tcp_input.c 165 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 100;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_thin_dupack __read_mostly;
  91. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  92. int sysctl_tcp_early_retrans __read_mostly = 3;
  93. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  94. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  95. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  96. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  97. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  98. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  99. #define FLAG_ECE 0x40 /* ECE in this ACK */
  100. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  101. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  102. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  103. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  104. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  105. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  106. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  107. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  108. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  109. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  110. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  111. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  112. /* Adapt the MSS value used to make delayed ack decision to the
  113. * real world.
  114. */
  115. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  116. {
  117. struct inet_connection_sock *icsk = inet_csk(sk);
  118. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  119. unsigned int len;
  120. icsk->icsk_ack.last_seg_size = 0;
  121. /* skb->len may jitter because of SACKs, even if peer
  122. * sends good full-sized frames.
  123. */
  124. len = skb_shinfo(skb)->gso_size ? : skb->len;
  125. if (len >= icsk->icsk_ack.rcv_mss) {
  126. icsk->icsk_ack.rcv_mss = len;
  127. } else {
  128. /* Otherwise, we make more careful check taking into account,
  129. * that SACKs block is variable.
  130. *
  131. * "len" is invariant segment length, including TCP header.
  132. */
  133. len += skb->data - skb_transport_header(skb);
  134. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  135. /* If PSH is not set, packet should be
  136. * full sized, provided peer TCP is not badly broken.
  137. * This observation (if it is correct 8)) allows
  138. * to handle super-low mtu links fairly.
  139. */
  140. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  141. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  142. /* Subtract also invariant (if peer is RFC compliant),
  143. * tcp header plus fixed timestamp option length.
  144. * Resulting "len" is MSS free of SACK jitter.
  145. */
  146. len -= tcp_sk(sk)->tcp_header_len;
  147. icsk->icsk_ack.last_seg_size = len;
  148. if (len == lss) {
  149. icsk->icsk_ack.rcv_mss = len;
  150. return;
  151. }
  152. }
  153. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  154. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  155. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  156. }
  157. }
  158. static void tcp_incr_quickack(struct sock *sk)
  159. {
  160. struct inet_connection_sock *icsk = inet_csk(sk);
  161. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  162. if (quickacks == 0)
  163. quickacks = 2;
  164. if (quickacks > icsk->icsk_ack.quick)
  165. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  166. }
  167. static void tcp_enter_quickack_mode(struct sock *sk)
  168. {
  169. struct inet_connection_sock *icsk = inet_csk(sk);
  170. tcp_incr_quickack(sk);
  171. icsk->icsk_ack.pingpong = 0;
  172. icsk->icsk_ack.ato = TCP_ATO_MIN;
  173. }
  174. /* Send ACKs quickly, if "quick" count is not exhausted
  175. * and the session is not interactive.
  176. */
  177. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  178. {
  179. const struct inet_connection_sock *icsk = inet_csk(sk);
  180. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  181. }
  182. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  183. {
  184. if (tp->ecn_flags & TCP_ECN_OK)
  185. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  186. }
  187. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  188. {
  189. if (tcp_hdr(skb)->cwr)
  190. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  191. }
  192. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  193. {
  194. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  195. }
  196. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  197. {
  198. if (!(tp->ecn_flags & TCP_ECN_OK))
  199. return;
  200. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  201. case INET_ECN_NOT_ECT:
  202. /* Funny extension: if ECT is not set on a segment,
  203. * and we already seen ECT on a previous segment,
  204. * it is probably a retransmit.
  205. */
  206. if (tp->ecn_flags & TCP_ECN_SEEN)
  207. tcp_enter_quickack_mode((struct sock *)tp);
  208. break;
  209. case INET_ECN_CE:
  210. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  211. /* Better not delay acks, sender can have a very low cwnd */
  212. tcp_enter_quickack_mode((struct sock *)tp);
  213. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  214. }
  215. /* fallinto */
  216. default:
  217. tp->ecn_flags |= TCP_ECN_SEEN;
  218. }
  219. }
  220. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  221. {
  222. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  223. tp->ecn_flags &= ~TCP_ECN_OK;
  224. }
  225. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  226. {
  227. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  228. tp->ecn_flags &= ~TCP_ECN_OK;
  229. }
  230. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  231. {
  232. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  233. return true;
  234. return false;
  235. }
  236. /* Buffer size and advertised window tuning.
  237. *
  238. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  239. */
  240. static void tcp_sndbuf_expand(struct sock *sk)
  241. {
  242. const struct tcp_sock *tp = tcp_sk(sk);
  243. int sndmem, per_mss;
  244. u32 nr_segs;
  245. /* Worst case is non GSO/TSO : each frame consumes one skb
  246. * and skb->head is kmalloced using power of two area of memory
  247. */
  248. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  249. MAX_TCP_HEADER +
  250. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  251. per_mss = roundup_pow_of_two(per_mss) +
  252. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  253. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  254. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  255. /* Fast Recovery (RFC 5681 3.2) :
  256. * Cubic needs 1.7 factor, rounded to 2 to include
  257. * extra cushion (application might react slowly to POLLOUT)
  258. */
  259. sndmem = 2 * nr_segs * per_mss;
  260. if (sk->sk_sndbuf < sndmem)
  261. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  262. }
  263. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  264. *
  265. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  266. * forward and advertised in receiver window (tp->rcv_wnd) and
  267. * "application buffer", required to isolate scheduling/application
  268. * latencies from network.
  269. * window_clamp is maximal advertised window. It can be less than
  270. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  271. * is reserved for "application" buffer. The less window_clamp is
  272. * the smoother our behaviour from viewpoint of network, but the lower
  273. * throughput and the higher sensitivity of the connection to losses. 8)
  274. *
  275. * rcv_ssthresh is more strict window_clamp used at "slow start"
  276. * phase to predict further behaviour of this connection.
  277. * It is used for two goals:
  278. * - to enforce header prediction at sender, even when application
  279. * requires some significant "application buffer". It is check #1.
  280. * - to prevent pruning of receive queue because of misprediction
  281. * of receiver window. Check #2.
  282. *
  283. * The scheme does not work when sender sends good segments opening
  284. * window and then starts to feed us spaghetti. But it should work
  285. * in common situations. Otherwise, we have to rely on queue collapsing.
  286. */
  287. /* Slow part of check#2. */
  288. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  289. {
  290. struct tcp_sock *tp = tcp_sk(sk);
  291. /* Optimize this! */
  292. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  293. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  294. while (tp->rcv_ssthresh <= window) {
  295. if (truesize <= skb->len)
  296. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  297. truesize >>= 1;
  298. window >>= 1;
  299. }
  300. return 0;
  301. }
  302. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  303. {
  304. struct tcp_sock *tp = tcp_sk(sk);
  305. /* Check #1 */
  306. if (tp->rcv_ssthresh < tp->window_clamp &&
  307. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  308. !sk_under_memory_pressure(sk)) {
  309. int incr;
  310. /* Check #2. Increase window, if skb with such overhead
  311. * will fit to rcvbuf in future.
  312. */
  313. if (tcp_win_from_space(skb->truesize) <= skb->len)
  314. incr = 2 * tp->advmss;
  315. else
  316. incr = __tcp_grow_window(sk, skb);
  317. if (incr) {
  318. incr = max_t(int, incr, 2 * skb->len);
  319. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  320. tp->window_clamp);
  321. inet_csk(sk)->icsk_ack.quick |= 1;
  322. }
  323. }
  324. }
  325. /* 3. Tuning rcvbuf, when connection enters established state. */
  326. static void tcp_fixup_rcvbuf(struct sock *sk)
  327. {
  328. u32 mss = tcp_sk(sk)->advmss;
  329. int rcvmem;
  330. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  331. tcp_default_init_rwnd(mss);
  332. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  333. * Allow enough cushion so that sender is not limited by our window
  334. */
  335. if (sysctl_tcp_moderate_rcvbuf)
  336. rcvmem <<= 2;
  337. if (sk->sk_rcvbuf < rcvmem)
  338. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  339. }
  340. /* 4. Try to fixup all. It is made immediately after connection enters
  341. * established state.
  342. */
  343. void tcp_init_buffer_space(struct sock *sk)
  344. {
  345. struct tcp_sock *tp = tcp_sk(sk);
  346. int maxwin;
  347. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  348. tcp_fixup_rcvbuf(sk);
  349. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  350. tcp_sndbuf_expand(sk);
  351. tp->rcvq_space.space = tp->rcv_wnd;
  352. tp->rcvq_space.time = tcp_time_stamp;
  353. tp->rcvq_space.seq = tp->copied_seq;
  354. maxwin = tcp_full_space(sk);
  355. if (tp->window_clamp >= maxwin) {
  356. tp->window_clamp = maxwin;
  357. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  358. tp->window_clamp = max(maxwin -
  359. (maxwin >> sysctl_tcp_app_win),
  360. 4 * tp->advmss);
  361. }
  362. /* Force reservation of one segment. */
  363. if (sysctl_tcp_app_win &&
  364. tp->window_clamp > 2 * tp->advmss &&
  365. tp->window_clamp + tp->advmss > maxwin)
  366. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  367. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  368. tp->snd_cwnd_stamp = tcp_time_stamp;
  369. }
  370. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  371. static void tcp_clamp_window(struct sock *sk)
  372. {
  373. struct tcp_sock *tp = tcp_sk(sk);
  374. struct inet_connection_sock *icsk = inet_csk(sk);
  375. icsk->icsk_ack.quick = 0;
  376. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  377. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  378. !sk_under_memory_pressure(sk) &&
  379. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  380. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  381. sysctl_tcp_rmem[2]);
  382. }
  383. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  384. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  385. }
  386. /* Initialize RCV_MSS value.
  387. * RCV_MSS is an our guess about MSS used by the peer.
  388. * We haven't any direct information about the MSS.
  389. * It's better to underestimate the RCV_MSS rather than overestimate.
  390. * Overestimations make us ACKing less frequently than needed.
  391. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  392. */
  393. void tcp_initialize_rcv_mss(struct sock *sk)
  394. {
  395. const struct tcp_sock *tp = tcp_sk(sk);
  396. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  397. hint = min(hint, tp->rcv_wnd / 2);
  398. hint = min(hint, TCP_MSS_DEFAULT);
  399. hint = max(hint, TCP_MIN_MSS);
  400. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  401. }
  402. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  403. /* Receiver "autotuning" code.
  404. *
  405. * The algorithm for RTT estimation w/o timestamps is based on
  406. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  407. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  408. *
  409. * More detail on this code can be found at
  410. * <http://staff.psc.edu/jheffner/>,
  411. * though this reference is out of date. A new paper
  412. * is pending.
  413. */
  414. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  415. {
  416. u32 new_sample = tp->rcv_rtt_est.rtt;
  417. long m = sample;
  418. if (m == 0)
  419. m = 1;
  420. if (new_sample != 0) {
  421. /* If we sample in larger samples in the non-timestamp
  422. * case, we could grossly overestimate the RTT especially
  423. * with chatty applications or bulk transfer apps which
  424. * are stalled on filesystem I/O.
  425. *
  426. * Also, since we are only going for a minimum in the
  427. * non-timestamp case, we do not smooth things out
  428. * else with timestamps disabled convergence takes too
  429. * long.
  430. */
  431. if (!win_dep) {
  432. m -= (new_sample >> 3);
  433. new_sample += m;
  434. } else {
  435. m <<= 3;
  436. if (m < new_sample)
  437. new_sample = m;
  438. }
  439. } else {
  440. /* No previous measure. */
  441. new_sample = m << 3;
  442. }
  443. if (tp->rcv_rtt_est.rtt != new_sample)
  444. tp->rcv_rtt_est.rtt = new_sample;
  445. }
  446. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  447. {
  448. if (tp->rcv_rtt_est.time == 0)
  449. goto new_measure;
  450. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  451. return;
  452. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  453. new_measure:
  454. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  455. tp->rcv_rtt_est.time = tcp_time_stamp;
  456. }
  457. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  458. const struct sk_buff *skb)
  459. {
  460. struct tcp_sock *tp = tcp_sk(sk);
  461. if (tp->rx_opt.rcv_tsecr &&
  462. (TCP_SKB_CB(skb)->end_seq -
  463. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  464. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  465. }
  466. /*
  467. * This function should be called every time data is copied to user space.
  468. * It calculates the appropriate TCP receive buffer space.
  469. */
  470. void tcp_rcv_space_adjust(struct sock *sk)
  471. {
  472. struct tcp_sock *tp = tcp_sk(sk);
  473. int time;
  474. int copied;
  475. time = tcp_time_stamp - tp->rcvq_space.time;
  476. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  477. return;
  478. /* Number of bytes copied to user in last RTT */
  479. copied = tp->copied_seq - tp->rcvq_space.seq;
  480. if (copied <= tp->rcvq_space.space)
  481. goto new_measure;
  482. /* A bit of theory :
  483. * copied = bytes received in previous RTT, our base window
  484. * To cope with packet losses, we need a 2x factor
  485. * To cope with slow start, and sender growing its cwin by 100 %
  486. * every RTT, we need a 4x factor, because the ACK we are sending
  487. * now is for the next RTT, not the current one :
  488. * <prev RTT . ><current RTT .. ><next RTT .... >
  489. */
  490. if (sysctl_tcp_moderate_rcvbuf &&
  491. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  492. int rcvwin, rcvmem, rcvbuf;
  493. /* minimal window to cope with packet losses, assuming
  494. * steady state. Add some cushion because of small variations.
  495. */
  496. rcvwin = (copied << 1) + 16 * tp->advmss;
  497. /* If rate increased by 25%,
  498. * assume slow start, rcvwin = 3 * copied
  499. * If rate increased by 50%,
  500. * assume sender can use 2x growth, rcvwin = 4 * copied
  501. */
  502. if (copied >=
  503. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  504. if (copied >=
  505. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  506. rcvwin <<= 1;
  507. else
  508. rcvwin += (rcvwin >> 1);
  509. }
  510. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  511. while (tcp_win_from_space(rcvmem) < tp->advmss)
  512. rcvmem += 128;
  513. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  514. if (rcvbuf > sk->sk_rcvbuf) {
  515. sk->sk_rcvbuf = rcvbuf;
  516. /* Make the window clamp follow along. */
  517. tp->window_clamp = rcvwin;
  518. }
  519. }
  520. tp->rcvq_space.space = copied;
  521. new_measure:
  522. tp->rcvq_space.seq = tp->copied_seq;
  523. tp->rcvq_space.time = tcp_time_stamp;
  524. }
  525. /* There is something which you must keep in mind when you analyze the
  526. * behavior of the tp->ato delayed ack timeout interval. When a
  527. * connection starts up, we want to ack as quickly as possible. The
  528. * problem is that "good" TCP's do slow start at the beginning of data
  529. * transmission. The means that until we send the first few ACK's the
  530. * sender will sit on his end and only queue most of his data, because
  531. * he can only send snd_cwnd unacked packets at any given time. For
  532. * each ACK we send, he increments snd_cwnd and transmits more of his
  533. * queue. -DaveM
  534. */
  535. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  536. {
  537. struct tcp_sock *tp = tcp_sk(sk);
  538. struct inet_connection_sock *icsk = inet_csk(sk);
  539. u32 now;
  540. inet_csk_schedule_ack(sk);
  541. tcp_measure_rcv_mss(sk, skb);
  542. tcp_rcv_rtt_measure(tp);
  543. now = tcp_time_stamp;
  544. if (!icsk->icsk_ack.ato) {
  545. /* The _first_ data packet received, initialize
  546. * delayed ACK engine.
  547. */
  548. tcp_incr_quickack(sk);
  549. icsk->icsk_ack.ato = TCP_ATO_MIN;
  550. } else {
  551. int m = now - icsk->icsk_ack.lrcvtime;
  552. if (m <= TCP_ATO_MIN / 2) {
  553. /* The fastest case is the first. */
  554. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  555. } else if (m < icsk->icsk_ack.ato) {
  556. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  557. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  558. icsk->icsk_ack.ato = icsk->icsk_rto;
  559. } else if (m > icsk->icsk_rto) {
  560. /* Too long gap. Apparently sender failed to
  561. * restart window, so that we send ACKs quickly.
  562. */
  563. tcp_incr_quickack(sk);
  564. sk_mem_reclaim(sk);
  565. }
  566. }
  567. icsk->icsk_ack.lrcvtime = now;
  568. TCP_ECN_check_ce(tp, skb);
  569. if (skb->len >= 128)
  570. tcp_grow_window(sk, skb);
  571. }
  572. /* Called to compute a smoothed rtt estimate. The data fed to this
  573. * routine either comes from timestamps, or from segments that were
  574. * known _not_ to have been retransmitted [see Karn/Partridge
  575. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  576. * piece by Van Jacobson.
  577. * NOTE: the next three routines used to be one big routine.
  578. * To save cycles in the RFC 1323 implementation it was better to break
  579. * it up into three procedures. -- erics
  580. */
  581. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  582. {
  583. struct tcp_sock *tp = tcp_sk(sk);
  584. long m = mrtt_us; /* RTT */
  585. u32 srtt = tp->srtt_us;
  586. /* The following amusing code comes from Jacobson's
  587. * article in SIGCOMM '88. Note that rtt and mdev
  588. * are scaled versions of rtt and mean deviation.
  589. * This is designed to be as fast as possible
  590. * m stands for "measurement".
