memory-failure.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11. * failure.
  12. *
  13. * In addition there is a "soft offline" entry point that allows stop using
  14. * not-yet-corrupted-by-suspicious pages without killing anything.
  15. *
  16. * Handles page cache pages in various states. The tricky part
  17. * here is that we can access any page asynchronously in respect to
  18. * other VM users, because memory failures could happen anytime and
  19. * anywhere. This could violate some of their assumptions. This is why
  20. * this code has to be extremely careful. Generally it tries to use
  21. * normal locking rules, as in get the standard locks, even if that means
  22. * the error handling takes potentially a long time.
  23. *
  24. * It can be very tempting to add handling for obscure cases here.
  25. * In general any code for handling new cases should only be added iff:
  26. * - You know how to test it.
  27. * - You have a test that can be added to mce-test
  28. * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29. * - The case actually shows up as a frequent (top 10) page state in
  30. * tools/vm/page-types when running a real workload.
  31. *
  32. * There are several operations here with exponential complexity because
  33. * of unsuitable VM data structures. For example the operation to map back
  34. * from RMAP chains to processes has to walk the complete process list and
  35. * has non linear complexity with the number. But since memory corruptions
  36. * are rare we hope to get away with this. This avoids impacting the core
  37. * VM.
  38. */
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/page-flags.h>
  42. #include <linux/kernel-page-flags.h>
  43. #include <linux/sched/signal.h>
  44. #include <linux/sched/task.h>
  45. #include <linux/ksm.h>
  46. #include <linux/rmap.h>
  47. #include <linux/export.h>
  48. #include <linux/pagemap.h>
  49. #include <linux/swap.h>
  50. #include <linux/backing-dev.h>
  51. #include <linux/migrate.h>
  52. #include <linux/suspend.h>
  53. #include <linux/slab.h>
  54. #include <linux/swapops.h>
  55. #include <linux/hugetlb.h>
  56. #include <linux/memory_hotplug.h>
  57. #include <linux/mm_inline.h>
  58. #include <linux/kfifo.h>
  59. #include <linux/ratelimit.h>
  60. #include "internal.h"
  61. #include "ras/ras_event.h"
  62. int sysctl_memory_failure_early_kill __read_mostly = 0;
  63. int sysctl_memory_failure_recovery __read_mostly = 1;
  64. atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  65. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  66. u32 hwpoison_filter_enable = 0;
  67. u32 hwpoison_filter_dev_major = ~0U;
  68. u32 hwpoison_filter_dev_minor = ~0U;
  69. u64 hwpoison_filter_flags_mask;
  70. u64 hwpoison_filter_flags_value;
  71. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  72. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  73. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  74. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  75. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  76. static int hwpoison_filter_dev(struct page *p)
  77. {
  78. struct address_space *mapping;
  79. dev_t dev;
  80. if (hwpoison_filter_dev_major == ~0U &&
  81. hwpoison_filter_dev_minor == ~0U)
  82. return 0;
  83. /*
  84. * page_mapping() does not accept slab pages.
  85. */
  86. if (PageSlab(p))
  87. return -EINVAL;
  88. mapping = page_mapping(p);
  89. if (mapping == NULL || mapping->host == NULL)
  90. return -EINVAL;
  91. dev = mapping->host->i_sb->s_dev;
  92. if (hwpoison_filter_dev_major != ~0U &&
  93. hwpoison_filter_dev_major != MAJOR(dev))
  94. return -EINVAL;
  95. if (hwpoison_filter_dev_minor != ~0U &&
  96. hwpoison_filter_dev_minor != MINOR(dev))
  97. return -EINVAL;
  98. return 0;
  99. }
  100. static int hwpoison_filter_flags(struct page *p)
  101. {
  102. if (!hwpoison_filter_flags_mask)
  103. return 0;
  104. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  105. hwpoison_filter_flags_value)
  106. return 0;
  107. else
  108. return -EINVAL;
  109. }
  110. /*
  111. * This allows stress tests to limit test scope to a collection of tasks
  112. * by putting them under some memcg. This prevents killing unrelated/important
  113. * processes such as /sbin/init. Note that the target task may share clean
  114. * pages with init (eg. libc text), which is harmless. If the target task
  115. * share _dirty_ pages with another task B, the test scheme must make sure B
  116. * is also included in the memcg. At last, due to race conditions this filter
  117. * can only guarantee that the page either belongs to the memcg tasks, or is
  118. * a freed page.
  119. */
  120. #ifdef CONFIG_MEMCG
  121. u64 hwpoison_filter_memcg;
  122. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  123. static int hwpoison_filter_task(struct page *p)
  124. {
  125. if (!hwpoison_filter_memcg)
  126. return 0;
  127. if (page_cgroup_ino(p) != hwpoison_filter_memcg)
  128. return -EINVAL;
  129. return 0;
  130. }
  131. #else
  132. static int hwpoison_filter_task(struct page *p) { return 0; }
  133. #endif
  134. int hwpoison_filter(struct page *p)
  135. {
  136. if (!hwpoison_filter_enable)
  137. return 0;
  138. if (hwpoison_filter_dev(p))
  139. return -EINVAL;
  140. if (hwpoison_filter_flags(p))
  141. return -EINVAL;
  142. if (hwpoison_filter_task(p))
  143. return -EINVAL;
  144. return 0;
  145. }
  146. #else
  147. int hwpoison_filter(struct page *p)
  148. {
  149. return 0;
  150. }
  151. #endif
  152. EXPORT_SYMBOL_GPL(hwpoison_filter);
  153. /*
  154. * Send all the processes who have the page mapped a signal.
  155. * ``action optional'' if they are not immediately affected by the error
  156. * ``action required'' if error happened in current execution context
  157. */
  158. static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
  159. unsigned long pfn, struct page *page, int flags)
  160. {
  161. struct siginfo si;
  162. int ret;
  163. pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
  164. pfn, t->comm, t->pid);
  165. si.si_signo = SIGBUS;
  166. si.si_errno = 0;
  167. si.si_addr = (void *)addr;
  168. #ifdef __ARCH_SI_TRAPNO
  169. si.si_trapno = trapno;
  170. #endif
  171. si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
  172. if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
  173. si.si_code = BUS_MCEERR_AR;
  174. ret = force_sig_info(SIGBUS, &si, current);
  175. } else {
  176. /*
  177. * Don't use force here, it's convenient if the signal
  178. * can be temporarily blocked.
  179. * This could cause a loop when the user sets SIGBUS
  180. * to SIG_IGN, but hopefully no one will do that?
  181. */
  182. si.si_code = BUS_MCEERR_AO;
  183. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  184. }
  185. if (ret < 0)
  186. pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
  187. t->comm, t->pid, ret);
  188. return ret;
  189. }
  190. /*
  191. * When a unknown page type is encountered drain as many buffers as possible
  192. * in the hope to turn the page into a LRU or free page, which we can handle.
