coproc.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/bsearch.h>
  20. #include <linux/mm.h>
  21. #include <linux/kvm_host.h>
  22. #include <linux/uaccess.h>
  23. #include <asm/kvm_arm.h>
  24. #include <asm/kvm_host.h>
  25. #include <asm/kvm_emulate.h>
  26. #include <asm/kvm_coproc.h>
  27. #include <asm/kvm_mmu.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/cputype.h>
  30. #include <trace/events/kvm.h>
  31. #include <asm/vfp.h>
  32. #include "../vfp/vfpinstr.h"
  33. #define CREATE_TRACE_POINTS
  34. #include "trace.h"
  35. #include "coproc.h"
  36. /******************************************************************************
  37. * Co-processor emulation
  38. *****************************************************************************/
  39. static bool write_to_read_only(struct kvm_vcpu *vcpu,
  40. const struct coproc_params *params)
  41. {
  42. WARN_ONCE(1, "CP15 write to read-only register\n");
  43. print_cp_instr(params);
  44. kvm_inject_undefined(vcpu);
  45. return false;
  46. }
  47. static bool read_from_write_only(struct kvm_vcpu *vcpu,
  48. const struct coproc_params *params)
  49. {
  50. WARN_ONCE(1, "CP15 read to write-only register\n");
  51. print_cp_instr(params);
  52. kvm_inject_undefined(vcpu);
  53. return false;
  54. }
  55. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  56. static u32 cache_levels;
  57. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  58. #define CSSELR_MAX 12
  59. /*
  60. * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
  61. * of cp15 registers can be viewed either as couple of two u32 registers
  62. * or one u64 register. Current u64 register encoding is that least
  63. * significant u32 word is followed by most significant u32 word.
  64. */
  65. static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
  66. const struct coproc_reg *r,
  67. u64 val)
  68. {
  69. vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
  70. vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
  71. }
  72. static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
  73. const struct coproc_reg *r)
  74. {
  75. u64 val;
  76. val = vcpu_cp15(vcpu, r->reg + 1);
  77. val = val << 32;
  78. val = val | vcpu_cp15(vcpu, r->reg);
  79. return val;
  80. }
  81. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  82. {
  83. kvm_inject_undefined(vcpu);
  84. return 1;
  85. }
  86. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  87. {
  88. /*
  89. * We can get here, if the host has been built without VFPv3 support,
  90. * but the guest attempted a floating point operation.
  91. */
  92. kvm_inject_undefined(vcpu);
  93. return 1;
  94. }
  95. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  96. {
  97. kvm_inject_undefined(vcpu);
  98. return 1;
  99. }
  100. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  101. {
  102. /*
  103. * Compute guest MPIDR. We build a virtual cluster out of the
  104. * vcpu_id, but we read the 'U' bit from the underlying
  105. * hardware directly.
  106. */
  107. vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
  108. ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
  109. (vcpu->vcpu_id & 3));
  110. }
  111. /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
  112. static bool access_actlr(struct kvm_vcpu *vcpu,
  113. const struct coproc_params *p,
  114. const struct coproc_reg *r)
  115. {
  116. if (p->is_write)
  117. return ignore_write(vcpu, p);
  118. *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
  119. return true;
  120. }
  121. /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
  122. static bool access_cbar(struct kvm_vcpu *vcpu,
  123. const struct coproc_params *p,
  124. const struct coproc_reg *r)
  125. {
  126. if (p->is_write)
  127. return write_to_read_only(vcpu, p);
  128. return read_zero(vcpu, p);
  129. }
  130. /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
  131. static bool access_l2ctlr(struct kvm_vcpu *vcpu,
  132. const struct coproc_params *p,
  133. const struct coproc_reg *r)
  134. {
  135. if (p->is_write)
  136. return ignore_write(vcpu, p);
  137. *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
  138. return true;
  139. }
  140. static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  141. {
  142. u32 l2ctlr, ncores;
  143. asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
  144. l2ctlr &= ~(3 << 24);
  145. ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
  146. /* How many cores in the current cluster and the next ones */
  147. ncores -= (vcpu->vcpu_id & ~3);
  148. /* Cap it to the maximum number of cores in a single cluster */
  149. ncores = min(ncores, 3U);
  150. l2ctlr |= (ncores & 3) << 24;
  151. vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
  152. }
  153. static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  154. {
  155. u32 actlr;
  156. /* ACTLR contains SMP bit: make sure you create all cpus first! */
  157. asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
  158. /* Make the SMP bit consistent with the guest configuration */
  159. if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
  160. actlr |= 1U << 6;
  161. else
  162. actlr &= ~(1U << 6);
  163. vcpu_cp15(vcpu, c1_ACTLR) = actlr;
  164. }
  165. /*
  166. * TRM entries: A7:4.3.50, A15:4.3.49
  167. * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
  168. */
  169. static bool access_l2ectlr(struct kvm_vcpu *vcpu,
  170. const struct coproc_params *p,
  171. const struct coproc_reg *r)
  172. {
  173. if (p->is_write)
  174. return ignore_write(vcpu, p);
  175. *vcpu_reg(vcpu, p->Rt1) = 0;
  176. return true;
  177. }
  178. /*
  179. * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
  180. */
  181. static bool access_dcsw(struct kvm_vcpu *vcpu,
  182. const struct coproc_params *p,
  183. const struct coproc_reg *r)
  184. {
  185. if (!p->is_write)
  186. return read_from_write_only(vcpu, p);
  187. kvm_set_way_flush(vcpu);
  188. return true;
  189. }
  190. /*
  191. * Generic accessor for VM registers. Only called as long as HCR_TVM
  192. * is set. If the guest enables the MMU, we stop trapping the VM
  193. * sys_regs and leave it in complete control of the caches.