  591. *
  592. * On a 1990 paper the rto value is changed to:
  593. * RTO = rtt + 4 * mdev
  594. *
  595. * Funny. This algorithm seems to be very broken.
  596. * These formulae increase RTO, when it should be decreased, increase
  597. * too slowly, when it should be increased quickly, decrease too quickly
  598. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  599. * does not matter how to _calculate_ it. Seems, it was trap
  600. * that VJ failed to avoid. 8)
  601. */
  602. if (srtt != 0) {
  603. m -= (srtt >> 3); /* m is now error in rtt est */
  604. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  605. if (m < 0) {
  606. m = -m; /* m is now abs(error) */
  607. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  608. /* This is similar to one of Eifel findings.
  609. * Eifel blocks mdev updates when rtt decreases.
  610. * This solution is a bit different: we use finer gain
  611. * for mdev in this case (alpha*beta).
  612. * Like Eifel it also prevents growth of rto,
  613. * but also it limits too fast rto decreases,
  614. * happening in pure Eifel.
  615. */
  616. if (m > 0)
  617. m >>= 3;
  618. } else {
  619. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  620. }
  621. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  622. if (tp->mdev_us > tp->mdev_max_us) {
  623. tp->mdev_max_us = tp->mdev_us;
  624. if (tp->mdev_max_us > tp->rttvar_us)
  625. tp->rttvar_us = tp->mdev_max_us;
  626. }
  627. if (after(tp->snd_una, tp->rtt_seq)) {
  628. if (tp->mdev_max_us < tp->rttvar_us)
  629. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  630. tp->rtt_seq = tp->snd_nxt;
  631. tp->mdev_max_us = tcp_rto_min_us(sk);
  632. }
  633. } else {
  634. /* no previous measure. */
  635. srtt = m << 3; /* take the measured time to be rtt */
  636. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  637. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  638. tp->mdev_max_us = tp->rttvar_us;
  639. tp->rtt_seq = tp->snd_nxt;
  640. }
  641. tp->srtt_us = max(1U, srtt);
  642. }
  643. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  644. * Note: TCP stack does not yet implement pacing.
  645. * FQ packet scheduler can be used to implement cheap but effective
  646. * TCP pacing, to smooth the burst on large writes when packets
  647. * in flight is significantly lower than cwnd (or rwin)
  648. */
  649. static void tcp_update_pacing_rate(struct sock *sk)
  650. {
  651. const struct tcp_sock *tp = tcp_sk(sk);
  652. u64 rate;
  653. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  654. rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
  655. rate *= max(tp->snd_cwnd, tp->packets_out);
  656. if (likely(tp->srtt_us))
  657. do_div(rate, tp->srtt_us);
  658. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  659. * without any lock. We want to make sure compiler wont store
  660. * intermediate values in this location.
  661. */
  662. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  663. sk->sk_max_pacing_rate);
  664. }
  665. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  666. * routine referred to above.
  667. */
  668. static void tcp_set_rto(struct sock *sk)
  669. {
  670. const struct tcp_sock *tp = tcp_sk(sk);
  671. /* Old crap is replaced with new one. 8)
  672. *
  673. * More seriously:
  674. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  675. * It cannot be less due to utterly erratic ACK generation made
  676. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  677. * to do with delayed acks, because at cwnd>2 true delack timeout
  678. * is invisible. Actually, Linux-2.4 also generates erratic
  679. * ACKs in some circumstances.
  680. */
  681. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  682. /* 2. Fixups made earlier cannot be right.
  683. * If we do not estimate RTO correctly without them,
  684. * all the algo is pure shit and should be replaced
  685. * with correct one. It is exactly, which we pretend to do.
  686. */
  687. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  688. * guarantees that rto is higher.
  689. */
  690. tcp_bound_rto(sk);
  691. }
  692. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  693. {
  694. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  695. if (!cwnd)
  696. cwnd = TCP_INIT_CWND;
  697. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  698. }
  699. /*
  700. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  701. * disables it when reordering is detected
  702. */
  703. void tcp_disable_fack(struct tcp_sock *tp)
  704. {
  705. /* RFC3517 uses different metric in lost marker => reset on change */
  706. if (tcp_is_fack(tp))
  707. tp->lost_skb_hint = NULL;
  708. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  709. }
  710. /* Take a notice that peer is sending D-SACKs */
  711. static void tcp_dsack_seen(struct tcp_sock *tp)
  712. {
  713. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  714. }
  715. static void tcp_update_reordering(struct sock *sk, const int metric,
  716. const int ts)
  717. {
  718. struct tcp_sock *tp = tcp_sk(sk);
  719. if (metric > tp->reordering) {
  720. int mib_idx;
  721. tp->reordering = min(TCP_MAX_REORDERING, metric);
  722. /* This exciting event is worth to be remembered. 8) */
  723. if (ts)
  724. mib_idx = LINUX_MIB_TCPTSREORDER;
  725. else if (tcp_is_reno(tp))
  726. mib_idx = LINUX_MIB_TCPRENOREORDER;
  727. else if (tcp_is_fack(tp))
  728. mib_idx = LINUX_MIB_TCPFACKREORDER;
  729. else
  730. mib_idx = LINUX_MIB_TCPSACKREORDER;
  731. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  732. #if FASTRETRANS_DEBUG > 1
  733. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  734. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  735. tp->reordering,
  736. tp->fackets_out,
  737. tp->sacked_out,
  738. tp->undo_marker ? tp->undo_retrans : 0);
  739. #endif
  740. tcp_disable_fack(tp);
  741. }
  742. if (metric > 0)
  743. tcp_disable_early_retrans(tp);
  744. }
  745. /* This must be called before lost_out is incremented */
  746. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  747. {
  748. if ((tp->retransmit_skb_hint == NULL) ||
  749. before(TCP_SKB_CB(skb)->seq,
  750. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  751. tp->retransmit_skb_hint = skb;
  752. if (!tp->lost_out ||
  753. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  754. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  755. }
  756. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  757. {
  758. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  759. tcp_verify_retransmit_hint(tp, skb);
  760. tp->lost_out += tcp_skb_pcount(skb);
  761. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  762. }
  763. }
  764. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  765. struct sk_buff *skb)
  766. {
  767. tcp_verify_retransmit_hint(tp, skb);
  768. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  769. tp->lost_out += tcp_skb_pcount(skb);
  770. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  771. }
  772. }
  773. /* This procedure tags the retransmission queue when SACKs arrive.
  774. *
  775. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  776. * Packets in queue with these bits set are counted in variables
  777. * sacked_out, retrans_out and lost_out, correspondingly.
  778. *
  779. * Valid combinations are:
  780. * Tag InFlight Description
  781. * 0 1 - orig segment is in flight.
  782. * S 0 - nothing flies, orig reached receiver.
  783. * L 0 - nothing flies, orig lost by net.
  784. * R 2 - both orig and retransmit are in flight.
  785. * L|R 1 - orig is lost, retransmit is in flight.
  786. * S|R 1 - orig reached receiver, retrans is still in flight.
  787. * (L|S|R is logically valid, it could occur when L|R is sacked,
  788. * but it is equivalent to plain S and code short-curcuits it to S.
  789. * L|S is logically invalid, it would mean -1 packet in flight 8))
  790. *
  791. * These 6 states form finite state machine, controlled by the following events:
  792. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  793. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  794. * 3. Loss detection event of two flavors:
  795. * A. Scoreboard estimator decided the packet is lost.
  796. * A'. Reno "three dupacks" marks head of queue lost.
  797. * A''. Its FACK modification, head until snd.fack is lost.
  798. * B. SACK arrives sacking SND.NXT at the moment, when the
  799. * segment was retransmitted.
  800. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  801. *
  802. * It is pleasant to note, that state diagram turns out to be commutative,
  803. * so that we are allowed not to be bothered by order of our actions,
  804. * when multiple events arrive simultaneously. (see the function below).
  805. *
  806. * Reordering detection.
  807. * --------------------
  808. * Reordering metric is maximal distance, which a packet can be displaced
  809. * in packet stream. With SACKs we can estimate it:
  810. *
  811. * 1. SACK fills old hole and the corresponding segment was not
  812. * ever retransmitted -> reordering. Alas, we cannot use it
  813. * when segment was retransmitted.
  814. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  815. * for retransmitted and already SACKed segment -> reordering..
  816. * Both of these heuristics are not used in Loss state, when we cannot
  817. * account for retransmits accurately.
  818. *
  819. * SACK block validation.
  820. * ----------------------
  821. *
  822. * SACK block range validation checks that the received SACK block fits to
  823. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  824. * Note that SND.UNA is not included to the range though being valid because
  825. * it means that the receiver is rather inconsistent with itself reporting
  826. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  827. * perfectly valid, however, in light of RFC2018 which explicitly states
  828. * that "SACK block MUST reflect the newest segment. Even if the newest
  829. * segment is going to be discarded ...", not that it looks very clever
  830. * in case of head skb. Due to potentional receiver driven attacks, we
  831. * choose to avoid immediate execution of a walk in write queue due to
  832. * reneging and defer head skb's loss recovery to standard loss recovery
  833. * procedure that will eventually trigger (nothing forbids us doing this).
  834. *
  835. * Implements also blockage to start_seq wrap-around. Problem lies in the
  836. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  837. * there's no guarantee that it will be before snd_nxt (n). The problem
  838. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  839. * wrap (s_w):
  840. *
  841. * <- outs wnd -> <- wrapzone ->
  842. * u e n u_w e_w s n_w
  843. * | | | | | | |
  844. * |<------------+------+----- TCP seqno space --------------+---------->|
  845. * ...-- <2^31 ->| |<--------...
  846. * ...---- >2^31 ------>| |<--------...
  847. *
  848. * Current code wouldn't be vulnerable but it's better still to discard such
  849. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  850. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  851. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  852. * equal to the ideal case (infinite seqno space without wrap caused issues).
  853. *
  854. * With D-SACK the lower bound is extended to cover sequence space below
  855. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  856. * again, D-SACK block must not to go across snd_una (for the same reason as
  857. * for the normal SACK blocks, explained above). But there all simplicity
  858. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  859. * fully below undo_marker they do not affect behavior in anyway and can
  860. * therefore be safely ignored. In rare cases (which are more or less
  861. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  862. * fragmentation and packet reordering past skb's retransmission. To consider
  863. * them correctly, the acceptable range must be extended even more though
  864. * the exact amount is rather hard to quantify. However, tp->max_window can
  865. * be used as an exaggerated estimate.
  866. */
  867. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  868. u32 start_seq, u32 end_seq)
  869. {
  870. /* Too far in future, or reversed (interpretation is ambiguous) */
  871. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  872. return false;
  873. /* Nasty start_seq wrap-around check (see comments above) */
  874. if (!before(start_seq, tp->snd_nxt))
  875. return false;
  876. /* In outstanding window? ...This is valid exit for D-SACKs too.
  877. * start_seq == snd_una is non-sensical (see comments above)
  878. */
  879. if (after(start_seq, tp->snd_una))
  880. return true;
  881. if (!is_dsack || !tp->undo_marker)
  882. return false;
  883. /* ...Then it's D-SACK, and must reside below snd_una completely */
  884. if (after(end_seq, tp->snd_una))
  885. return false;
  886. if (!before(start_seq, tp->undo_marker))
  887. return true;
  888. /* Too old */
  889. if (!after(end_seq, tp->undo_marker))
  890. return false;
  891. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  892. * start_seq < undo_marker and end_seq >= undo_marker.
  893. */
  894. return !before(start_seq, end_seq - tp->max_window);
  895. }
  896. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  897. * Event "B". Later note: FACK people cheated me again 8), we have to account
  898. * for reordering! Ugly, but should help.
  899. *
  900. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  901. * less than what is now known to be received by the other end (derived from
  902. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  903. * retransmitted skbs to avoid some costly processing per ACKs.
  904. */
  905. static void tcp_mark_lost_retrans(struct sock *sk)
  906. {
  907. const struct inet_connection_sock *icsk = inet_csk(sk);
  908. struct tcp_sock *tp = tcp_sk(sk);
  909. struct sk_buff *skb;
  910. int cnt = 0;
  911. u32 new_low_seq = tp->snd_nxt;
  912. u32 received_upto = tcp_highest_sack_seq(tp);
  913. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  914. !after(received_upto, tp->lost_retrans_low) ||
  915. icsk->icsk_ca_state != TCP_CA_Recovery)
  916. return;
  917. tcp_for_write_queue(skb, sk) {
  918. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  919. if (skb == tcp_send_head(sk))
  920. break;
  921. if (cnt == tp->retrans_out)
  922. break;
  923. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  924. continue;
  925. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  926. continue;
  927. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  928. * constraint here (see above) but figuring out that at
  929. * least tp->reordering SACK blocks reside between ack_seq
  930. * and received_upto is not easy task to do cheaply with
  931. * the available datastructures.
  932. *
  933. * Whether FACK should check here for tp->reordering segs
  934. * in-between one could argue for either way (it would be
  935. * rather simple to implement as we could count fack_count
  936. * during the walk and do tp->fackets_out - fack_count).
  937. */
  938. if (after(received_upto, ack_seq)) {
  939. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  940. tp->retrans_out -= tcp_skb_pcount(skb);
  941. tcp_skb_mark_lost_uncond_verify(tp, skb);
  942. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  943. } else {
  944. if (before(ack_seq, new_low_seq))
  945. new_low_seq = ack_seq;
  946. cnt += tcp_skb_pcount(skb);
  947. }
  948. }
  949. if (tp->retrans_out)
  950. tp->lost_retrans_low = new_low_seq;
  951. }
  952. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  953. struct tcp_sack_block_wire *sp, int num_sacks,
  954. u32 prior_snd_una)
  955. {
  956. struct tcp_sock *tp = tcp_sk(sk);
  957. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  958. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  959. bool dup_sack = false;
  960. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  961. dup_sack = true;
  962. tcp_dsack_seen(tp);
  963. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  964. } else if (num_sacks > 1) {
  965. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  966. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  967. if (!after(end_seq_0, end_seq_1) &&
  968. !before(start_seq_0, start_seq_1)) {
  969. dup_sack = true;
  970. tcp_dsack_seen(tp);
  971. NET_INC_STATS_BH(sock_net(sk),
  972. LINUX_MIB_TCPDSACKOFORECV);
  973. }
  974. }
  975. /* D-SACK for already forgotten data... Do dumb counting. */
  976. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  977. !after(end_seq_0, prior_snd_una) &&
  978. after(end_seq_0, tp->undo_marker))
  979. tp->undo_retrans--;
  980. return dup_sack;
  981. }
  982. struct tcp_sacktag_state {
  983. int reord;
  984. int fack_count;
  985. long rtt_us; /* RTT measured by SACKing never-retransmitted data */
  986. int flag;
  987. };
  988. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  989. * the incoming SACK may not exactly match but we can find smaller MSS
  990. * aligned portion of it that matches. Therefore we might need to fragment
  991. * which may fail and creates some hassle (caller must handle error case
  992. * returns).
  993. *
  994. * FIXME: this could be merged to shift decision code
  995. */
  996. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  997. u32 start_seq, u32 end_seq)
  998. {
  999. int err;
  1000. bool in_sack;
  1001. unsigned int pkt_len;
  1002. unsigned int mss;
  1003. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1004. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1005. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1006. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1007. mss = tcp_skb_mss(skb);
  1008. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1009. if (!in_sack) {
  1010. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1011. if (pkt_len < mss)
  1012. pkt_len = mss;
  1013. } else {
  1014. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1015. if (pkt_len < mss)
  1016. return -EINVAL;
  1017. }
  1018. /* Round if necessary so that SACKs cover only full MSSes
  1019. * and/or the remaining small portion (if present)
  1020. */
  1021. if (pkt_len > mss) {
  1022. unsigned int new_len = (pkt_len / mss) * mss;
  1023. if (!in_sack && new_len < pkt_len) {
  1024. new_len += mss;
  1025. if (new_len > skb->len)
  1026. return 0;
  1027. }
  1028. pkt_len = new_len;
  1029. }
  1030. err = tcp_fragment(sk, skb, pkt_len, mss);
  1031. if (err < 0)
  1032. return err;
  1033. }
  1034. return in_sack;
  1035. }
  1036. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1037. static u8 tcp_sacktag_one(struct sock *sk,
  1038. struct tcp_sacktag_state *state, u8 sacked,
  1039. u32 start_seq, u32 end_seq,
  1040. int dup_sack, int pcount,
  1041. const struct skb_mstamp *xmit_time)
  1042. {
  1043. struct tcp_sock *tp = tcp_sk(sk);
  1044. int fack_count = state->fack_count;
  1045. /* Account D-SACK for retransmitted packet. */
  1046. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1047. if (tp->undo_marker && tp->undo_retrans &&
  1048. after(end_seq, tp->undo_marker))
  1049. tp->undo_retrans--;
  1050. if (sacked & TCPCB_SACKED_ACKED)
  1051. state->reord = min(fack_count, state->reord);
  1052. }
  1053. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1054. if (!after(end_seq, tp->snd_una))
  1055. return sacked;
  1056. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1057. if (sacked & TCPCB_SACKED_RETRANS) {
  1058. /* If the segment is not tagged as lost,
  1059. * we do not clear RETRANS, believing
  1060. * that retransmission is still in flight.
  1061. */
  1062. if (sacked & TCPCB_LOST) {
  1063. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1064. tp->lost_out -= pcount;
  1065. tp->retrans_out -= pcount;
  1066. }
  1067. } else {
  1068. if (!(sacked & TCPCB_RETRANS)) {
  1069. /* New sack for not retransmitted frame,
  1070. * which was in hole. It is reordering.