  193. */
  194. void shake_page(struct page *p, int access)
  195. {
  196. if (PageHuge(p))
  197. return;
  198. if (!PageSlab(p)) {
  199. lru_add_drain_all();
  200. if (PageLRU(p))
  201. return;
  202. drain_all_pages(page_zone(p));
  203. if (PageLRU(p) || is_free_buddy_page(p))
  204. return;
  205. }
  206. /*
  207. * Only call shrink_node_slabs here (which would also shrink
  208. * other caches) if access is not potentially fatal.
  209. */
  210. if (access)
  211. drop_slab_node(page_to_nid(p));
  212. }
  213. EXPORT_SYMBOL_GPL(shake_page);
  214. /*
  215. * Kill all processes that have a poisoned page mapped and then isolate
  216. * the page.
  217. *
  218. * General strategy:
  219. * Find all processes having the page mapped and kill them.
  220. * But we keep a page reference around so that the page is not
  221. * actually freed yet.
  222. * Then stash the page away
  223. *
  224. * There's no convenient way to get back to mapped processes
  225. * from the VMAs. So do a brute-force search over all
  226. * running processes.
  227. *
  228. * Remember that machine checks are not common (or rather
  229. * if they are common you have other problems), so this shouldn't
  230. * be a performance issue.
  231. *
  232. * Also there are some races possible while we get from the
  233. * error detection to actually handle it.
  234. */
  235. struct to_kill {
  236. struct list_head nd;
  237. struct task_struct *tsk;
  238. unsigned long addr;
  239. char addr_valid;
  240. };
  241. /*
  242. * Failure handling: if we can't find or can't kill a process there's
  243. * not much we can do. We just print a message and ignore otherwise.
  244. */
  245. /*
  246. * Schedule a process for later kill.
  247. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  248. * TBD would GFP_NOIO be enough?
  249. */
  250. static void add_to_kill(struct task_struct *tsk, struct page *p,
  251. struct vm_area_struct *vma,
  252. struct list_head *to_kill,
  253. struct to_kill **tkc)
  254. {
  255. struct to_kill *tk;
  256. if (*tkc) {
  257. tk = *tkc;
  258. *tkc = NULL;
  259. } else {
  260. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  261. if (!tk) {
  262. pr_err("Memory failure: Out of memory while machine check handling\n");
  263. return;
  264. }
  265. }
  266. tk->addr = page_address_in_vma(p, vma);
  267. tk->addr_valid = 1;
  268. /*
  269. * In theory we don't have to kill when the page was
  270. * munmaped. But it could be also a mremap. Since that's
  271. * likely very rare kill anyways just out of paranoia, but use
  272. * a SIGKILL because the error is not contained anymore.
  273. */
  274. if (tk->addr == -EFAULT) {
  275. pr_info("Memory failure: Unable to find user space address %lx in %s\n",
  276. page_to_pfn(p), tsk->comm);
  277. tk->addr_valid = 0;
  278. }
  279. get_task_struct(tsk);
  280. tk->tsk = tsk;
  281. list_add_tail(&tk->nd, to_kill);
  282. }
  283. /*
  284. * Kill the processes that have been collected earlier.
  285. *
  286. * Only do anything when DOIT is set, otherwise just free the list
  287. * (this is used for clean pages which do not need killing)
  288. * Also when FAIL is set do a force kill because something went
  289. * wrong earlier.
  290. */
  291. static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
  292. bool fail, struct page *page, unsigned long pfn,
  293. int flags)
  294. {
  295. struct to_kill *tk, *next;
  296. list_for_each_entry_safe (tk, next, to_kill, nd) {
  297. if (forcekill) {
  298. /*
  299. * In case something went wrong with munmapping
  300. * make sure the process doesn't catch the
  301. * signal and then access the memory. Just kill it.
  302. */
  303. if (fail || tk->addr_valid == 0) {
  304. pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  305. pfn, tk->tsk->comm, tk->tsk->pid);
  306. force_sig(SIGKILL, tk->tsk);
  307. }
  308. /*
  309. * In theory the process could have mapped
  310. * something else on the address in-between. We could
  311. * check for that, but we need to tell the
  312. * process anyways.
  313. */
  314. else if (kill_proc(tk->tsk, tk->addr, trapno,
  315. pfn, page, flags) < 0)
  316. pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
  317. pfn, tk->tsk->comm, tk->tsk->pid);
  318. }
  319. put_task_struct(tk->tsk);
  320. kfree(tk);
  321. }
  322. }
  323. /*
  324. * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
  325. * on behalf of the thread group. Return task_struct of the (first found)
  326. * dedicated thread if found, and return NULL otherwise.
  327. *
  328. * We already hold read_lock(&tasklist_lock) in the caller, so we don't
  329. * have to call rcu_read_lock/unlock() in this function.
  330. */
  331. static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
  332. {
  333. struct task_struct *t;
  334. for_each_thread(tsk, t)
  335. if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
  336. return t;
  337. return NULL;
  338. }
  339. /*
  340. * Determine whether a given process is "early kill" process which expects
  341. * to be signaled when some page under the process is hwpoisoned.
  342. * Return task_struct of the dedicated thread (main thread unless explicitly
  343. * specified) if the process is "early kill," and otherwise returns NULL.
  344. */
  345. static struct task_struct *task_early_kill(struct task_struct *tsk,
  346. int force_early)
  347. {
  348. struct task_struct *t;
  349. if (!tsk->mm)
  350. return NULL;
  351. if (force_early)
  352. return tsk;
  353. t = find_early_kill_thread(tsk);
  354. if (t)
  355. return t;
  356. if (sysctl_memory_failure_early_kill)
  357. return tsk;
  358. return NULL;
  359. }
  360. /*
  361. * Collect processes when the error hit an anonymous page.
  362. */
  363. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  364. struct to_kill **tkc, int force_early)
  365. {
  366. struct vm_area_struct *vma;
  367. struct task_struct *tsk;
  368. struct anon_vma *av;
  369. pgoff_t pgoff;
  370. av = page_lock_anon_vma_read(page);
  371. if (av == NULL) /* Not actually mapped anymore */
  372. return;
  373. pgoff = page_to_pgoff(page);
  374. read_lock(&tasklist_lock);
  375. for_each_process (tsk) {
  376. struct anon_vma_chain *vmac;
  377. struct task_struct *t = task_early_kill(tsk, force_early);
  378. if (!t)
  379. continue;
  380. anon_vma_interval_tree_foreach(vmac, &av->rb_root,
  381. pgoff, pgoff) {
  382. vma = vmac->vma;
  383. if (!page_mapped_in_vma(page, vma))
  384. continue;
  385. if (vma->vm_mm == t->mm)
  386. add_to_kill(t, page, vma, to_kill, tkc);
  387. }
  388. }
  389. read_unlock(&tasklist_lock);
  390. page_unlock_anon_vma_read(av);
  391. }
  392. /*
  393. * Collect processes when the error hit a file mapped page.