  194. *
  195. * Used by the cpu-specific code.
  196. */
  197. bool access_vm_reg(struct kvm_vcpu *vcpu,
  198. const struct coproc_params *p,
  199. const struct coproc_reg *r)
  200. {
  201. bool was_enabled = vcpu_has_cache_enabled(vcpu);
  202. BUG_ON(!p->is_write);
  203. vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
  204. if (p->is_64bit)
  205. vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
  206. kvm_toggle_cache(vcpu, was_enabled);
  207. return true;
  208. }
  209. static bool access_gic_sgi(struct kvm_vcpu *vcpu,
  210. const struct coproc_params *p,
  211. const struct coproc_reg *r)
  212. {
  213. u64 reg;
  214. bool g1;
  215. if (!p->is_write)
  216. return read_from_write_only(vcpu, p);
  217. reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
  218. reg |= *vcpu_reg(vcpu, p->Rt1) ;
  219. /*
  220. * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
  221. * Group0 SGIs only, while ICC_SGI1R can generate either group,
  222. * depending on the SGI configuration. ICC_ASGI1R is effectively
  223. * equivalent to ICC_SGI0R, as there is no "alternative" secure
  224. * group.
  225. */
  226. switch (p->Op1) {
  227. default: /* Keep GCC quiet */
  228. case 0: /* ICC_SGI1R */
  229. g1 = true;
  230. break;
  231. case 1: /* ICC_ASGI1R */
  232. case 2: /* ICC_SGI0R */
  233. g1 = false;
  234. break;
  235. }
  236. vgic_v3_dispatch_sgi(vcpu, reg, g1);
  237. return true;
  238. }
  239. static bool access_gic_sre(struct kvm_vcpu *vcpu,
  240. const struct coproc_params *p,
  241. const struct coproc_reg *r)
  242. {
  243. if (p->is_write)
  244. return ignore_write(vcpu, p);
  245. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
  246. return true;
  247. }
  248. static bool access_cntp_tval(struct kvm_vcpu *vcpu,
  249. const struct coproc_params *p,
  250. const struct coproc_reg *r)
  251. {
  252. u64 now = kvm_phys_timer_read();
  253. u64 val;
  254. if (p->is_write) {
  255. val = *vcpu_reg(vcpu, p->Rt1);
  256. kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val + now);
  257. } else {
  258. val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
  259. *vcpu_reg(vcpu, p->Rt1) = val - now;
  260. }
  261. return true;
  262. }
  263. static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
  264. const struct coproc_params *p,
  265. const struct coproc_reg *r)
  266. {
  267. u32 val;
  268. if (p->is_write) {
  269. val = *vcpu_reg(vcpu, p->Rt1);
  270. kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, val);
  271. } else {
  272. val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
  273. *vcpu_reg(vcpu, p->Rt1) = val;
  274. }
  275. return true;
  276. }
  277. static bool access_cntp_cval(struct kvm_vcpu *vcpu,
  278. const struct coproc_params *p,
  279. const struct coproc_reg *r)
  280. {
  281. u64 val;
  282. if (p->is_write) {
  283. val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
  284. val |= *vcpu_reg(vcpu, p->Rt1);
  285. kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val);
  286. } else {
  287. val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
  288. *vcpu_reg(vcpu, p->Rt1) = val;
  289. *vcpu_reg(vcpu, p->Rt2) = val >> 32;
  290. }
  291. return true;
  292. }
  293. /*
  294. * We could trap ID_DFR0 and tell the guest we don't support performance
  295. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  296. * NAKed, so it will read the PMCR anyway.
  297. *
  298. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  299. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  300. * all PM registers, which doesn't crash the guest kernel at least.
  301. */
  302. static bool trap_raz_wi(struct kvm_vcpu *vcpu,
  303. const struct coproc_params *p,
  304. const struct coproc_reg *r)
  305. {
  306. if (p->is_write)
  307. return ignore_write(vcpu, p);
  308. else
  309. return read_zero(vcpu, p);
  310. }
  311. #define access_pmcr trap_raz_wi
  312. #define access_pmcntenset trap_raz_wi
  313. #define access_pmcntenclr trap_raz_wi
  314. #define access_pmovsr trap_raz_wi
  315. #define access_pmselr trap_raz_wi
  316. #define access_pmceid0 trap_raz_wi
  317. #define access_pmceid1 trap_raz_wi
  318. #define access_pmccntr trap_raz_wi
  319. #define access_pmxevtyper trap_raz_wi
  320. #define access_pmxevcntr trap_raz_wi
  321. #define access_pmuserenr trap_raz_wi
  322. #define access_pmintenset trap_raz_wi
  323. #define access_pmintenclr trap_raz_wi
  324. /* Architected CP15 registers.