  1071. */
  1072. if (before(start_seq,
  1073. tcp_highest_sack_seq(tp)))
  1074. state->reord = min(fack_count,
  1075. state->reord);
  1076. if (!after(end_seq, tp->high_seq))
  1077. state->flag |= FLAG_ORIG_SACK_ACKED;
  1078. /* Pick the earliest sequence sacked for RTT */
  1079. if (state->rtt_us < 0) {
  1080. struct skb_mstamp now;
  1081. skb_mstamp_get(&now);
  1082. state->rtt_us = skb_mstamp_us_delta(&now,
  1083. xmit_time);
  1084. }
  1085. }
  1086. if (sacked & TCPCB_LOST) {
  1087. sacked &= ~TCPCB_LOST;
  1088. tp->lost_out -= pcount;
  1089. }
  1090. }
  1091. sacked |= TCPCB_SACKED_ACKED;
  1092. state->flag |= FLAG_DATA_SACKED;
  1093. tp->sacked_out += pcount;
  1094. fack_count += pcount;
  1095. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1096. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1097. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1098. tp->lost_cnt_hint += pcount;
  1099. if (fack_count > tp->fackets_out)
  1100. tp->fackets_out = fack_count;
  1101. }
  1102. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1103. * frames and clear it. undo_retrans is decreased above, L|R frames
  1104. * are accounted above as well.
  1105. */
  1106. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1107. sacked &= ~TCPCB_SACKED_RETRANS;
  1108. tp->retrans_out -= pcount;
  1109. }
  1110. return sacked;
  1111. }
  1112. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1113. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1114. */
  1115. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1116. struct tcp_sacktag_state *state,
  1117. unsigned int pcount, int shifted, int mss,
  1118. bool dup_sack)
  1119. {
  1120. struct tcp_sock *tp = tcp_sk(sk);
  1121. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1122. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1123. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1124. BUG_ON(!pcount);
  1125. /* Adjust counters and hints for the newly sacked sequence
  1126. * range but discard the return value since prev is already
  1127. * marked. We must tag the range first because the seq
  1128. * advancement below implicitly advances
  1129. * tcp_highest_sack_seq() when skb is highest_sack.
  1130. */
  1131. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1132. start_seq, end_seq, dup_sack, pcount,
  1133. &skb->skb_mstamp);
  1134. if (skb == tp->lost_skb_hint)
  1135. tp->lost_cnt_hint += pcount;
  1136. TCP_SKB_CB(prev)->end_seq += shifted;
  1137. TCP_SKB_CB(skb)->seq += shifted;
  1138. skb_shinfo(prev)->gso_segs += pcount;
  1139. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1140. skb_shinfo(skb)->gso_segs -= pcount;
  1141. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1142. * in theory this shouldn't be necessary but as long as DSACK
  1143. * code can come after this skb later on it's better to keep
  1144. * setting gso_size to something.
  1145. */
  1146. if (!skb_shinfo(prev)->gso_size) {
  1147. skb_shinfo(prev)->gso_size = mss;
  1148. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1149. }
  1150. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1151. if (skb_shinfo(skb)->gso_segs <= 1) {
  1152. skb_shinfo(skb)->gso_size = 0;
  1153. skb_shinfo(skb)->gso_type = 0;
  1154. }
  1155. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1156. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1157. if (skb->len > 0) {
  1158. BUG_ON(!tcp_skb_pcount(skb));
  1159. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1160. return false;
  1161. }
  1162. /* Whole SKB was eaten :-) */
  1163. if (skb == tp->retransmit_skb_hint)
  1164. tp->retransmit_skb_hint = prev;
  1165. if (skb == tp->lost_skb_hint) {
  1166. tp->lost_skb_hint = prev;
  1167. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1168. }
  1169. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1170. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1171. TCP_SKB_CB(prev)->end_seq++;
  1172. if (skb == tcp_highest_sack(sk))
  1173. tcp_advance_highest_sack(sk, skb);
  1174. tcp_unlink_write_queue(skb, sk);
  1175. sk_wmem_free_skb(sk, skb);
  1176. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1177. return true;
  1178. }
  1179. /* I wish gso_size would have a bit more sane initialization than
  1180. * something-or-zero which complicates things
  1181. */
  1182. static int tcp_skb_seglen(const struct sk_buff *skb)
  1183. {
  1184. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1185. }
  1186. /* Shifting pages past head area doesn't work */
  1187. static int skb_can_shift(const struct sk_buff *skb)
  1188. {
  1189. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1190. }
  1191. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1192. * skb.
  1193. */
  1194. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1195. struct tcp_sacktag_state *state,
  1196. u32 start_seq, u32 end_seq,
  1197. bool dup_sack)
  1198. {
  1199. struct tcp_sock *tp = tcp_sk(sk);
  1200. struct sk_buff *prev;
  1201. int mss;
  1202. int pcount = 0;
  1203. int len;
  1204. int in_sack;
  1205. if (!sk_can_gso(sk))
  1206. goto fallback;
  1207. /* Normally R but no L won't result in plain S */
  1208. if (!dup_sack &&
  1209. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1210. goto fallback;
  1211. if (!skb_can_shift(skb))
  1212. goto fallback;
  1213. /* This frame is about to be dropped (was ACKed). */
  1214. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1215. goto fallback;
  1216. /* Can only happen with delayed DSACK + discard craziness */
  1217. if (unlikely(skb == tcp_write_queue_head(sk)))
  1218. goto fallback;
  1219. prev = tcp_write_queue_prev(sk, skb);
  1220. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1221. goto fallback;
  1222. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1223. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1224. if (in_sack) {
  1225. len = skb->len;
  1226. pcount = tcp_skb_pcount(skb);
  1227. mss = tcp_skb_seglen(skb);
  1228. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1229. * drop this restriction as unnecessary
  1230. */
  1231. if (mss != tcp_skb_seglen(prev))
  1232. goto fallback;
  1233. } else {
  1234. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1235. goto noop;
  1236. /* CHECKME: This is non-MSS split case only?, this will
  1237. * cause skipped skbs due to advancing loop btw, original
  1238. * has that feature too
  1239. */
  1240. if (tcp_skb_pcount(skb) <= 1)
  1241. goto noop;
  1242. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1243. if (!in_sack) {
  1244. /* TODO: head merge to next could be attempted here
  1245. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1246. * though it might not be worth of the additional hassle
  1247. *
  1248. * ...we can probably just fallback to what was done
  1249. * previously. We could try merging non-SACKed ones
  1250. * as well but it probably isn't going to buy off
  1251. * because later SACKs might again split them, and
  1252. * it would make skb timestamp tracking considerably
  1253. * harder problem.
  1254. */
  1255. goto fallback;
  1256. }
  1257. len = end_seq - TCP_SKB_CB(skb)->seq;
  1258. BUG_ON(len < 0);
  1259. BUG_ON(len > skb->len);
  1260. /* MSS boundaries should be honoured or else pcount will
  1261. * severely break even though it makes things bit trickier.
  1262. * Optimize common case to avoid most of the divides
  1263. */
  1264. mss = tcp_skb_mss(skb);
  1265. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1266. * drop this restriction as unnecessary
  1267. */
  1268. if (mss != tcp_skb_seglen(prev))
  1269. goto fallback;
  1270. if (len == mss) {
  1271. pcount = 1;
  1272. } else if (len < mss) {
  1273. goto noop;
  1274. } else {
  1275. pcount = len / mss;
  1276. len = pcount * mss;
  1277. }
  1278. }
  1279. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1280. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1281. goto fallback;
  1282. if (!skb_shift(prev, skb, len))
  1283. goto fallback;
  1284. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1285. goto out;
  1286. /* Hole filled allows collapsing with the next as well, this is very
  1287. * useful when hole on every nth skb pattern happens
  1288. */
  1289. if (prev == tcp_write_queue_tail(sk))
  1290. goto out;
  1291. skb = tcp_write_queue_next(sk, prev);
  1292. if (!skb_can_shift(skb) ||
  1293. (skb == tcp_send_head(sk)) ||
  1294. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1295. (mss != tcp_skb_seglen(skb)))
  1296. goto out;
  1297. len = skb->len;
  1298. if (skb_shift(prev, skb, len)) {
  1299. pcount += tcp_skb_pcount(skb);
  1300. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1301. }
  1302. out:
  1303. state->fack_count += pcount;
  1304. return prev;
  1305. noop:
  1306. return skb;
  1307. fallback:
  1308. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1309. return NULL;
  1310. }
  1311. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1312. struct tcp_sack_block *next_dup,
  1313. struct tcp_sacktag_state *state,
  1314. u32 start_seq, u32 end_seq,
  1315. bool dup_sack_in)
  1316. {
  1317. struct tcp_sock *tp = tcp_sk(sk);
  1318. struct sk_buff *tmp;
  1319. tcp_for_write_queue_from(skb, sk) {
  1320. int in_sack = 0;
  1321. bool dup_sack = dup_sack_in;
  1322. if (skb == tcp_send_head(sk))
  1323. break;
  1324. /* queue is in-order => we can short-circuit the walk early */
  1325. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1326. break;
  1327. if ((next_dup != NULL) &&
  1328. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1329. in_sack = tcp_match_skb_to_sack(sk, skb,
  1330. next_dup->start_seq,
  1331. next_dup->end_seq);
  1332. if (in_sack > 0)
  1333. dup_sack = true;
  1334. }
  1335. /* skb reference here is a bit tricky to get right, since
  1336. * shifting can eat and free both this skb and the next,
  1337. * so not even _safe variant of the loop is enough.
  1338. */
  1339. if (in_sack <= 0) {
  1340. tmp = tcp_shift_skb_data(sk, skb, state,
  1341. start_seq, end_seq, dup_sack);
  1342. if (tmp != NULL) {
  1343. if (tmp != skb) {
  1344. skb = tmp;
  1345. continue;
  1346. }
  1347. in_sack = 0;
  1348. } else {
  1349. in_sack = tcp_match_skb_to_sack(sk, skb,
  1350. start_seq,
  1351. end_seq);
  1352. }
  1353. }
  1354. if (unlikely(in_sack < 0))
  1355. break;
  1356. if (in_sack) {
  1357. TCP_SKB_CB(skb)->sacked =
  1358. tcp_sacktag_one(sk,
  1359. state,
  1360. TCP_SKB_CB(skb)->sacked,
  1361. TCP_SKB_CB(skb)->seq,
  1362. TCP_SKB_CB(skb)->end_seq,
  1363. dup_sack,
  1364. tcp_skb_pcount(skb),
  1365. &skb->skb_mstamp);
  1366. if (!before(TCP_SKB_CB(skb)->seq,
  1367. tcp_highest_sack_seq(tp)))
  1368. tcp_advance_highest_sack(sk, skb);
  1369. }
  1370. state->fack_count += tcp_skb_pcount(skb);
  1371. }
  1372. return skb;
  1373. }
  1374. /* Avoid all extra work that is being done by sacktag while walking in
  1375. * a normal way
  1376. */
  1377. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1378. struct tcp_sacktag_state *state,
  1379. u32 skip_to_seq)
  1380. {
  1381. tcp_for_write_queue_from(skb, sk) {
  1382. if (skb == tcp_send_head(sk))
  1383. break;
  1384. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1385. break;
  1386. state->fack_count += tcp_skb_pcount(skb);
  1387. }
  1388. return skb;
  1389. }
  1390. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1391. struct sock *sk,
  1392. struct tcp_sack_block *next_dup,
  1393. struct tcp_sacktag_state *state,
  1394. u32 skip_to_seq)
  1395. {
  1396. if (next_dup == NULL)
  1397. return skb;
  1398. if (before(next_dup->start_seq, skip_to_seq)) {
  1399. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1400. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1401. next_dup->start_seq, next_dup->end_seq,
  1402. 1);
  1403. }
  1404. return skb;
  1405. }
  1406. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1407. {
  1408. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1409. }
  1410. static int
  1411. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1412. u32 prior_snd_una, long *sack_rtt_us)
  1413. {
  1414. struct tcp_sock *tp = tcp_sk(sk);
  1415. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1416. TCP_SKB_CB(ack_skb)->sacked);
  1417. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1418. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1419. struct tcp_sack_block *cache;
  1420. struct tcp_sacktag_state state;
  1421. struct sk_buff *skb;
  1422. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1423. int used_sacks;
  1424. bool found_dup_sack = false;
  1425. int i, j;
  1426. int first_sack_index;
  1427. state.flag = 0;
  1428. state.reord = tp->packets_out;
  1429. state.rtt_us = -1L;
  1430. if (!tp->sacked_out) {
  1431. if (WARN_ON(tp->fackets_out))
  1432. tp->fackets_out = 0;
  1433. tcp_highest_sack_reset(sk);
  1434. }
  1435. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1436. num_sacks, prior_snd_una);
  1437. if (found_dup_sack)
  1438. state.flag |= FLAG_DSACKING_ACK;
  1439. /* Eliminate too old ACKs, but take into
  1440. * account more or less fresh ones, they can
  1441. * contain valid SACK info.
  1442. */
  1443. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1444. return 0;
  1445. if (!tp->packets_out)
  1446. goto out;
  1447. used_sacks = 0;
  1448. first_sack_index = 0;
  1449. for (i = 0; i < num_sacks; i++) {
  1450. bool dup_sack = !i && found_dup_sack;
  1451. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1452. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1453. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1454. sp[used_sacks].start_seq,
  1455. sp[used_sacks].end_seq)) {
  1456. int mib_idx;
  1457. if (dup_sack) {
  1458. if (!tp->undo_marker)
  1459. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1460. else
  1461. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1462. } else {
  1463. /* Don't count olds caused by ACK reordering */
  1464. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1465. !after(sp[used_sacks].end_seq, tp->snd_una))
  1466. continue;
  1467. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1468. }
  1469. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1470. if (i == 0)
  1471. first_sack_index = -1;
  1472. continue;
  1473. }
  1474. /* Ignore very old stuff early */
  1475. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1476. continue;
  1477. used_sacks++;
  1478. }
  1479. /* order SACK blocks to allow in order walk of the retrans queue */
  1480. for (i = used_sacks - 1; i > 0; i--) {
  1481. for (j = 0; j < i; j++) {
  1482. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1483. swap(sp[j], sp[j + 1]);
  1484. /* Track where the first SACK block goes to */
  1485. if (j == first_sack_index)
  1486. first_sack_index = j + 1;
  1487. }
  1488. }
  1489. }
  1490. skb = tcp_write_queue_head(sk);
  1491. state.fack_count = 0;
  1492. i = 0;
  1493. if (!tp->sacked_out) {
  1494. /* It's already past, so skip checking against it */
  1495. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1496. } else {
  1497. cache = tp->recv_sack_cache;
  1498. /* Skip empty blocks in at head of the cache */
  1499. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1500. !cache->end_seq)
  1501. cache++;
  1502. }
  1503. while (i < used_sacks) {
  1504. u32 start_seq = sp[i].start_seq;
  1505. u32 end_seq = sp[i].end_seq;
  1506. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1507. struct tcp_sack_block *next_dup = NULL;
  1508. if (found_dup_sack && ((i + 1) == first_sack_index))
  1509. next_dup = &sp[i + 1];
  1510. /* Skip too early cached blocks */
  1511. while (tcp_sack_cache_ok(tp, cache) &&
  1512. !before(start_seq, cache->end_seq))
  1513. cache++;
  1514. /* Can skip some work by looking recv_sack_cache? */
  1515. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1516. after(end_seq, cache->start_seq)) {
  1517. /* Head todo? */
  1518. if (before(start_seq, cache->start_seq)) {
  1519. skb = tcp_sacktag_skip(skb, sk, &state,
  1520. start_seq);
  1521. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1522. &state,
  1523. start_seq,
  1524. cache->start_seq,
  1525. dup_sack);
  1526. }
  1527. /* Rest of the block already fully processed? */
  1528. if (!after(end_seq, cache->end_seq))
  1529. goto advance_sp;
  1530. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1531. &state,
  1532. cache->end_seq);
  1533. /* ...tail remains todo... */
  1534. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1535. /* ...but better entrypoint exists! */
  1536. skb = tcp_highest_sack(sk);
  1537. if (skb == NULL)
  1538. break;
  1539. state.fack_count = tp->fackets_out;
  1540. cache++;
  1541. goto walk;
  1542. }
  1543. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1544. /* Check overlap against next cached too (past this one already) */
  1545. cache++;
  1546. continue;
  1547. }
  1548. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1549. skb = tcp_highest_sack(sk);
  1550. if (skb == NULL)
  1551. break;
  1552. state.fack_count = tp->fackets_out;
  1553. }
  1554. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1555. walk:
  1556. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1557. start_seq, end_seq, dup_sack);
  1558. advance_sp:
  1559. i++;
  1560. }
  1561. /* Clear the head of the cache sack blocks so we can skip it next time */
  1562. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1563. tp->recv_sack_cache[i].start_seq = 0;
  1564. tp->recv_sack_cache[i].end_seq = 0;
  1565. }
  1566. for (j = 0; j < used_sacks; j++)
  1567. tp->recv_sack_cache[i++] = sp[j];
  1568. tcp_mark_lost_retrans(sk);
  1569. tcp_verify_left_out(tp);
  1570. if ((state.reord < tp->fackets_out) &&
  1571. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1572. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1573. out:
  1574. #if FASTRETRANS_DEBUG > 0
  1575. WARN_ON((int)tp->sacked_out < 0);
  1576. WARN_ON((int)tp->lost_out < 0);
  1577. WARN_ON((int)tp->retrans_out < 0);
  1578. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1579. #endif
  1580. *sack_rtt_us = state.rtt_us;
  1581. return state.flag;
  1582. }
  1583. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1584. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1585. */
  1586. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1587. {
  1588. u32 holes;
  1589. holes = max(tp->lost_out, 1U);
  1590. holes = min(holes, tp->packets_out);
  1591. if ((tp->sacked_out + holes) > tp->packets_out) {
  1592. tp->sacked_out = tp->packets_out - holes;
  1593. return true;
  1594. }
  1595. return false;
  1596. }
  1597. /* If we receive more dupacks than we expected counting segments
  1598. * in assumption of absent reordering, interpret this as reordering.