  394. */
  395. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  396. struct to_kill **tkc, int force_early)
  397. {
  398. struct vm_area_struct *vma;
  399. struct task_struct *tsk;
  400. struct address_space *mapping = page->mapping;
  401. i_mmap_lock_read(mapping);
  402. read_lock(&tasklist_lock);
  403. for_each_process(tsk) {
  404. pgoff_t pgoff = page_to_pgoff(page);
  405. struct task_struct *t = task_early_kill(tsk, force_early);
  406. if (!t)
  407. continue;
  408. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
  409. pgoff) {
  410. /*
  411. * Send early kill signal to tasks where a vma covers
  412. * the page but the corrupted page is not necessarily
  413. * mapped it in its pte.
  414. * Assume applications who requested early kill want
  415. * to be informed of all such data corruptions.
  416. */
  417. if (vma->vm_mm == t->mm)
  418. add_to_kill(t, page, vma, to_kill, tkc);
  419. }
  420. }
  421. read_unlock(&tasklist_lock);
  422. i_mmap_unlock_read(mapping);
  423. }
  424. /*
  425. * Collect the processes who have the corrupted page mapped to kill.
  426. * This is done in two steps for locking reasons.
  427. * First preallocate one tokill structure outside the spin locks,
  428. * so that we can kill at least one process reasonably reliable.
  429. */
  430. static void collect_procs(struct page *page, struct list_head *tokill,
  431. int force_early)
  432. {
  433. struct to_kill *tk;
  434. if (!page->mapping)
  435. return;
  436. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  437. if (!tk)
  438. return;
  439. if (PageAnon(page))
  440. collect_procs_anon(page, tokill, &tk, force_early);
  441. else
  442. collect_procs_file(page, tokill, &tk, force_early);
  443. kfree(tk);
  444. }
  445. static const char *action_name[] = {
  446. [MF_IGNORED] = "Ignored",
  447. [MF_FAILED] = "Failed",
  448. [MF_DELAYED] = "Delayed",
  449. [MF_RECOVERED] = "Recovered",
  450. };
  451. static const char * const action_page_types[] = {
  452. [MF_MSG_KERNEL] = "reserved kernel page",
  453. [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
  454. [MF_MSG_SLAB] = "kernel slab page",
  455. [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
  456. [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
  457. [MF_MSG_HUGE] = "huge page",
  458. [MF_MSG_FREE_HUGE] = "free huge page",
  459. [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
  460. [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
  461. [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
  462. [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
  463. [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
  464. [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
  465. [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
  466. [MF_MSG_DIRTY_LRU] = "dirty LRU page",
  467. [MF_MSG_CLEAN_LRU] = "clean LRU page",
  468. [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
  469. [MF_MSG_BUDDY] = "free buddy page",
  470. [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
  471. [MF_MSG_UNKNOWN] = "unknown page",
  472. };
  473. /*
  474. * XXX: It is possible that a page is isolated from LRU cache,
  475. * and then kept in swap cache or failed to remove from page cache.
  476. * The page count will stop it from being freed by unpoison.
  477. * Stress tests should be aware of this memory leak problem.
  478. */
  479. static int delete_from_lru_cache(struct page *p)
  480. {
  481. if (!isolate_lru_page(p)) {
  482. /*
  483. * Clear sensible page flags, so that the buddy system won't
  484. * complain when the page is unpoison-and-freed.
  485. */
  486. ClearPageActive(p);
  487. ClearPageUnevictable(p);
  488. /*
  489. * Poisoned page might never drop its ref count to 0 so we have
  490. * to uncharge it manually from its memcg.
  491. */
  492. mem_cgroup_uncharge(p);
  493. /*
  494. * drop the page count elevated by isolate_lru_page()
  495. */
  496. put_page(p);
  497. return 0;
  498. }
  499. return -EIO;
  500. }
  501. /*
  502. * Error hit kernel page.
  503. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  504. * could be more sophisticated.
  505. */
  506. static int me_kernel(struct page *p, unsigned long pfn)
  507. {
  508. return MF_IGNORED;
  509. }
  510. /*
  511. * Page in unknown state. Do nothing.
  512. */
  513. static int me_unknown(struct page *p, unsigned long pfn)
  514. {
  515. pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
  516. return MF_FAILED;
  517. }
  518. /*
  519. * Clean (or cleaned) page cache page.
  520. */
  521. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  522. {
  523. int err;
  524. int ret = MF_FAILED;
  525. struct address_space *mapping;
  526. delete_from_lru_cache(p);
  527. /*
  528. * For anonymous pages we're done the only reference left
  529. * should be the one m_f() holds.
  530. */
  531. if (PageAnon(p))
  532. return MF_RECOVERED;
  533. /*
  534. * Now truncate the page in the page cache. This is really
  535. * more like a "temporary hole punch"
  536. * Don't do this for block devices when someone else
  537. * has a reference, because it could be file system metadata
  538. * and that's not safe to truncate.
  539. */
  540. mapping = page_mapping(p);
  541. if (!mapping) {
  542. /*
  543. * Page has been teared down in the meanwhile
  544. */
  545. return MF_FAILED;
  546. }
  547. /*
  548. * Truncation is a bit tricky. Enable it per file system for now.
  549. *
  550. * Open: to take i_mutex or not for this? Right now we don't.
  551. */
  552. if (mapping->a_ops->error_remove_page) {
  553. err = mapping->a_ops->error_remove_page(mapping, p);
  554. if (err != 0) {
  555. pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
  556. pfn, err);
  557. } else if (page_has_private(p) &&
  558. !try_to_release_page(p, GFP_NOIO)) {
  559. pr_info("Memory failure: %#lx: failed to release buffers\n",
  560. pfn);
  561. } else {
  562. ret = MF_RECOVERED;
  563. }
  564. } else {
  565. /*
  566. * If the file system doesn't support it just invalidate
  567. * This fails on dirty or anything with private pages
  568. */
  569. if (invalidate_inode_page(p))
  570. ret = MF_RECOVERED;
  571. else
  572. pr_info("Memory failure: %#lx: Failed to invalidate\n",
  573. pfn);
  574. }
  575. return ret;
  576. }
  577. /*
  578. * Dirty pagecache page
  579. * Issues: when the error hit a hole page the error is not properly
  580. * propagated.
  581. */
  582. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  583. {
  584. struct address_space *mapping = page_mapping(p);
  585. SetPageError(p);
  586. /* TBD: print more information about the file. */
  587. if (mapping) {
  588. /*
  589. * IO error will be reported by write(), fsync(), etc.
  590. * who check the mapping.
  591. * This way the application knows that something went
  592. * wrong with its dirty file data.
  593. *
  594. * There's one open issue:
  595. *
  596. * The EIO will be only reported on the next IO
  597. * operation and then cleared through the IO map.
  598. * Normally Linux has two mechanisms to pass IO error
  599. * first through the AS_EIO flag in the address space
  600. * and then through the PageError flag in the page.
  601. * Since we drop pages on memory failure handling the
  602. * only mechanism open to use is through AS_AIO.
