisc, (unsigned long *) gisa);
  201. }
  202. static inline unsigned long pending_irqs_no_gisa(struct kvm_vcpu *vcpu)
  203. {
  204. return vcpu->kvm->arch.float_int.pending_irqs |
  205. vcpu->arch.local_int.pending_irqs;
  206. }
  207. static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
  208. {
  209. return pending_irqs_no_gisa(vcpu) |
  210. kvm_s390_gisa_get_ipm(vcpu->kvm->arch.gisa) << IRQ_PEND_IO_ISC_7;
  211. }
  212. static inline int isc_to_irq_type(unsigned long isc)
  213. {
  214. return IRQ_PEND_IO_ISC_0 - isc;
  215. }
  216. static inline int irq_type_to_isc(unsigned long irq_type)
  217. {
  218. return IRQ_PEND_IO_ISC_0 - irq_type;
  219. }
  220. static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
  221. unsigned long active_mask)
  222. {
  223. int i;
  224. for (i = 0; i <= MAX_ISC; i++)
  225. if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
  226. active_mask &= ~(1UL << (isc_to_irq_type(i)));
  227. return active_mask;
  228. }
  229. static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
  230. {
  231. unsigned long active_mask;
  232. active_mask = pending_irqs(vcpu);
  233. if (!active_mask)
  234. return 0;
  235. if (psw_extint_disabled(vcpu))
  236. active_mask &= ~IRQ_PEND_EXT_MASK;
  237. if (psw_ioint_disabled(vcpu))
  238. active_mask &= ~IRQ_PEND_IO_MASK;
  239. else
  240. active_mask = disable_iscs(vcpu, active_mask);
  241. if (!(vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
  242. __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
  243. if (!(vcpu->arch.sie_block->gcr[0] & CR0_EMERGENCY_SIGNAL_SUBMASK))
  244. __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
  245. if (!(vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SUBMASK))
  246. __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
  247. if (!(vcpu->arch.sie_block->gcr[0] & CR0_CPU_TIMER_SUBMASK))
  248. __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
  249. if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
  250. __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
  251. if (psw_mchk_disabled(vcpu))
  252. active_mask &= ~IRQ_PEND_MCHK_MASK;
  253. /*
  254. * Check both floating and local interrupt's cr14 because
  255. * bit IRQ_PEND_MCHK_REP could be set in both cases.
  256. */
  257. if (!(vcpu->arch.sie_block->gcr[14] &
  258. (vcpu->kvm->arch.float_int.mchk.cr14 |
  259. vcpu->arch.local_int.irq.mchk.cr14)))
  260. __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
  261. /*
  262. * STOP irqs will never be actively delivered. They are triggered via
  263. * intercept requests and cleared when the stop intercept is performed.
  264. */
  265. __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
  266. return active_mask;
  267. }
  268. static void __set_cpu_idle(struct kvm_vcpu *vcpu)
  269. {
  270. kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
  271. set_bit(vcpu->vcpu_id, vcpu->kvm->arch.float_int.idle_mask);
  272. }
  273. static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
  274. {
  275. kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
  276. clear_bit(vcpu->vcpu_id, vcpu->kvm->arch.float_int.idle_mask);
  277. }
  278. static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
  279. {
  280. kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IO_INT | CPUSTAT_EXT_INT |
  281. CPUSTAT_STOP_INT);
  282. vcpu->arch.sie_block->lctl = 0x0000;
  283. vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
  284. if (guestdbg_enabled(vcpu)) {
  285. vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
  286. LCTL_CR10 | LCTL_CR11);
  287. vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
  288. }
  289. }
  290. static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
  291. {
  292. if (!(pending_irqs_no_gisa(vcpu) & IRQ_PEND_IO_MASK))
  293. return;
  294. else if (psw_ioint_disabled(vcpu))
  295. kvm_s390_set_cpuflags(vcpu, CPUSTAT_IO_INT);
  296. else
  297. vcpu->arch.sie_block->lctl |= LCTL_CR6;
  298. }
  299. static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
  300. {
  301. if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
  302. return;
  303. if (psw_extint_disabled(vcpu))
  304. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  305. else
  306. vcpu->arch.sie_block->lctl |= LCTL_CR0;
  307. }
  308. static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
  309. {
  310. if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
  311. return;
  312. if (psw_mchk_disabled(vcpu))
  313. vcpu->arch.sie_block->ictl |= ICTL_LPSW;
  314. else
  315. vcpu->arch.sie_block->lctl |= LCTL_CR14;
  316. }
  317. static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
  318. {
  319. if (kvm_s390_is_stop_irq_pending(vcpu))
  320. kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
  321. }
  322. /* Set interception request for non-deliverable interrupts */
  323. static void set_intercept_indicators(struct kvm_vcpu *vcpu)
  324. {
  325. set_intercept_indicators_io(vcpu);
  326. set_intercept_indicators_ext(vcpu);
  327. set_intercept_indicators_mchk(vcpu);
  328. set_intercept_indicators_stop(vcpu);
  329. }
  330. static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
  331. {
  332. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  333. int rc;
  334. vcpu->stat.deliver_cputm++;
  335. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  336. 0, 0);
  337. rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
  338. (u16 *)__LC_EXT_INT_CODE);
  339. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  340. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  341. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  342. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  343. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  344. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  345. return rc ? -EFAULT : 0;
  346. }
  347. static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
  348. {
  349. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  350. int rc;
  351. vcpu->stat.deliver_ckc++;
  352. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  353. 0, 0);
  354. rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
  355. (u16 __user *)__LC_EXT_INT_CODE);
  356. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  357. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  358. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  359. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  360. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  361. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  362. return rc ? -EFAULT : 0;
  363. }
  364. static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
  365. {
  366. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  367. struct kvm_s390_ext_info ext;
  368. int rc;
  369. spin_lock(&li->lock);
  370. ext = li->irq.ext;
  371. clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  372. li->irq.ext.ext_params2 = 0;
  373. spin_unlock(&li->lock);
  374. VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
  375. ext.ext_params2);
  376. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  377. KVM_S390_INT_PFAULT_INIT,
  378. 0, ext.ext_params2);
  379. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
  380. rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
  381. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  382. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  383. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  384. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  385. rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
  386. return rc ? -EFAULT : 0;
  387. }
  388. static int __write_machine_check(struct kvm_vcpu *vcpu,
  389. struct kvm_s390_mchk_info *mchk)
  390. {
  391. unsigned long ext_sa_addr;
  392. unsigned long lc;
  393. freg_t fprs[NUM_FPRS];
  394. union mci mci;
  395. int rc;
  396. mci.val = mchk->mcic;
  397. /* take care of lazy register loading */
  398. save_fpu_regs();
  399. save_access_regs(vcpu->run->s.regs.acrs);
  400. if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
  401. save_gs_cb(current->thread.gs_cb);
  402. /* Extended save area */
  403. rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
  404. sizeof(unsigned long));
  405. /* Only bits 0 through 63-LC are used for address formation */
  406. lc = ext_sa_addr & MCESA_LC_MASK;
  407. if (test_kvm_facility(vcpu->kvm, 133)) {
  408. switch (lc) {
  409. case 0:
  410. case 10:
  411. ext_sa_addr &= ~0x3ffUL;
  412. break;
  413. case 11:
  414. ext_sa_addr &= ~0x7ffUL;
  415. break;
  416. case 12:
  417. ext_sa_addr &= ~0xfffUL;
  418. break;
  419. default:
  420. ext_sa_addr = 0;
  421. break;
  422. }
  423. } else {
  424. ext_sa_addr &= ~0x3ffUL;
  425. }
  426. if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
  427. if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
  428. 512))
  429. mci.vr = 0;
  430. } else {
  431. mci.vr = 0;
  432. }
  433. if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
  434. && (lc == 11 || lc == 12)) {
  435. if (write_guest_abs(vcpu, ext_sa_addr + 1024,
  436. &vcpu->run->s.regs.gscb, 32))
  437. mci.gs = 0;
  438. } else {
  439. mci.gs = 0;
  440. }
  441. /* General interruption information */
  442. rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
  443. rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
  444. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  445. rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
  446. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  447. rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
  448. /* Register-save areas */
  449. if (MACHINE_HAS_VX) {
  450. convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
  451. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
  452. } else {
  453. rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
  454. vcpu->run->s.regs.fprs, 128);
  455. }
  456. rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
  457. vcpu->run->s.regs.gprs, 128);
  458. rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
  459. (u32 __user *) __LC_FP_CREG_SAVE_AREA);
  460. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
  461. (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
  462. rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
  463. (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
  464. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
  465. (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
  466. rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
  467. &vcpu->run->s.regs.acrs, 64);
  468. rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
  469. &vcpu->arch.sie_block->gcr, 128);
  470. /* Extended interruption information */
  471. rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
  472. (u32 __user *) __LC_EXT_DAMAGE_CODE);
  473. rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
  474. (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
  475. rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
  476. sizeof(mchk->fixed_logout));
  477. return rc ? -EFAULT : 0;
  478. }
  479. static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
  480. {
  481. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  482. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  483. struct kvm_s390_mchk_info mchk = {};
  484. int deliver = 0;
  485. int rc = 0;
  486. spin_lock(&fi->lock);
  487. spin_lock(&li->lock);
  488. if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
  489. test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
  490. /*
  491. * If there was an exigent machine check pending, then any
  492. * repressible machine checks that might have been pending
  493. * are indicated along with it, so always clear bits for
  494. * repressible and exigent interrupts
  495. */
  496. mchk = li->irq.mchk;
  497. clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  498. clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  499. memset(&li->irq.mchk, 0, sizeof(mchk));
  500. deliver = 1;
  501. }
  502. /*
  503. * We indicate floating repressible conditions along with
  504. * other pending conditions. Channel Report Pending and Channel
  505. * Subsystem damage are the only two and and are indicated by
  506. * bits in mcic and masked in cr14.