  325. * CRn denotes the primary register number, but is copied to the CRm in the
  326. * user space API for 64-bit register access in line with the terminology used
  327. * in the ARM ARM.
  328. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
  329. * registers preceding 32-bit ones.
  330. */
  331. static const struct coproc_reg cp15_regs[] = {
  332. /* MPIDR: we use VMPIDR for guest access. */
  333. { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
  334. NULL, reset_mpidr, c0_MPIDR },
  335. /* CSSELR: swapped by interrupt.S. */
  336. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  337. NULL, reset_unknown, c0_CSSELR },
  338. /* ACTLR: trapped by HCR.TAC bit. */
  339. { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
  340. access_actlr, reset_actlr, c1_ACTLR },
  341. /* CPACR: swapped by interrupt.S. */
  342. { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
  343. NULL, reset_val, c1_CPACR, 0x00000000 },
  344. /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
  345. { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
  346. { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
  347. access_vm_reg, reset_unknown, c2_TTBR0 },
  348. { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
  349. access_vm_reg, reset_unknown, c2_TTBR1 },
  350. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  351. access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
  352. { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
  353. /* DACR: swapped by interrupt.S. */
  354. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  355. access_vm_reg, reset_unknown, c3_DACR },
  356. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  357. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  358. access_vm_reg, reset_unknown, c5_DFSR },
  359. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  360. access_vm_reg, reset_unknown, c5_IFSR },
  361. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  362. access_vm_reg, reset_unknown, c5_ADFSR },
  363. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  364. access_vm_reg, reset_unknown, c5_AIFSR },
  365. /* DFAR/IFAR: swapped by interrupt.S. */
  366. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  367. access_vm_reg, reset_unknown, c6_DFAR },
  368. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  369. access_vm_reg, reset_unknown, c6_IFAR },
  370. /* PAR swapped by interrupt.S */
  371. { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
  372. /*
  373. * DC{C,I,CI}SW operations:
  374. */
  375. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  376. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  377. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  378. /*
  379. * L2CTLR access (guest wants to know #CPUs).
  380. */
  381. { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
  382. access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
  383. { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
  384. /*
  385. * Dummy performance monitor implementation.
  386. */
  387. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  388. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  389. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  390. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  391. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  392. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  393. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  394. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  395. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  396. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  397. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  398. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  399. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  400. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  401. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  402. access_vm_reg, reset_unknown, c10_PRRR},
  403. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  404. access_vm_reg, reset_unknown, c10_NMRR},
  405. /* AMAIR0/AMAIR1: swapped by interrupt.S. */
  406. { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
  407. access_vm_reg, reset_unknown, c10_AMAIR0},
  408. { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
  409. access_vm_reg, reset_unknown, c10_AMAIR1},
  410. /* ICC_SGI1R */
  411. { CRm64(12), Op1( 0), is64, access_gic_sgi},
  412. /* ICC_ASGI1R */
  413. { CRm64(12), Op1( 1), is64, access_gic_sgi},
  414. /* ICC_SGI0R */
  415. { CRm64(12), Op1( 2), is64, access_gic_sgi},
  416. /* VBAR: swapped by interrupt.S. */
  417. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  418. NULL, reset_val, c12_VBAR, 0x00000000 },
  419. /* ICC_SRE */
  420. { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
  421. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  422. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  423. access_vm_reg, reset_val, c13_CID, 0x00000000 },
  424. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  425. NULL, reset_unknown, c13_TID_URW },
  426. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  427. NULL, reset_unknown, c13_TID_URO },
  428. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  429. NULL, reset_unknown, c13_TID_PRIV },
  430. /* CNTP */
  431. { CRm64(14), Op1( 2), is64, access_cntp_cval},
  432. /* CNTKCTL: swapped by interrupt.S. */
  433. { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
  434. NULL, reset_val, c14_CNTKCTL, 0x00000000 },
  435. /* CNTP */
  436. { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
  437. { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
  438. /* The Configuration Base Address Register. */