  603. *
  604. * This has the disadvantage that it gets cleared on
  605. * the first operation that returns an error, while
  606. * the PageError bit is more sticky and only cleared
  607. * when the page is reread or dropped. If an
  608. * application assumes it will always get error on
  609. * fsync, but does other operations on the fd before
  610. * and the page is dropped between then the error
  611. * will not be properly reported.
  612. *
  613. * This can already happen even without hwpoisoned
  614. * pages: first on metadata IO errors (which only
  615. * report through AS_EIO) or when the page is dropped
  616. * at the wrong time.
  617. *
  618. * So right now we assume that the application DTRT on
  619. * the first EIO, but we're not worse than other parts
  620. * of the kernel.
  621. */
  622. mapping_set_error(mapping, -EIO);
  623. }
  624. return me_pagecache_clean(p, pfn);
  625. }
  626. /*
  627. * Clean and dirty swap cache.
  628. *
  629. * Dirty swap cache page is tricky to handle. The page could live both in page
  630. * cache and swap cache(ie. page is freshly swapped in). So it could be
  631. * referenced concurrently by 2 types of PTEs:
  632. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  633. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  634. * and then
  635. * - clear dirty bit to prevent IO
  636. * - remove from LRU
  637. * - but keep in the swap cache, so that when we return to it on
  638. * a later page fault, we know the application is accessing
  639. * corrupted data and shall be killed (we installed simple
  640. * interception code in do_swap_page to catch it).
  641. *
  642. * Clean swap cache pages can be directly isolated. A later page fault will
  643. * bring in the known good data from disk.
  644. */
  645. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  646. {
  647. ClearPageDirty(p);
  648. /* Trigger EIO in shmem: */
  649. ClearPageUptodate(p);
  650. if (!delete_from_lru_cache(p))
  651. return MF_DELAYED;
  652. else
  653. return MF_FAILED;
  654. }
  655. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  656. {
  657. delete_from_swap_cache(p);
  658. if (!delete_from_lru_cache(p))
  659. return MF_RECOVERED;
  660. else
  661. return MF_FAILED;
  662. }
  663. /*
  664. * Huge pages. Needs work.
  665. * Issues:
  666. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  667. * To narrow down kill region to one page, we need to break up pmd.
  668. */
  669. static int me_huge_page(struct page *p, unsigned long pfn)
  670. {
  671. int res = 0;
  672. struct page *hpage = compound_head(p);
  673. if (!PageHuge(hpage))
  674. return MF_DELAYED;
  675. /*
  676. * We can safely recover from error on free or reserved (i.e.
  677. * not in-use) hugepage by dequeuing it from freelist.
  678. * To check whether a hugepage is in-use or not, we can't use
  679. * page->lru because it can be used in other hugepage operations,
  680. * such as __unmap_hugepage_range() and gather_surplus_pages().
  681. * So instead we use page_mapping() and PageAnon().
  682. */
  683. if (!(page_mapping(hpage) || PageAnon(hpage))) {
  684. res = dequeue_hwpoisoned_huge_page(hpage);
  685. if (!res)
  686. return MF_RECOVERED;
  687. }
  688. return MF_DELAYED;
  689. }
  690. /*
  691. * Various page states we can handle.
  692. *
  693. * A page state is defined by its current page->flags bits.
  694. * The table matches them in order and calls the right handler.
  695. *
  696. * This is quite tricky because we can access page at any time
  697. * in its live cycle, so all accesses have to be extremely careful.
  698. *
  699. * This is not complete. More states could be added.
  700. * For any missing state don't attempt recovery.
  701. */
  702. #define dirty (1UL << PG_dirty)
  703. #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
  704. #define unevict (1UL << PG_unevictable)
  705. #define mlock (1UL << PG_mlocked)
  706. #define writeback (1UL << PG_writeback)
  707. #define lru (1UL << PG_lru)
  708. #define head (1UL << PG_head)
  709. #define slab (1UL << PG_slab)
  710. #define reserved (1UL << PG_reserved)
  711. static struct page_state {
  712. unsigned long mask;
  713. unsigned long res;
  714. enum mf_action_page_type type;
  715. int (*action)(struct page *p, unsigned long pfn);
  716. } error_states[] = {
  717. { reserved, reserved, MF_MSG_KERNEL, me_kernel },
  718. /*
  719. * free pages are specially detected outside this table:
  720. * PG_buddy pages only make a small fraction of all free pages.
  721. */
  722. /*
  723. * Could in theory check if slab page is free or if we can drop
  724. * currently unused objects without touching them. But just
  725. * treat it as standard kernel for now.
  726. */
  727. { slab, slab, MF_MSG_SLAB, me_kernel },
  728. { head, head, MF_MSG_HUGE, me_huge_page },
  729. { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
  730. { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
  731. { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
  732. { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
  733. { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
  734. { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
  735. { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
  736. { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
  737. /*
  738. * Catchall entry: must be at end.
  739. */
  740. { 0, 0, MF_MSG_UNKNOWN, me_unknown },
  741. };
  742. #undef dirty
  743. #undef sc
  744. #undef unevict
  745. #undef mlock
  746. #undef writeback
  747. #undef lru
  748. #undef head
  749. #undef slab
  750. #undef reserved
  751. /*
  752. * "Dirty/Clean" indication is not 100% accurate due to the possibility of
  753. * setting PG_dirty outside page lock. See also comment above set_page_dirty().
  754. */
  755. static void action_result(unsigned long pfn, enum mf_action_page_type type,
  756. enum mf_result result)
  757. {
  758. trace_memory_failure_event(pfn, type, result);
  759. pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
  760. pfn, action_page_types[type], action_name[result]);
  761. }
  762. static int page_action(struct page_state *ps, struct page *p,
  763. unsigned long pfn)
  764. {
  765. int result;
  766. int count;
  767. result = ps->action(p, pfn);
  768. count = page_count(p) - 1;
  769. if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
  770. count--;
  771. if (count != 0) {
  772. pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
  773. pfn, action_page_types[ps->type], count);
  774. result = MF_FAILED;
  775. }
  776. action_result(pfn, ps->type, result);
  777. /* Could do more checks here if page looks ok */
  778. /*
  779. * Could adjust zone counters here to correct for the missing page.
  780. */
  781. return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
  782. }
  783. /**
  784. * get_hwpoison_page() - Get refcount for memory error handling:
  785. * @page: raw error page (hit by memory error)
  786. *
  787. * Return: return 0 if failed to grab the refcount, otherwise true (some
  788. * non-zero value.)
  789. */
  790. int get_hwpoison_page(struct page *page)
  791. {
  792. struct page *head = compound_head(page);
  793. if (!PageHuge(head) && PageTransHuge(head)) {
  794. /*
  795. * Non anonymous thp exists only in allocation/free time. We
  796. * can't handle such a case correctly, so let's give it up.
  797. * This should be better than triggering BUG_ON when kernel
  798. * tries to touch the "partially handled" page.