  507. */
  508. if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  509. mchk.mcic |= fi->mchk.mcic;
  510. mchk.cr14 |= fi->mchk.cr14;
  511. memset(&fi->mchk, 0, sizeof(mchk));
  512. deliver = 1;
  513. }
  514. spin_unlock(&li->lock);
  515. spin_unlock(&fi->lock);
  516. if (deliver) {
  517. VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
  518. mchk.mcic);
  519. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  520. KVM_S390_MCHK,
  521. mchk.cr14, mchk.mcic);
  522. vcpu->stat.deliver_machine_check++;
  523. rc = __write_machine_check(vcpu, &mchk);
  524. }
  525. return rc;
  526. }
  527. static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
  528. {
  529. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  530. int rc;
  531. VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
  532. vcpu->stat.deliver_restart_signal++;
  533. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  534. rc = write_guest_lc(vcpu,
  535. offsetof(struct lowcore, restart_old_psw),
  536. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  537. rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
  538. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  539. clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  540. return rc ? -EFAULT : 0;
  541. }
  542. static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
  543. {
  544. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  545. struct kvm_s390_prefix_info prefix;
  546. spin_lock(&li->lock);
  547. prefix = li->irq.prefix;
  548. li->irq.prefix.address = 0;
  549. clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  550. spin_unlock(&li->lock);
  551. vcpu->stat.deliver_prefix_signal++;
  552. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  553. KVM_S390_SIGP_SET_PREFIX,
  554. prefix.address, 0);
  555. kvm_s390_set_prefix(vcpu, prefix.address);
  556. return 0;
  557. }
  558. static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
  559. {
  560. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  561. int rc;
  562. int cpu_addr;
  563. spin_lock(&li->lock);
  564. cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  565. clear_bit(cpu_addr, li->sigp_emerg_pending);
  566. if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
  567. clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  568. spin_unlock(&li->lock);
  569. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
  570. vcpu->stat.deliver_emergency_signal++;
  571. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  572. cpu_addr, 0);
  573. rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
  574. (u16 *)__LC_EXT_INT_CODE);
  575. rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
  576. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  577. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  578. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  579. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  580. return rc ? -EFAULT : 0;
  581. }
  582. static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
  583. {
  584. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  585. struct kvm_s390_extcall_info extcall;
  586. int rc;
  587. spin_lock(&li->lock);
  588. extcall = li->irq.extcall;
  589. li->irq.extcall.code = 0;
  590. clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  591. spin_unlock(&li->lock);
  592. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
  593. vcpu->stat.deliver_external_call++;
  594. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  595. KVM_S390_INT_EXTERNAL_CALL,
  596. extcall.code, 0);
  597. rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
  598. (u16 *)__LC_EXT_INT_CODE);
  599. rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
  600. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  601. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  602. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
  603. sizeof(psw_t));
  604. return rc ? -EFAULT : 0;
  605. }
  606. static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
  607. {
  608. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  609. struct kvm_s390_pgm_info pgm_info;
  610. int rc = 0, nullifying = false;
  611. u16 ilen;
  612. spin_lock(&li->lock);
  613. pgm_info = li->irq.pgm;
  614. clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
  615. memset(&li->irq.pgm, 0, sizeof(pgm_info));
  616. spin_unlock(&li->lock);
  617. ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
  618. VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
  619. pgm_info.code, ilen);
  620. vcpu->stat.deliver_program++;
  621. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  622. pgm_info.code, 0);
  623. switch (pgm_info.code & ~PGM_PER) {
  624. case PGM_AFX_TRANSLATION:
  625. case PGM_ASX_TRANSLATION:
  626. case PGM_EX_TRANSLATION:
  627. case PGM_LFX_TRANSLATION:
  628. case PGM_LSTE_SEQUENCE:
  629. case PGM_LSX_TRANSLATION:
  630. case PGM_LX_TRANSLATION:
  631. case PGM_PRIMARY_AUTHORITY:
  632. case PGM_SECONDARY_AUTHORITY:
  633. nullifying = true;
  634. /* fall through */
  635. case PGM_SPACE_SWITCH:
  636. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  637. (u64 *)__LC_TRANS_EXC_CODE);
  638. break;
  639. case PGM_ALEN_TRANSLATION:
  640. case PGM_ALE_SEQUENCE:
  641. case PGM_ASTE_INSTANCE:
  642. case PGM_ASTE_SEQUENCE:
  643. case PGM_ASTE_VALIDITY:
  644. case PGM_EXTENDED_AUTHORITY:
  645. rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
  646. (u8 *)__LC_EXC_ACCESS_ID);
  647. nullifying = true;
  648. break;
  649. case PGM_ASCE_TYPE:
  650. case PGM_PAGE_TRANSLATION:
  651. case PGM_REGION_FIRST_TRANS:
  652. case PGM_REGION_SECOND_TRANS:
  653. case PGM_REGION_THIRD_TRANS:
  654. case PGM_SEGMENT_TRANSLATION:
  655. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  656. (u64 *)__LC_TRANS_EXC_CODE);
  657. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  658. (u8 *)__LC_EXC_ACCESS_ID);
  659. rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
  660. (u8 *)__LC_OP_ACCESS_ID);
  661. nullifying = true;
  662. break;
  663. case PGM_MONITOR:
  664. rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
  665. (u16 *)__LC_MON_CLASS_NR);
  666. rc |= put_guest_lc(vcpu, pgm_info.mon_code,
  667. (u64 *)__LC_MON_CODE);
  668. break;
  669. case PGM_VECTOR_PROCESSING:
  670. case PGM_DATA:
  671. rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
  672. (u32 *)__LC_DATA_EXC_CODE);
  673. break;
  674. case PGM_PROTECTION:
  675. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  676. (u64 *)__LC_TRANS_EXC_CODE);
  677. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  678. (u8 *)__LC_EXC_ACCESS_ID);
  679. break;
  680. case PGM_STACK_FULL:
  681. case PGM_STACK_EMPTY:
  682. case PGM_STACK_SPECIFICATION:
  683. case PGM_STACK_TYPE:
  684. case PGM_STACK_OPERATION:
  685. case PGM_TRACE_TABEL:
  686. case PGM_CRYPTO_OPERATION:
  687. nullifying = true;
  688. break;
  689. }
  690. if (pgm_info.code & PGM_PER) {
  691. rc |= put_guest_lc(vcpu, pgm_info.per_code,
  692. (u8 *) __LC_PER_CODE);
  693. rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
  694. (u8 *)__LC_PER_ATMID);
  695. rc |= put_guest_lc(vcpu, pgm_info.per_address,
  696. (u64 *) __LC_PER_ADDRESS);
  697. rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
  698. (u8 *) __LC_PER_ACCESS_ID);
  699. }
  700. if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
  701. kvm_s390_rewind_psw(vcpu, ilen);
  702. /* bit 1+2 of the target are the ilc, so we can directly use ilen */
  703. rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
  704. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
  705. (u64 *) __LC_LAST_BREAK);
  706. rc |= put_guest_lc(vcpu, pgm_info.code,
  707. (u16 *)__LC_PGM_INT_CODE);
  708. rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
  709. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  710. rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
  711. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  712. return rc ? -EFAULT : 0;
  713. }
  714. static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
  715. {
  716. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  717. struct kvm_s390_ext_info ext;
  718. int rc = 0;
  719. spin_lock(&fi->lock);
  720. if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
  721. spin_unlock(&fi->lock);
  722. return 0;
  723. }
  724. ext = fi->srv_signal;
  725. memset(&fi->srv_signal, 0, sizeof(ext));
  726. clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  727. spin_unlock(&fi->lock);
  728. VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
  729. ext.ext_params);
  730. vcpu->stat.deliver_service_signal++;
  731. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
  732. ext.ext_params, 0);
  733. rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
  734. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  735. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  736. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  737. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  738. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  739. rc |= put_guest_lc(vcpu, ext.ext_params,
  740. (u32 *)__LC_EXT_PARAMS);
  741. return rc ? -EFAULT : 0;
  742. }
  743. static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
  744. {
  745. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  746. struct kvm_s390_interrupt_info *inti;
  747. int rc = 0;
  748. spin_lock(&fi->lock);
  749. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
  750. struct kvm_s390_interrupt_info,
  751. list);
  752. if (inti) {
  753. list_del(&inti->list);
  754. fi->counters[FIRQ_CNTR_PFAULT] -= 1;
  755. }
  756. if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
  757. clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  758. spin_unlock(&fi->lock);
  759. if (inti) {
  760. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  761. KVM_S390_INT_PFAULT_DONE, 0,
  762. inti->ext.ext_params2);
  763. VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
  764. inti->ext.ext_params2);
  765. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  766. (u16 *)__LC_EXT_INT_CODE);
  767. rc |= put_guest_lc(vcpu, PFAULT_DONE,
  768. (u16 *)__LC_EXT_CPU_ADDR);
  769. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  770. &vcpu->arch.sie_block->gpsw,
  771. sizeof(psw_t));
  772. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  773. &vcpu->arch.sie_block->gpsw,
  774. sizeof(psw_t));
  775. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  776. (u64 *)__LC_EXT_PARAMS2);
  777. kfree(inti);
  778. }
  779. return rc ? -EFAULT : 0;
  780. }
  781. static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
  782. {
  783. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  784. struct kvm_s390_interrupt_info *inti;
  785. int rc = 0;
  786. spin_lock(&fi->lock);
  787. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
  788. struct kvm_s390_interrupt_info,
  789. list);
  790. if (inti) {
  791. VCPU_EVENT(vcpu, 4,
  792. "deliver: virtio parm: 0x%x,parm64: 0x%llx",
  793. inti->ext.ext_params, inti->ext.ext_params2);
  794. vcpu->stat.deliver_virtio++;
  795. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  796. inti->type,
  797. inti->ext.ext_params,
  798. inti->ext.ext_params2);
  799. list_del(&inti->list);
  800. fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
  801. }
  802. if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
  803. clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  804. spin_unlock(&fi->lock);
  805. if (inti) {
  806. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  807. (u16 *)__LC_EXT_INT_CODE);