  439. { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
  440. };
  441. static int check_reg_table(const struct coproc_reg *table, unsigned int n)
  442. {
  443. unsigned int i;
  444. for (i = 1; i < n; i++) {
  445. if (cmp_reg(&table[i-1], &table[i]) >= 0) {
  446. kvm_err("reg table %p out of order (%d)\n", table, i - 1);
  447. return 1;
  448. }
  449. }
  450. return 0;
  451. }
  452. /* Target specific emulation tables */
  453. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  454. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  455. {
  456. BUG_ON(check_reg_table(table->table, table->num));
  457. target_tables[table->target] = table;
  458. }
  459. /* Get specific register table for this target. */
  460. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  461. {
  462. struct kvm_coproc_target_table *table;
  463. table = target_tables[target];
  464. *num = table->num;
  465. return table->table;
  466. }
  467. #define reg_to_match_value(x) \
  468. ({ \
  469. unsigned long val; \
  470. val = (x)->CRn << 11; \
  471. val |= (x)->CRm << 7; \
  472. val |= (x)->Op1 << 4; \
  473. val |= (x)->Op2 << 1; \
  474. val |= !(x)->is_64bit; \
  475. val; \
  476. })
  477. static int match_reg(const void *key, const void *elt)
  478. {
  479. const unsigned long pval = (unsigned long)key;
  480. const struct coproc_reg *r = elt;
  481. return pval - reg_to_match_value(r);
  482. }
  483. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  484. const struct coproc_reg table[],
  485. unsigned int num)
  486. {
  487. unsigned long pval = reg_to_match_value(params);
  488. return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
  489. }
  490. static int emulate_cp15(struct kvm_vcpu *vcpu,
  491. const struct coproc_params *params)
  492. {
  493. size_t num;
  494. const struct coproc_reg *table, *r;
  495. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  496. params->CRm, params->Op2, params->is_write);
  497. table = get_target_table(vcpu->arch.target, &num);
  498. /* Search target-specific then generic table. */
  499. r = find_reg(params, table, num);
  500. if (!r)
  501. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  502. if (likely(r)) {
  503. /* If we don't have an accessor, we should never get here! */
  504. BUG_ON(!r->access);
  505. if (likely(r->access(vcpu, params, r))) {
  506. /* Skip instruction, since it was emulated */
  507. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  508. }
  509. } else {
  510. /* If access function fails, it should complain. */
  511. kvm_err("Unsupported guest CP15 access at: %08lx\n",
  512. *vcpu_pc(vcpu));
  513. print_cp_instr(params);
  514. kvm_inject_undefined(vcpu);
  515. }
  516. return 1;
  517. }
  518. static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
  519. {
  520. struct coproc_params params;
  521. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  522. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  523. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  524. params.is_64bit = true;
  525. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
  526. params.Op2 = 0;
  527. params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  528. params.CRm = 0;
  529. return params;
  530. }
  531. /**
  532. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  533. * @vcpu: The VCPU pointer
  534. * @run: The kvm_run struct
  535. */
  536. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  537. {
  538. struct coproc_params params = decode_64bit_hsr(vcpu);
  539. return emulate_cp15(vcpu, &params);
  540. }
  541. /**
  542. * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
  543. * @vcpu: The VCPU pointer
  544. * @run: The kvm_run struct
  545. */
  546. int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  547. {
  548. struct coproc_params params = decode_64bit_hsr(vcpu);
  549. /* raz_wi cp14 */
  550. trap_raz_wi(vcpu, &params, NULL);
  551. /* handled */
  552. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  553. return 1;
  554. }
  555. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  556. const struct coproc_reg *table, size_t num)
  557. {
  558. unsigned long i;
  559. for (i = 0; i < num; i++)
  560. if (table[i].reset)
  561. table[i].reset(vcpu, &table[i]);
  562. }
  563. static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
  564. {
  565. struct coproc_params params;
  566. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  567. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  568. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  569. params.is_64bit = false;
  570. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  571. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
  572. params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
  573. params.Rt2 = 0;
  574. return params;
  575. }
  576. /**
  577. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  578. * @vcpu: The VCPU pointer
  579. * @run: The kvm_run struct
  580. */
  581. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  582. {
  583. struct coproc_params params = decode_32bit_hsr(vcpu);
  584. return emulate_cp15(vcpu, &params);
  585. }
  586. /**
  587. * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
  588. * @vcpu: The VCPU pointer
  589. * @run: The kvm_run struct
  590. */
  591. int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  592. {
  593. struct coproc_params params = decode_32bit_hsr(vcpu);
  594. /* raz_wi cp14 */
  595. trap_raz_wi(vcpu, &params, NULL);
  596. /* handled */
  597. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  598. return 1;
  599. }
  600. /******************************************************************************
  601. * Userspace API