  799. */
  800. if (!PageAnon(head)) {
  801. pr_err("Memory failure: %#lx: non anonymous thp\n",
  802. page_to_pfn(page));
  803. return 0;
  804. }
  805. }
  806. if (get_page_unless_zero(head)) {
  807. if (head == compound_head(page))
  808. return 1;
  809. pr_info("Memory failure: %#lx cannot catch tail\n",
  810. page_to_pfn(page));
  811. put_page(head);
  812. }
  813. return 0;
  814. }
  815. EXPORT_SYMBOL_GPL(get_hwpoison_page);
  816. /*
  817. * Do all that is necessary to remove user space mappings. Unmap
  818. * the pages and send SIGBUS to the processes if the data was dirty.
  819. */
  820. static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
  821. int trapno, int flags, struct page **hpagep)
  822. {
  823. enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  824. struct address_space *mapping;
  825. LIST_HEAD(tokill);
  826. bool unmap_success;
  827. int kill = 1, forcekill;
  828. struct page *hpage = *hpagep;
  829. bool mlocked = PageMlocked(hpage);
  830. /*
  831. * Here we are interested only in user-mapped pages, so skip any
  832. * other types of pages.
  833. */
  834. if (PageReserved(p) || PageSlab(p))
  835. return true;
  836. if (!(PageLRU(hpage) || PageHuge(p)))
  837. return true;
  838. /*
  839. * This check implies we don't kill processes if their pages
  840. * are in the swap cache early. Those are always late kills.
  841. */
  842. if (!page_mapped(hpage))
  843. return true;
  844. if (PageKsm(p)) {
  845. pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
  846. return false;
  847. }
  848. if (PageSwapCache(p)) {
  849. pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
  850. pfn);
  851. ttu |= TTU_IGNORE_HWPOISON;
  852. }
  853. /*
  854. * Propagate the dirty bit from PTEs to struct page first, because we
  855. * need this to decide if we should kill or just drop the page.
  856. * XXX: the dirty test could be racy: set_page_dirty() may not always
  857. * be called inside page lock (it's recommended but not enforced).
  858. */
  859. mapping = page_mapping(hpage);
  860. if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  861. mapping_cap_writeback_dirty(mapping)) {
  862. if (page_mkclean(hpage)) {
  863. SetPageDirty(hpage);
  864. } else {
  865. kill = 0;
  866. ttu |= TTU_IGNORE_HWPOISON;
  867. pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
  868. pfn);
  869. }
  870. }
  871. /*
  872. * First collect all the processes that have the page
  873. * mapped in dirty form. This has to be done before try_to_unmap,
  874. * because ttu takes the rmap data structures down.
  875. *
  876. * Error handling: We ignore errors here because
  877. * there's nothing that can be done.
  878. */
  879. if (kill)
  880. collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
  881. unmap_success = try_to_unmap(hpage, ttu);
  882. if (!unmap_success)
  883. pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
  884. pfn, page_mapcount(hpage));
  885. /*
  886. * try_to_unmap() might put mlocked page in lru cache, so call
  887. * shake_page() again to ensure that it's flushed.
  888. */
  889. if (mlocked)
  890. shake_page(hpage, 0);
  891. /*
  892. * Now that the dirty bit has been propagated to the
  893. * struct page and all unmaps done we can decide if
  894. * killing is needed or not. Only kill when the page
  895. * was dirty or the process is not restartable,
  896. * otherwise the tokill list is merely
  897. * freed. When there was a problem unmapping earlier
  898. * use a more force-full uncatchable kill to prevent
  899. * any accesses to the poisoned memory.
  900. */
  901. forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
  902. kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
  903. return unmap_success;
  904. }
  905. /**
  906. * memory_failure - Handle memory failure of a page.
  907. * @pfn: Page Number of the corrupted page
  908. * @trapno: Trap number reported in the signal to user space.
  909. * @flags: fine tune action taken
  910. *
  911. * This function is called by the low level machine check code
  912. * of an architecture when it detects hardware memory corruption
  913. * of a page. It tries its best to recover, which includes
  914. * dropping pages, killing processes etc.
  915. *
  916. * The function is primarily of use for corruptions that
  917. * happen outside the current execution context (e.g. when
  918. * detected by a background scrubber)
  919. *
  920. * Must run in process context (e.g. a work queue) with interrupts
  921. * enabled and no spinlocks hold.
  922. */
  923. int memory_failure(unsigned long pfn, int trapno, int flags)
  924. {
  925. struct page_state *ps;
  926. struct page *p;
  927. struct page *hpage;
  928. struct page *orig_head;
  929. int res;
  930. unsigned long page_flags;
  931. if (!sysctl_memory_failure_recovery)
  932. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  933. if (!pfn_valid(pfn)) {
  934. pr_err("Memory failure: %#lx: memory outside kernel control\n",
  935. pfn);
  936. return -ENXIO;
  937. }
  938. p = pfn_to_page(pfn);
  939. orig_head = hpage = compound_head(p);
  940. /* tmporary check code, to be updated in later patches */
  941. if (PageHuge(p)) {
  942. if (TestSetPageHWPoison(hpage)) {
  943. pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
  944. return 0;
  945. }
  946. goto tmp;
  947. }
  948. if (TestSetPageHWPoison(p)) {
  949. pr_err("Memory failure: %#lx: already hardware poisoned\n",
  950. pfn);
  951. return 0;
  952. }
  953. tmp:
  954. num_poisoned_pages_inc();
  955. /*
  956. * We need/can do nothing about count=0 pages.
  957. * 1) it's a free page, and therefore in safe hand:
  958. * prep_new_page() will be the gate keeper.
  959. * 2) it's a free hugepage, which is also safe:
  960. * an affected hugepage will be dequeued from hugepage freelist,
  961. * so there's no concern about reusing it ever after.
  962. * 3) it's part of a non-compound high order page.
  963. * Implies some kernel user: cannot stop them from
  964. * R/W the page; let's pray that the page has been
  965. * used and will be freed some time later.
  966. * In fact it's dangerous to directly bump up page count from 0,
  967. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  968. */
  969. if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
  970. if (is_free_buddy_page(p)) {
  971. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  972. return 0;
  973. } else if (PageHuge(hpage)) {
  974. /*
  975. * Check "filter hit" and "race with other subpage."
  976. */
  977. lock_page(hpage);
  978. if (PageHWPoison(hpage)) {
  979. if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
  980. || (p != hpage && TestSetPageHWPoison(hpage))) {
  981. num_poisoned_pages_dec();
  982. unlock_page(hpage);
  983. return 0;
  984. }
  985. }
  986. res = dequeue_hwpoisoned_huge_page(hpage);
  987. action_result(pfn, MF_MSG_FREE_HUGE,
  988. res ? MF_IGNORED : MF_DELAYED);
  989. unlock_page(hpage);
  990. return res;
  991. } else {
  992. action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
  993. return -EBUSY;
  994. }
  995. }
  996. if (!PageHuge(p) && PageTransHuge(hpage)) {
  997. lock_page(p);
  998. if (!PageAnon(p) || unlikely(split_huge_page(p))) {
  999. unlock_page(p);
  1000. if (!PageAnon(p))
  1001. pr_err("Memory failure: %#lx: non anonymous thp\n",
  1002. pfn);
  1003. else
  1004. pr_err("Memory failure: %#lx: thp split failed\n",
  1005. pfn);
  1006. if (TestClearPageHWPoison(p))
  1007. num_poisoned_pages_dec();
  1008. put_hwpoison_page(p);
  1009. return -EBUSY;
  1010. }
  1011. unlock_page(p);
  1012. VM_BUG_ON_PAGE(!page_count(p), p);
  1013. hpage = compound_head(p);
  1014. }
  1015. /*
  1016. * We ignore non-LRU pages for good reasons.