  808. rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
  809. (u16 *)__LC_EXT_CPU_ADDR);
  810. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  811. &vcpu->arch.sie_block->gpsw,
  812. sizeof(psw_t));
  813. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  814. &vcpu->arch.sie_block->gpsw,
  815. sizeof(psw_t));
  816. rc |= put_guest_lc(vcpu, inti->ext.ext_params,
  817. (u32 *)__LC_EXT_PARAMS);
  818. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  819. (u64 *)__LC_EXT_PARAMS2);
  820. kfree(inti);
  821. }
  822. return rc ? -EFAULT : 0;
  823. }
  824. static int __do_deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_io_info *io)
  825. {
  826. int rc;
  827. rc = put_guest_lc(vcpu, io->subchannel_id, (u16 *)__LC_SUBCHANNEL_ID);
  828. rc |= put_guest_lc(vcpu, io->subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR);
  829. rc |= put_guest_lc(vcpu, io->io_int_parm, (u32 *)__LC_IO_INT_PARM);
  830. rc |= put_guest_lc(vcpu, io->io_int_word, (u32 *)__LC_IO_INT_WORD);
  831. rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
  832. &vcpu->arch.sie_block->gpsw,
  833. sizeof(psw_t));
  834. rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
  835. &vcpu->arch.sie_block->gpsw,
  836. sizeof(psw_t));
  837. return rc ? -EFAULT : 0;
  838. }
  839. static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
  840. unsigned long irq_type)
  841. {
  842. struct list_head *isc_list;
  843. struct kvm_s390_float_interrupt *fi;
  844. struct kvm_s390_interrupt_info *inti = NULL;
  845. struct kvm_s390_io_info io;
  846. u32 isc;
  847. int rc = 0;
  848. fi = &vcpu->kvm->arch.float_int;
  849. spin_lock(&fi->lock);
  850. isc = irq_type_to_isc(irq_type);
  851. isc_list = &fi->lists[isc];
  852. inti = list_first_entry_or_null(isc_list,
  853. struct kvm_s390_interrupt_info,
  854. list);
  855. if (inti) {
  856. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  857. VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
  858. else
  859. VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
  860. inti->io.subchannel_id >> 8,
  861. inti->io.subchannel_id >> 1 & 0x3,
  862. inti->io.subchannel_nr);
  863. vcpu->stat.deliver_io++;
  864. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  865. inti->type,
  866. ((__u32)inti->io.subchannel_id << 16) |
  867. inti->io.subchannel_nr,
  868. ((__u64)inti->io.io_int_parm << 32) |
  869. inti->io.io_int_word);
  870. list_del(&inti->list);
  871. fi->counters[FIRQ_CNTR_IO] -= 1;
  872. }
  873. if (list_empty(isc_list))
  874. clear_bit(irq_type, &fi->pending_irqs);
  875. spin_unlock(&fi->lock);
  876. if (inti) {
  877. rc = __do_deliver_io(vcpu, &(inti->io));
  878. kfree(inti);
  879. goto out;
  880. }
  881. if (vcpu->kvm->arch.gisa &&
  882. kvm_s390_gisa_tac_ipm_gisc(vcpu->kvm->arch.gisa, isc)) {
  883. /*
  884. * in case an adapter interrupt was not delivered
  885. * in SIE context KVM will handle the delivery
  886. */
  887. VCPU_EVENT(vcpu, 4, "%s isc %u", "deliver: I/O (AI/gisa)", isc);
  888. memset(&io, 0, sizeof(io));
  889. io.io_int_word = isc_to_int_word(isc);
  890. vcpu->stat.deliver_io++;
  891. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  892. KVM_S390_INT_IO(1, 0, 0, 0),
  893. ((__u32)io.subchannel_id << 16) |
  894. io.subchannel_nr,
  895. ((__u64)io.io_int_parm << 32) |
  896. io.io_int_word);
  897. rc = __do_deliver_io(vcpu, &io);
  898. }
  899. out:
  900. return rc;
  901. }
  902. /* Check whether an external call is pending (deliverable or not) */
  903. int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
  904. {
  905. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  906. if (!sclp.has_sigpif)
  907. return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  908. return sca_ext_call_pending(vcpu, NULL);
  909. }
  910. int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
  911. {
  912. if (deliverable_irqs(vcpu))
  913. return 1;
  914. if (kvm_cpu_has_pending_timer(vcpu))
  915. return 1;
  916. /* external call pending and deliverable */
  917. if (kvm_s390_ext_call_pending(vcpu) &&
  918. !psw_extint_disabled(vcpu) &&
  919. (vcpu->arch.sie_block->gcr[0] & CR0_EXTERNAL_CALL_SUBMASK))
  920. return 1;
  921. if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
  922. return 1;
  923. return 0;
  924. }
  925. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  926. {
  927. return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
  928. }
  929. static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
  930. {
  931. const u64 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
  932. const u64 ckc = vcpu->arch.sie_block->ckc;
  933. u64 cputm, sltime = 0;
  934. if (ckc_interrupts_enabled(vcpu)) {
  935. if (vcpu->arch.sie_block->gcr[0] & CR0_CLOCK_COMPARATOR_SIGN) {
  936. if ((s64)now < (s64)ckc)
  937. sltime = tod_to_ns((s64)ckc - (s64)now);
  938. } else if (now < ckc) {
  939. sltime = tod_to_ns(ckc - now);
  940. }
  941. /* already expired */
  942. if (!sltime)
  943. return 0;
  944. if (cpu_timer_interrupts_enabled(vcpu)) {
  945. cputm = kvm_s390_get_cpu_timer(vcpu);
  946. /* already expired? */
  947. if (cputm >> 63)
  948. return 0;
  949. return min(sltime, tod_to_ns(cputm));
  950. }
  951. } else if (cpu_timer_interrupts_enabled(vcpu)) {
  952. sltime = kvm_s390_get_cpu_timer(vcpu);
  953. /* already expired? */
  954. if (sltime >> 63)
  955. return 0;
  956. }
  957. return sltime;
  958. }
  959. int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
  960. {
  961. u64 sltime;
  962. vcpu->stat.exit_wait_state++;
  963. /* fast path */
  964. if (kvm_arch_vcpu_runnable(vcpu))
  965. return 0;
  966. if (psw_interrupts_disabled(vcpu)) {
  967. VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
  968. return -EOPNOTSUPP; /* disabled wait */
  969. }
  970. if (!ckc_interrupts_enabled(vcpu) &&
  971. !cpu_timer_interrupts_enabled(vcpu)) {
  972. VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
  973. __set_cpu_idle(vcpu);
  974. goto no_timer;
  975. }
  976. sltime = __calculate_sltime(vcpu);
  977. if (!sltime)
  978. return 0;
  979. __set_cpu_idle(vcpu);
  980. hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
  981. VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
  982. no_timer:
  983. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  984. kvm_vcpu_block(vcpu);
  985. __unset_cpu_idle(vcpu);
  986. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  987. hrtimer_cancel(&vcpu->arch.ckc_timer);
  988. return 0;
  989. }
  990. void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
  991. {
  992. /*
  993. * We cannot move this into the if, as the CPU might be already
  994. * in kvm_vcpu_block without having the waitqueue set (polling)
  995. */
  996. vcpu->valid_wakeup = true;
  997. /*
  998. * This is mostly to document, that the read in swait_active could
  999. * be moved before other stores, leading to subtle races.
  1000. * All current users do not store or use an atomic like update
  1001. */
  1002. smp_mb__after_atomic();
  1003. if (swait_active(&vcpu->wq)) {
  1004. /*
  1005. * The vcpu gave up the cpu voluntarily, mark it as a good
  1006. * yield-candidate.
  1007. */
  1008. vcpu->preempted = true;
  1009. swake_up_one(&vcpu->wq);
  1010. vcpu->stat.halt_wakeup++;
  1011. }
  1012. /*
  1013. * The VCPU might not be sleeping but is executing the VSIE. Let's
  1014. * kick it, so it leaves the SIE to process the request.
  1015. */
  1016. kvm_s390_vsie_kick(vcpu);
  1017. }
  1018. enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
  1019. {
  1020. struct kvm_vcpu *vcpu;
  1021. u64 sltime;
  1022. vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
  1023. sltime = __calculate_sltime(vcpu);
  1024. /*
  1025. * If the monotonic clock runs faster than the tod clock we might be
  1026. * woken up too early and have to go back to sleep to avoid deadlocks.
  1027. */
  1028. if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
  1029. return HRTIMER_RESTART;
  1030. kvm_s390_vcpu_wakeup(vcpu);
  1031. return HRTIMER_NORESTART;
  1032. }
  1033. void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
  1034. {
  1035. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1036. spin_lock(&li->lock);
  1037. li->pending_irqs = 0;
  1038. bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  1039. memset(&li->irq, 0, sizeof(li->irq));
  1040. spin_unlock(&li->lock);
  1041. sca_clear_ext_call(vcpu);
  1042. }
  1043. int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
  1044. {
  1045. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1046. int rc = 0;
  1047. unsigned long irq_type;
  1048. unsigned long irqs;
  1049. __reset_intercept_indicators(vcpu);
  1050. /* pending ckc conditions might have been invalidated */
  1051. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1052. if (ckc_irq_pending(vcpu))
  1053. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1054. /* pending cpu timer conditions might have been invalidated */
  1055. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1056. if (cpu_timer_irq_pending(vcpu))
  1057. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1058. while ((irqs = deliverable_irqs(vcpu)) && !rc) {
  1059. /* bits are in the reverse order of interrupt priority */
  1060. irq_type = find_last_bit(&irqs, IRQ_PEND_COUNT);
  1061. switch (irq_type) {
  1062. case IRQ_PEND_IO_ISC_0:
  1063. case IRQ_PEND_IO_ISC_1:
  1064. case IRQ_PEND_IO_ISC_2:
  1065. case IRQ_PEND_IO_ISC_3:
  1066. case IRQ_PEND_IO_ISC_4:
  1067. case IRQ_PEND_IO_ISC_5:
  1068. case IRQ_PEND_IO_ISC_6:
  1069. case IRQ_PEND_IO_ISC_7:
  1070. rc = __deliver_io(vcpu, irq_type);
  1071. break;
  1072. case IRQ_PEND_MCHK_EX:
  1073. case IRQ_PEND_MCHK_REP:
  1074. rc = __deliver_machine_check(vcpu);
  1075. break;
  1076. case IRQ_PEND_PROG:
  1077. rc = __deliver_prog(vcpu);
  1078. break;
  1079. case IRQ_PEND_EXT_EMERGENCY:
  1080. rc = __deliver_emergency_signal(vcpu);
  1081. break;
  1082. case IRQ_PEND_EXT_EXTERNAL:
  1083. rc = __deliver_external_call(vcpu);
  1084. break;
  1085. case IRQ_PEND_EXT_CLOCK_COMP:
  1086. rc = __deliver_ckc(vcpu);
  1087. break;
  1088. case IRQ_PEND_EXT_CPU_TIMER:
  1089. rc = __deliver_cpu_timer(vcpu);
  1090. break;
  1091. case IRQ_PEND_RESTART:
  1092. rc = __deliver_restart(vcpu);
  1093. break;
  1094. case IRQ_PEND_SET_PREFIX:
  1095. rc = __deliver_set_prefix(vcpu);
  1096. break;
  1097. case IRQ_PEND_PFAULT_INIT:
  1098. rc = __deliver_pfault_init(vcpu);
  1099. break;
  1100. case IRQ_PEND_EXT_SERVICE:
  1101. rc = __deliver_service(vcpu);
  1102. break;
  1103. case IRQ_PEND_PFAULT_DONE:
  1104. rc = __deliver_pfault_done(vcpu);
  1105. break;
  1106. case IRQ_PEND_VIRTIO:
  1107. rc = __deliver_virtio(vcpu);
  1108. break;
  1109. default:
  1110. WARN_ONCE(1, "Unknown pending irq type %ld", irq_type);
  1111. clear_bit(irq_type, &li->pending_irqs);
  1112. }
  1113. }
  1114. set_intercept_indicators(vcpu);
  1115. return rc;
  1116. }
  1117. static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1118. {
  1119. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1120. vcpu->stat.inject_program++;
  1121. VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
  1122. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  1123. irq->u.pgm.code, 0);
  1124. if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
  1125. /* auto detection if no valid ILC was given */
  1126. irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
  1127. irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
  1128. irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
  1129. }
  1130. if (irq->u.pgm.code == PGM_PER) {
