skcipher.h 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688
  1. /*
  2. * Symmetric key ciphers.
  3. *
  4. * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the Free
  8. * Software Foundation; either version 2 of the License, or (at your option)
  9. * any later version.
  10. *
  11. */
  12. #ifndef _CRYPTO_SKCIPHER_H
  13. #define _CRYPTO_SKCIPHER_H
  14. #include <linux/crypto.h>
  15. #include <linux/kernel.h>
  16. #include <linux/slab.h>
  17. /**
  18. * struct skcipher_request - Symmetric key cipher request
  19. * @cryptlen: Number of bytes to encrypt or decrypt
  20. * @iv: Initialisation Vector
  21. * @src: Source SG list
  22. * @dst: Destination SG list
  23. * @base: Underlying async request request
  24. * @__ctx: Start of private context data
  25. */
  26. struct skcipher_request {
  27. unsigned int cryptlen;
  28. u8 *iv;
  29. struct scatterlist *src;
  30. struct scatterlist *dst;
  31. struct crypto_async_request base;
  32. void *__ctx[] CRYPTO_MINALIGN_ATTR;
  33. };
  34. /**
  35. * struct skcipher_givcrypt_request - Crypto request with IV generation
  36. * @seq: Sequence number for IV generation
  37. * @giv: Space for generated IV
  38. * @creq: The crypto request itself
  39. */
  40. struct skcipher_givcrypt_request {
  41. u64 seq;
  42. u8 *giv;
  43. struct ablkcipher_request creq;
  44. };
  45. struct crypto_skcipher {
  46. int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
  47. unsigned int keylen);
  48. int (*encrypt)(struct skcipher_request *req);
  49. int (*decrypt)(struct skcipher_request *req);
  50. unsigned int ivsize;
  51. unsigned int reqsize;
  52. unsigned int keysize;
  53. struct crypto_tfm base;
  54. };
  55. struct crypto_sync_skcipher {
  56. struct crypto_skcipher base;
  57. };
  58. /**
  59. * struct skcipher_alg - symmetric key cipher definition
  60. * @min_keysize: Minimum key size supported by the transformation. This is the
  61. * smallest key length supported by this transformation algorithm.
  62. * This must be set to one of the pre-defined values as this is
  63. * not hardware specific. Possible values for this field can be
  64. * found via git grep "_MIN_KEY_SIZE" include/crypto/
  65. * @max_keysize: Maximum key size supported by the transformation. This is the
  66. * largest key length supported by this transformation algorithm.
  67. * This must be set to one of the pre-defined values as this is
  68. * not hardware specific. Possible values for this field can be
  69. * found via git grep "_MAX_KEY_SIZE" include/crypto/
  70. * @setkey: Set key for the transformation. This function is used to either
  71. * program a supplied key into the hardware or store the key in the
  72. * transformation context for programming it later. Note that this
  73. * function does modify the transformation context. This function can
  74. * be called multiple times during the existence of the transformation
  75. * object, so one must make sure the key is properly reprogrammed into
  76. * the hardware. This function is also responsible for checking the key
  77. * length for validity. In case a software fallback was put in place in
  78. * the @cra_init call, this function might need to use the fallback if
  79. * the algorithm doesn't support all of the key sizes.
  80. * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
  81. * the supplied scatterlist containing the blocks of data. The crypto
  82. * API consumer is responsible for aligning the entries of the
  83. * scatterlist properly and making sure the chunks are correctly
  84. * sized. In case a software fallback was put in place in the
  85. * @cra_init call, this function might need to use the fallback if
  86. * the algorithm doesn't support all of the key sizes. In case the
  87. * key was stored in transformation context, the key might need to be
  88. * re-programmed into the hardware in this function. This function
  89. * shall not modify the transformation context, as this function may
  90. * be called in parallel with the same transformation object.
  91. * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
  92. * and the conditions are exactly the same.
  93. * @init: Initialize the cryptographic transformation object. This function
  94. * is used to initialize the cryptographic transformation object.