  1017. * - PG_locked is only well defined for LRU pages and a few others
  1018. * - to avoid races with __SetPageLocked()
  1019. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  1020. * The check (unnecessarily) ignores LRU pages being isolated and
  1021. * walked by the page reclaim code, however that's not a big loss.
  1022. */
  1023. shake_page(p, 0);
  1024. /* shake_page could have turned it free. */
  1025. if (!PageLRU(p) && is_free_buddy_page(p)) {
  1026. if (flags & MF_COUNT_INCREASED)
  1027. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1028. else
  1029. action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
  1030. return 0;
  1031. }
  1032. lock_page(hpage);
  1033. /*
  1034. * The page could have changed compound pages during the locking.
  1035. * If this happens just bail out.
  1036. */
  1037. if (PageCompound(p) && compound_head(p) != orig_head) {
  1038. action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
  1039. res = -EBUSY;
  1040. goto out;
  1041. }
  1042. /*
  1043. * We use page flags to determine what action should be taken, but
  1044. * the flags can be modified by the error containment action. One
  1045. * example is an mlocked page, where PG_mlocked is cleared by
  1046. * page_remove_rmap() in try_to_unmap_one(). So to determine page status
  1047. * correctly, we save a copy of the page flags at this time.
  1048. */
  1049. if (PageHuge(p))
  1050. page_flags = hpage->flags;
  1051. else
  1052. page_flags = p->flags;
  1053. /*
  1054. * unpoison always clear PG_hwpoison inside page lock
  1055. */
  1056. if (!PageHWPoison(p)) {
  1057. pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
  1058. num_poisoned_pages_dec();
  1059. unlock_page(hpage);
  1060. put_hwpoison_page(hpage);
  1061. return 0;
  1062. }
  1063. if (hwpoison_filter(p)) {
  1064. if (TestClearPageHWPoison(p))
  1065. num_poisoned_pages_dec();
  1066. unlock_page(hpage);
  1067. put_hwpoison_page(hpage);
  1068. return 0;
  1069. }
  1070. if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
  1071. goto identify_page_state;
  1072. /*
  1073. * For error on the tail page, we should set PG_hwpoison
  1074. * on the head page to show that the hugepage is hwpoisoned
  1075. */
  1076. if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
  1077. action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
  1078. unlock_page(hpage);
  1079. put_hwpoison_page(hpage);
  1080. return 0;
  1081. }
  1082. /*
  1083. * It's very difficult to mess with pages currently under IO
  1084. * and in many cases impossible, so we just avoid it here.
  1085. */
  1086. wait_on_page_writeback(p);
  1087. /*
  1088. * Now take care of user space mappings.
  1089. * Abort on fail: __delete_from_page_cache() assumes unmapped page.
  1090. *
  1091. * When the raw error page is thp tail page, hpage points to the raw
  1092. * page after thp split.
  1093. */
  1094. if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
  1095. action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
  1096. res = -EBUSY;
  1097. goto out;
  1098. }
  1099. /*
  1100. * Torn down by someone else?
  1101. */
  1102. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  1103. action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
  1104. res = -EBUSY;
  1105. goto out;
  1106. }
  1107. identify_page_state:
  1108. res = -EBUSY;
  1109. /*
  1110. * The first check uses the current page flags which may not have any
  1111. * relevant information. The second check with the saved page flagss is
  1112. * carried out only if the first check can't determine the page status.
  1113. */
  1114. for (ps = error_states;; ps++)
  1115. if ((p->flags & ps->mask) == ps->res)
  1116. break;
  1117. page_flags |= (p->flags & (1UL << PG_dirty));
  1118. if (!ps->mask)
  1119. for (ps = error_states;; ps++)
  1120. if ((page_flags & ps->mask) == ps->res)
  1121. break;
  1122. res = page_action(ps, p, pfn);
  1123. out:
  1124. unlock_page(hpage);
  1125. return res;
  1126. }
  1127. EXPORT_SYMBOL_GPL(memory_failure);
  1128. #define MEMORY_FAILURE_FIFO_ORDER 4
  1129. #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
  1130. struct memory_failure_entry {
  1131. unsigned long pfn;
  1132. int trapno;
  1133. int flags;
  1134. };
  1135. struct memory_failure_cpu {
  1136. DECLARE_KFIFO(fifo, struct memory_failure_entry,
  1137. MEMORY_FAILURE_FIFO_SIZE);
  1138. spinlock_t lock;
  1139. struct work_struct work;
  1140. };
  1141. static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
  1142. /**
  1143. * memory_failure_queue - Schedule handling memory failure of a page.
  1144. * @pfn: Page Number of the corrupted page
  1145. * @trapno: Trap number reported in the signal to user space.
  1146. * @flags: Flags for memory failure handling
  1147. *
  1148. * This function is called by the low level hardware error handler
  1149. * when it detects hardware memory corruption of a page. It schedules
  1150. * the recovering of error page, including dropping pages, killing
  1151. * processes etc.
  1152. *
  1153. * The function is primarily of use for corruptions that
  1154. * happen outside the current execution context (e.g. when
  1155. * detected by a background scrubber)
  1156. *
  1157. * Can run in IRQ context.
  1158. */
  1159. void memory_failure_queue(unsigned long pfn, int trapno, int flags)
  1160. {
  1161. struct memory_failure_cpu *mf_cpu;
  1162. unsigned long proc_flags;
  1163. struct memory_failure_entry entry = {
  1164. .pfn = pfn,
  1165. .trapno = trapno,
  1166. .flags = flags,
  1167. };
  1168. mf_cpu = &get_cpu_var(memory_failure_cpu);
  1169. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1170. if (kfifo_put(&mf_cpu->fifo, entry))
  1171. schedule_work_on(smp_processor_id(), &mf_cpu->work);
  1172. else
  1173. pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
  1174. pfn);
  1175. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1176. put_cpu_var(memory_failure_cpu);
  1177. }
  1178. EXPORT_SYMBOL_GPL(memory_failure_queue);
  1179. static void memory_failure_work_func(struct work_struct *work)
  1180. {
  1181. struct memory_failure_cpu *mf_cpu;
  1182. struct memory_failure_entry entry = { 0, };
  1183. unsigned long proc_flags;
  1184. int gotten;
  1185. mf_cpu = this_cpu_ptr(&memory_failure_cpu);
  1186. for (;;) {
  1187. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1188. gotten = kfifo_get(&mf_cpu->fifo, &entry);
  1189. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1190. if (!gotten)
  1191. break;
  1192. if (entry.flags & MF_SOFT_OFFLINE)
  1193. soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
  1194. else
  1195. memory_failure(entry.pfn, entry.trapno, entry.flags);
  1196. }
  1197. }
  1198. static int __init memory_failure_init(void)
  1199. {
  1200. struct memory_failure_cpu *mf_cpu;
  1201. int cpu;
  1202. for_each_possible_cpu(cpu) {
  1203. mf_cpu = &per_cpu(memory_failure_cpu, cpu);
  1204. spin_lock_init(&mf_cpu->lock);
  1205. INIT_KFIFO(mf_cpu->fifo);
  1206. INIT_WORK(&mf_cpu->work, memory_failure_work_func);
  1207. }
  1208. return 0;
  1209. }
  1210. core_initcall(memory_failure_init);
  1211. #define unpoison_pr_info(fmt, pfn, rs) \
  1212. ({ \
  1213. if (__ratelimit(rs)) \
  1214. pr_info(fmt, pfn); \
  1215. })
  1216. /**
  1217. * unpoison_memory - Unpoison a previously poisoned page
  1218. * @pfn: Page number of the to be unpoisoned page
  1219. *
  1220. * Software-unpoison a page that has been poisoned by
  1221. * memory_failure() earlier.