  1599. * The only another reason could be bug in receiver TCP.
  1600. */
  1601. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1602. {
  1603. struct tcp_sock *tp = tcp_sk(sk);
  1604. if (tcp_limit_reno_sacked(tp))
  1605. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1606. }
  1607. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1608. static void tcp_add_reno_sack(struct sock *sk)
  1609. {
  1610. struct tcp_sock *tp = tcp_sk(sk);
  1611. tp->sacked_out++;
  1612. tcp_check_reno_reordering(sk, 0);
  1613. tcp_verify_left_out(tp);
  1614. }
  1615. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1616. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1617. {
  1618. struct tcp_sock *tp = tcp_sk(sk);
  1619. if (acked > 0) {
  1620. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1621. if (acked - 1 >= tp->sacked_out)
  1622. tp->sacked_out = 0;
  1623. else
  1624. tp->sacked_out -= acked - 1;
  1625. }
  1626. tcp_check_reno_reordering(sk, acked);
  1627. tcp_verify_left_out(tp);
  1628. }
  1629. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1630. {
  1631. tp->sacked_out = 0;
  1632. }
  1633. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1634. {
  1635. tp->retrans_out = 0;
  1636. tp->lost_out = 0;
  1637. tp->undo_marker = 0;
  1638. tp->undo_retrans = 0;
  1639. }
  1640. void tcp_clear_retrans(struct tcp_sock *tp)
  1641. {
  1642. tcp_clear_retrans_partial(tp);
  1643. tp->fackets_out = 0;
  1644. tp->sacked_out = 0;
  1645. }
  1646. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1647. * and reset tags completely, otherwise preserve SACKs. If receiver
  1648. * dropped its ofo queue, we will know this due to reneging detection.
  1649. */
  1650. void tcp_enter_loss(struct sock *sk, int how)
  1651. {
  1652. const struct inet_connection_sock *icsk = inet_csk(sk);
  1653. struct tcp_sock *tp = tcp_sk(sk);
  1654. struct sk_buff *skb;
  1655. bool new_recovery = false;
  1656. /* Reduce ssthresh if it has not yet been made inside this window. */
  1657. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1658. !after(tp->high_seq, tp->snd_una) ||
  1659. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1660. new_recovery = true;
  1661. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1662. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1663. tcp_ca_event(sk, CA_EVENT_LOSS);
  1664. }
  1665. tp->snd_cwnd = 1;
  1666. tp->snd_cwnd_cnt = 0;
  1667. tp->snd_cwnd_stamp = tcp_time_stamp;
  1668. tcp_clear_retrans_partial(tp);
  1669. if (tcp_is_reno(tp))
  1670. tcp_reset_reno_sack(tp);
  1671. tp->undo_marker = tp->snd_una;
  1672. if (how) {
  1673. tp->sacked_out = 0;
  1674. tp->fackets_out = 0;
  1675. }
  1676. tcp_clear_all_retrans_hints(tp);
  1677. tcp_for_write_queue(skb, sk) {
  1678. if (skb == tcp_send_head(sk))
  1679. break;
  1680. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1681. tp->undo_marker = 0;
  1682. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1683. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1684. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1685. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1686. tp->lost_out += tcp_skb_pcount(skb);
  1687. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1688. }
  1689. }
  1690. tcp_verify_left_out(tp);
  1691. /* Timeout in disordered state after receiving substantial DUPACKs
  1692. * suggests that the degree of reordering is over-estimated.
  1693. */
  1694. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1695. tp->sacked_out >= sysctl_tcp_reordering)
  1696. tp->reordering = min_t(unsigned int, tp->reordering,
  1697. sysctl_tcp_reordering);
  1698. tcp_set_ca_state(sk, TCP_CA_Loss);
  1699. tp->high_seq = tp->snd_nxt;
  1700. TCP_ECN_queue_cwr(tp);
  1701. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1702. * loss recovery is underway except recurring timeout(s) on
  1703. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1704. */
  1705. tp->frto = sysctl_tcp_frto &&
  1706. (new_recovery || icsk->icsk_retransmits) &&
  1707. !inet_csk(sk)->icsk_mtup.probe_size;
  1708. }
  1709. /* If ACK arrived pointing to a remembered SACK, it means that our
  1710. * remembered SACKs do not reflect real state of receiver i.e.
  1711. * receiver _host_ is heavily congested (or buggy).
  1712. *
  1713. * Do processing similar to RTO timeout.
  1714. */
  1715. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1716. {
  1717. if (flag & FLAG_SACK_RENEGING) {
  1718. struct inet_connection_sock *icsk = inet_csk(sk);
  1719. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1720. tcp_enter_loss(sk, 1);
  1721. icsk->icsk_retransmits++;
  1722. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1723. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1724. icsk->icsk_rto, TCP_RTO_MAX);
  1725. return true;
  1726. }
  1727. return false;
  1728. }
  1729. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1730. {
  1731. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1732. }
  1733. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1734. * counter when SACK is enabled (without SACK, sacked_out is used for
  1735. * that purpose).
  1736. *
  1737. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1738. * segments up to the highest received SACK block so far and holes in
  1739. * between them.
  1740. *
  1741. * With reordering, holes may still be in flight, so RFC3517 recovery
  1742. * uses pure sacked_out (total number of SACKed segments) even though
  1743. * it violates the RFC that uses duplicate ACKs, often these are equal
  1744. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1745. * they differ. Since neither occurs due to loss, TCP should really
  1746. * ignore them.
  1747. */
  1748. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1749. {
  1750. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1751. }
  1752. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1753. {
  1754. struct tcp_sock *tp = tcp_sk(sk);
  1755. unsigned long delay;
  1756. /* Delay early retransmit and entering fast recovery for
  1757. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1758. * available, or RTO is scheduled to fire first.
  1759. */
  1760. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1761. (flag & FLAG_ECE) || !tp->srtt_us)
  1762. return false;
  1763. delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
  1764. msecs_to_jiffies(2));
  1765. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1766. return false;
  1767. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1768. TCP_RTO_MAX);
  1769. return true;
  1770. }
  1771. /* Linux NewReno/SACK/FACK/ECN state machine.
  1772. * --------------------------------------
  1773. *
  1774. * "Open" Normal state, no dubious events, fast path.
  1775. * "Disorder" In all the respects it is "Open",
  1776. * but requires a bit more attention. It is entered when
  1777. * we see some SACKs or dupacks. It is split of "Open"
  1778. * mainly to move some processing from fast path to slow one.
  1779. * "CWR" CWND was reduced due to some Congestion Notification event.
  1780. * It can be ECN, ICMP source quench, local device congestion.
  1781. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1782. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1783. *
  1784. * tcp_fastretrans_alert() is entered:
  1785. * - each incoming ACK, if state is not "Open"
  1786. * - when arrived ACK is unusual, namely:
  1787. * * SACK
  1788. * * Duplicate ACK.
  1789. * * ECN ECE.
  1790. *
  1791. * Counting packets in flight is pretty simple.
  1792. *
  1793. * in_flight = packets_out - left_out + retrans_out
  1794. *
  1795. * packets_out is SND.NXT-SND.UNA counted in packets.
  1796. *
  1797. * retrans_out is number of retransmitted segments.
  1798. *
  1799. * left_out is number of segments left network, but not ACKed yet.
  1800. *
  1801. * left_out = sacked_out + lost_out
  1802. *
  1803. * sacked_out: Packets, which arrived to receiver out of order
  1804. * and hence not ACKed. With SACKs this number is simply
  1805. * amount of SACKed data. Even without SACKs
  1806. * it is easy to give pretty reliable estimate of this number,
  1807. * counting duplicate ACKs.
  1808. *
  1809. * lost_out: Packets lost by network. TCP has no explicit
  1810. * "loss notification" feedback from network (for now).
  1811. * It means that this number can be only _guessed_.
  1812. * Actually, it is the heuristics to predict lossage that
  1813. * distinguishes different algorithms.
  1814. *
  1815. * F.e. after RTO, when all the queue is considered as lost,
  1816. * lost_out = packets_out and in_flight = retrans_out.
  1817. *
  1818. * Essentially, we have now two algorithms counting
  1819. * lost packets.
  1820. *
  1821. * FACK: It is the simplest heuristics. As soon as we decided
  1822. * that something is lost, we decide that _all_ not SACKed
  1823. * packets until the most forward SACK are lost. I.e.
  1824. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1825. * It is absolutely correct estimate, if network does not reorder
  1826. * packets. And it loses any connection to reality when reordering
  1827. * takes place. We use FACK by default until reordering
  1828. * is suspected on the path to this destination.
  1829. *
  1830. * NewReno: when Recovery is entered, we assume that one segment
  1831. * is lost (classic Reno). While we are in Recovery and
  1832. * a partial ACK arrives, we assume that one more packet
  1833. * is lost (NewReno). This heuristics are the same in NewReno
  1834. * and SACK.
  1835. *
  1836. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1837. * deflation etc. CWND is real congestion window, never inflated, changes
  1838. * only according to classic VJ rules.
  1839. *
  1840. * Really tricky (and requiring careful tuning) part of algorithm
  1841. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1842. * The first determines the moment _when_ we should reduce CWND and,
  1843. * hence, slow down forward transmission. In fact, it determines the moment
  1844. * when we decide that hole is caused by loss, rather than by a reorder.
  1845. *
  1846. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1847. * holes, caused by lost packets.
  1848. *
  1849. * And the most logically complicated part of algorithm is undo
  1850. * heuristics. We detect false retransmits due to both too early
  1851. * fast retransmit (reordering) and underestimated RTO, analyzing
  1852. * timestamps and D-SACKs. When we detect that some segments were
  1853. * retransmitted by mistake and CWND reduction was wrong, we undo
  1854. * window reduction and abort recovery phase. This logic is hidden
  1855. * inside several functions named tcp_try_undo_<something>.
  1856. */
  1857. /* This function decides, when we should leave Disordered state
  1858. * and enter Recovery phase, reducing congestion window.
  1859. *
  1860. * Main question: may we further continue forward transmission
  1861. * with the same cwnd?
  1862. */
  1863. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1864. {
  1865. struct tcp_sock *tp = tcp_sk(sk);
  1866. __u32 packets_out;
  1867. /* Trick#1: The loss is proven. */
  1868. if (tp->lost_out)
  1869. return true;
  1870. /* Not-A-Trick#2 : Classic rule... */
  1871. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1872. return true;
  1873. /* Trick#4: It is still not OK... But will it be useful to delay
  1874. * recovery more?
  1875. */
  1876. packets_out = tp->packets_out;
  1877. if (packets_out <= tp->reordering &&
  1878. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1879. !tcp_may_send_now(sk)) {
  1880. /* We have nothing to send. This connection is limited
  1881. * either by receiver window or by application.
  1882. */
  1883. return true;
  1884. }
  1885. /* If a thin stream is detected, retransmit after first
  1886. * received dupack. Employ only if SACK is supported in order
  1887. * to avoid possible corner-case series of spurious retransmissions
  1888. * Use only if there are no unsent data.
  1889. */
  1890. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1891. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1892. tcp_is_sack(tp) && !tcp_send_head(sk))
  1893. return true;
  1894. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1895. * retransmissions due to small network reorderings, we implement
  1896. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1897. * interval if appropriate.
  1898. */
  1899. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1900. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1901. !tcp_may_send_now(sk))
  1902. return !tcp_pause_early_retransmit(sk, flag);
  1903. return false;
  1904. }
  1905. /* Detect loss in event "A" above by marking head of queue up as lost.
  1906. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1907. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1908. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1909. * the maximum SACKed segments to pass before reaching this limit.
  1910. */
  1911. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1912. {
  1913. struct tcp_sock *tp = tcp_sk(sk);
  1914. struct sk_buff *skb;
  1915. int cnt, oldcnt;
  1916. int err;
  1917. unsigned int mss;
  1918. /* Use SACK to deduce losses of new sequences sent during recovery */
  1919. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1920. WARN_ON(packets > tp->packets_out);
  1921. if (tp->lost_skb_hint) {
  1922. skb = tp->lost_skb_hint;
  1923. cnt = tp->lost_cnt_hint;
  1924. /* Head already handled? */
  1925. if (mark_head && skb != tcp_write_queue_head(sk))
  1926. return;
  1927. } else {
  1928. skb = tcp_write_queue_head(sk);
  1929. cnt = 0;
  1930. }
  1931. tcp_for_write_queue_from(skb, sk) {
  1932. if (skb == tcp_send_head(sk))
  1933. break;
  1934. /* TODO: do this better */
  1935. /* this is not the most efficient way to do this... */
  1936. tp->lost_skb_hint = skb;
  1937. tp->lost_cnt_hint = cnt;
  1938. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1939. break;
  1940. oldcnt = cnt;
  1941. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1942. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1943. cnt += tcp_skb_pcount(skb);
  1944. if (cnt > packets) {
  1945. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1946. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1947. (oldcnt >= packets))
  1948. break;
  1949. mss = skb_shinfo(skb)->gso_size;
  1950. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  1951. if (err < 0)
  1952. break;
  1953. cnt = packets;
  1954. }
  1955. tcp_skb_mark_lost(tp, skb);
  1956. if (mark_head)
  1957. break;
  1958. }
  1959. tcp_verify_left_out(tp);
  1960. }
  1961. /* Account newly detected lost packet(s) */
  1962. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1963. {
  1964. struct tcp_sock *tp = tcp_sk(sk);
  1965. if (tcp_is_reno(tp)) {
  1966. tcp_mark_head_lost(sk, 1, 1);
  1967. } else if (tcp_is_fack(tp)) {
  1968. int lost = tp->fackets_out - tp->reordering;
  1969. if (lost <= 0)
  1970. lost = 1;
  1971. tcp_mark_head_lost(sk, lost, 0);
  1972. } else {
  1973. int sacked_upto = tp->sacked_out - tp->reordering;
  1974. if (sacked_upto >= 0)
  1975. tcp_mark_head_lost(sk, sacked_upto, 0);
  1976. else if (fast_rexmit)
  1977. tcp_mark_head_lost(sk, 1, 1);
  1978. }
  1979. }
  1980. /* CWND moderation, preventing bursts due to too big ACKs
  1981. * in dubious situations.
  1982. */
  1983. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1984. {
  1985. tp->snd_cwnd = min(tp->snd_cwnd,
  1986. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  1987. tp->snd_cwnd_stamp = tcp_time_stamp;
  1988. }
  1989. /* Nothing was retransmitted or returned timestamp is less
  1990. * than timestamp of the first retransmission.
  1991. */
  1992. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1993. {
  1994. return !tp->retrans_stamp ||
  1995. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1996. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  1997. }
  1998. /* Undo procedures. */
  1999. #if FASTRETRANS_DEBUG > 1
  2000. static void DBGUNDO(struct sock *sk, const char *msg)
  2001. {
  2002. struct tcp_sock *tp = tcp_sk(sk);
  2003. struct inet_sock *inet = inet_sk(sk);
  2004. if (sk->sk_family == AF_INET) {
  2005. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2006. msg,
  2007. &inet->inet_daddr, ntohs(inet->inet_dport),
  2008. tp->snd_cwnd, tcp_left_out(tp),
  2009. tp->snd_ssthresh, tp->prior_ssthresh,
  2010. tp->packets_out);
  2011. }
  2012. #if IS_ENABLED(CONFIG_IPV6)
  2013. else if (sk->sk_family == AF_INET6) {
  2014. struct ipv6_pinfo *np = inet6_sk(sk);
  2015. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2016. msg,
  2017. &np->daddr, ntohs(inet->inet_dport),
  2018. tp->snd_cwnd, tcp_left_out(tp),
  2019. tp->snd_ssthresh, tp->prior_ssthresh,
  2020. tp->packets_out);
  2021. }
  2022. #endif
  2023. }
  2024. #else
  2025. #define DBGUNDO(x...) do { } while (0)
  2026. #endif
  2027. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2028. {
  2029. struct tcp_sock *tp = tcp_sk(sk);
  2030. if (unmark_loss) {
  2031. struct sk_buff *skb;
  2032. tcp_for_write_queue(skb, sk) {
  2033. if (skb == tcp_send_head(sk))
  2034. break;
  2035. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2036. }
  2037. tp->lost_out = 0;
  2038. tcp_clear_all_retrans_hints(tp);
  2039. }
  2040. if (tp->prior_ssthresh) {
  2041. const struct inet_connection_sock *icsk = inet_csk(sk);
  2042. if (icsk->icsk_ca_ops->undo_cwnd)
  2043. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2044. else
  2045. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2046. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2047. tp->snd_ssthresh = tp->prior_ssthresh;
  2048. TCP_ECN_withdraw_cwr(tp);
  2049. }
  2050. } else {
  2051. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2052. }
  2053. tp->snd_cwnd_stamp = tcp_time_stamp;
  2054. tp->undo_marker = 0;
  2055. }
  2056. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2057. {
  2058. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2059. }
  2060. /* People celebrate: "We love our President!" */
  2061. static bool tcp_try_undo_recovery(struct sock *sk)
  2062. {
  2063. struct tcp_sock *tp = tcp_sk(sk);
  2064. if (tcp_may_undo(tp)) {
  2065. int mib_idx;
  2066. /* Happy end! We did not retransmit anything
  2067. * or our original transmission succeeded.