  95. * This function is called only once at the instantiation time, right
  96. * after the transformation context was allocated. In case the
  97. * cryptographic hardware has some special requirements which need to
  98. * be handled by software, this function shall check for the precise
  99. * requirement of the transformation and put any software fallbacks
  100. * in place.
  101. * @exit: Deinitialize the cryptographic transformation object. This is a
  102. * counterpart to @init, used to remove various changes set in
  103. * @init.
  104. * @ivsize: IV size applicable for transformation. The consumer must provide an
  105. * IV of exactly that size to perform the encrypt or decrypt operation.
  106. * @chunksize: Equal to the block size except for stream ciphers such as
  107. * CTR where it is set to the underlying block size.
  108. * @walksize: Equal to the chunk size except in cases where the algorithm is
  109. * considerably more efficient if it can operate on multiple chunks
  110. * in parallel. Should be a multiple of chunksize.
  111. * @base: Definition of a generic crypto algorithm.
  112. *
  113. * All fields except @ivsize are mandatory and must be filled.
  114. */
  115. struct skcipher_alg {
  116. int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
  117. unsigned int keylen);
  118. int (*encrypt)(struct skcipher_request *req);
  119. int (*decrypt)(struct skcipher_request *req);
  120. int (*init)(struct crypto_skcipher *tfm);
  121. void (*exit)(struct crypto_skcipher *tfm);
  122. unsigned int min_keysize;
  123. unsigned int max_keysize;
  124. unsigned int ivsize;
  125. unsigned int chunksize;
  126. unsigned int walksize;
  127. struct crypto_alg base;
  128. };
  129. #define MAX_SYNC_SKCIPHER_REQSIZE 384
  130. /*
  131. * This performs a type-check against the "tfm" argument to make sure
  132. * all users have the correct skcipher tfm for doing on-stack requests.
  133. */
  134. #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
  135. char __##name##_desc[sizeof(struct skcipher_request) + \
  136. MAX_SYNC_SKCIPHER_REQSIZE + \
  137. (!(sizeof((struct crypto_sync_skcipher *)1 == \
  138. (typeof(tfm))1))) \
  139. ] CRYPTO_MINALIGN_ATTR; \
  140. struct skcipher_request *name = (void *)__##name##_desc
  141. #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
  142. char __##name##_desc[sizeof(struct skcipher_request) + \
  143. crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
  144. struct skcipher_request *name = (void *)__##name##_desc
  145. /**
  146. * DOC: Symmetric Key Cipher API
  147. *
  148. * Symmetric key cipher API is used with the ciphers of type
  149. * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
  150. *
  151. * Asynchronous cipher operations imply that the function invocation for a
  152. * cipher request returns immediately before the completion of the operation.
  153. * The cipher request is scheduled as a separate kernel thread and therefore
  154. * load-balanced on the different CPUs via the process scheduler. To allow
  155. * the kernel crypto API to inform the caller about the completion of a cipher
  156. * request, the caller must provide a callback function. That function is
  157. * invoked with the cipher handle when the request completes.
  158. *
  159. * To support the asynchronous operation, additional information than just the
  160. * cipher handle must be supplied to the kernel crypto API. That additional
  161. * information is given by filling in the skcipher_request data structure.
  162. *
  163. * For the symmetric key cipher API, the state is maintained with the tfm
  164. * cipher handle. A single tfm can be used across multiple calls and in
  165. * parallel. For asynchronous block cipher calls, context data supplied and
  166. * only used by the caller can be referenced the request data structure in
  167. * addition to the IV used for the cipher request. The maintenance of such
  168. * state information would be important for a crypto driver implementer to
  169. * have, because when calling the callback function upon completion of the
  170. * cipher operation, that callback function may need some information about
  171. * which operation just finished if it invoked multiple in parallel. This
  172. * state information is unused by the kernel crypto API.