  1131. li->irq.pgm.code |= PGM_PER;
  1132. li->irq.pgm.flags = irq->u.pgm.flags;
  1133. /* only modify PER related information */
  1134. li->irq.pgm.per_address = irq->u.pgm.per_address;
  1135. li->irq.pgm.per_code = irq->u.pgm.per_code;
  1136. li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
  1137. li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
  1138. } else if (!(irq->u.pgm.code & PGM_PER)) {
  1139. li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
  1140. irq->u.pgm.code;
  1141. li->irq.pgm.flags = irq->u.pgm.flags;
  1142. /* only modify non-PER information */
  1143. li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
  1144. li->irq.pgm.mon_code = irq->u.pgm.mon_code;
  1145. li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
  1146. li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
  1147. li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
  1148. li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
  1149. } else {
  1150. li->irq.pgm = irq->u.pgm;
  1151. }
  1152. set_bit(IRQ_PEND_PROG, &li->pending_irqs);
  1153. return 0;
  1154. }
  1155. static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1156. {
  1157. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1158. vcpu->stat.inject_pfault_init++;
  1159. VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
  1160. irq->u.ext.ext_params2);
  1161. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
  1162. irq->u.ext.ext_params,
  1163. irq->u.ext.ext_params2);
  1164. li->irq.ext = irq->u.ext;
  1165. set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  1166. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1167. return 0;
  1168. }
  1169. static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1170. {
  1171. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1172. struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
  1173. uint16_t src_id = irq->u.extcall.code;
  1174. vcpu->stat.inject_external_call++;
  1175. VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
  1176. src_id);
  1177. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
  1178. src_id, 0);
  1179. /* sending vcpu invalid */
  1180. if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
  1181. return -EINVAL;
  1182. if (sclp.has_sigpif)
  1183. return sca_inject_ext_call(vcpu, src_id);
  1184. if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
  1185. return -EBUSY;
  1186. *extcall = irq->u.extcall;
  1187. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1188. return 0;
  1189. }
  1190. static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1191. {
  1192. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1193. struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
  1194. vcpu->stat.inject_set_prefix++;
  1195. VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
  1196. irq->u.prefix.address);
  1197. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
  1198. irq->u.prefix.address, 0);
  1199. if (!is_vcpu_stopped(vcpu))
  1200. return -EBUSY;
  1201. *prefix = irq->u.prefix;
  1202. set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  1203. return 0;
  1204. }
  1205. #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
  1206. static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1207. {
  1208. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1209. struct kvm_s390_stop_info *stop = &li->irq.stop;
  1210. int rc = 0;
  1211. vcpu->stat.inject_stop_signal++;
  1212. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
  1213. if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
  1214. return -EINVAL;
  1215. if (is_vcpu_stopped(vcpu)) {
  1216. if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
  1217. rc = kvm_s390_store_status_unloaded(vcpu,
  1218. KVM_S390_STORE_STATUS_NOADDR);
  1219. return rc;
  1220. }
  1221. if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
  1222. return -EBUSY;
  1223. stop->flags = irq->u.stop.flags;
  1224. kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
  1225. return 0;
  1226. }
  1227. static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
  1228. struct kvm_s390_irq *irq)
  1229. {
  1230. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1231. vcpu->stat.inject_restart++;
  1232. VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
  1233. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  1234. set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  1235. return 0;
  1236. }
  1237. static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
  1238. struct kvm_s390_irq *irq)
  1239. {
  1240. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1241. vcpu->stat.inject_emergency_signal++;
  1242. VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
  1243. irq->u.emerg.code);
  1244. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  1245. irq->u.emerg.code, 0);
  1246. /* sending vcpu invalid */
  1247. if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
  1248. return -EINVAL;
  1249. set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
  1250. set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  1251. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1252. return 0;
  1253. }
  1254. static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1255. {
  1256. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1257. struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
  1258. vcpu->stat.inject_mchk++;
  1259. VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
  1260. irq->u.mchk.mcic);
  1261. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
  1262. irq->u.mchk.mcic);
  1263. /*
  1264. * Because repressible machine checks can be indicated along with
  1265. * exigent machine checks (PoP, Chapter 11, Interruption action)
  1266. * we need to combine cr14, mcic and external damage code.
  1267. * Failing storage address and the logout area should not be or'ed
  1268. * together, we just indicate the last occurrence of the corresponding
  1269. * machine check
  1270. */
  1271. mchk->cr14 |= irq->u.mchk.cr14;
  1272. mchk->mcic |= irq->u.mchk.mcic;
  1273. mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
  1274. mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
  1275. memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
  1276. sizeof(mchk->fixed_logout));
  1277. if (mchk->mcic & MCHK_EX_MASK)
  1278. set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  1279. else if (mchk->mcic & MCHK_REP_MASK)
  1280. set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  1281. return 0;
  1282. }
  1283. static int __inject_ckc(struct kvm_vcpu *vcpu)
  1284. {
  1285. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1286. vcpu->stat.inject_ckc++;
  1287. VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
  1288. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  1289. 0, 0);
  1290. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1291. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1292. return 0;
  1293. }
  1294. static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
  1295. {
  1296. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1297. vcpu->stat.inject_cputm++;
  1298. VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
  1299. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  1300. 0, 0);
  1301. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1302. kvm_s390_set_cpuflags(vcpu, CPUSTAT_EXT_INT);
  1303. return 0;
  1304. }
  1305. static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
  1306. int isc, u32 schid)
  1307. {
  1308. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1309. struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1310. struct kvm_s390_interrupt_info *iter;
  1311. u16 id = (schid & 0xffff0000U) >> 16;
  1312. u16 nr = schid & 0x0000ffffU;
  1313. spin_lock(&fi->lock);
  1314. list_for_each_entry(iter, isc_list, list) {
  1315. if (schid && (id != iter->io.subchannel_id ||
  1316. nr != iter->io.subchannel_nr))
  1317. continue;
  1318. /* found an appropriate entry */
  1319. list_del_init(&iter->list);
  1320. fi->counters[FIRQ_CNTR_IO] -= 1;
  1321. if (list_empty(isc_list))
  1322. clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
  1323. spin_unlock(&fi->lock);
  1324. return iter;
  1325. }
  1326. spin_unlock(&fi->lock);
  1327. return NULL;
  1328. }
  1329. static struct kvm_s390_interrupt_info *get_top_io_int(struct kvm *kvm,
  1330. u64 isc_mask, u32 schid)
  1331. {
  1332. struct kvm_s390_interrupt_info *inti = NULL;
  1333. int isc;
  1334. for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
  1335. if (isc_mask & isc_to_isc_bits(isc))
  1336. inti = get_io_int(kvm, isc, schid);
  1337. }
  1338. return inti;
  1339. }
  1340. static int get_top_gisa_isc(struct kvm *kvm, u64 isc_mask, u32 schid)
  1341. {
  1342. unsigned long active_mask;
  1343. int isc;
  1344. if (schid)
  1345. goto out;
  1346. if (!kvm->arch.gisa)
  1347. goto out;
  1348. active_mask = (isc_mask & kvm_s390_gisa_get_ipm(kvm->arch.gisa) << 24) << 32;
  1349. while (active_mask) {
  1350. isc = __fls(active_mask) ^ (BITS_PER_LONG - 1);
  1351. if (kvm_s390_gisa_tac_ipm_gisc(kvm->arch.gisa, isc))
  1352. return isc;
  1353. clear_bit_inv(isc, &active_mask);
  1354. }
  1355. out:
  1356. return -EINVAL;
  1357. }
  1358. /*
  1359. * Dequeue and return an I/O interrupt matching any of the interruption
  1360. * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
  1361. * Take into account the interrupts pending in the interrupt list and in GISA.
  1362. *
  1363. * Note that for a guest that does not enable I/O interrupts
  1364. * but relies on TPI, a flood of classic interrupts may starve
  1365. * out adapter interrupts on the same isc. Linux does not do
  1366. * that, and it is possible to work around the issue by configuring
  1367. * different iscs for classic and adapter interrupts in the guest,
  1368. * but we may want to revisit this in the future.
  1369. */
  1370. struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
  1371. u64 isc_mask, u32 schid)
  1372. {
  1373. struct kvm_s390_interrupt_info *inti, *tmp_inti;
  1374. int isc;
  1375. inti = get_top_io_int(kvm, isc_mask, schid);
  1376. isc = get_top_gisa_isc(kvm, isc_mask, schid);
  1377. if (isc < 0)
  1378. /* no AI in GISA */
  1379. goto out;
  1380. if (!inti)
  1381. /* AI in GISA but no classical IO int */
  1382. goto gisa_out;
  1383. /* both types of interrupts present */
  1384. if (int_word_to_isc(inti->io.io_int_word) <= isc) {
  1385. /* classical IO int with higher priority */
  1386. kvm_s390_gisa_set_ipm_gisc(kvm->arch.gisa, isc);
  1387. goto out;
  1388. }
  1389. gisa_out:
  1390. tmp_inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1391. if (tmp_inti) {
  1392. tmp_inti->type = KVM_S390_INT_IO(1, 0, 0, 0);
  1393. tmp_inti->io.io_int_word = isc_to_int_word(isc);
  1394. if (inti)
  1395. kvm_s390_reinject_io_int(kvm, inti);
  1396. inti = tmp_inti;
  1397. } else
  1398. kvm_s390_gisa_set_ipm_gisc(kvm->arch.gisa, isc);
  1399. out:
  1400. return inti;
  1401. }
  1402. #define SCCB_MASK 0xFFFFFFF8
  1403. #define SCCB_EVENT_PENDING 0x3
  1404. static int __inject_service(struct kvm *kvm,
  1405. struct kvm_s390_interrupt_info *inti)
  1406. {
  1407. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1408. kvm->stat.inject_service_signal++;
  1409. spin_lock(&fi->lock);
  1410. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
  1411. /*
  1412. * Early versions of the QEMU s390 bios will inject several
  1413. * service interrupts after another without handling a
  1414. * condition code indicating busy.
  1415. * We will silently ignore those superfluous sccb values.