  602. *****************************************************************************/
  603. static bool index_to_params(u64 id, struct coproc_params *params)
  604. {
  605. switch (id & KVM_REG_SIZE_MASK) {
  606. case KVM_REG_SIZE_U32:
  607. /* Any unused index bits means it's not valid. */
  608. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  609. | KVM_REG_ARM_COPROC_MASK
  610. | KVM_REG_ARM_32_CRN_MASK
  611. | KVM_REG_ARM_CRM_MASK
  612. | KVM_REG_ARM_OPC1_MASK
  613. | KVM_REG_ARM_32_OPC2_MASK))
  614. return false;
  615. params->is_64bit = false;
  616. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  617. >> KVM_REG_ARM_32_CRN_SHIFT);
  618. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  619. >> KVM_REG_ARM_CRM_SHIFT);
  620. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  621. >> KVM_REG_ARM_OPC1_SHIFT);
  622. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  623. >> KVM_REG_ARM_32_OPC2_SHIFT);
  624. return true;
  625. case KVM_REG_SIZE_U64:
  626. /* Any unused index bits means it's not valid. */
  627. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  628. | KVM_REG_ARM_COPROC_MASK
  629. | KVM_REG_ARM_CRM_MASK
  630. | KVM_REG_ARM_OPC1_MASK))
  631. return false;
  632. params->is_64bit = true;
  633. /* CRm to CRn: see cp15_to_index for details */
  634. params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
  635. >> KVM_REG_ARM_CRM_SHIFT);
  636. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  637. >> KVM_REG_ARM_OPC1_SHIFT);
  638. params->Op2 = 0;
  639. params->CRm = 0;
  640. return true;
  641. default:
  642. return false;
  643. }
  644. }
  645. /* Decode an index value, and find the cp15 coproc_reg entry. */
  646. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  647. u64 id)
  648. {
  649. size_t num;
  650. const struct coproc_reg *table, *r;
  651. struct coproc_params params;
  652. /* We only do cp15 for now. */
  653. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  654. return NULL;
  655. if (!index_to_params(id, &params))
  656. return NULL;
  657. table = get_target_table(vcpu->arch.target, &num);
  658. r = find_reg(&params, table, num);
  659. if (!r)
  660. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  661. /* Not saved in the cp15 array? */
  662. if (r && !r->reg)
  663. r = NULL;
  664. return r;
  665. }
  666. /*
  667. * These are the invariant cp15 registers: we let the guest see the host
  668. * versions of these, so they're part of the guest state.
  669. *
  670. * A future CPU may provide a mechanism to present different values to
  671. * the guest, or a future kvm may trap them.
  672. */
  673. /* Unfortunately, there's no register-argument for mrc, so generate. */
  674. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  675. static void get_##name(struct kvm_vcpu *v, \
  676. const struct coproc_reg *r) \
  677. { \
  678. u32 val; \
  679. \
  680. asm volatile("mrc p15, " __stringify(op1) \
  681. ", %0, c" __stringify(crn) \
  682. ", c" __stringify(crm) \
  683. ", " __stringify(op2) "\n" : "=r" (val)); \
  684. ((struct coproc_reg *)r)->val = val; \
  685. }
  686. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  687. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  688. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  689. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  690. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  691. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  692. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  693. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  694. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  695. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  696. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  697. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  698. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  699. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  700. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  701. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  702. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  703. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  704. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  705. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  706. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  707. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  708. static struct coproc_reg invariant_cp15[] = {
  709. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  710. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  711. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  712. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  713. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  714. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  715. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  716. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  717. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  718. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  719. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  720. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  721. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  722. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  723. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  724. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  725. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  726. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  727. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  728. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  729. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  730. };
  731. /*