  173. */
  174. static inline struct crypto_skcipher *__crypto_skcipher_cast(
  175. struct crypto_tfm *tfm)
  176. {
  177. return container_of(tfm, struct crypto_skcipher, base);
  178. }
  179. /**
  180. * crypto_alloc_skcipher() - allocate symmetric key cipher handle
  181. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
  182. * skcipher cipher
  183. * @type: specifies the type of the cipher
  184. * @mask: specifies the mask for the cipher
  185. *
  186. * Allocate a cipher handle for an skcipher. The returned struct
  187. * crypto_skcipher is the cipher handle that is required for any subsequent
  188. * API invocation for that skcipher.
  189. *
  190. * Return: allocated cipher handle in case of success; IS_ERR() is true in case
  191. * of an error, PTR_ERR() returns the error code.
  192. */
  193. struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
  194. u32 type, u32 mask);
  195. struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
  196. u32 type, u32 mask);
  197. static inline struct crypto_tfm *crypto_skcipher_tfm(
  198. struct crypto_skcipher *tfm)
  199. {
  200. return &tfm->base;
  201. }
  202. /**
  203. * crypto_free_skcipher() - zeroize and free cipher handle
  204. * @tfm: cipher handle to be freed
  205. */
  206. static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
  207. {
  208. crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
  209. }
  210. static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
  211. {
  212. crypto_free_skcipher(&tfm->base);
  213. }
  214. /**
  215. * crypto_has_skcipher() - Search for the availability of an skcipher.
  216. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
  217. * skcipher
  218. * @type: specifies the type of the cipher
  219. * @mask: specifies the mask for the cipher
  220. *
  221. * Return: true when the skcipher is known to the kernel crypto API; false
  222. * otherwise
  223. */
  224. static inline int crypto_has_skcipher(const char *alg_name, u32 type,
  225. u32 mask)
  226. {
  227. return crypto_has_alg(alg_name, crypto_skcipher_type(type),
  228. crypto_skcipher_mask(mask));
  229. }
  230. /**
  231. * crypto_has_skcipher2() - Search for the availability of an skcipher.
  232. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
  233. * skcipher
  234. * @type: specifies the type of the skcipher
  235. * @mask: specifies the mask for the skcipher
  236. *
  237. * Return: true when the skcipher is known to the kernel crypto API; false
  238. * otherwise
  239. */
  240. int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
  241. static inline const char *crypto_skcipher_driver_name(
  242. struct crypto_skcipher *tfm)
  243. {
  244. return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
  245. }
  246. static inline struct skcipher_alg *crypto_skcipher_alg(
  247. struct crypto_skcipher *tfm)
  248. {
  249. return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
  250. struct skcipher_alg, base);
  251. }
  252. static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
  253. {
  254. if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
  255. CRYPTO_ALG_TYPE_BLKCIPHER)
  256. return alg->base.cra_blkcipher.ivsize;
  257. if (alg->base.cra_ablkcipher.encrypt)
  258. return alg->base.cra_ablkcipher.ivsize;
  259. return alg->ivsize;
  260. }
  261. /**
  262. * crypto_skcipher_ivsize() - obtain IV size
  263. * @tfm: cipher handle
  264. *
  265. * The size of the IV for the skcipher referenced by the cipher handle is
  266. * returned. This IV size may be zero if the cipher does not need an IV.