  2068. */
  2069. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2070. tcp_undo_cwnd_reduction(sk, false);
  2071. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2072. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2073. else
  2074. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2075. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2076. }
  2077. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2078. /* Hold old state until something *above* high_seq
  2079. * is ACKed. For Reno it is MUST to prevent false
  2080. * fast retransmits (RFC2582). SACK TCP is safe. */
  2081. tcp_moderate_cwnd(tp);
  2082. return true;
  2083. }
  2084. tcp_set_ca_state(sk, TCP_CA_Open);
  2085. return false;
  2086. }
  2087. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2088. static bool tcp_try_undo_dsack(struct sock *sk)
  2089. {
  2090. struct tcp_sock *tp = tcp_sk(sk);
  2091. if (tp->undo_marker && !tp->undo_retrans) {
  2092. DBGUNDO(sk, "D-SACK");
  2093. tcp_undo_cwnd_reduction(sk, false);
  2094. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2095. return true;
  2096. }
  2097. return false;
  2098. }
  2099. /* We can clear retrans_stamp when there are no retransmissions in the
  2100. * window. It would seem that it is trivially available for us in
  2101. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2102. * what will happen if errors occur when sending retransmission for the
  2103. * second time. ...It could the that such segment has only
  2104. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2105. * the head skb is enough except for some reneging corner cases that
  2106. * are not worth the effort.
  2107. *
  2108. * Main reason for all this complexity is the fact that connection dying
  2109. * time now depends on the validity of the retrans_stamp, in particular,
  2110. * that successive retransmissions of a segment must not advance
  2111. * retrans_stamp under any conditions.
  2112. */
  2113. static bool tcp_any_retrans_done(const struct sock *sk)
  2114. {
  2115. const struct tcp_sock *tp = tcp_sk(sk);
  2116. struct sk_buff *skb;
  2117. if (tp->retrans_out)
  2118. return true;
  2119. skb = tcp_write_queue_head(sk);
  2120. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2121. return true;
  2122. return false;
  2123. }
  2124. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2125. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2126. {
  2127. struct tcp_sock *tp = tcp_sk(sk);
  2128. if (frto_undo || tcp_may_undo(tp)) {
  2129. tcp_undo_cwnd_reduction(sk, true);
  2130. DBGUNDO(sk, "partial loss");
  2131. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2132. if (frto_undo)
  2133. NET_INC_STATS_BH(sock_net(sk),
  2134. LINUX_MIB_TCPSPURIOUSRTOS);
  2135. inet_csk(sk)->icsk_retransmits = 0;
  2136. if (frto_undo || tcp_is_sack(tp))
  2137. tcp_set_ca_state(sk, TCP_CA_Open);
  2138. return true;
  2139. }
  2140. return false;
  2141. }
  2142. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2143. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2144. * It computes the number of packets to send (sndcnt) based on packets newly
  2145. * delivered:
  2146. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2147. * cwnd reductions across a full RTT.
  2148. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2149. * losses and/or application stalls), do not perform any further cwnd
  2150. * reductions, but instead slow start up to ssthresh.
  2151. */
  2152. static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
  2153. {
  2154. struct tcp_sock *tp = tcp_sk(sk);
  2155. tp->high_seq = tp->snd_nxt;
  2156. tp->tlp_high_seq = 0;
  2157. tp->snd_cwnd_cnt = 0;
  2158. tp->prior_cwnd = tp->snd_cwnd;
  2159. tp->prr_delivered = 0;
  2160. tp->prr_out = 0;
  2161. if (set_ssthresh)
  2162. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2163. TCP_ECN_queue_cwr(tp);
  2164. }
  2165. static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
  2166. int fast_rexmit)
  2167. {
  2168. struct tcp_sock *tp = tcp_sk(sk);
  2169. int sndcnt = 0;
  2170. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2171. int newly_acked_sacked = prior_unsacked -
  2172. (tp->packets_out - tp->sacked_out);
  2173. tp->prr_delivered += newly_acked_sacked;
  2174. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2175. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2176. tp->prior_cwnd - 1;
  2177. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2178. } else {
  2179. sndcnt = min_t(int, delta,
  2180. max_t(int, tp->prr_delivered - tp->prr_out,
  2181. newly_acked_sacked) + 1);
  2182. }
  2183. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2184. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2185. }
  2186. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2187. {
  2188. struct tcp_sock *tp = tcp_sk(sk);
  2189. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2190. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2191. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2192. tp->snd_cwnd = tp->snd_ssthresh;
  2193. tp->snd_cwnd_stamp = tcp_time_stamp;
  2194. }
  2195. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2196. }
  2197. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2198. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  2199. {
  2200. struct tcp_sock *tp = tcp_sk(sk);
  2201. tp->prior_ssthresh = 0;
  2202. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2203. tp->undo_marker = 0;
  2204. tcp_init_cwnd_reduction(sk, set_ssthresh);
  2205. tcp_set_ca_state(sk, TCP_CA_CWR);
  2206. }
  2207. }
  2208. static void tcp_try_keep_open(struct sock *sk)
  2209. {
  2210. struct tcp_sock *tp = tcp_sk(sk);
  2211. int state = TCP_CA_Open;
  2212. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2213. state = TCP_CA_Disorder;
  2214. if (inet_csk(sk)->icsk_ca_state != state) {
  2215. tcp_set_ca_state(sk, state);
  2216. tp->high_seq = tp->snd_nxt;
  2217. }
  2218. }
  2219. static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
  2220. {
  2221. struct tcp_sock *tp = tcp_sk(sk);
  2222. tcp_verify_left_out(tp);
  2223. if (!tcp_any_retrans_done(sk))
  2224. tp->retrans_stamp = 0;
  2225. if (flag & FLAG_ECE)
  2226. tcp_enter_cwr(sk, 1);
  2227. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2228. tcp_try_keep_open(sk);
  2229. } else {
  2230. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2231. }
  2232. }
  2233. static void tcp_mtup_probe_failed(struct sock *sk)
  2234. {
  2235. struct inet_connection_sock *icsk = inet_csk(sk);
  2236. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2237. icsk->icsk_mtup.probe_size = 0;
  2238. }
  2239. static void tcp_mtup_probe_success(struct sock *sk)
  2240. {
  2241. struct tcp_sock *tp = tcp_sk(sk);
  2242. struct inet_connection_sock *icsk = inet_csk(sk);
  2243. /* FIXME: breaks with very large cwnd */
  2244. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2245. tp->snd_cwnd = tp->snd_cwnd *
  2246. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2247. icsk->icsk_mtup.probe_size;
  2248. tp->snd_cwnd_cnt = 0;
  2249. tp->snd_cwnd_stamp = tcp_time_stamp;
  2250. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2251. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2252. icsk->icsk_mtup.probe_size = 0;
  2253. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2254. }
  2255. /* Do a simple retransmit without using the backoff mechanisms in
  2256. * tcp_timer. This is used for path mtu discovery.
  2257. * The socket is already locked here.
  2258. */
  2259. void tcp_simple_retransmit(struct sock *sk)
  2260. {
  2261. const struct inet_connection_sock *icsk = inet_csk(sk);
  2262. struct tcp_sock *tp = tcp_sk(sk);
  2263. struct sk_buff *skb;
  2264. unsigned int mss = tcp_current_mss(sk);
  2265. u32 prior_lost = tp->lost_out;
  2266. tcp_for_write_queue(skb, sk) {
  2267. if (skb == tcp_send_head(sk))
  2268. break;
  2269. if (tcp_skb_seglen(skb) > mss &&
  2270. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2271. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2272. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2273. tp->retrans_out -= tcp_skb_pcount(skb);
  2274. }
  2275. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2276. }
  2277. }
  2278. tcp_clear_retrans_hints_partial(tp);
  2279. if (prior_lost == tp->lost_out)
  2280. return;
  2281. if (tcp_is_reno(tp))
  2282. tcp_limit_reno_sacked(tp);
  2283. tcp_verify_left_out(tp);
  2284. /* Don't muck with the congestion window here.
  2285. * Reason is that we do not increase amount of _data_
  2286. * in network, but units changed and effective
  2287. * cwnd/ssthresh really reduced now.
  2288. */
  2289. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2290. tp->high_seq = tp->snd_nxt;
  2291. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2292. tp->prior_ssthresh = 0;
  2293. tp->undo_marker = 0;
  2294. tcp_set_ca_state(sk, TCP_CA_Loss);
  2295. }
  2296. tcp_xmit_retransmit_queue(sk);
  2297. }
  2298. EXPORT_SYMBOL(tcp_simple_retransmit);
  2299. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2300. {
  2301. struct tcp_sock *tp = tcp_sk(sk);
  2302. int mib_idx;
  2303. if (tcp_is_reno(tp))
  2304. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2305. else
  2306. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2307. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2308. tp->prior_ssthresh = 0;
  2309. tp->undo_marker = tp->snd_una;
  2310. tp->undo_retrans = tp->retrans_out;
  2311. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2312. if (!ece_ack)
  2313. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2314. tcp_init_cwnd_reduction(sk, true);
  2315. }
  2316. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2317. }
  2318. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2319. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2320. */
  2321. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
  2322. {
  2323. struct inet_connection_sock *icsk = inet_csk(sk);
  2324. struct tcp_sock *tp = tcp_sk(sk);
  2325. bool recovered = !before(tp->snd_una, tp->high_seq);
  2326. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2327. /* Step 3.b. A timeout is spurious if not all data are
  2328. * lost, i.e., never-retransmitted data are (s)acked.
  2329. */
  2330. if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
  2331. return;
  2332. if (after(tp->snd_nxt, tp->high_seq) &&
  2333. (flag & FLAG_DATA_SACKED || is_dupack)) {
  2334. tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
  2335. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2336. tp->high_seq = tp->snd_nxt;
  2337. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  2338. TCP_NAGLE_OFF);
  2339. if (after(tp->snd_nxt, tp->high_seq))
  2340. return; /* Step 2.b */
  2341. tp->frto = 0;
  2342. }
  2343. }
  2344. if (recovered) {
  2345. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2346. icsk->icsk_retransmits = 0;
  2347. tcp_try_undo_recovery(sk);
  2348. return;
  2349. }
  2350. if (flag & FLAG_DATA_ACKED)
  2351. icsk->icsk_retransmits = 0;
  2352. if (tcp_is_reno(tp)) {
  2353. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2354. * delivered. Lower inflight to clock out (re)tranmissions.
  2355. */
  2356. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2357. tcp_add_reno_sack(sk);
  2358. else if (flag & FLAG_SND_UNA_ADVANCED)
  2359. tcp_reset_reno_sack(tp);
  2360. }
  2361. if (tcp_try_undo_loss(sk, false))
  2362. return;
  2363. tcp_xmit_retransmit_queue(sk);
  2364. }
  2365. /* Undo during fast recovery after partial ACK. */
  2366. static bool tcp_try_undo_partial(struct sock *sk, const int acked,
  2367. const int prior_unsacked)
  2368. {
  2369. struct tcp_sock *tp = tcp_sk(sk);
  2370. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2371. /* Plain luck! Hole if filled with delayed
  2372. * packet, rather than with a retransmit.
  2373. */
  2374. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2375. /* We are getting evidence that the reordering degree is higher
  2376. * than we realized. If there are no retransmits out then we
  2377. * can undo. Otherwise we clock out new packets but do not
  2378. * mark more packets lost or retransmit more.
  2379. */
  2380. if (tp->retrans_out) {
  2381. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2382. return true;
  2383. }
  2384. if (!tcp_any_retrans_done(sk))
  2385. tp->retrans_stamp = 0;
  2386. DBGUNDO(sk, "partial recovery");
  2387. tcp_undo_cwnd_reduction(sk, true);
  2388. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2389. tcp_try_keep_open(sk);
  2390. return true;
  2391. }
  2392. return false;
  2393. }
  2394. /* Process an event, which can update packets-in-flight not trivially.
  2395. * Main goal of this function is to calculate new estimate for left_out,
  2396. * taking into account both packets sitting in receiver's buffer and
  2397. * packets lost by network.
  2398. *
  2399. * Besides that it does CWND reduction, when packet loss is detected
  2400. * and changes state of machine.
  2401. *
  2402. * It does _not_ decide what to send, it is made in function
  2403. * tcp_xmit_retransmit_queue().
  2404. */
  2405. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2406. const int prior_unsacked,
  2407. bool is_dupack, int flag)
  2408. {
  2409. struct inet_connection_sock *icsk = inet_csk(sk);
  2410. struct tcp_sock *tp = tcp_sk(sk);
  2411. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2412. (tcp_fackets_out(tp) > tp->reordering));
  2413. int fast_rexmit = 0;
  2414. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2415. tp->sacked_out = 0;
  2416. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2417. tp->fackets_out = 0;
  2418. /* Now state machine starts.
  2419. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2420. if (flag & FLAG_ECE)
  2421. tp->prior_ssthresh = 0;
  2422. /* B. In all the states check for reneging SACKs. */
  2423. if (tcp_check_sack_reneging(sk, flag))
  2424. return;
  2425. /* C. Check consistency of the current state. */
  2426. tcp_verify_left_out(tp);
  2427. /* D. Check state exit conditions. State can be terminated
  2428. * when high_seq is ACKed. */
  2429. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2430. WARN_ON(tp->retrans_out != 0);
  2431. tp->retrans_stamp = 0;
  2432. } else if (!before(tp->snd_una, tp->high_seq)) {
  2433. switch (icsk->icsk_ca_state) {
  2434. case TCP_CA_CWR:
  2435. /* CWR is to be held something *above* high_seq
  2436. * is ACKed for CWR bit to reach receiver. */
  2437. if (tp->snd_una != tp->high_seq) {
  2438. tcp_end_cwnd_reduction(sk);
  2439. tcp_set_ca_state(sk, TCP_CA_Open);
  2440. }
  2441. break;
  2442. case TCP_CA_Recovery:
  2443. if (tcp_is_reno(tp))
  2444. tcp_reset_reno_sack(tp);
  2445. if (tcp_try_undo_recovery(sk))
  2446. return;
  2447. tcp_end_cwnd_reduction(sk);
  2448. break;
  2449. }
  2450. }
  2451. /* E. Process state. */
  2452. switch (icsk->icsk_ca_state) {
  2453. case TCP_CA_Recovery:
  2454. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2455. if (tcp_is_reno(tp) && is_dupack)
  2456. tcp_add_reno_sack(sk);
  2457. } else {
  2458. if (tcp_try_undo_partial(sk, acked, prior_unsacked))
  2459. return;
  2460. /* Partial ACK arrived. Force fast retransmit. */
  2461. do_lost = tcp_is_reno(tp) ||
  2462. tcp_fackets_out(tp) > tp->reordering;
  2463. }
  2464. if (tcp_try_undo_dsack(sk)) {
  2465. tcp_try_keep_open(sk);
  2466. return;
  2467. }
  2468. break;
  2469. case TCP_CA_Loss:
  2470. tcp_process_loss(sk, flag, is_dupack);
  2471. if (icsk->icsk_ca_state != TCP_CA_Open)
  2472. return;
  2473. /* Fall through to processing in Open state. */
  2474. default:
  2475. if (tcp_is_reno(tp)) {
  2476. if (flag & FLAG_SND_UNA_ADVANCED)
  2477. tcp_reset_reno_sack(tp);
  2478. if (is_dupack)
  2479. tcp_add_reno_sack(sk);
  2480. }
  2481. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2482. tcp_try_undo_dsack(sk);
  2483. if (!tcp_time_to_recover(sk, flag)) {
  2484. tcp_try_to_open(sk, flag, prior_unsacked);
  2485. return;
  2486. }
  2487. /* MTU probe failure: don't reduce cwnd */
  2488. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2489. icsk->icsk_mtup.probe_size &&
  2490. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2491. tcp_mtup_probe_failed(sk);
  2492. /* Restores the reduction we did in tcp_mtup_probe() */
  2493. tp->snd_cwnd++;
  2494. tcp_simple_retransmit(sk);
  2495. return;
  2496. }
  2497. /* Otherwise enter Recovery state */
  2498. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2499. fast_rexmit = 1;
  2500. }
  2501. if (do_lost)
  2502. tcp_update_scoreboard(sk, fast_rexmit);
  2503. tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
  2504. tcp_xmit_retransmit_queue(sk);
  2505. }
  2506. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2507. long seq_rtt_us, long sack_rtt_us)
  2508. {
  2509. const struct tcp_sock *tp = tcp_sk(sk);
  2510. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2511. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2512. * Karn's algorithm forbids taking RTT if some retransmitted data
  2513. * is acked (RFC6298).