  732. * Reads a register value from a userspace address to a kernel
  733. * variable. Make sure that register size matches sizeof(*__val).
  734. */
  735. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  736. {
  737. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  738. return -EFAULT;
  739. return 0;
  740. }
  741. /*
  742. * Writes a register value to a userspace address from a kernel variable.
  743. * Make sure that register size matches sizeof(*__val).
  744. */
  745. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  746. {
  747. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  748. return -EFAULT;
  749. return 0;
  750. }
  751. static int get_invariant_cp15(u64 id, void __user *uaddr)
  752. {
  753. struct coproc_params params;
  754. const struct coproc_reg *r;
  755. int ret;
  756. if (!index_to_params(id, &params))
  757. return -ENOENT;
  758. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  759. if (!r)
  760. return -ENOENT;
  761. ret = -ENOENT;
  762. if (KVM_REG_SIZE(id) == 4) {
  763. u32 val = r->val;
  764. ret = reg_to_user(uaddr, &val, id);
  765. } else if (KVM_REG_SIZE(id) == 8) {
  766. ret = reg_to_user(uaddr, &r->val, id);
  767. }
  768. return ret;
  769. }
  770. static int set_invariant_cp15(u64 id, void __user *uaddr)
  771. {
  772. struct coproc_params params;
  773. const struct coproc_reg *r;
  774. int err;
  775. u64 val;
  776. if (!index_to_params(id, &params))
  777. return -ENOENT;
  778. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  779. if (!r)
  780. return -ENOENT;
  781. err = -ENOENT;
  782. if (KVM_REG_SIZE(id) == 4) {
  783. u32 val32;
  784. err = reg_from_user(&val32, uaddr, id);
  785. if (!err)
  786. val = val32;
  787. } else if (KVM_REG_SIZE(id) == 8) {
  788. err = reg_from_user(&val, uaddr, id);
  789. }
  790. if (err)
  791. return err;
  792. /* This is what we mean by invariant: you can't change it. */
  793. if (r->val != val)
  794. return -EINVAL;
  795. return 0;
  796. }
  797. static bool is_valid_cache(u32 val)
  798. {
  799. u32 level, ctype;
  800. if (val >= CSSELR_MAX)
  801. return false;
  802. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  803. level = (val >> 1);
  804. ctype = (cache_levels >> (level * 3)) & 7;
  805. switch (ctype) {
  806. case 0: /* No cache */
  807. return false;
  808. case 1: /* Instruction cache only */
  809. return (val & 1);
  810. case 2: /* Data cache only */
  811. case 4: /* Unified cache */
  812. return !(val & 1);
  813. case 3: /* Separate instruction and data caches */
  814. return true;
  815. default: /* Reserved: we can't know instruction or data. */
  816. return false;
  817. }
  818. }
  819. /* Which cache CCSIDR represents depends on CSSELR value. */
  820. static u32 get_ccsidr(u32 csselr)
  821. {
  822. u32 ccsidr;
  823. /* Make sure noone else changes CSSELR during this! */
  824. local_irq_disable();
  825. /* Put value into CSSELR */
  826. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  827. isb();
  828. /* Read result out of CCSIDR */
  829. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  830. local_irq_enable();
  831. return ccsidr;
  832. }
  833. static int demux_c15_get(u64 id, void __user *uaddr)
  834. {
  835. u32 val;
  836. u32 __user *uval = uaddr;
  837. /* Fail if we have unknown bits set. */
  838. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  839. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  840. return -ENOENT;
  841. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  842. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  843. if (KVM_REG_SIZE(id) != 4)
  844. return -ENOENT;
  845. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  846. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  847. if (!is_valid_cache(val))
  848. return -ENOENT;
  849. return put_user(get_ccsidr(val), uval);
  850. default:
  851. return -ENOENT;
  852. }
  853. }
  854. static int demux_c15_set(u64 id, void __user *uaddr)
  855. {
  856. u32 val, newval;
  857. u32 __user *uval = uaddr;
  858. /* Fail if we have unknown bits set. */
  859. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  860. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  861. return -ENOENT;
  862. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  863. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  864. if (KVM_REG_SIZE(id) != 4)
  865. return -ENOENT;
  866. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  867. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  868. if (!is_valid_cache(val))
  869. return -ENOENT;
  870. if (get_user(newval, uval))
  871. return -EFAULT;
  872. /* This is also invariant: you can't change it. */
  873. if (newval != get_ccsidr(val))
  874. return -EINVAL;
  875. return 0;
  876. default:
  877. return -ENOENT;
  878. }
  879. }
  880. #ifdef CONFIG_VFPv3
  881. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  882. KVM_REG_ARM_VFP_FPSCR,
  883. KVM_REG_ARM_VFP_FPINST,
  884. KVM_REG_ARM_VFP_FPINST2,
  885. KVM_REG_ARM_VFP_MVFR0,
  886. KVM_REG_ARM_VFP_MVFR1,
  887. KVM_REG_ARM_VFP_FPSID };
  888. static unsigned int num_fp_regs(void)
  889. {
  890. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  891. return 32;
  892. else
  893. return 16;
  894. }
  895. static unsigned int num_vfp_regs(void)
  896. {
  897. /* Normal FP regs + control regs. */
  898. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  899. }
  900. static int copy_vfp_regids(u64 __user *uindices)
  901. {
  902. unsigned int i;
  903. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  904. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  905. for (i = 0; i < num_fp_regs(); i++) {
  906. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  907. uindices))