  267. *
  268. * Return: IV size in bytes
  269. */
  270. static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
  271. {
  272. return tfm->ivsize;
  273. }
  274. static inline unsigned int crypto_sync_skcipher_ivsize(
  275. struct crypto_sync_skcipher *tfm)
  276. {
  277. return crypto_skcipher_ivsize(&tfm->base);
  278. }
  279. static inline unsigned int crypto_skcipher_alg_chunksize(
  280. struct skcipher_alg *alg)
  281. {
  282. if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
  283. CRYPTO_ALG_TYPE_BLKCIPHER)
  284. return alg->base.cra_blocksize;
  285. if (alg->base.cra_ablkcipher.encrypt)
  286. return alg->base.cra_blocksize;
  287. return alg->chunksize;
  288. }
  289. static inline unsigned int crypto_skcipher_alg_walksize(
  290. struct skcipher_alg *alg)
  291. {
  292. if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
  293. CRYPTO_ALG_TYPE_BLKCIPHER)
  294. return alg->base.cra_blocksize;
  295. if (alg->base.cra_ablkcipher.encrypt)
  296. return alg->base.cra_blocksize;
  297. return alg->walksize;
  298. }
  299. /**
  300. * crypto_skcipher_chunksize() - obtain chunk size
  301. * @tfm: cipher handle
  302. *
  303. * The block size is set to one for ciphers such as CTR. However,
  304. * you still need to provide incremental updates in multiples of
  305. * the underlying block size as the IV does not have sub-block
  306. * granularity. This is known in this API as the chunk size.
  307. *
  308. * Return: chunk size in bytes
  309. */
  310. static inline unsigned int crypto_skcipher_chunksize(
  311. struct crypto_skcipher *tfm)
  312. {
  313. return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
  314. }
  315. /**
  316. * crypto_skcipher_walksize() - obtain walk size
  317. * @tfm: cipher handle
  318. *
  319. * In some cases, algorithms can only perform optimally when operating on
  320. * multiple blocks in parallel. This is reflected by the walksize, which
  321. * must be a multiple of the chunksize (or equal if the concern does not
  322. * apply)
  323. *
  324. * Return: walk size in bytes
  325. */
  326. static inline unsigned int crypto_skcipher_walksize(
  327. struct crypto_skcipher *tfm)
  328. {
  329. return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm));
  330. }
  331. /**
  332. * crypto_skcipher_blocksize() - obtain block size of cipher
  333. * @tfm: cipher handle
  334. *
  335. * The block size for the skcipher referenced with the cipher handle is
  336. * returned. The caller may use that information to allocate appropriate
  337. * memory for the data returned by the encryption or decryption operation
  338. *
  339. * Return: block size of cipher
  340. */
  341. static inline unsigned int crypto_skcipher_blocksize(
  342. struct crypto_skcipher *tfm)
  343. {
  344. return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
  345. }
  346. static inline unsigned int crypto_sync_skcipher_blocksize(
  347. struct crypto_sync_skcipher *tfm)
  348. {
  349. return crypto_skcipher_blocksize(&tfm->base);
  350. }
  351. static inline unsigned int crypto_skcipher_alignmask(
  352. struct crypto_skcipher *tfm)
  353. {
  354. return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
  355. }
  356. static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
  357. {
  358. return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
  359. }
  360. static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
  361. u32 flags)
  362. {
  363. crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
  364. }
  365. static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
  366. u32 flags)
  367. {
  368. crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
  369. }
  370. static inline u32 crypto_sync_skcipher_get_flags(
  371. struct crypto_sync_skcipher *tfm)
  372. {
  373. return crypto_skcipher_get_flags(&tfm->base);
  374. }
  375. static inline void crypto_sync_skcipher_set_flags(
  376. struct crypto_sync_skcipher *tfm, u32 flags)
  377. {
  378. crypto_skcipher_set_flags(&tfm->base, flags);
  379. }
  380. static inline void crypto_sync_skcipher_clear_flags(
  381. struct crypto_sync_skcipher *tfm, u32 flags)
  382. {
  383. crypto_skcipher_clear_flags(&tfm->base, flags);
  384. }
  385. /**
  386. * crypto_skcipher_setkey() - set key for cipher
  387. * @tfm: cipher handle
  388. * @key: buffer holding the key
  389. * @keylen: length of the key in bytes
  390. *
  391. * The caller provided key is set for the skcipher referenced by the cipher
  392. * handle.
  393. *
  394. * Note, the key length determines the cipher type. Many block ciphers implement
  395. * different cipher modes depending on the key size, such as AES-128 vs AES-192
  396. * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
  397. * is performed.