  2514. */
  2515. if (flag & FLAG_RETRANS_DATA_ACKED)
  2516. seq_rtt_us = -1L;
  2517. if (seq_rtt_us < 0)
  2518. seq_rtt_us = sack_rtt_us;
  2519. /* RTTM Rule: A TSecr value received in a segment is used to
  2520. * update the averaged RTT measurement only if the segment
  2521. * acknowledges some new data, i.e., only if it advances the
  2522. * left edge of the send window.
  2523. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2524. */
  2525. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2526. flag & FLAG_ACKED)
  2527. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2528. if (seq_rtt_us < 0)
  2529. return false;
  2530. tcp_rtt_estimator(sk, seq_rtt_us);
  2531. tcp_set_rto(sk);
  2532. /* RFC6298: only reset backoff on valid RTT measurement. */
  2533. inet_csk(sk)->icsk_backoff = 0;
  2534. return true;
  2535. }
  2536. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2537. static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
  2538. {
  2539. struct tcp_sock *tp = tcp_sk(sk);
  2540. long seq_rtt_us = -1L;
  2541. if (synack_stamp && !tp->total_retrans)
  2542. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
  2543. /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
  2544. * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
  2545. */
  2546. if (!tp->srtt_us)
  2547. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
  2548. }
  2549. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2550. {
  2551. const struct inet_connection_sock *icsk = inet_csk(sk);
  2552. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2553. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2554. }
  2555. /* Restart timer after forward progress on connection.
  2556. * RFC2988 recommends to restart timer to now+rto.
  2557. */
  2558. void tcp_rearm_rto(struct sock *sk)
  2559. {
  2560. const struct inet_connection_sock *icsk = inet_csk(sk);
  2561. struct tcp_sock *tp = tcp_sk(sk);
  2562. /* If the retrans timer is currently being used by Fast Open
  2563. * for SYN-ACK retrans purpose, stay put.
  2564. */
  2565. if (tp->fastopen_rsk)
  2566. return;
  2567. if (!tp->packets_out) {
  2568. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2569. } else {
  2570. u32 rto = inet_csk(sk)->icsk_rto;
  2571. /* Offset the time elapsed after installing regular RTO */
  2572. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2573. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2574. struct sk_buff *skb = tcp_write_queue_head(sk);
  2575. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2576. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2577. /* delta may not be positive if the socket is locked
  2578. * when the retrans timer fires and is rescheduled.
  2579. */
  2580. if (delta > 0)
  2581. rto = delta;
  2582. }
  2583. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2584. TCP_RTO_MAX);
  2585. }
  2586. }
  2587. /* This function is called when the delayed ER timer fires. TCP enters
  2588. * fast recovery and performs fast-retransmit.
  2589. */
  2590. void tcp_resume_early_retransmit(struct sock *sk)
  2591. {
  2592. struct tcp_sock *tp = tcp_sk(sk);
  2593. tcp_rearm_rto(sk);
  2594. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2595. if (!tp->do_early_retrans)
  2596. return;
  2597. tcp_enter_recovery(sk, false);
  2598. tcp_update_scoreboard(sk, 1);
  2599. tcp_xmit_retransmit_queue(sk);
  2600. }
  2601. /* If we get here, the whole TSO packet has not been acked. */
  2602. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2603. {
  2604. struct tcp_sock *tp = tcp_sk(sk);
  2605. u32 packets_acked;
  2606. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2607. packets_acked = tcp_skb_pcount(skb);
  2608. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2609. return 0;
  2610. packets_acked -= tcp_skb_pcount(skb);
  2611. if (packets_acked) {
  2612. BUG_ON(tcp_skb_pcount(skb) == 0);
  2613. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2614. }
  2615. return packets_acked;
  2616. }
  2617. /* Remove acknowledged frames from the retransmission queue. If our packet
  2618. * is before the ack sequence we can discard it as it's confirmed to have
  2619. * arrived at the other end.
  2620. */
  2621. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2622. u32 prior_snd_una, long sack_rtt_us)
  2623. {
  2624. const struct inet_connection_sock *icsk = inet_csk(sk);
  2625. struct skb_mstamp first_ackt, last_ackt, now;
  2626. struct tcp_sock *tp = tcp_sk(sk);
  2627. u32 prior_sacked = tp->sacked_out;
  2628. u32 reord = tp->packets_out;
  2629. bool fully_acked = true;
  2630. long ca_seq_rtt_us = -1L;
  2631. long seq_rtt_us = -1L;
  2632. struct sk_buff *skb;
  2633. u32 pkts_acked = 0;
  2634. bool rtt_update;
  2635. int flag = 0;
  2636. first_ackt.v64 = 0;
  2637. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2638. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2639. u8 sacked = scb->sacked;
  2640. u32 acked_pcount;
  2641. /* Determine how many packets and what bytes were acked, tso and else */
  2642. if (after(scb->end_seq, tp->snd_una)) {
  2643. if (tcp_skb_pcount(skb) == 1 ||
  2644. !after(tp->snd_una, scb->seq))
  2645. break;
  2646. acked_pcount = tcp_tso_acked(sk, skb);
  2647. if (!acked_pcount)
  2648. break;
  2649. fully_acked = false;
  2650. } else {
  2651. acked_pcount = tcp_skb_pcount(skb);
  2652. }
  2653. if (sacked & TCPCB_RETRANS) {
  2654. if (sacked & TCPCB_SACKED_RETRANS)
  2655. tp->retrans_out -= acked_pcount;
  2656. flag |= FLAG_RETRANS_DATA_ACKED;
  2657. } else {
  2658. last_ackt = skb->skb_mstamp;
  2659. WARN_ON_ONCE(last_ackt.v64 == 0);
  2660. if (!first_ackt.v64)
  2661. first_ackt = last_ackt;
  2662. if (!(sacked & TCPCB_SACKED_ACKED))
  2663. reord = min(pkts_acked, reord);
  2664. if (!after(scb->end_seq, tp->high_seq))
  2665. flag |= FLAG_ORIG_SACK_ACKED;
  2666. }
  2667. if (sacked & TCPCB_SACKED_ACKED)
  2668. tp->sacked_out -= acked_pcount;
  2669. if (sacked & TCPCB_LOST)
  2670. tp->lost_out -= acked_pcount;
  2671. tp->packets_out -= acked_pcount;
  2672. pkts_acked += acked_pcount;
  2673. /* Initial outgoing SYN's get put onto the write_queue
  2674. * just like anything else we transmit. It is not
  2675. * true data, and if we misinform our callers that
  2676. * this ACK acks real data, we will erroneously exit
  2677. * connection startup slow start one packet too
  2678. * quickly. This is severely frowned upon behavior.
  2679. */
  2680. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2681. flag |= FLAG_DATA_ACKED;
  2682. } else {
  2683. flag |= FLAG_SYN_ACKED;
  2684. tp->retrans_stamp = 0;
  2685. }
  2686. if (!fully_acked)
  2687. break;
  2688. tcp_unlink_write_queue(skb, sk);
  2689. sk_wmem_free_skb(sk, skb);
  2690. if (skb == tp->retransmit_skb_hint)
  2691. tp->retransmit_skb_hint = NULL;
  2692. if (skb == tp->lost_skb_hint)
  2693. tp->lost_skb_hint = NULL;
  2694. }
  2695. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2696. tp->snd_up = tp->snd_una;
  2697. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2698. flag |= FLAG_SACK_RENEGING;
  2699. skb_mstamp_get(&now);
  2700. if (first_ackt.v64) {
  2701. seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
  2702. ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
  2703. }
  2704. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
  2705. if (flag & FLAG_ACKED) {
  2706. const struct tcp_congestion_ops *ca_ops
  2707. = inet_csk(sk)->icsk_ca_ops;
  2708. tcp_rearm_rto(sk);
  2709. if (unlikely(icsk->icsk_mtup.probe_size &&
  2710. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2711. tcp_mtup_probe_success(sk);
  2712. }
  2713. if (tcp_is_reno(tp)) {
  2714. tcp_remove_reno_sacks(sk, pkts_acked);
  2715. } else {
  2716. int delta;
  2717. /* Non-retransmitted hole got filled? That's reordering */
  2718. if (reord < prior_fackets)
  2719. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2720. delta = tcp_is_fack(tp) ? pkts_acked :
  2721. prior_sacked - tp->sacked_out;
  2722. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2723. }
  2724. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2725. if (ca_ops->pkts_acked)
  2726. ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
  2727. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2728. sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
  2729. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2730. * after when the head was last (re)transmitted. Otherwise the
  2731. * timeout may continue to extend in loss recovery.
  2732. */
  2733. tcp_rearm_rto(sk);
  2734. }
  2735. #if FASTRETRANS_DEBUG > 0
  2736. WARN_ON((int)tp->sacked_out < 0);
  2737. WARN_ON((int)tp->lost_out < 0);
  2738. WARN_ON((int)tp->retrans_out < 0);
  2739. if (!tp->packets_out && tcp_is_sack(tp)) {
  2740. icsk = inet_csk(sk);
  2741. if (tp->lost_out) {
  2742. pr_debug("Leak l=%u %d\n",
  2743. tp->lost_out, icsk->icsk_ca_state);
  2744. tp->lost_out = 0;
  2745. }
  2746. if (tp->sacked_out) {
  2747. pr_debug("Leak s=%u %d\n",
  2748. tp->sacked_out, icsk->icsk_ca_state);
  2749. tp->sacked_out = 0;
  2750. }
  2751. if (tp->retrans_out) {
  2752. pr_debug("Leak r=%u %d\n",
  2753. tp->retrans_out, icsk->icsk_ca_state);
  2754. tp->retrans_out = 0;
  2755. }
  2756. }
  2757. #endif
  2758. return flag;
  2759. }
  2760. static void tcp_ack_probe(struct sock *sk)
  2761. {
  2762. const struct tcp_sock *tp = tcp_sk(sk);
  2763. struct inet_connection_sock *icsk = inet_csk(sk);
  2764. /* Was it a usable window open? */
  2765. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2766. icsk->icsk_backoff = 0;
  2767. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2768. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2769. * This function is not for random using!
  2770. */
  2771. } else {
  2772. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2773. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2774. TCP_RTO_MAX);
  2775. }
  2776. }
  2777. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2778. {
  2779. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2780. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2781. }
  2782. /* Decide wheather to run the increase function of congestion control. */
  2783. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2784. {
  2785. if (tcp_in_cwnd_reduction(sk))
  2786. return false;
  2787. /* If reordering is high then always grow cwnd whenever data is
  2788. * delivered regardless of its ordering. Otherwise stay conservative
  2789. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2790. * new SACK or ECE mark may first advance cwnd here and later reduce
  2791. * cwnd in tcp_fastretrans_alert() based on more states.
  2792. */
  2793. if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
  2794. return flag & FLAG_FORWARD_PROGRESS;
  2795. return flag & FLAG_DATA_ACKED;
  2796. }
  2797. /* Check that window update is acceptable.
  2798. * The function assumes that snd_una<=ack<=snd_next.
  2799. */
  2800. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2801. const u32 ack, const u32 ack_seq,
  2802. const u32 nwin)
  2803. {
  2804. return after(ack, tp->snd_una) ||
  2805. after(ack_seq, tp->snd_wl1) ||
  2806. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2807. }
  2808. /* Update our send window.
  2809. *
  2810. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2811. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2812. */
  2813. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2814. u32 ack_seq)
  2815. {
  2816. struct tcp_sock *tp = tcp_sk(sk);
  2817. int flag = 0;
  2818. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2819. if (likely(!tcp_hdr(skb)->syn))
  2820. nwin <<= tp->rx_opt.snd_wscale;
  2821. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2822. flag |= FLAG_WIN_UPDATE;
  2823. tcp_update_wl(tp, ack_seq);
  2824. if (tp->snd_wnd != nwin) {
  2825. tp->snd_wnd = nwin;
  2826. /* Note, it is the only place, where
  2827. * fast path is recovered for sending TCP.
  2828. */
  2829. tp->pred_flags = 0;
  2830. tcp_fast_path_check(sk);
  2831. if (nwin > tp->max_window) {
  2832. tp->max_window = nwin;
  2833. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2834. }
  2835. }
  2836. }
  2837. tp->snd_una = ack;
  2838. return flag;
  2839. }
  2840. /* RFC 5961 7 [ACK Throttling] */
  2841. static void tcp_send_challenge_ack(struct sock *sk)
  2842. {
  2843. /* unprotected vars, we dont care of overwrites */
  2844. static u32 challenge_timestamp;
  2845. static unsigned int challenge_count;
  2846. u32 now = jiffies / HZ;
  2847. if (now != challenge_timestamp) {
  2848. challenge_timestamp = now;
  2849. challenge_count = 0;
  2850. }
  2851. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  2852. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2853. tcp_send_ack(sk);
  2854. }
  2855. }
  2856. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2857. {
  2858. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2859. tp->rx_opt.ts_recent_stamp = get_seconds();
  2860. }
  2861. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2862. {
  2863. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2864. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2865. * extra check below makes sure this can only happen
  2866. * for pure ACK frames. -DaveM
  2867. *
  2868. * Not only, also it occurs for expired timestamps.
  2869. */
  2870. if (tcp_paws_check(&tp->rx_opt, 0))
  2871. tcp_store_ts_recent(tp);
  2872. }
  2873. }
  2874. /* This routine deals with acks during a TLP episode.
  2875. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2876. */
  2877. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2878. {
  2879. struct tcp_sock *tp = tcp_sk(sk);
  2880. bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
  2881. !(flag & (FLAG_SND_UNA_ADVANCED |
  2882. FLAG_NOT_DUP | FLAG_DATA_SACKED));
  2883. /* Mark the end of TLP episode on receiving TLP dupack or when
  2884. * ack is after tlp_high_seq.
  2885. */
  2886. if (is_tlp_dupack) {
  2887. tp->tlp_high_seq = 0;
  2888. return;
  2889. }
  2890. if (after(ack, tp->tlp_high_seq)) {
  2891. tp->tlp_high_seq = 0;
  2892. /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
  2893. if (!(flag & FLAG_DSACKING_ACK)) {
  2894. tcp_init_cwnd_reduction(sk, true);
  2895. tcp_set_ca_state(sk, TCP_CA_CWR);
  2896. tcp_end_cwnd_reduction(sk);
  2897. tcp_try_keep_open(sk);
  2898. NET_INC_STATS_BH(sock_net(sk),
  2899. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2900. }
  2901. }
  2902. }
  2903. /* This routine deals with incoming acks, but not outgoing ones. */
  2904. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  2905. {
  2906. struct inet_connection_sock *icsk = inet_csk(sk);
  2907. struct tcp_sock *tp = tcp_sk(sk);
  2908. u32 prior_snd_una = tp->snd_una;
  2909. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2910. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2911. bool is_dupack = false;
  2912. u32 prior_fackets;
  2913. int prior_packets = tp->packets_out;
  2914. const int prior_unsacked = tp->packets_out - tp->sacked_out;
  2915. int acked = 0; /* Number of packets newly acked */
  2916. long sack_rtt_us = -1L;
  2917. /* If the ack is older than previous acks
  2918. * then we can probably ignore it.
  2919. */
  2920. if (before(ack, prior_snd_una)) {
  2921. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  2922. if (before(ack, prior_snd_una - tp->max_window)) {
  2923. tcp_send_challenge_ack(sk);
  2924. return -1;
  2925. }
  2926. goto old_ack;
  2927. }
  2928. /* If the ack includes data we haven't sent yet, discard
  2929. * this segment (RFC793 Section 3.9).
  2930. */
  2931. if (after(ack, tp->snd_nxt))
  2932. goto invalid_ack;
  2933. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2934. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  2935. tcp_rearm_rto(sk);
  2936. if (after(ack, prior_snd_una))
  2937. flag |= FLAG_SND_UNA_ADVANCED;
  2938. prior_fackets = tp->fackets_out;
  2939. /* ts_recent update must be made after we are sure that the packet
  2940. * is in window.
  2941. */
  2942. if (flag & FLAG_UPDATE_TS_RECENT)
  2943. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  2944. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2945. /* Window is constant, pure forward advance.
  2946. * No more checks are required.
  2947. * Note, we use the fact that SND.UNA>=SND.WL2.
  2948. */
  2949. tcp_update_wl(tp, ack_seq);
  2950. tp->snd_una = ack;
  2951. flag |= FLAG_WIN_UPDATE;
  2952. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2953. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  2954. } else {
  2955. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2956. flag |= FLAG_DATA;
  2957. else
  2958. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  2959. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2960. if (TCP_SKB_CB(skb)->sacked)
  2961. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  2962. &sack_rtt_us);
  2963. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2964. flag |= FLAG_ECE;
  2965. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2966. }
  2967. /* We passed data and got it acked, remove any soft error
  2968. * log. Something worked...
  2969. */
  2970. sk->sk_err_soft = 0;
  2971. icsk->icsk_probes_out = 0;
  2972. tp->rcv_tstamp = tcp_time_stamp;
  2973. if (!prior_packets)
  2974. goto no_queue;
  2975. /* See if we can take anything off of the retransmit queue. */
  2976. acked = tp->packets_out;
  2977. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
  2978. sack_rtt_us);
  2979. acked -= tp->packets_out;
  2980. /* Advance cwnd if state allows */
  2981. if (tcp_may_raise_cwnd(sk, flag))
  2982. tcp_cong_avoid(sk, ack, acked);
  2983. if (tcp_ack_is_dubious(sk, flag)) {
  2984. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2985. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  2986. is_dupack, flag);
  2987. }
  2988. if (tp->tlp_high_seq)
  2989. tcp_process_tlp_ack(sk, ack, flag);
  2990. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  2991. struct dst_entry *dst = __sk_dst_get(sk);
  2992. if (dst)
  2993. dst_confirm(dst);
  2994. }
  2995. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  2996. tcp_schedule_loss_probe(sk);
  2997. tcp_update_pacing_rate(sk);
  2998. return 1;
  2999. no_queue:
  3000. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3001. if (flag & FLAG_DSACKING_ACK)
  3002. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3003. is_dupack, flag);
  3004. /* If this ack opens up a zero window, clear backoff. It was
  3005. * being used to time the probes, and is probably far higher than
  3006. * it needs to be for normal retransmission.