  1416. * A future version of QEMU will take care of serialization
  1417. * of servc requests
  1418. */
  1419. if (fi->srv_signal.ext_params & SCCB_MASK)
  1420. goto out;
  1421. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
  1422. set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  1423. out:
  1424. spin_unlock(&fi->lock);
  1425. kfree(inti);
  1426. return 0;
  1427. }
  1428. static int __inject_virtio(struct kvm *kvm,
  1429. struct kvm_s390_interrupt_info *inti)
  1430. {
  1431. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1432. kvm->stat.inject_virtio++;
  1433. spin_lock(&fi->lock);
  1434. if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
  1435. spin_unlock(&fi->lock);
  1436. return -EBUSY;
  1437. }
  1438. fi->counters[FIRQ_CNTR_VIRTIO] += 1;
  1439. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
  1440. set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  1441. spin_unlock(&fi->lock);
  1442. return 0;
  1443. }
  1444. static int __inject_pfault_done(struct kvm *kvm,
  1445. struct kvm_s390_interrupt_info *inti)
  1446. {
  1447. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1448. kvm->stat.inject_pfault_done++;
  1449. spin_lock(&fi->lock);
  1450. if (fi->counters[FIRQ_CNTR_PFAULT] >=
  1451. (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
  1452. spin_unlock(&fi->lock);
  1453. return -EBUSY;
  1454. }
  1455. fi->counters[FIRQ_CNTR_PFAULT] += 1;
  1456. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
  1457. set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  1458. spin_unlock(&fi->lock);
  1459. return 0;
  1460. }
  1461. #define CR_PENDING_SUBCLASS 28
  1462. static int __inject_float_mchk(struct kvm *kvm,
  1463. struct kvm_s390_interrupt_info *inti)
  1464. {
  1465. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1466. kvm->stat.inject_float_mchk++;
  1467. spin_lock(&fi->lock);
  1468. fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
  1469. fi->mchk.mcic |= inti->mchk.mcic;
  1470. set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
  1471. spin_unlock(&fi->lock);
  1472. kfree(inti);
  1473. return 0;
  1474. }
  1475. static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1476. {
  1477. struct kvm_s390_float_interrupt *fi;
  1478. struct list_head *list;
  1479. int isc;
  1480. kvm->stat.inject_io++;
  1481. isc = int_word_to_isc(inti->io.io_int_word);
  1482. if (kvm->arch.gisa && inti->type & KVM_S390_INT_IO_AI_MASK) {
  1483. VM_EVENT(kvm, 4, "%s isc %1u", "inject: I/O (AI/gisa)", isc);
  1484. kvm_s390_gisa_set_ipm_gisc(kvm->arch.gisa, isc);
  1485. kfree(inti);
  1486. return 0;
  1487. }
  1488. fi = &kvm->arch.float_int;
  1489. spin_lock(&fi->lock);
  1490. if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
  1491. spin_unlock(&fi->lock);
  1492. return -EBUSY;
  1493. }
  1494. fi->counters[FIRQ_CNTR_IO] += 1;
  1495. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  1496. VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
  1497. else
  1498. VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
  1499. inti->io.subchannel_id >> 8,
  1500. inti->io.subchannel_id >> 1 & 0x3,
  1501. inti->io.subchannel_nr);
  1502. list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1503. list_add_tail(&inti->list, list);
  1504. set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
  1505. spin_unlock(&fi->lock);
  1506. return 0;
  1507. }
  1508. /*
  1509. * Find a destination VCPU for a floating irq and kick it.
  1510. */
  1511. static void __floating_irq_kick(struct kvm *kvm, u64 type)
  1512. {
  1513. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1514. struct kvm_vcpu *dst_vcpu;
  1515. int sigcpu, online_vcpus, nr_tries = 0;
  1516. online_vcpus = atomic_read(&kvm->online_vcpus);
  1517. if (!online_vcpus)
  1518. return;
  1519. /* find idle VCPUs first, then round robin */
  1520. sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
  1521. if (sigcpu == online_vcpus) {
  1522. do {
  1523. sigcpu = fi->next_rr_cpu;
  1524. fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
  1525. /* avoid endless loops if all vcpus are stopped */
  1526. if (nr_tries++ >= online_vcpus)
  1527. return;
  1528. } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
  1529. }
  1530. dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
  1531. /* make the VCPU drop out of the SIE, or wake it up if sleeping */
  1532. switch (type) {
  1533. case KVM_S390_MCHK:
  1534. kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_STOP_INT);
  1535. break;
  1536. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1537. if (!(type & KVM_S390_INT_IO_AI_MASK && kvm->arch.gisa))
  1538. kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_IO_INT);
  1539. break;
  1540. default:
  1541. kvm_s390_set_cpuflags(dst_vcpu, CPUSTAT_EXT_INT);
  1542. break;
  1543. }
  1544. kvm_s390_vcpu_wakeup(dst_vcpu);
  1545. }
  1546. static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1547. {
  1548. u64 type = READ_ONCE(inti->type);
  1549. int rc;
  1550. switch (type) {
  1551. case KVM_S390_MCHK:
  1552. rc = __inject_float_mchk(kvm, inti);
  1553. break;
  1554. case KVM_S390_INT_VIRTIO:
  1555. rc = __inject_virtio(kvm, inti);
  1556. break;
  1557. case KVM_S390_INT_SERVICE:
  1558. rc = __inject_service(kvm, inti);
  1559. break;
  1560. case KVM_S390_INT_PFAULT_DONE:
  1561. rc = __inject_pfault_done(kvm, inti);
  1562. break;
  1563. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1564. rc = __inject_io(kvm, inti);
  1565. break;
  1566. default:
  1567. rc = -EINVAL;
  1568. }
  1569. if (rc)
  1570. return rc;
  1571. __floating_irq_kick(kvm, type);
  1572. return 0;
  1573. }
  1574. int kvm_s390_inject_vm(struct kvm *kvm,
  1575. struct kvm_s390_interrupt *s390int)
  1576. {
  1577. struct kvm_s390_interrupt_info *inti;
  1578. int rc;
  1579. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1580. if (!inti)
  1581. return -ENOMEM;
  1582. inti->type = s390int->type;
  1583. switch (inti->type) {
  1584. case KVM_S390_INT_VIRTIO:
  1585. VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
  1586. s390int->parm, s390int->parm64);
  1587. inti->ext.ext_params = s390int->parm;
  1588. inti->ext.ext_params2 = s390int->parm64;
  1589. break;
  1590. case KVM_S390_INT_SERVICE:
  1591. VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
  1592. inti->ext.ext_params = s390int->parm;
  1593. break;
  1594. case KVM_S390_INT_PFAULT_DONE:
  1595. inti->ext.ext_params2 = s390int->parm64;
  1596. break;
  1597. case KVM_S390_MCHK:
  1598. VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
  1599. s390int->parm64);
  1600. inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
  1601. inti->mchk.mcic = s390int->parm64;
  1602. break;
  1603. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1604. inti->io.subchannel_id = s390int->parm >> 16;
  1605. inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
  1606. inti->io.io_int_parm = s390int->parm64 >> 32;
  1607. inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
  1608. break;
  1609. default:
  1610. kfree(inti);
  1611. return -EINVAL;
  1612. }
  1613. trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
  1614. 2);
  1615. rc = __inject_vm(kvm, inti);
  1616. if (rc)
  1617. kfree(inti);
  1618. return rc;
  1619. }
  1620. int kvm_s390_reinject_io_int(struct kvm *kvm,
  1621. struct kvm_s390_interrupt_info *inti)
  1622. {
  1623. return __inject_vm(kvm, inti);
  1624. }
  1625. int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
  1626. struct kvm_s390_irq *irq)
  1627. {
  1628. irq->type = s390int->type;
  1629. switch (irq->type) {
  1630. case KVM_S390_PROGRAM_INT:
  1631. if (s390int->parm & 0xffff0000)
  1632. return -EINVAL;
  1633. irq->u.pgm.code = s390int->parm;
  1634. break;
  1635. case KVM_S390_SIGP_SET_PREFIX:
  1636. irq->u.prefix.address = s390int->parm;
  1637. break;
  1638. case KVM_S390_SIGP_STOP:
  1639. irq->u.stop.flags = s390int->parm;
  1640. break;
  1641. case KVM_S390_INT_EXTERNAL_CALL:
  1642. if (s390int->parm & 0xffff0000)
  1643. return -EINVAL;
  1644. irq->u.extcall.code = s390int->parm;
  1645. break;
  1646. case KVM_S390_INT_EMERGENCY:
  1647. if (s390int->parm & 0xffff0000)
  1648. return -EINVAL;
  1649. irq->u.emerg.code = s390int->parm;
  1650. break;
  1651. case KVM_S390_MCHK:
  1652. irq->u.mchk.mcic = s390int->parm64;
  1653. break;
  1654. }
  1655. return 0;
  1656. }
  1657. int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
  1658. {
  1659. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1660. return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1661. }
  1662. void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
  1663. {
  1664. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1665. spin_lock(&li->lock);
  1666. li->irq.stop.flags = 0;
  1667. clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1668. spin_unlock(&li->lock);
  1669. }
  1670. static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1671. {
  1672. int rc;
  1673. switch (irq->type) {
  1674. case KVM_S390_PROGRAM_INT:
  1675. rc = __inject_prog(vcpu, irq);
  1676. break;
  1677. case KVM_S390_SIGP_SET_PREFIX:
  1678. rc = __inject_set_prefix(vcpu, irq);
  1679. break;
  1680. case KVM_S390_SIGP_STOP:
  1681. rc = __inject_sigp_stop(vcpu, irq);
  1682. break;
  1683. case KVM_S390_RESTART:
  1684. rc = __inject_sigp_restart(vcpu, irq);
  1685. break;
  1686. case KVM_S390_INT_CLOCK_COMP:
  1687. rc = __inject_ckc(vcpu);
  1688. break;
  1689. case KVM_S390_INT_CPU_TIMER:
  1690. rc = __inject_cpu_timer(vcpu);
  1691. break;
  1692. case KVM_S390_INT_EXTERNAL_CALL:
  1693. rc = __inject_extcall(vcpu, irq);
  1694. break;
  1695. case KVM_S390_INT_EMERGENCY:
  1696. rc = __inject_sigp_emergency(vcpu, irq);
  1697. break;
  1698. case KVM_S390_MCHK:
  1699. rc = __inject_mchk(vcpu, irq);
  1700. break;
  1701. case KVM_S390_INT_PFAULT_INIT:
  1702. rc = __inject_pfault_init(vcpu, irq);
  1703. break;
  1704. case KVM_S390_INT_VIRTIO:
  1705. case KVM_S390_INT_SERVICE:
  1706. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1707. default:
  1708. rc = -EINVAL;
  1709. }
  1710. return rc;
  1711. }
  1712. int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1713. {
  1714. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1715. int rc;