  398. *
  399. * Return: 0 if the setting of the key was successful; < 0 if an error occurred
  400. */
  401. static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
  402. const u8 *key, unsigned int keylen)
  403. {
  404. return tfm->setkey(tfm, key, keylen);
  405. }
  406. static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
  407. const u8 *key, unsigned int keylen)
  408. {
  409. return crypto_skcipher_setkey(&tfm->base, key, keylen);
  410. }
  411. static inline unsigned int crypto_skcipher_default_keysize(
  412. struct crypto_skcipher *tfm)
  413. {
  414. return tfm->keysize;
  415. }
  416. /**
  417. * crypto_skcipher_reqtfm() - obtain cipher handle from request
  418. * @req: skcipher_request out of which the cipher handle is to be obtained
  419. *
  420. * Return the crypto_skcipher handle when furnishing an skcipher_request
  421. * data structure.
  422. *
  423. * Return: crypto_skcipher handle
  424. */
  425. static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
  426. struct skcipher_request *req)
  427. {
  428. return __crypto_skcipher_cast(req->base.tfm);
  429. }
  430. static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
  431. struct skcipher_request *req)
  432. {
  433. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  434. return container_of(tfm, struct crypto_sync_skcipher, base);
  435. }
  436. /**
  437. * crypto_skcipher_encrypt() - encrypt plaintext
  438. * @req: reference to the skcipher_request handle that holds all information
  439. * needed to perform the cipher operation
  440. *
  441. * Encrypt plaintext data using the skcipher_request handle. That data
  442. * structure and how it is filled with data is discussed with the
  443. * skcipher_request_* functions.
  444. *
  445. * Return: 0 if the cipher operation was successful; < 0 if an error occurred
  446. */
  447. static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
  448. {
  449. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  450. if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
  451. return -ENOKEY;
  452. return tfm->encrypt(req);
  453. }
  454. /**
  455. * crypto_skcipher_decrypt() - decrypt ciphertext
  456. * @req: reference to the skcipher_request handle that holds all information
  457. * needed to perform the cipher operation
  458. *
  459. * Decrypt ciphertext data using the skcipher_request handle. That data
  460. * structure and how it is filled with data is discussed with the
  461. * skcipher_request_* functions.
  462. *
  463. * Return: 0 if the cipher operation was successful; < 0 if an error occurred
  464. */
  465. static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
  466. {
  467. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  468. if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
  469. return -ENOKEY;
  470. return tfm->decrypt(req);
  471. }
  472. /**
  473. * DOC: Symmetric Key Cipher Request Handle
  474. *
  475. * The skcipher_request data structure contains all pointers to data
  476. * required for the symmetric key cipher operation. This includes the cipher
  477. * handle (which can be used by multiple skcipher_request instances), pointer
  478. * to plaintext and ciphertext, asynchronous callback function, etc. It acts
  479. * as a handle to the skcipher_request_* API calls in a similar way as
  480. * skcipher handle to the crypto_skcipher_* API calls.
  481. */
  482. /**
  483. * crypto_skcipher_reqsize() - obtain size of the request data structure
  484. * @tfm: cipher handle
  485. *
  486. * Return: number of bytes
  487. */
  488. static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
  489. {
  490. return tfm->reqsize;
  491. }
  492. /**
  493. * skcipher_request_set_tfm() - update cipher handle reference in request
  494. * @req: request handle to be modified
  495. * @tfm: cipher handle that shall be added to the request handle
  496. *
  497. * Allow the caller to replace the existing skcipher handle in the request
  498. * data structure with a different one.
  499. */
  500. static inline void skcipher_request_set_tfm(struct skcipher_request *req,
  501. struct crypto_skcipher *tfm)
  502. {
  503. req->base.tfm = crypto_skcipher_tfm(tfm);
  504. }
  505. static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
  506. struct crypto_sync_skcipher *tfm)
  507. {
  508. skcipher_request_set_tfm(req, &tfm->base);
  509. }
  510. static inline struct skcipher_request *skcipher_request_cast(
  511. struct crypto_async_request *req)
  512. {
  513. return container_of(req, struct skcipher_request, base);
  514. }
  515. /**
  516. * skcipher_request_alloc() - allocate request data structure
  517. * @tfm: cipher handle to be registered with the request
  518. * @gfp: memory allocation flag that is handed to kmalloc by the API call.