  3007. */
  3008. if (tcp_send_head(sk))
  3009. tcp_ack_probe(sk);
  3010. if (tp->tlp_high_seq)
  3011. tcp_process_tlp_ack(sk, ack, flag);
  3012. return 1;
  3013. invalid_ack:
  3014. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3015. return -1;
  3016. old_ack:
  3017. /* If data was SACKed, tag it and see if we should send more data.
  3018. * If data was DSACKed, see if we can undo a cwnd reduction.
  3019. */
  3020. if (TCP_SKB_CB(skb)->sacked) {
  3021. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3022. &sack_rtt_us);
  3023. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3024. is_dupack, flag);
  3025. }
  3026. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3027. return 0;
  3028. }
  3029. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3030. * But, this can also be called on packets in the established flow when
  3031. * the fast version below fails.
  3032. */
  3033. void tcp_parse_options(const struct sk_buff *skb,
  3034. struct tcp_options_received *opt_rx, int estab,
  3035. struct tcp_fastopen_cookie *foc)
  3036. {
  3037. const unsigned char *ptr;
  3038. const struct tcphdr *th = tcp_hdr(skb);
  3039. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3040. ptr = (const unsigned char *)(th + 1);
  3041. opt_rx->saw_tstamp = 0;
  3042. while (length > 0) {
  3043. int opcode = *ptr++;
  3044. int opsize;
  3045. switch (opcode) {
  3046. case TCPOPT_EOL:
  3047. return;
  3048. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3049. length--;
  3050. continue;
  3051. default:
  3052. opsize = *ptr++;
  3053. if (opsize < 2) /* "silly options" */
  3054. return;
  3055. if (opsize > length)
  3056. return; /* don't parse partial options */
  3057. switch (opcode) {
  3058. case TCPOPT_MSS:
  3059. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3060. u16 in_mss = get_unaligned_be16(ptr);
  3061. if (in_mss) {
  3062. if (opt_rx->user_mss &&
  3063. opt_rx->user_mss < in_mss)
  3064. in_mss = opt_rx->user_mss;
  3065. opt_rx->mss_clamp = in_mss;
  3066. }
  3067. }
  3068. break;
  3069. case TCPOPT_WINDOW:
  3070. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3071. !estab && sysctl_tcp_window_scaling) {
  3072. __u8 snd_wscale = *(__u8 *)ptr;
  3073. opt_rx->wscale_ok = 1;
  3074. if (snd_wscale > 14) {
  3075. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3076. __func__,
  3077. snd_wscale);
  3078. snd_wscale = 14;
  3079. }
  3080. opt_rx->snd_wscale = snd_wscale;
  3081. }
  3082. break;
  3083. case TCPOPT_TIMESTAMP:
  3084. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3085. ((estab && opt_rx->tstamp_ok) ||
  3086. (!estab && sysctl_tcp_timestamps))) {
  3087. opt_rx->saw_tstamp = 1;
  3088. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3089. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3090. }
  3091. break;
  3092. case TCPOPT_SACK_PERM:
  3093. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3094. !estab && sysctl_tcp_sack) {
  3095. opt_rx->sack_ok = TCP_SACK_SEEN;
  3096. tcp_sack_reset(opt_rx);
  3097. }
  3098. break;
  3099. case TCPOPT_SACK:
  3100. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3101. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3102. opt_rx->sack_ok) {
  3103. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3104. }
  3105. break;
  3106. #ifdef CONFIG_TCP_MD5SIG
  3107. case TCPOPT_MD5SIG:
  3108. /*
  3109. * The MD5 Hash has already been
  3110. * checked (see tcp_v{4,6}_do_rcv()).
  3111. */
  3112. break;
  3113. #endif
  3114. case TCPOPT_EXP:
  3115. /* Fast Open option shares code 254 using a
  3116. * 16 bits magic number. It's valid only in
  3117. * SYN or SYN-ACK with an even size.
  3118. */
  3119. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3120. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3121. foc == NULL || !th->syn || (opsize & 1))
  3122. break;
  3123. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3124. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3125. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3126. memcpy(foc->val, ptr + 2, foc->len);
  3127. else if (foc->len != 0)
  3128. foc->len = -1;
  3129. break;
  3130. }
  3131. ptr += opsize-2;
  3132. length -= opsize;
  3133. }
  3134. }
  3135. }
  3136. EXPORT_SYMBOL(tcp_parse_options);
  3137. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3138. {
  3139. const __be32 *ptr = (const __be32 *)(th + 1);
  3140. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3141. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3142. tp->rx_opt.saw_tstamp = 1;
  3143. ++ptr;
  3144. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3145. ++ptr;
  3146. if (*ptr)
  3147. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3148. else
  3149. tp->rx_opt.rcv_tsecr = 0;
  3150. return true;
  3151. }
  3152. return false;
  3153. }
  3154. /* Fast parse options. This hopes to only see timestamps.
  3155. * If it is wrong it falls back on tcp_parse_options().
  3156. */
  3157. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3158. const struct tcphdr *th, struct tcp_sock *tp)
  3159. {
  3160. /* In the spirit of fast parsing, compare doff directly to constant
  3161. * values. Because equality is used, short doff can be ignored here.
  3162. */
  3163. if (th->doff == (sizeof(*th) / 4)) {
  3164. tp->rx_opt.saw_tstamp = 0;
  3165. return false;
  3166. } else if (tp->rx_opt.tstamp_ok &&
  3167. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3168. if (tcp_parse_aligned_timestamp(tp, th))
  3169. return true;
  3170. }
  3171. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3172. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3173. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3174. return true;
  3175. }
  3176. #ifdef CONFIG_TCP_MD5SIG
  3177. /*
  3178. * Parse MD5 Signature option
  3179. */
  3180. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3181. {
  3182. int length = (th->doff << 2) - sizeof(*th);
  3183. const u8 *ptr = (const u8 *)(th + 1);
  3184. /* If the TCP option is too short, we can short cut */
  3185. if (length < TCPOLEN_MD5SIG)
  3186. return NULL;
  3187. while (length > 0) {
  3188. int opcode = *ptr++;
  3189. int opsize;
  3190. switch (opcode) {
  3191. case TCPOPT_EOL:
  3192. return NULL;
  3193. case TCPOPT_NOP:
  3194. length--;
  3195. continue;
  3196. default:
  3197. opsize = *ptr++;
  3198. if (opsize < 2 || opsize > length)
  3199. return NULL;
  3200. if (opcode == TCPOPT_MD5SIG)
  3201. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3202. }
  3203. ptr += opsize - 2;
  3204. length -= opsize;
  3205. }
  3206. return NULL;
  3207. }
  3208. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3209. #endif
  3210. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3211. *
  3212. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3213. * it can pass through stack. So, the following predicate verifies that
  3214. * this segment is not used for anything but congestion avoidance or
  3215. * fast retransmit. Moreover, we even are able to eliminate most of such
  3216. * second order effects, if we apply some small "replay" window (~RTO)
  3217. * to timestamp space.
  3218. *
  3219. * All these measures still do not guarantee that we reject wrapped ACKs
  3220. * on networks with high bandwidth, when sequence space is recycled fastly,
  3221. * but it guarantees that such events will be very rare and do not affect
  3222. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3223. * buggy extension.
  3224. *
  3225. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3226. * states that events when retransmit arrives after original data are rare.
  3227. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3228. * the biggest problem on large power networks even with minor reordering.
  3229. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3230. * up to bandwidth of 18Gigabit/sec. 8) ]
  3231. */
  3232. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3233. {
  3234. const struct tcp_sock *tp = tcp_sk(sk);
  3235. const struct tcphdr *th = tcp_hdr(skb);
  3236. u32 seq = TCP_SKB_CB(skb)->seq;
  3237. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3238. return (/* 1. Pure ACK with correct sequence number. */
  3239. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3240. /* 2. ... and duplicate ACK. */
  3241. ack == tp->snd_una &&
  3242. /* 3. ... and does not update window. */
  3243. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3244. /* 4. ... and sits in replay window. */
  3245. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3246. }
  3247. static inline bool tcp_paws_discard(const struct sock *sk,
  3248. const struct sk_buff *skb)
  3249. {
  3250. const struct tcp_sock *tp = tcp_sk(sk);
  3251. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3252. !tcp_disordered_ack(sk, skb);
  3253. }
  3254. /* Check segment sequence number for validity.
  3255. *
  3256. * Segment controls are considered valid, if the segment
  3257. * fits to the window after truncation to the window. Acceptability
  3258. * of data (and SYN, FIN, of course) is checked separately.
  3259. * See tcp_data_queue(), for example.
  3260. *
  3261. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3262. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3263. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3264. * (borrowed from freebsd)
  3265. */
  3266. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3267. {
  3268. return !before(end_seq, tp->rcv_wup) &&
  3269. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3270. }
  3271. /* When we get a reset we do this. */
  3272. void tcp_reset(struct sock *sk)
  3273. {
  3274. /* We want the right error as BSD sees it (and indeed as we do). */
  3275. switch (sk->sk_state) {
  3276. case TCP_SYN_SENT:
  3277. sk->sk_err = ECONNREFUSED;
  3278. break;
  3279. case TCP_CLOSE_WAIT:
  3280. sk->sk_err = EPIPE;
  3281. break;
  3282. case TCP_CLOSE:
  3283. return;
  3284. default:
  3285. sk->sk_err = ECONNRESET;
  3286. }
  3287. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3288. smp_wmb();
  3289. if (!sock_flag(sk, SOCK_DEAD))
  3290. sk->sk_error_report(sk);
  3291. tcp_done(sk);
  3292. }
  3293. /*
  3294. * Process the FIN bit. This now behaves as it is supposed to work
  3295. * and the FIN takes effect when it is validly part of sequence
  3296. * space. Not before when we get holes.
  3297. *
  3298. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3299. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3300. * TIME-WAIT)
  3301. *
  3302. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3303. * close and we go into CLOSING (and later onto TIME-WAIT)
  3304. *
  3305. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3306. */
  3307. static void tcp_fin(struct sock *sk)
  3308. {
  3309. struct tcp_sock *tp = tcp_sk(sk);
  3310. const struct dst_entry *dst;
  3311. inet_csk_schedule_ack(sk);
  3312. sk->sk_shutdown |= RCV_SHUTDOWN;
  3313. sock_set_flag(sk, SOCK_DONE);
  3314. switch (sk->sk_state) {
  3315. case TCP_SYN_RECV:
  3316. case TCP_ESTABLISHED:
  3317. /* Move to CLOSE_WAIT */
  3318. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3319. dst = __sk_dst_get(sk);
  3320. if (!dst || !dst_metric(dst, RTAX_QUICKACK))
  3321. inet_csk(sk)->icsk_ack.pingpong = 1;
  3322. break;
  3323. case TCP_CLOSE_WAIT:
  3324. case TCP_CLOSING:
  3325. /* Received a retransmission of the FIN, do
  3326. * nothing.
  3327. */
  3328. break;
  3329. case TCP_LAST_ACK:
  3330. /* RFC793: Remain in the LAST-ACK state. */
  3331. break;
  3332. case TCP_FIN_WAIT1:
  3333. /* This case occurs when a simultaneous close
  3334. * happens, we must ack the received FIN and
  3335. * enter the CLOSING state.
  3336. */
  3337. tcp_send_ack(sk);
  3338. tcp_set_state(sk, TCP_CLOSING);
  3339. break;
  3340. case TCP_FIN_WAIT2:
  3341. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3342. tcp_send_ack(sk);
  3343. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3344. break;
  3345. default:
  3346. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3347. * cases we should never reach this piece of code.
  3348. */
  3349. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3350. __func__, sk->sk_state);
  3351. break;
  3352. }
  3353. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3354. * Probably, we should reset in this case. For now drop them.
  3355. */
  3356. __skb_queue_purge(&tp->out_of_order_queue);
  3357. if (tcp_is_sack(tp))
  3358. tcp_sack_reset(&tp->rx_opt);
  3359. sk_mem_reclaim(sk);
  3360. if (!sock_flag(sk, SOCK_DEAD)) {
  3361. sk->sk_state_change(sk);
  3362. /* Do not send POLL_HUP for half duplex close. */
  3363. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3364. sk->sk_state == TCP_CLOSE)
  3365. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3366. else
  3367. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3368. }
  3369. }
  3370. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3371. u32 end_seq)
  3372. {
  3373. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3374. if (before(seq, sp->start_seq))
  3375. sp->start_seq = seq;
  3376. if (after(end_seq, sp->end_seq))
  3377. sp->end_seq = end_seq;
  3378. return true;
  3379. }
  3380. return false;
  3381. }
  3382. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3383. {
  3384. struct tcp_sock *tp = tcp_sk(sk);
  3385. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3386. int mib_idx;
  3387. if (before(seq, tp->rcv_nxt))
  3388. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3389. else
  3390. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3391. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3392. tp->rx_opt.dsack = 1;
  3393. tp->duplicate_sack[0].start_seq = seq;
  3394. tp->duplicate_sack[0].end_seq = end_seq;
  3395. }
  3396. }
  3397. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3398. {
  3399. struct tcp_sock *tp = tcp_sk(sk);
  3400. if (!tp->rx_opt.dsack)
  3401. tcp_dsack_set(sk, seq, end_seq);
  3402. else
  3403. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3404. }
  3405. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3406. {
  3407. struct tcp_sock *tp = tcp_sk(sk);
  3408. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3409. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3410. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3411. tcp_enter_quickack_mode(sk);
  3412. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3413. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3414. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3415. end_seq = tp->rcv_nxt;
  3416. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3417. }
  3418. }
  3419. tcp_send_ack(sk);
  3420. }
  3421. /* These routines update the SACK block as out-of-order packets arrive or
  3422. * in-order packets close up the sequence space.
  3423. */
  3424. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3425. {
  3426. int this_sack;
  3427. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3428. struct tcp_sack_block *swalk = sp + 1;
  3429. /* See if the recent change to the first SACK eats into
  3430. * or hits the sequence space of other SACK blocks, if so coalesce.
  3431. */
  3432. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3433. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3434. int i;
  3435. /* Zap SWALK, by moving every further SACK up by one slot.
  3436. * Decrease num_sacks.
  3437. */
  3438. tp->rx_opt.num_sacks--;
  3439. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3440. sp[i] = sp[i + 1];
  3441. continue;
  3442. }
  3443. this_sack++, swalk++;
  3444. }
  3445. }
  3446. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3447. {
  3448. struct tcp_sock *tp = tcp_sk(sk);
  3449. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3450. int cur_sacks = tp->rx_opt.num_sacks;
  3451. int this_sack;
  3452. if (!cur_sacks)
  3453. goto new_sack;
  3454. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3455. if (tcp_sack_extend(sp, seq, end_seq)) {
  3456. /* Rotate this_sack to the first one. */
  3457. for (; this_sack > 0; this_sack--, sp--)
  3458. swap(*sp, *(sp - 1));
  3459. if (cur_sacks > 1)
  3460. tcp_sack_maybe_coalesce(tp);
  3461. return;
  3462. }
  3463. }
  3464. /* Could not find an adjacent existing SACK, build a new one,
  3465. * put it at the front, and shift everyone else down. We
  3466. * always know there is at least one SACK present already here.
  3467. *
  3468. * If the sack array is full, forget about the last one.
  3469. */
  3470. if (this_sack >= TCP_NUM_SACKS) {
  3471. this_sack--;
  3472. tp->rx_opt.num_sacks--;
  3473. sp--;
  3474. }
  3475. for (; this_sack > 0; this_sack--, sp--)
  3476. *sp = *(sp - 1);
  3477. new_sack:
  3478. /* Build the new head SACK, and we're done. */
  3479. sp->start_seq = seq;
  3480. sp->end_seq = end_seq;
  3481. tp->rx_opt.num_sacks++;
  3482. }
  3483. /* RCV.NXT advances, some SACKs should be eaten. */
  3484. static void tcp_sack_remove(struct tcp_sock *tp)
  3485. {
  3486. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3487. int num_sacks = tp->rx_opt.num_sacks;
  3488. int this_sack;
  3489. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3490. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3491. tp->rx_opt.num_sacks = 0;
  3492. return;
  3493. }
  3494. for (this_sack = 0; this_sack < num_sacks;) {
  3495. /* Check if the start of the sack is covered by RCV.NXT. */
  3496. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3497. int i;
  3498. /* RCV.NXT must cover all the block! */
  3499. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3500. /* Zap this SACK, by moving forward any other SACKS. */
  3501. for (i = this_sack+1; i < num_sacks; i++)
  3502. tp->selective_acks[i-1] = tp->selective_acks[i];
  3503. num_sacks--;
  3504. continue;
  3505. }
  3506. this_sack++;
  3507. sp++;
  3508. }
  3509. tp->rx_opt.num_sacks = num_sacks;
  3510. }
  3511. /* This one checks to see if we can put data from the
  3512. * out_of_order queue into the receive_queue.