  1716. spin_lock(&li->lock);
  1717. rc = do_inject_vcpu(vcpu, irq);
  1718. spin_unlock(&li->lock);
  1719. if (!rc)
  1720. kvm_s390_vcpu_wakeup(vcpu);
  1721. return rc;
  1722. }
  1723. static inline void clear_irq_list(struct list_head *_list)
  1724. {
  1725. struct kvm_s390_interrupt_info *inti, *n;
  1726. list_for_each_entry_safe(inti, n, _list, list) {
  1727. list_del(&inti->list);
  1728. kfree(inti);
  1729. }
  1730. }
  1731. static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
  1732. struct kvm_s390_irq *irq)
  1733. {
  1734. irq->type = inti->type;
  1735. switch (inti->type) {
  1736. case KVM_S390_INT_PFAULT_INIT:
  1737. case KVM_S390_INT_PFAULT_DONE:
  1738. case KVM_S390_INT_VIRTIO:
  1739. irq->u.ext = inti->ext;
  1740. break;
  1741. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1742. irq->u.io = inti->io;
  1743. break;
  1744. }
  1745. }
  1746. void kvm_s390_clear_float_irqs(struct kvm *kvm)
  1747. {
  1748. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1749. int i;
  1750. spin_lock(&fi->lock);
  1751. fi->pending_irqs = 0;
  1752. memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
  1753. memset(&fi->mchk, 0, sizeof(fi->mchk));
  1754. for (i = 0; i < FIRQ_LIST_COUNT; i++)
  1755. clear_irq_list(&fi->lists[i]);
  1756. for (i = 0; i < FIRQ_MAX_COUNT; i++)
  1757. fi->counters[i] = 0;
  1758. spin_unlock(&fi->lock);
  1759. kvm_s390_gisa_clear(kvm);
  1760. };
  1761. static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
  1762. {
  1763. struct kvm_s390_interrupt_info *inti;
  1764. struct kvm_s390_float_interrupt *fi;
  1765. struct kvm_s390_irq *buf;
  1766. struct kvm_s390_irq *irq;
  1767. int max_irqs;
  1768. int ret = 0;
  1769. int n = 0;
  1770. int i;
  1771. if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
  1772. return -EINVAL;
  1773. /*
  1774. * We are already using -ENOMEM to signal
  1775. * userspace it may retry with a bigger buffer,
  1776. * so we need to use something else for this case
  1777. */
  1778. buf = vzalloc(len);
  1779. if (!buf)
  1780. return -ENOBUFS;
  1781. max_irqs = len / sizeof(struct kvm_s390_irq);
  1782. if (kvm->arch.gisa &&
  1783. kvm_s390_gisa_get_ipm(kvm->arch.gisa)) {
  1784. for (i = 0; i <= MAX_ISC; i++) {
  1785. if (n == max_irqs) {
  1786. /* signal userspace to try again */
  1787. ret = -ENOMEM;
  1788. goto out_nolock;
  1789. }
  1790. if (kvm_s390_gisa_tac_ipm_gisc(kvm->arch.gisa, i)) {
  1791. irq = (struct kvm_s390_irq *) &buf[n];
  1792. irq->type = KVM_S390_INT_IO(1, 0, 0, 0);
  1793. irq->u.io.io_int_word = isc_to_int_word(i);
  1794. n++;
  1795. }
  1796. }
  1797. }
  1798. fi = &kvm->arch.float_int;
  1799. spin_lock(&fi->lock);
  1800. for (i = 0; i < FIRQ_LIST_COUNT; i++) {
  1801. list_for_each_entry(inti, &fi->lists[i], list) {
  1802. if (n == max_irqs) {
  1803. /* signal userspace to try again */
  1804. ret = -ENOMEM;
  1805. goto out;
  1806. }
  1807. inti_to_irq(inti, &buf[n]);
  1808. n++;
  1809. }
  1810. }
  1811. if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
  1812. if (n == max_irqs) {
  1813. /* signal userspace to try again */
  1814. ret = -ENOMEM;
  1815. goto out;
  1816. }
  1817. irq = (struct kvm_s390_irq *) &buf[n];
  1818. irq->type = KVM_S390_INT_SERVICE;
  1819. irq->u.ext = fi->srv_signal;
  1820. n++;
  1821. }
  1822. if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  1823. if (n == max_irqs) {
  1824. /* signal userspace to try again */
  1825. ret = -ENOMEM;
  1826. goto out;
  1827. }
  1828. irq = (struct kvm_s390_irq *) &buf[n];
  1829. irq->type = KVM_S390_MCHK;
  1830. irq->u.mchk = fi->mchk;
  1831. n++;
  1832. }
  1833. out:
  1834. spin_unlock(&fi->lock);
  1835. out_nolock:
  1836. if (!ret && n > 0) {
  1837. if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
  1838. ret = -EFAULT;
  1839. }
  1840. vfree(buf);
  1841. return ret < 0 ? ret : n;
  1842. }
  1843. static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
  1844. {
  1845. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1846. struct kvm_s390_ais_all ais;
  1847. if (attr->attr < sizeof(ais))
  1848. return -EINVAL;
  1849. if (!test_kvm_facility(kvm, 72))
  1850. return -ENOTSUPP;
  1851. mutex_lock(&fi->ais_lock);
  1852. ais.simm = fi->simm;
  1853. ais.nimm = fi->nimm;
  1854. mutex_unlock(&fi->ais_lock);
  1855. if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
  1856. return -EFAULT;
  1857. return 0;
  1858. }
  1859. static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1860. {
  1861. int r;
  1862. switch (attr->group) {
  1863. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1864. r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
  1865. attr->attr);
  1866. break;
  1867. case KVM_DEV_FLIC_AISM_ALL:
  1868. r = flic_ais_mode_get_all(dev->kvm, attr);
  1869. break;
  1870. default:
  1871. r = -EINVAL;
  1872. }
  1873. return r;
  1874. }
  1875. static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
  1876. u64 addr)
  1877. {
  1878. struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
  1879. void *target = NULL;
  1880. void __user *source;
  1881. u64 size;
  1882. if (get_user(inti->type, (u64 __user *)addr))
  1883. return -EFAULT;
  1884. switch (inti->type) {
  1885. case KVM_S390_INT_PFAULT_INIT:
  1886. case KVM_S390_INT_PFAULT_DONE:
  1887. case KVM_S390_INT_VIRTIO:
  1888. case KVM_S390_INT_SERVICE:
  1889. target = (void *) &inti->ext;
  1890. source = &uptr->u.ext;
  1891. size = sizeof(inti->ext);
  1892. break;
  1893. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1894. target = (void *) &inti->io;
  1895. source = &uptr->u.io;
  1896. size = sizeof(inti->io);
  1897. break;
  1898. case KVM_S390_MCHK:
  1899. target = (void *) &inti->mchk;
  1900. source = &uptr->u.mchk;
  1901. size = sizeof(inti->mchk);
  1902. break;
  1903. default:
  1904. return -EINVAL;
  1905. }
  1906. if (copy_from_user(target, source, size))
  1907. return -EFAULT;
  1908. return 0;
  1909. }
  1910. static int enqueue_floating_irq(struct kvm_device *dev,
  1911. struct kvm_device_attr *attr)
  1912. {
  1913. struct kvm_s390_interrupt_info *inti = NULL;
  1914. int r = 0;
  1915. int len = attr->attr;
  1916. if (len % sizeof(struct kvm_s390_irq) != 0)
  1917. return -EINVAL;
  1918. else if (len > KVM_S390_FLIC_MAX_BUFFER)
  1919. return -EINVAL;
  1920. while (len >= sizeof(struct kvm_s390_irq)) {
  1921. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1922. if (!inti)
  1923. return -ENOMEM;
  1924. r = copy_irq_from_user(inti, attr->addr);
  1925. if (r) {
  1926. kfree(inti);
  1927. return r;
  1928. }
  1929. r = __inject_vm(dev->kvm, inti);
  1930. if (r) {
  1931. kfree(inti);
  1932. return r;
  1933. }
  1934. len -= sizeof(struct kvm_s390_irq);
  1935. attr->addr += sizeof(struct kvm_s390_irq);
  1936. }
  1937. return r;
  1938. }
  1939. static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
  1940. {
  1941. if (id >= MAX_S390_IO_ADAPTERS)
  1942. return NULL;
  1943. return kvm->arch.adapters[id];
  1944. }
  1945. static int register_io_adapter(struct kvm_device *dev,
  1946. struct kvm_device_attr *attr)
  1947. {
  1948. struct s390_io_adapter *adapter;
  1949. struct kvm_s390_io_adapter adapter_info;
  1950. if (copy_from_user(&adapter_info,
  1951. (void __user *)attr->addr, sizeof(adapter_info)))
  1952. return -EFAULT;
  1953. if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
  1954. (dev->kvm->arch.adapters[adapter_info.id] != NULL))
  1955. return -EINVAL;
  1956. adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
  1957. if (!adapter)
  1958. return -ENOMEM;
  1959. INIT_LIST_HEAD(&adapter->maps);
  1960. init_rwsem(&adapter->maps_lock);
  1961. atomic_set(&adapter->nr_maps, 0);
  1962. adapter->id = adapter_info.id;
  1963. adapter->isc = adapter_info.isc;
  1964. adapter->maskable = adapter_info.maskable;
  1965. adapter->masked = false;
  1966. adapter->swap = adapter_info.swap;
  1967. adapter->suppressible = (adapter_info.flags) &
  1968. KVM_S390_ADAPTER_SUPPRESSIBLE;
  1969. dev->kvm->arch.adapters[adapter->id] = adapter;
  1970. return 0;
  1971. }
  1972. int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
  1973. {
  1974. int ret;
  1975. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1976. if (!adapter || !adapter->maskable)
  1977. return -EINVAL;
  1978. ret = adapter->masked;
  1979. adapter->masked = masked;
  1980. return ret;
  1981. }
  1982. static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
  1983. {
  1984. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1985. struct s390_map_info *map;
  1986. int ret;
  1987. if (!adapter || !addr)
  1988. return -EINVAL;
  1989. map = kzalloc(sizeof(*map), GFP_KERNEL);
  1990. if (!map) {
  1991. ret = -ENOMEM;
  1992. goto out;
  1993. }
  1994. INIT_LIST_HEAD(&map->list);
  1995. map->guest_addr = addr;
  1996. map->addr = gmap_translate(kvm->arch.gmap, addr);
  1997. if (map->addr == -EFAULT) {
  1998. ret = -EFAULT;
  1999. goto out;
  2000. }
  2001. ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
  2002. if (ret < 0)
  2003. goto out;
  2004. BUG_ON(ret != 1);
  2005. down_write(&adapter->maps_lock);
  2006. if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
  2007. list_add_tail(&map->list, &adapter->maps);
  2008. ret = 0;
  2009. } else {
  2010. put_page(map->page);
  2011. ret = -EINVAL;
  2012. }
  2013. up_write(&adapter->maps_lock);
  2014. out:
  2015. if (ret)
  2016. kfree(map);
  2017. return ret;
  2018. }
  2019. static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
  2020. {
  2021. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  2022. struct s390_map_info *map, *tmp;
  2023. int found = 0;
  2024. if (!adapter || !addr)
  2025. return -EINVAL;
  2026. down_write(&adapter->maps_lock);
  2027. list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
  2028. if (map->guest_addr == addr) {
  2029. found = 1;
  2030. atomic_dec(&adapter->nr_maps);
  2031. list_del(&map->list);
  2032. put_page(map->page);
  2033. kfree(map);
  2034. break;
  2035. }
  2036. }
  2037. up_write(&adapter->maps_lock);
  2038. return found ? 0 : -EINVAL;
  2039. }
  2040. void kvm_s390_destroy_adapters(struct kvm *kvm)
  2041. {
  2042. int i;
  2043. struct s390_map_info *map, *tmp;
  2044. for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