  519. *
  520. * Allocate the request data structure that must be used with the skcipher
  521. * encrypt and decrypt API calls. During the allocation, the provided skcipher
  522. * handle is registered in the request data structure.
  523. *
  524. * Return: allocated request handle in case of success, or NULL if out of memory
  525. */
  526. static inline struct skcipher_request *skcipher_request_alloc(
  527. struct crypto_skcipher *tfm, gfp_t gfp)
  528. {
  529. struct skcipher_request *req;
  530. req = kmalloc(sizeof(struct skcipher_request) +
  531. crypto_skcipher_reqsize(tfm), gfp);
  532. if (likely(req))
  533. skcipher_request_set_tfm(req, tfm);
  534. return req;
  535. }
  536. /**
  537. * skcipher_request_free() - zeroize and free request data structure
  538. * @req: request data structure cipher handle to be freed
  539. */
  540. static inline void skcipher_request_free(struct skcipher_request *req)
  541. {
  542. kzfree(req);
  543. }
  544. static inline void skcipher_request_zero(struct skcipher_request *req)
  545. {
  546. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  547. memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
  548. }
  549. /**
  550. * skcipher_request_set_callback() - set asynchronous callback function
  551. * @req: request handle
  552. * @flags: specify zero or an ORing of the flags
  553. * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
  554. * increase the wait queue beyond the initial maximum size;
  555. * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
  556. * @compl: callback function pointer to be registered with the request handle
  557. * @data: The data pointer refers to memory that is not used by the kernel
  558. * crypto API, but provided to the callback function for it to use. Here,
  559. * the caller can provide a reference to memory the callback function can
  560. * operate on. As the callback function is invoked asynchronously to the
  561. * related functionality, it may need to access data structures of the
  562. * related functionality which can be referenced using this pointer. The
  563. * callback function can access the memory via the "data" field in the
  564. * crypto_async_request data structure provided to the callback function.
  565. *
  566. * This function allows setting the callback function that is triggered once the
  567. * cipher operation completes.
  568. *
  569. * The callback function is registered with the skcipher_request handle and
  570. * must comply with the following template::
  571. *
  572. * void callback_function(struct crypto_async_request *req, int error)
  573. */
  574. static inline void skcipher_request_set_callback(struct skcipher_request *req,
  575. u32 flags,
  576. crypto_completion_t compl,
  577. void *data)
  578. {
  579. req->base.complete = compl;
  580. req->base.data = data;
  581. req->base.flags = flags;
  582. }
  583. /**
  584. * skcipher_request_set_crypt() - set data buffers
  585. * @req: request handle
  586. * @src: source scatter / gather list
  587. * @dst: destination scatter / gather list
  588. * @cryptlen: number of bytes to process from @src
  589. * @iv: IV for the cipher operation which must comply with the IV size defined
  590. * by crypto_skcipher_ivsize
  591. *
  592. * This function allows setting of the source data and destination data
  593. * scatter / gather lists.
  594. *
  595. * For encryption, the source is treated as the plaintext and the
  596. * destination is the ciphertext. For a decryption operation, the use is
  597. * reversed - the source is the ciphertext and the destination is the plaintext.
  598. */
  599. static inline void skcipher_request_set_crypt(
  600. struct skcipher_request *req,
  601. struct scatterlist *src, struct scatterlist *dst,
  602. unsigned int cryptlen, void *iv)
  603. {
  604. req->src = src;
  605. req->dst = dst;
  606. req->cryptlen = cryptlen;
  607. req->iv = iv;
  608. }
  609. #endif /* _CRYPTO_SKCIPHER_H */