  1222. *
  1223. * This is only done on the software-level, so it only works
  1224. * for linux injected failures, not real hardware failures
  1225. *
  1226. * Returns 0 for success, otherwise -errno.
  1227. */
  1228. int unpoison_memory(unsigned long pfn)
  1229. {
  1230. struct page *page;
  1231. struct page *p;
  1232. int freeit = 0;
  1233. static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
  1234. DEFAULT_RATELIMIT_BURST);
  1235. if (!pfn_valid(pfn))
  1236. return -ENXIO;
  1237. p = pfn_to_page(pfn);
  1238. page = compound_head(p);
  1239. if (!PageHWPoison(p)) {
  1240. unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
  1241. pfn, &unpoison_rs);
  1242. return 0;
  1243. }
  1244. if (page_count(page) > 1) {
  1245. unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
  1246. pfn, &unpoison_rs);
  1247. return 0;
  1248. }
  1249. if (page_mapped(page)) {
  1250. unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
  1251. pfn, &unpoison_rs);
  1252. return 0;
  1253. }
  1254. if (page_mapping(page)) {
  1255. unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
  1256. pfn, &unpoison_rs);
  1257. return 0;
  1258. }
  1259. /*
  1260. * unpoison_memory() can encounter thp only when the thp is being
  1261. * worked by memory_failure() and the page lock is not held yet.
  1262. * In such case, we yield to memory_failure() and make unpoison fail.
  1263. */
  1264. if (!PageHuge(page) && PageTransHuge(page)) {
  1265. unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
  1266. pfn, &unpoison_rs);
  1267. return 0;
  1268. }
  1269. if (!get_hwpoison_page(p)) {
  1270. /*
  1271. * Since HWPoisoned hugepage should have non-zero refcount,
  1272. * race between memory failure and unpoison seems to happen.
  1273. * In such case unpoison fails and memory failure runs
  1274. * to the end.
  1275. */
  1276. if (PageHuge(page)) {
  1277. unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
  1278. pfn, &unpoison_rs);
  1279. return 0;
  1280. }
  1281. if (TestClearPageHWPoison(p))
  1282. num_poisoned_pages_dec();
  1283. unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
  1284. pfn, &unpoison_rs);
  1285. return 0;
  1286. }
  1287. lock_page(page);
  1288. /*
  1289. * This test is racy because PG_hwpoison is set outside of page lock.
  1290. * That's acceptable because that won't trigger kernel panic. Instead,
  1291. * the PG_hwpoison page will be caught and isolated on the entrance to
  1292. * the free buddy page pool.
  1293. */
  1294. if (TestClearPageHWPoison(page)) {
  1295. unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
  1296. pfn, &unpoison_rs);
  1297. num_poisoned_pages_dec();
  1298. freeit = 1;
  1299. }
  1300. unlock_page(page);
  1301. put_hwpoison_page(page);
  1302. if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
  1303. put_hwpoison_page(page);
  1304. return 0;
  1305. }
  1306. EXPORT_SYMBOL(unpoison_memory);
  1307. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1308. {
  1309. int nid = page_to_nid(p);
  1310. if (PageHuge(p)) {
  1311. struct hstate *hstate = page_hstate(compound_head(p));
  1312. if (hstate_is_gigantic(hstate))
  1313. return alloc_huge_page_node(hstate, NUMA_NO_NODE);
  1314. return alloc_huge_page_node(hstate, nid);
  1315. } else {
  1316. return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1317. }
  1318. }
  1319. /*
  1320. * Safely get reference count of an arbitrary page.
  1321. * Returns 0 for a free page, -EIO for a zero refcount page
  1322. * that is not free, and 1 for any other page type.
  1323. * For 1 the page is returned with increased page count, otherwise not.
  1324. */
  1325. static int __get_any_page(struct page *p, unsigned long pfn, int flags)
  1326. {
  1327. int ret;
  1328. if (flags & MF_COUNT_INCREASED)
  1329. return 1;
  1330. /*
  1331. * When the target page is a free hugepage, just remove it
  1332. * from free hugepage list.
  1333. */
  1334. if (!get_hwpoison_page(p)) {
  1335. if (PageHuge(p)) {
  1336. pr_info("%s: %#lx free huge page\n", __func__, pfn);
  1337. ret = 0;
  1338. } else if (is_free_buddy_page(p)) {
  1339. pr_info("%s: %#lx free buddy page\n", __func__, pfn);
  1340. ret = 0;
  1341. } else {
  1342. pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
  1343. __func__, pfn, p->flags);
  1344. ret = -EIO;
  1345. }
  1346. } else {
  1347. /* Not a free page */
  1348. ret = 1;
  1349. }
  1350. return ret;
  1351. }
  1352. static int get_any_page(struct page *page, unsigned long pfn, int flags)
  1353. {
  1354. int ret = __get_any_page(page, pfn, flags);
  1355. if (ret == 1 && !PageHuge(page) &&
  1356. !PageLRU(page) && !__PageMovable(page)) {
  1357. /*
  1358. * Try to free it.
  1359. */
  1360. put_hwpoison_page(page);
  1361. shake_page(page, 1);
  1362. /*
  1363. * Did it turn free?
  1364. */
  1365. ret = __get_any_page(page, pfn, 0);
  1366. if (ret == 1 && !PageLRU(page)) {
  1367. /* Drop page reference which is from __get_any_page() */
  1368. put_hwpoison_page(page);
  1369. pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
  1370. pfn, page->flags, &page->flags);
  1371. return -EIO;
  1372. }
  1373. }
  1374. return ret;
  1375. }
  1376. static int soft_offline_huge_page(struct page *page, int flags)
  1377. {
  1378. int ret;
  1379. unsigned long pfn = page_to_pfn(page);
  1380. struct page *hpage = compound_head(page);
  1381. LIST_HEAD(pagelist);
  1382. /*
  1383. * This double-check of PageHWPoison is to avoid the race with
  1384. * memory_failure(). See also comment in __soft_offline_page().