  908. return -EFAULT;
  909. uindices++;
  910. }
  911. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  912. if (put_user(u32reg | vfp_sysregs[i], uindices))
  913. return -EFAULT;
  914. uindices++;
  915. }
  916. return num_vfp_regs();
  917. }
  918. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  919. {
  920. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  921. u32 val;
  922. /* Fail if we have unknown bits set. */
  923. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  924. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  925. return -ENOENT;
  926. if (vfpid < num_fp_regs()) {
  927. if (KVM_REG_SIZE(id) != 8)
  928. return -ENOENT;
  929. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
  930. id);
  931. }
  932. /* FP control registers are all 32 bit. */
  933. if (KVM_REG_SIZE(id) != 4)
  934. return -ENOENT;
  935. switch (vfpid) {
  936. case KVM_REG_ARM_VFP_FPEXC:
  937. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
  938. case KVM_REG_ARM_VFP_FPSCR:
  939. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
  940. case KVM_REG_ARM_VFP_FPINST:
  941. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
  942. case KVM_REG_ARM_VFP_FPINST2:
  943. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
  944. case KVM_REG_ARM_VFP_MVFR0:
  945. val = fmrx(MVFR0);
  946. return reg_to_user(uaddr, &val, id);
  947. case KVM_REG_ARM_VFP_MVFR1:
  948. val = fmrx(MVFR1);
  949. return reg_to_user(uaddr, &val, id);
  950. case KVM_REG_ARM_VFP_FPSID:
  951. val = fmrx(FPSID);
  952. return reg_to_user(uaddr, &val, id);
  953. default:
  954. return -ENOENT;
  955. }
  956. }
  957. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  958. {
  959. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  960. u32 val;
  961. /* Fail if we have unknown bits set. */
  962. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  963. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  964. return -ENOENT;
  965. if (vfpid < num_fp_regs()) {
  966. if (KVM_REG_SIZE(id) != 8)
  967. return -ENOENT;
  968. return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
  969. uaddr, id);
  970. }
  971. /* FP control registers are all 32 bit. */
  972. if (KVM_REG_SIZE(id) != 4)
  973. return -ENOENT;
  974. switch (vfpid) {
  975. case KVM_REG_ARM_VFP_FPEXC:
  976. return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
  977. case KVM_REG_ARM_VFP_FPSCR:
  978. return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
  979. case KVM_REG_ARM_VFP_FPINST:
  980. return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
  981. case KVM_REG_ARM_VFP_FPINST2:
  982. return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
  983. /* These are invariant. */
  984. case KVM_REG_ARM_VFP_MVFR0:
  985. if (reg_from_user(&val, uaddr, id))
  986. return -EFAULT;
  987. if (val != fmrx(MVFR0))
  988. return -EINVAL;
  989. return 0;
  990. case KVM_REG_ARM_VFP_MVFR1:
  991. if (reg_from_user(&val, uaddr, id))
  992. return -EFAULT;
  993. if (val != fmrx(MVFR1))
  994. return -EINVAL;
  995. return 0;
  996. case KVM_REG_ARM_VFP_FPSID:
  997. if (reg_from_user(&val, uaddr, id))
  998. return -EFAULT;
  999. if (val != fmrx(FPSID))
  1000. return -EINVAL;
  1001. return 0;
  1002. default:
  1003. return -ENOENT;
  1004. }
  1005. }
  1006. #else /* !CONFIG_VFPv3 */
  1007. static unsigned int num_vfp_regs(void)
  1008. {
  1009. return 0;
  1010. }
  1011. static int copy_vfp_regids(u64 __user *uindices)
  1012. {
  1013. return 0;
  1014. }
  1015. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  1016. {
  1017. return -ENOENT;
  1018. }
  1019. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  1020. {
  1021. return -ENOENT;
  1022. }
  1023. #endif /* !CONFIG_VFPv3 */
  1024. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  1025. {
  1026. const struct coproc_reg *r;
  1027. void __user *uaddr = (void __user *)(long)reg->addr;
  1028. int ret;
  1029. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  1030. return demux_c15_get(reg->id, uaddr);
  1031. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  1032. return vfp_get_reg(vcpu, reg->id, uaddr);
  1033. r = index_to_coproc_reg(vcpu, reg->id);
  1034. if (!r)
  1035. return get_invariant_cp15(reg->id, uaddr);
  1036. ret = -ENOENT;
  1037. if (KVM_REG_SIZE(reg->id) == 8) {
  1038. u64 val;
  1039. val = vcpu_cp15_reg64_get(vcpu, r);
  1040. ret = reg_to_user(uaddr, &val, reg->id);
  1041. } else if (KVM_REG_SIZE(reg->id) == 4) {
  1042. ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
  1043. }
  1044. return ret;
  1045. }
  1046. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  1047. {
  1048. const struct coproc_reg *r;
  1049. void __user *uaddr = (void __user *)(long)reg->addr;
  1050. int ret;
  1051. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  1052. return demux_c15_set(reg->id, uaddr);
  1053. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  1054. return vfp_set_reg(vcpu, reg->id, uaddr);
  1055. r = index_to_coproc_reg(vcpu, reg->id);
  1056. if (!r)
  1057. return set_invariant_cp15(reg->id, uaddr);
  1058. ret = -ENOENT;
  1059. if (KVM_REG_SIZE(reg->id) == 8) {
  1060. u64 val;
  1061. ret = reg_from_user(&val, uaddr, reg->id);
  1062. if (!ret)
  1063. vcpu_cp15_reg64_set(vcpu, r, val);
  1064. } else if (KVM_REG_SIZE(reg->id) == 4) {
  1065. ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
  1066. }
  1067. return ret;
  1068. }
  1069. static unsigned int num_demux_regs(void)
  1070. {
  1071. unsigned int i, count = 0;
  1072. for (i = 0; i < CSSELR_MAX; i++)
  1073. if (is_valid_cache(i))
  1074. count++;
  1075. return count;
  1076. }
  1077. static int write_demux_regids(u64 __user *uindices)