  2045. if (!kvm->arch.adapters[i])
  2046. continue;
  2047. list_for_each_entry_safe(map, tmp,
  2048. &kvm->arch.adapters[i]->maps, list) {
  2049. list_del(&map->list);
  2050. put_page(map->page);
  2051. kfree(map);
  2052. }
  2053. kfree(kvm->arch.adapters[i]);
  2054. }
  2055. }
  2056. static int modify_io_adapter(struct kvm_device *dev,
  2057. struct kvm_device_attr *attr)
  2058. {
  2059. struct kvm_s390_io_adapter_req req;
  2060. struct s390_io_adapter *adapter;
  2061. int ret;
  2062. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  2063. return -EFAULT;
  2064. adapter = get_io_adapter(dev->kvm, req.id);
  2065. if (!adapter)
  2066. return -EINVAL;
  2067. switch (req.type) {
  2068. case KVM_S390_IO_ADAPTER_MASK:
  2069. ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
  2070. if (ret > 0)
  2071. ret = 0;
  2072. break;
  2073. case KVM_S390_IO_ADAPTER_MAP:
  2074. ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
  2075. break;
  2076. case KVM_S390_IO_ADAPTER_UNMAP:
  2077. ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
  2078. break;
  2079. default:
  2080. ret = -EINVAL;
  2081. }
  2082. return ret;
  2083. }
  2084. static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
  2085. {
  2086. const u64 isc_mask = 0xffUL << 24; /* all iscs set */
  2087. u32 schid;
  2088. if (attr->flags)
  2089. return -EINVAL;
  2090. if (attr->attr != sizeof(schid))
  2091. return -EINVAL;
  2092. if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
  2093. return -EFAULT;
  2094. if (!schid)
  2095. return -EINVAL;
  2096. kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
  2097. /*
  2098. * If userspace is conforming to the architecture, we can have at most
  2099. * one pending I/O interrupt per subchannel, so this is effectively a
  2100. * clear all.
  2101. */
  2102. return 0;
  2103. }
  2104. static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
  2105. {
  2106. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  2107. struct kvm_s390_ais_req req;
  2108. int ret = 0;
  2109. if (!test_kvm_facility(kvm, 72))
  2110. return -ENOTSUPP;
  2111. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  2112. return -EFAULT;
  2113. if (req.isc > MAX_ISC)
  2114. return -EINVAL;
  2115. trace_kvm_s390_modify_ais_mode(req.isc,
  2116. (fi->simm & AIS_MODE_MASK(req.isc)) ?
  2117. (fi->nimm & AIS_MODE_MASK(req.isc)) ?
  2118. 2 : KVM_S390_AIS_MODE_SINGLE :
  2119. KVM_S390_AIS_MODE_ALL, req.mode);
  2120. mutex_lock(&fi->ais_lock);
  2121. switch (req.mode) {
  2122. case KVM_S390_AIS_MODE_ALL:
  2123. fi->simm &= ~AIS_MODE_MASK(req.isc);
  2124. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  2125. break;
  2126. case KVM_S390_AIS_MODE_SINGLE:
  2127. fi->simm |= AIS_MODE_MASK(req.isc);
  2128. fi->nimm &= ~AIS_MODE_MASK(req.isc);
  2129. break;
  2130. default:
  2131. ret = -EINVAL;
  2132. }
  2133. mutex_unlock(&fi->ais_lock);
  2134. return ret;
  2135. }
  2136. static int kvm_s390_inject_airq(struct kvm *kvm,
  2137. struct s390_io_adapter *adapter)
  2138. {
  2139. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  2140. struct kvm_s390_interrupt s390int = {
  2141. .type = KVM_S390_INT_IO(1, 0, 0, 0),
  2142. .parm = 0,
  2143. .parm64 = isc_to_int_word(adapter->isc),
  2144. };
  2145. int ret = 0;
  2146. if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
  2147. return kvm_s390_inject_vm(kvm, &s390int);
  2148. mutex_lock(&fi->ais_lock);
  2149. if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
  2150. trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
  2151. goto out;
  2152. }
  2153. ret = kvm_s390_inject_vm(kvm, &s390int);
  2154. if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
  2155. fi->nimm |= AIS_MODE_MASK(adapter->isc);
  2156. trace_kvm_s390_modify_ais_mode(adapter->isc,
  2157. KVM_S390_AIS_MODE_SINGLE, 2);
  2158. }
  2159. out:
  2160. mutex_unlock(&fi->ais_lock);
  2161. return ret;
  2162. }
  2163. static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
  2164. {
  2165. unsigned int id = attr->attr;
  2166. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  2167. if (!adapter)
  2168. return -EINVAL;
  2169. return kvm_s390_inject_airq(kvm, adapter);
  2170. }
  2171. static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
  2172. {
  2173. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  2174. struct kvm_s390_ais_all ais;
  2175. if (!test_kvm_facility(kvm, 72))
  2176. return -ENOTSUPP;
  2177. if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
  2178. return -EFAULT;
  2179. mutex_lock(&fi->ais_lock);
  2180. fi->simm = ais.simm;
  2181. fi->nimm = ais.nimm;
  2182. mutex_unlock(&fi->ais_lock);
  2183. return 0;
  2184. }
  2185. static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  2186. {
  2187. int r = 0;
  2188. unsigned int i;
  2189. struct kvm_vcpu *vcpu;
  2190. switch (attr->group) {
  2191. case KVM_DEV_FLIC_ENQUEUE:
  2192. r = enqueue_floating_irq(dev, attr);
  2193. break;
  2194. case KVM_DEV_FLIC_CLEAR_IRQS:
  2195. kvm_s390_clear_float_irqs(dev->kvm);
  2196. break;
  2197. case KVM_DEV_FLIC_APF_ENABLE:
  2198. dev->kvm->arch.gmap->pfault_enabled = 1;
  2199. break;
  2200. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2201. dev->kvm->arch.gmap->pfault_enabled = 0;
  2202. /*
  2203. * Make sure no async faults are in transition when
  2204. * clearing the queues. So we don't need to worry
  2205. * about late coming workers.
  2206. */
  2207. synchronize_srcu(&dev->kvm->srcu);
  2208. kvm_for_each_vcpu(i, vcpu, dev->kvm)
  2209. kvm_clear_async_pf_completion_queue(vcpu);
  2210. break;
  2211. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2212. r = register_io_adapter(dev, attr);
  2213. break;
  2214. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2215. r = modify_io_adapter(dev, attr);
  2216. break;
  2217. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2218. r = clear_io_irq(dev->kvm, attr);
  2219. break;
  2220. case KVM_DEV_FLIC_AISM:
  2221. r = modify_ais_mode(dev->kvm, attr);
  2222. break;
  2223. case KVM_DEV_FLIC_AIRQ_INJECT:
  2224. r = flic_inject_airq(dev->kvm, attr);
  2225. break;
  2226. case KVM_DEV_FLIC_AISM_ALL:
  2227. r = flic_ais_mode_set_all(dev->kvm, attr);
  2228. break;
  2229. default:
  2230. r = -EINVAL;
  2231. }
  2232. return r;
  2233. }
  2234. static int flic_has_attr(struct kvm_device *dev,
  2235. struct kvm_device_attr *attr)
  2236. {
  2237. switch (attr->group) {
  2238. case KVM_DEV_FLIC_GET_ALL_IRQS:
  2239. case KVM_DEV_FLIC_ENQUEUE:
  2240. case KVM_DEV_FLIC_CLEAR_IRQS:
  2241. case KVM_DEV_FLIC_APF_ENABLE:
  2242. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  2243. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  2244. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  2245. case KVM_DEV_FLIC_CLEAR_IO_IRQ:
  2246. case KVM_DEV_FLIC_AISM:
  2247. case KVM_DEV_FLIC_AIRQ_INJECT:
  2248. case KVM_DEV_FLIC_AISM_ALL:
  2249. return 0;
  2250. }
  2251. return -ENXIO;
  2252. }
  2253. static int flic_create(struct kvm_device *dev, u32 type)
  2254. {
  2255. if (!dev)
  2256. return -EINVAL;
  2257. if (dev->kvm->arch.flic)
  2258. return -EINVAL;
  2259. dev->kvm->arch.flic = dev;
  2260. return 0;
  2261. }
  2262. static void flic_destroy(struct kvm_device *dev)
  2263. {
  2264. dev->kvm->arch.flic = NULL;
  2265. kfree(dev);
  2266. }
  2267. /* s390 floating irq controller (flic) */
  2268. struct kvm_device_ops kvm_flic_ops = {
  2269. .name = "kvm-flic",
  2270. .get_attr = flic_get_attr,
  2271. .set_attr = flic_set_attr,
  2272. .has_attr = flic_has_attr,
  2273. .create = flic_create,
  2274. .destroy = flic_destroy,
  2275. };
  2276. static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
  2277. {
  2278. unsigned long bit;
  2279. bit = bit_nr + (addr % PAGE_SIZE) * 8;
  2280. return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
  2281. }
  2282. static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
  2283. u64 addr)
  2284. {
  2285. struct s390_map_info *map;
  2286. if (!adapter)
  2287. return NULL;
  2288. list_for_each_entry(map, &adapter->maps, list) {
  2289. if (map->guest_addr == addr)
  2290. return map;
  2291. }
  2292. return NULL;
  2293. }
  2294. static int adapter_indicators_set(struct kvm *kvm,
  2295. struct s390_io_adapter *adapter,
  2296. struct kvm_s390_adapter_int *adapter_int)
  2297. {
  2298. unsigned long bit;
  2299. int summary_set, idx;
  2300. struct s390_map_info *info;
  2301. void *map;
  2302. info = get_map_info(adapter, adapter_int->ind_addr);
  2303. if (!info)
  2304. return -1;
  2305. map = page_address(info->page);
  2306. bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
  2307. set_bit(bit, map);
  2308. idx = srcu_read_lock(&kvm->srcu);
  2309. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2310. set_page_dirty_lock(info->page);
  2311. info = get_map_info(adapter, adapter_int->summary_addr);
  2312. if (!info) {
  2313. srcu_read_unlock(&kvm->srcu, idx);
  2314. return -1;
  2315. }
  2316. map = page_address(info->page);
  2317. bit = get_ind_bit(info->addr, adapter_int->summary_offset,
  2318. adapter->swap);
  2319. summary_set = test_and_set_bit(bit, map);
  2320. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  2321. set_page_dirty_lock(info->page);
  2322. srcu_read_unlock(&kvm->srcu, idx);
  2323. return summary_set ? 0 : 1;
  2324. }
  2325. /*
  2326. * < 0 - not injected due to error
  2327. * = 0 - coalesced, summary indicator already active
  2328. * > 0 - injected interrupt
  2329. */
  2330. static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
  2331. struct kvm *kvm, int irq_source_id, int level,
  2332. bool line_status)
  2333. {
  2334. int ret;
  2335. struct s390_io_adapter *adapter;
  2336. /* We're only interested in the 0->1 transition. */
  2337. if (!level)
  2338. return 0;
  2339. adapter = get_io_adapter(kvm, e->adapter.adapter_id);
  2340. if (!adapter)
  2341. return -1;
  2342. down_read(&adapter->maps_lock);
  2343. ret = adapter_indicators_set(kvm, adapter, &e->adapter);
  2344. up_read(&adapter->maps_lock);
  2345. if ((ret > 0) && !adapter->masked) {
  2346. ret = kvm_s390_inject_airq(kvm, adapter);
  2347. if (ret == 0)
  2348. ret = 1;
  2349. }
  2350. return ret;
  2351. }
  2352. /*
  2353. * Inject the machine check to the guest.