  1385. */
  1386. lock_page(hpage);
  1387. if (PageHWPoison(hpage)) {
  1388. unlock_page(hpage);
  1389. put_hwpoison_page(hpage);
  1390. pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
  1391. return -EBUSY;
  1392. }
  1393. unlock_page(hpage);
  1394. ret = isolate_huge_page(hpage, &pagelist);
  1395. /*
  1396. * get_any_page() and isolate_huge_page() takes a refcount each,
  1397. * so need to drop one here.
  1398. */
  1399. put_hwpoison_page(hpage);
  1400. if (!ret) {
  1401. pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
  1402. return -EBUSY;
  1403. }
  1404. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1405. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1406. if (ret) {
  1407. pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
  1408. pfn, ret, page->flags, &page->flags);
  1409. if (!list_empty(&pagelist))
  1410. putback_movable_pages(&pagelist);
  1411. if (ret > 0)
  1412. ret = -EIO;
  1413. } else {
  1414. /* overcommit hugetlb page will be freed to buddy */
  1415. SetPageHWPoison(page);
  1416. if (PageHuge(page))
  1417. dequeue_hwpoisoned_huge_page(hpage);
  1418. num_poisoned_pages_inc();
  1419. }
  1420. return ret;
  1421. }
  1422. static int __soft_offline_page(struct page *page, int flags)
  1423. {
  1424. int ret;
  1425. unsigned long pfn = page_to_pfn(page);
  1426. /*
  1427. * Check PageHWPoison again inside page lock because PageHWPoison
  1428. * is set by memory_failure() outside page lock. Note that
  1429. * memory_failure() also double-checks PageHWPoison inside page lock,
  1430. * so there's no race between soft_offline_page() and memory_failure().
  1431. */
  1432. lock_page(page);
  1433. wait_on_page_writeback(page);
  1434. if (PageHWPoison(page)) {
  1435. unlock_page(page);
  1436. put_hwpoison_page(page);
  1437. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1438. return -EBUSY;
  1439. }
  1440. /*
  1441. * Try to invalidate first. This should work for
  1442. * non dirty unmapped page cache pages.
  1443. */
  1444. ret = invalidate_inode_page(page);
  1445. unlock_page(page);
  1446. /*
  1447. * RED-PEN would be better to keep it isolated here, but we
  1448. * would need to fix isolation locking first.
  1449. */
  1450. if (ret == 1) {
  1451. put_hwpoison_page(page);
  1452. pr_info("soft_offline: %#lx: invalidated\n", pfn);
  1453. SetPageHWPoison(page);
  1454. num_poisoned_pages_inc();
  1455. return 0;
  1456. }
  1457. /*
  1458. * Simple invalidation didn't work.
  1459. * Try to migrate to a new page instead. migrate.c
  1460. * handles a large number of cases for us.
  1461. */
  1462. if (PageLRU(page))
  1463. ret = isolate_lru_page(page);
  1464. else
  1465. ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
  1466. /*
  1467. * Drop page reference which is came from get_any_page()
  1468. * successful isolate_lru_page() already took another one.
  1469. */
  1470. put_hwpoison_page(page);
  1471. if (!ret) {
  1472. LIST_HEAD(pagelist);
  1473. /*
  1474. * After isolated lru page, the PageLRU will be cleared,
  1475. * so use !__PageMovable instead for LRU page's mapping
  1476. * cannot have PAGE_MAPPING_MOVABLE.
  1477. */
  1478. if (!__PageMovable(page))
  1479. inc_node_page_state(page, NR_ISOLATED_ANON +
  1480. page_is_file_cache(page));
  1481. list_add(&page->lru, &pagelist);
  1482. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1483. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1484. if (ret) {
  1485. if (!list_empty(&pagelist))
  1486. putback_movable_pages(&pagelist);
  1487. pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
  1488. pfn, ret, page->flags, &page->flags);
  1489. if (ret > 0)
  1490. ret = -EIO;
  1491. }
  1492. } else {
  1493. pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
  1494. pfn, ret, page_count(page), page->flags, &page->flags);
  1495. }
  1496. return ret;
  1497. }
  1498. static int soft_offline_in_use_page(struct page *page, int flags)
  1499. {
  1500. int ret;
  1501. struct page *hpage = compound_head(page);
  1502. if (!PageHuge(page) && PageTransHuge(hpage)) {
  1503. lock_page(hpage);
  1504. if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
  1505. unlock_page(hpage);
  1506. if (!PageAnon(hpage))
  1507. pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
  1508. else
  1509. pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
  1510. put_hwpoison_page(hpage);
  1511. return -EBUSY;
  1512. }
  1513. unlock_page(hpage);
  1514. get_hwpoison_page(page);
  1515. put_hwpoison_page(hpage);
  1516. }
  1517. if (PageHuge(page))
  1518. ret = soft_offline_huge_page(page, flags);
  1519. else
  1520. ret = __soft_offline_page(page, flags);
  1521. return ret;
  1522. }
  1523. static void soft_offline_free_page(struct page *page)
  1524. {
  1525. struct page *head = compound_head(page);
  1526. if (!TestSetPageHWPoison(head)) {
  1527. num_poisoned_pages_inc();
  1528. if (PageHuge(head))
  1529. dequeue_hwpoisoned_huge_page(head);
  1530. }
  1531. }
  1532. /**
  1533. * soft_offline_page - Soft offline a page.
  1534. * @page: page to offline
  1535. * @flags: flags. Same as memory_failure().
  1536. *
  1537. * Returns 0 on success, otherwise negated errno.
  1538. *
  1539. * Soft offline a page, by migration or invalidation,
  1540. * without killing anything. This is for the case when
  1541. * a page is not corrupted yet (so it's still valid to access),
  1542. * but has had a number of corrected errors and is better taken
  1543. * out.
  1544. *
  1545. * The actual policy on when to do that is maintained by
  1546. * user space.
  1547. *
  1548. * This should never impact any application or cause data loss,
  1549. * however it might take some time.
  1550. *
  1551. * This is not a 100% solution for all memory, but tries to be
  1552. * ``good enough'' for the majority of memory.
  1553. */
  1554. int soft_offline_page(struct page *page, int flags)
  1555. {
  1556. int ret;
  1557. unsigned long pfn = page_to_pfn(page);
  1558. if (PageHWPoison(page)) {
  1559. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1560. if (flags & MF_COUNT_INCREASED)
  1561. put_hwpoison_page(page);
  1562. return -EBUSY;
  1563. }
  1564. get_online_mems();
  1565. ret = get_any_page(page, pfn, flags);
  1566. put_online_mems();
  1567. if (ret > 0)
  1568. ret = soft_offline_in_use_page(page, flags);
  1569. else if (ret == 0)
  1570. soft_offline_free_page(page);
  1571. return ret;
  1572. }