  1078. {
  1079. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  1080. unsigned int i;
  1081. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  1082. for (i = 0; i < CSSELR_MAX; i++) {
  1083. if (!is_valid_cache(i))
  1084. continue;
  1085. if (put_user(val | i, uindices))
  1086. return -EFAULT;
  1087. uindices++;
  1088. }
  1089. return 0;
  1090. }
  1091. static u64 cp15_to_index(const struct coproc_reg *reg)
  1092. {
  1093. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  1094. if (reg->is_64bit) {
  1095. val |= KVM_REG_SIZE_U64;
  1096. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  1097. /*
  1098. * CRn always denotes the primary coproc. reg. nr. for the
  1099. * in-kernel representation, but the user space API uses the
  1100. * CRm for the encoding, because it is modelled after the
  1101. * MRRC/MCRR instructions: see the ARM ARM rev. c page
  1102. * B3-1445
  1103. */
  1104. val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
  1105. } else {
  1106. val |= KVM_REG_SIZE_U32;
  1107. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  1108. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  1109. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  1110. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  1111. }
  1112. return val;
  1113. }
  1114. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  1115. {
  1116. if (!*uind)
  1117. return true;
  1118. if (put_user(cp15_to_index(reg), *uind))
  1119. return false;
  1120. (*uind)++;
  1121. return true;
  1122. }
  1123. /* Assumed ordered tables, see kvm_coproc_table_init. */
  1124. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  1125. {
  1126. const struct coproc_reg *i1, *i2, *end1, *end2;
  1127. unsigned int total = 0;
  1128. size_t num;
  1129. /* We check for duplicates here, to allow arch-specific overrides. */
  1130. i1 = get_target_table(vcpu->arch.target, &num);
  1131. end1 = i1 + num;
  1132. i2 = cp15_regs;
  1133. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  1134. BUG_ON(i1 == end1 || i2 == end2);
  1135. /* Walk carefully, as both tables may refer to the same register. */
  1136. while (i1 || i2) {
  1137. int cmp = cmp_reg(i1, i2);
  1138. /* target-specific overrides generic entry. */
  1139. if (cmp <= 0) {
  1140. /* Ignore registers we trap but don't save. */
  1141. if (i1->reg) {
  1142. if (!copy_reg_to_user(i1, &uind))
  1143. return -EFAULT;
  1144. total++;
  1145. }
  1146. } else {
  1147. /* Ignore registers we trap but don't save. */
  1148. if (i2->reg) {
  1149. if (!copy_reg_to_user(i2, &uind))
  1150. return -EFAULT;
  1151. total++;
  1152. }
  1153. }
  1154. if (cmp <= 0 && ++i1 == end1)
  1155. i1 = NULL;
  1156. if (cmp >= 0 && ++i2 == end2)
  1157. i2 = NULL;
  1158. }
  1159. return total;
  1160. }
  1161. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  1162. {
  1163. return ARRAY_SIZE(invariant_cp15)
  1164. + num_demux_regs()
  1165. + num_vfp_regs()
  1166. + walk_cp15(vcpu, (u64 __user *)NULL);
  1167. }
  1168. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  1169. {
  1170. unsigned int i;
  1171. int err;
  1172. /* Then give them all the invariant registers' indices. */
  1173. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  1174. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  1175. return -EFAULT;
  1176. uindices++;
  1177. }
  1178. err = walk_cp15(vcpu, uindices);
  1179. if (err < 0)
  1180. return err;
  1181. uindices += err;
  1182. err = copy_vfp_regids(uindices);
  1183. if (err < 0)
  1184. return err;
  1185. uindices += err;
  1186. return write_demux_regids(uindices);
  1187. }
  1188. void kvm_coproc_table_init(void)
  1189. {
  1190. unsigned int i;
  1191. /* Make sure tables are unique and in order. */
  1192. BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
  1193. BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
  1194. /* We abuse the reset function to overwrite the table itself. */
  1195. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  1196. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  1197. /*
  1198. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  1199. *
  1200. * If software reads the Cache Type fields from Ctype1
  1201. * upwards, once it has seen a value of 0b000, no caches
  1202. * exist at further-out levels of the hierarchy. So, for
  1203. * example, if Ctype3 is the first Cache Type field with a
  1204. * value of 0b000, the values of Ctype4 to Ctype7 must be
  1205. * ignored.
  1206. */
  1207. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  1208. for (i = 0; i < 7; i++)
  1209. if (((cache_levels >> (i*3)) & 7) == 0)
  1210. break;
  1211. /* Clear all higher bits. */
  1212. cache_levels &= (1 << (i*3))-1;
  1213. }
  1214. /**
  1215. * kvm_reset_coprocs - sets cp15 registers to reset value
  1216. * @vcpu: The VCPU pointer
  1217. *
  1218. * This function finds the right table above and sets the registers on the
  1219. * virtual CPU struct to their architecturally defined reset values.
  1220. */
  1221. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  1222. {
  1223. size_t num;
  1224. const struct coproc_reg *table;
  1225. /* Catch someone adding a register without putting in reset entry. */
  1226. memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
  1227. /* Generic chip reset first (so target could override). */
  1228. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  1229. table = get_target_table(vcpu->arch.target, &num);
  1230. reset_coproc_regs(vcpu, table, num);
  1231. for (num = 1; num < NR_CP15_REGS; num++)
  1232. if (vcpu_cp15(vcpu, num) == 0x42424242)
  1233. panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
  1234. }