  2354. */
  2355. void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
  2356. struct mcck_volatile_info *mcck_info)
  2357. {
  2358. struct kvm_s390_interrupt_info inti;
  2359. struct kvm_s390_irq irq;
  2360. struct kvm_s390_mchk_info *mchk;
  2361. union mci mci;
  2362. __u64 cr14 = 0; /* upper bits are not used */
  2363. int rc;
  2364. mci.val = mcck_info->mcic;
  2365. if (mci.sr)
  2366. cr14 |= CR14_RECOVERY_SUBMASK;
  2367. if (mci.dg)
  2368. cr14 |= CR14_DEGRADATION_SUBMASK;
  2369. if (mci.w)
  2370. cr14 |= CR14_WARNING_SUBMASK;
  2371. mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
  2372. mchk->cr14 = cr14;
  2373. mchk->mcic = mcck_info->mcic;
  2374. mchk->ext_damage_code = mcck_info->ext_damage_code;
  2375. mchk->failing_storage_address = mcck_info->failing_storage_address;
  2376. if (mci.ck) {
  2377. /* Inject the floating machine check */
  2378. inti.type = KVM_S390_MCHK;
  2379. rc = __inject_vm(vcpu->kvm, &inti);
  2380. } else {
  2381. /* Inject the machine check to specified vcpu */
  2382. irq.type = KVM_S390_MCHK;
  2383. rc = kvm_s390_inject_vcpu(vcpu, &irq);
  2384. }
  2385. WARN_ON_ONCE(rc);
  2386. }
  2387. int kvm_set_routing_entry(struct kvm *kvm,
  2388. struct kvm_kernel_irq_routing_entry *e,
  2389. const struct kvm_irq_routing_entry *ue)
  2390. {
  2391. int ret;
  2392. switch (ue->type) {
  2393. case KVM_IRQ_ROUTING_S390_ADAPTER:
  2394. e->set = set_adapter_int;
  2395. e->adapter.summary_addr = ue->u.adapter.summary_addr;
  2396. e->adapter.ind_addr = ue->u.adapter.ind_addr;
  2397. e->adapter.summary_offset = ue->u.adapter.summary_offset;
  2398. e->adapter.ind_offset = ue->u.adapter.ind_offset;
  2399. e->adapter.adapter_id = ue->u.adapter.adapter_id;
  2400. ret = 0;
  2401. break;
  2402. default:
  2403. ret = -EINVAL;
  2404. }
  2405. return ret;
  2406. }
  2407. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
  2408. int irq_source_id, int level, bool line_status)
  2409. {
  2410. return -EINVAL;
  2411. }
  2412. int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
  2413. {
  2414. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2415. struct kvm_s390_irq *buf;
  2416. int r = 0;
  2417. int n;
  2418. buf = vmalloc(len);
  2419. if (!buf)
  2420. return -ENOMEM;
  2421. if (copy_from_user((void *) buf, irqstate, len)) {
  2422. r = -EFAULT;
  2423. goto out_free;
  2424. }
  2425. /*
  2426. * Don't allow setting the interrupt state
  2427. * when there are already interrupts pending
  2428. */
  2429. spin_lock(&li->lock);
  2430. if (li->pending_irqs) {
  2431. r = -EBUSY;
  2432. goto out_unlock;
  2433. }
  2434. for (n = 0; n < len / sizeof(*buf); n++) {
  2435. r = do_inject_vcpu(vcpu, &buf[n]);
  2436. if (r)
  2437. break;
  2438. }
  2439. out_unlock:
  2440. spin_unlock(&li->lock);
  2441. out_free:
  2442. vfree(buf);
  2443. return r;
  2444. }
  2445. static void store_local_irq(struct kvm_s390_local_interrupt *li,
  2446. struct kvm_s390_irq *irq,
  2447. unsigned long irq_type)
  2448. {
  2449. switch (irq_type) {
  2450. case IRQ_PEND_MCHK_EX:
  2451. case IRQ_PEND_MCHK_REP:
  2452. irq->type = KVM_S390_MCHK;
  2453. irq->u.mchk = li->irq.mchk;
  2454. break;
  2455. case IRQ_PEND_PROG:
  2456. irq->type = KVM_S390_PROGRAM_INT;
  2457. irq->u.pgm = li->irq.pgm;
  2458. break;
  2459. case IRQ_PEND_PFAULT_INIT:
  2460. irq->type = KVM_S390_INT_PFAULT_INIT;
  2461. irq->u.ext = li->irq.ext;
  2462. break;
  2463. case IRQ_PEND_EXT_EXTERNAL:
  2464. irq->type = KVM_S390_INT_EXTERNAL_CALL;
  2465. irq->u.extcall = li->irq.extcall;
  2466. break;
  2467. case IRQ_PEND_EXT_CLOCK_COMP:
  2468. irq->type = KVM_S390_INT_CLOCK_COMP;
  2469. break;
  2470. case IRQ_PEND_EXT_CPU_TIMER:
  2471. irq->type = KVM_S390_INT_CPU_TIMER;
  2472. break;
  2473. case IRQ_PEND_SIGP_STOP:
  2474. irq->type = KVM_S390_SIGP_STOP;
  2475. irq->u.stop = li->irq.stop;
  2476. break;
  2477. case IRQ_PEND_RESTART:
  2478. irq->type = KVM_S390_RESTART;
  2479. break;
  2480. case IRQ_PEND_SET_PREFIX:
  2481. irq->type = KVM_S390_SIGP_SET_PREFIX;
  2482. irq->u.prefix = li->irq.prefix;
  2483. break;
  2484. }
  2485. }
  2486. int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
  2487. {
  2488. int scn;
  2489. unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
  2490. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2491. unsigned long pending_irqs;
  2492. struct kvm_s390_irq irq;
  2493. unsigned long irq_type;
  2494. int cpuaddr;
  2495. int n = 0;
  2496. spin_lock(&li->lock);
  2497. pending_irqs = li->pending_irqs;
  2498. memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
  2499. sizeof(sigp_emerg_pending));
  2500. spin_unlock(&li->lock);
  2501. for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
  2502. memset(&irq, 0, sizeof(irq));
  2503. if (irq_type == IRQ_PEND_EXT_EMERGENCY)
  2504. continue;
  2505. if (n + sizeof(irq) > len)
  2506. return -ENOBUFS;
  2507. store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
  2508. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2509. return -EFAULT;
  2510. n += sizeof(irq);
  2511. }
  2512. if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
  2513. for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
  2514. memset(&irq, 0, sizeof(irq));
  2515. if (n + sizeof(irq) > len)
  2516. return -ENOBUFS;
  2517. irq.type = KVM_S390_INT_EMERGENCY;
  2518. irq.u.emerg.code = cpuaddr;
  2519. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2520. return -EFAULT;
  2521. n += sizeof(irq);
  2522. }
  2523. }
  2524. if (sca_ext_call_pending(vcpu, &scn)) {
  2525. if (n + sizeof(irq) > len)
  2526. return -ENOBUFS;
  2527. memset(&irq, 0, sizeof(irq));
  2528. irq.type = KVM_S390_INT_EXTERNAL_CALL;
  2529. irq.u.extcall.code = scn;
  2530. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2531. return -EFAULT;
  2532. n += sizeof(irq);
  2533. }
  2534. return n;
  2535. }
  2536. void kvm_s390_gisa_clear(struct kvm *kvm)
  2537. {
  2538. if (kvm->arch.gisa) {
  2539. memset(kvm->arch.gisa, 0, sizeof(struct kvm_s390_gisa));
  2540. kvm->arch.gisa->next_alert = (u32)(u64)kvm->arch.gisa;
  2541. VM_EVENT(kvm, 3, "gisa 0x%pK cleared", kvm->arch.gisa);
  2542. }
  2543. }
  2544. void kvm_s390_gisa_init(struct kvm *kvm)
  2545. {
  2546. if (css_general_characteristics.aiv) {
  2547. kvm->arch.gisa = &kvm->arch.sie_page2->gisa;
  2548. VM_EVENT(kvm, 3, "gisa 0x%pK initialized", kvm->arch.gisa);
  2549. kvm_s390_gisa_clear(kvm);
  2550. }
  2551. }
  2552. void kvm_s390_gisa_destroy(struct kvm *kvm)
  2553. {
  2554. if (!kvm->arch.gisa)
  2555. return;
  2556. kvm->arch.gisa = NULL;
  2557. }