  3513. */
  3514. static void tcp_ofo_queue(struct sock *sk)
  3515. {
  3516. struct tcp_sock *tp = tcp_sk(sk);
  3517. __u32 dsack_high = tp->rcv_nxt;
  3518. struct sk_buff *skb;
  3519. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3520. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3521. break;
  3522. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3523. __u32 dsack = dsack_high;
  3524. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3525. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3526. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3527. }
  3528. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3529. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3530. __skb_unlink(skb, &tp->out_of_order_queue);
  3531. __kfree_skb(skb);
  3532. continue;
  3533. }
  3534. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3535. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3536. TCP_SKB_CB(skb)->end_seq);
  3537. __skb_unlink(skb, &tp->out_of_order_queue);
  3538. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3539. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3540. if (tcp_hdr(skb)->fin)
  3541. tcp_fin(sk);
  3542. }
  3543. }
  3544. static bool tcp_prune_ofo_queue(struct sock *sk);
  3545. static int tcp_prune_queue(struct sock *sk);
  3546. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3547. unsigned int size)
  3548. {
  3549. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3550. !sk_rmem_schedule(sk, skb, size)) {
  3551. if (tcp_prune_queue(sk) < 0)
  3552. return -1;
  3553. if (!sk_rmem_schedule(sk, skb, size)) {
  3554. if (!tcp_prune_ofo_queue(sk))
  3555. return -1;
  3556. if (!sk_rmem_schedule(sk, skb, size))
  3557. return -1;
  3558. }
  3559. }
  3560. return 0;
  3561. }
  3562. /**
  3563. * tcp_try_coalesce - try to merge skb to prior one
  3564. * @sk: socket
  3565. * @to: prior buffer
  3566. * @from: buffer to add in queue
  3567. * @fragstolen: pointer to boolean
  3568. *
  3569. * Before queueing skb @from after @to, try to merge them
  3570. * to reduce overall memory use and queue lengths, if cost is small.
  3571. * Packets in ofo or receive queues can stay a long time.
  3572. * Better try to coalesce them right now to avoid future collapses.
  3573. * Returns true if caller should free @from instead of queueing it
  3574. */
  3575. static bool tcp_try_coalesce(struct sock *sk,
  3576. struct sk_buff *to,
  3577. struct sk_buff *from,
  3578. bool *fragstolen)
  3579. {
  3580. int delta;
  3581. *fragstolen = false;
  3582. if (tcp_hdr(from)->fin)
  3583. return false;
  3584. /* Its possible this segment overlaps with prior segment in queue */
  3585. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3586. return false;
  3587. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3588. return false;
  3589. atomic_add(delta, &sk->sk_rmem_alloc);
  3590. sk_mem_charge(sk, delta);
  3591. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3592. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3593. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3594. return true;
  3595. }
  3596. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3597. {
  3598. struct tcp_sock *tp = tcp_sk(sk);
  3599. struct sk_buff *skb1;
  3600. u32 seq, end_seq;
  3601. TCP_ECN_check_ce(tp, skb);
  3602. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3603. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3604. __kfree_skb(skb);
  3605. return;
  3606. }
  3607. /* Disable header prediction. */
  3608. tp->pred_flags = 0;
  3609. inet_csk_schedule_ack(sk);
  3610. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3611. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3612. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3613. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3614. if (!skb1) {
  3615. /* Initial out of order segment, build 1 SACK. */
  3616. if (tcp_is_sack(tp)) {
  3617. tp->rx_opt.num_sacks = 1;
  3618. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3619. tp->selective_acks[0].end_seq =
  3620. TCP_SKB_CB(skb)->end_seq;
  3621. }
  3622. __skb_queue_head(&tp->out_of_order_queue, skb);
  3623. goto end;
  3624. }
  3625. seq = TCP_SKB_CB(skb)->seq;
  3626. end_seq = TCP_SKB_CB(skb)->end_seq;
  3627. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3628. bool fragstolen;
  3629. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3630. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3631. } else {
  3632. tcp_grow_window(sk, skb);
  3633. kfree_skb_partial(skb, fragstolen);
  3634. skb = NULL;
  3635. }
  3636. if (!tp->rx_opt.num_sacks ||
  3637. tp->selective_acks[0].end_seq != seq)
  3638. goto add_sack;
  3639. /* Common case: data arrive in order after hole. */
  3640. tp->selective_acks[0].end_seq = end_seq;
  3641. goto end;
  3642. }
  3643. /* Find place to insert this segment. */
  3644. while (1) {
  3645. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3646. break;
  3647. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3648. skb1 = NULL;
  3649. break;
  3650. }
  3651. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3652. }
  3653. /* Do skb overlap to previous one? */
  3654. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3655. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3656. /* All the bits are present. Drop. */
  3657. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3658. __kfree_skb(skb);
  3659. skb = NULL;
  3660. tcp_dsack_set(sk, seq, end_seq);
  3661. goto add_sack;
  3662. }
  3663. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3664. /* Partial overlap. */
  3665. tcp_dsack_set(sk, seq,
  3666. TCP_SKB_CB(skb1)->end_seq);
  3667. } else {
  3668. if (skb_queue_is_first(&tp->out_of_order_queue,
  3669. skb1))
  3670. skb1 = NULL;
  3671. else
  3672. skb1 = skb_queue_prev(
  3673. &tp->out_of_order_queue,
  3674. skb1);
  3675. }
  3676. }
  3677. if (!skb1)
  3678. __skb_queue_head(&tp->out_of_order_queue, skb);
  3679. else
  3680. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3681. /* And clean segments covered by new one as whole. */
  3682. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3683. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3684. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3685. break;
  3686. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3687. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3688. end_seq);
  3689. break;
  3690. }
  3691. __skb_unlink(skb1, &tp->out_of_order_queue);
  3692. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3693. TCP_SKB_CB(skb1)->end_seq);
  3694. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3695. __kfree_skb(skb1);
  3696. }
  3697. add_sack:
  3698. if (tcp_is_sack(tp))
  3699. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3700. end:
  3701. if (skb) {
  3702. tcp_grow_window(sk, skb);
  3703. skb_set_owner_r(skb, sk);
  3704. }
  3705. }
  3706. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3707. bool *fragstolen)
  3708. {
  3709. int eaten;
  3710. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3711. __skb_pull(skb, hdrlen);
  3712. eaten = (tail &&
  3713. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3714. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3715. if (!eaten) {
  3716. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3717. skb_set_owner_r(skb, sk);
  3718. }
  3719. return eaten;
  3720. }
  3721. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3722. {
  3723. struct sk_buff *skb = NULL;
  3724. struct tcphdr *th;
  3725. bool fragstolen;
  3726. if (size == 0)
  3727. return 0;
  3728. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  3729. if (!skb)
  3730. goto err;
  3731. if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
  3732. goto err_free;
  3733. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  3734. skb_reset_transport_header(skb);
  3735. memset(th, 0, sizeof(*th));
  3736. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3737. goto err_free;
  3738. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3739. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3740. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3741. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  3742. WARN_ON_ONCE(fragstolen); /* should not happen */
  3743. __kfree_skb(skb);
  3744. }
  3745. return size;
  3746. err_free:
  3747. kfree_skb(skb);
  3748. err:
  3749. return -ENOMEM;
  3750. }
  3751. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3752. {
  3753. const struct tcphdr *th = tcp_hdr(skb);
  3754. struct tcp_sock *tp = tcp_sk(sk);
  3755. int eaten = -1;
  3756. bool fragstolen = false;
  3757. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3758. goto drop;
  3759. skb_dst_drop(skb);
  3760. __skb_pull(skb, th->doff * 4);
  3761. TCP_ECN_accept_cwr(tp, skb);
  3762. tp->rx_opt.dsack = 0;
  3763. /* Queue data for delivery to the user.
  3764. * Packets in sequence go to the receive queue.
  3765. * Out of sequence packets to the out_of_order_queue.
  3766. */
  3767. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3768. if (tcp_receive_window(tp) == 0)
  3769. goto out_of_window;
  3770. /* Ok. In sequence. In window. */
  3771. if (tp->ucopy.task == current &&
  3772. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3773. sock_owned_by_user(sk) && !tp->urg_data) {
  3774. int chunk = min_t(unsigned int, skb->len,
  3775. tp->ucopy.len);
  3776. __set_current_state(TASK_RUNNING);
  3777. local_bh_enable();
  3778. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3779. tp->ucopy.len -= chunk;
  3780. tp->copied_seq += chunk;
  3781. eaten = (chunk == skb->len);
  3782. tcp_rcv_space_adjust(sk);
  3783. }
  3784. local_bh_disable();
  3785. }
  3786. if (eaten <= 0) {
  3787. queue_and_out:
  3788. if (eaten < 0 &&
  3789. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3790. goto drop;
  3791. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3792. }
  3793. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3794. if (skb->len)
  3795. tcp_event_data_recv(sk, skb);
  3796. if (th->fin)
  3797. tcp_fin(sk);
  3798. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3799. tcp_ofo_queue(sk);
  3800. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3801. * gap in queue is filled.
  3802. */
  3803. if (skb_queue_empty(&tp->out_of_order_queue))
  3804. inet_csk(sk)->icsk_ack.pingpong = 0;
  3805. }
  3806. if (tp->rx_opt.num_sacks)
  3807. tcp_sack_remove(tp);
  3808. tcp_fast_path_check(sk);
  3809. if (eaten > 0)
  3810. kfree_skb_partial(skb, fragstolen);
  3811. if (!sock_flag(sk, SOCK_DEAD))
  3812. sk->sk_data_ready(sk);
  3813. return;
  3814. }
  3815. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3816. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3817. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3818. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3819. out_of_window:
  3820. tcp_enter_quickack_mode(sk);
  3821. inet_csk_schedule_ack(sk);
  3822. drop:
  3823. __kfree_skb(skb);
  3824. return;
  3825. }
  3826. /* Out of window. F.e. zero window probe. */
  3827. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3828. goto out_of_window;
  3829. tcp_enter_quickack_mode(sk);
  3830. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3831. /* Partial packet, seq < rcv_next < end_seq */
  3832. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3833. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3834. TCP_SKB_CB(skb)->end_seq);
  3835. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3836. /* If window is closed, drop tail of packet. But after
  3837. * remembering D-SACK for its head made in previous line.
  3838. */
  3839. if (!tcp_receive_window(tp))
  3840. goto out_of_window;
  3841. goto queue_and_out;
  3842. }
  3843. tcp_data_queue_ofo(sk, skb);
  3844. }
  3845. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3846. struct sk_buff_head *list)
  3847. {
  3848. struct sk_buff *next = NULL;
  3849. if (!skb_queue_is_last(list, skb))
  3850. next = skb_queue_next(list, skb);
  3851. __skb_unlink(skb, list);
  3852. __kfree_skb(skb);
  3853. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3854. return next;
  3855. }
  3856. /* Collapse contiguous sequence of skbs head..tail with
  3857. * sequence numbers start..end.
  3858. *
  3859. * If tail is NULL, this means until the end of the list.
  3860. *
  3861. * Segments with FIN/SYN are not collapsed (only because this
  3862. * simplifies code)
  3863. */
  3864. static void
  3865. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3866. struct sk_buff *head, struct sk_buff *tail,
  3867. u32 start, u32 end)
  3868. {
  3869. struct sk_buff *skb, *n;
  3870. bool end_of_skbs;
  3871. /* First, check that queue is collapsible and find
  3872. * the point where collapsing can be useful. */
  3873. skb = head;
  3874. restart:
  3875. end_of_skbs = true;
  3876. skb_queue_walk_from_safe(list, skb, n) {
  3877. if (skb == tail)
  3878. break;
  3879. /* No new bits? It is possible on ofo queue. */
  3880. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3881. skb = tcp_collapse_one(sk, skb, list);
  3882. if (!skb)
  3883. break;
  3884. goto restart;
  3885. }
  3886. /* The first skb to collapse is:
  3887. * - not SYN/FIN and
  3888. * - bloated or contains data before "start" or
  3889. * overlaps to the next one.
  3890. */
  3891. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3892. (tcp_win_from_space(skb->truesize) > skb->len ||
  3893. before(TCP_SKB_CB(skb)->seq, start))) {
  3894. end_of_skbs = false;
  3895. break;
  3896. }
  3897. if (!skb_queue_is_last(list, skb)) {
  3898. struct sk_buff *next = skb_queue_next(list, skb);
  3899. if (next != tail &&
  3900. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  3901. end_of_skbs = false;
  3902. break;
  3903. }
  3904. }
  3905. /* Decided to skip this, advance start seq. */
  3906. start = TCP_SKB_CB(skb)->end_seq;
  3907. }
  3908. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3909. return;
  3910. while (before(start, end)) {
  3911. struct sk_buff *nskb;
  3912. unsigned int header = skb_headroom(skb);
  3913. int copy = SKB_MAX_ORDER(header, 0);
  3914. /* Too big header? This can happen with IPv6. */
  3915. if (copy < 0)
  3916. return;
  3917. if (end - start < copy)
  3918. copy = end - start;
  3919. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  3920. if (!nskb)
  3921. return;
  3922. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3923. skb_set_network_header(nskb, (skb_network_header(skb) -
  3924. skb->head));
  3925. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3926. skb->head));
  3927. skb_reserve(nskb, header);
  3928. memcpy(nskb->head, skb->head, header);
  3929. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3930. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3931. __skb_queue_before(list, skb, nskb);
  3932. skb_set_owner_r(nskb, sk);
  3933. /* Copy data, releasing collapsed skbs. */
  3934. while (copy > 0) {
  3935. int offset = start - TCP_SKB_CB(skb)->seq;
  3936. int size = TCP_SKB_CB(skb)->end_seq - start;
  3937. BUG_ON(offset < 0);
  3938. if (size > 0) {
  3939. size = min(copy, size);
  3940. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3941. BUG();
  3942. TCP_SKB_CB(nskb)->end_seq += size;
  3943. copy -= size;
  3944. start += size;
  3945. }
  3946. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3947. skb = tcp_collapse_one(sk, skb, list);
  3948. if (!skb ||
  3949. skb == tail ||
  3950. tcp_hdr(skb)->syn ||
  3951. tcp_hdr(skb)->fin)
  3952. return;
  3953. }
  3954. }
  3955. }
  3956. }
  3957. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3958. * and tcp_collapse() them until all the queue is collapsed.
  3959. */
  3960. static void tcp_collapse_ofo_queue(struct sock *sk)
  3961. {
  3962. struct tcp_sock *tp = tcp_sk(sk);
  3963. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3964. struct sk_buff *head;
  3965. u32 start, end;
  3966. if (skb == NULL)
  3967. return;
  3968. start = TCP_SKB_CB(skb)->seq;
  3969. end = TCP_SKB_CB(skb)->end_seq;
  3970. head = skb;
  3971. for (;;) {
  3972. struct sk_buff *next = NULL;
  3973. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  3974. next = skb_queue_next(&tp->out_of_order_queue, skb);
  3975. skb = next;
  3976. /* Segment is terminated when we see gap or when
  3977. * we are at the end of all the queue. */
  3978. if (!skb ||
  3979. after(TCP_SKB_CB(skb)->seq, end) ||
  3980. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3981. tcp_collapse(sk, &tp->out_of_order_queue,
  3982. head, skb, start, end);
  3983. head = skb;
  3984. if (!skb)
  3985. break;
  3986. /* Start new segment */
  3987. start = TCP_SKB_CB(skb)->seq;
  3988. end = TCP_SKB_CB(skb)->end_seq;
  3989. } else {
  3990. if (before(TCP_SKB_CB(skb)->seq, start))
  3991. start = TCP_SKB_CB(skb)->seq;
  3992. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3993. end = TCP_SKB_CB(skb)->end_seq;
  3994. }
  3995. }
  3996. }
  3997. /*
  3998. * Purge the out-of-order queue.
  3999. * Return true if queue was pruned.
  4000. */
  4001. static bool tcp_prune_ofo_queue(struct sock *sk)
  4002. {
  4003. struct tcp_sock *tp = tcp_sk(sk);
  4004. bool res = false;
  4005. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4006. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4007. __skb_queue_purge(&tp->out_of_order_queue);
  4008. /* Reset SACK state. A conforming SACK implementation will
  4009. * do the same at a timeout based retransmit. When a connection
  4010. * is in a sad state like this, we care only about integrity
  4011. * of the connection not performance.
  4012. */
  4013. if (tp->rx_opt.sack_ok)
  4014. tcp_sack_reset(&tp->rx_opt);
  4015. sk_mem_reclaim(sk);
  4016. res = true;
  4017. }
  4018. return res;
  4019. }
  4020. /* Reduce allocated memory if we can, trying to get
  4021. * the socket within its memory limits again.
  4022. *
  4023. * Return less than zero if we should start dropping frames
  4024. * until the socket owning process reads some of the data
  4025. * to stabilize the situation.
  4026. */
  4027. static int tcp_prune_queue(struct sock *sk)
  4028. {
  4029. struct tcp_sock *tp = tcp_sk(sk);
  4030. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4031. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4032. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4033. tcp_clamp_window(sk);
  4034. else if (sk_under_memory_pressure(sk))
  4035. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4036. tcp_collapse_ofo_queue(sk);
  4037. if (!skb_queue_empty(&sk->sk_receive_queue))
  4038. tcp_collapse(sk, &sk->sk_receive_queue,
  4039. skb_peek(&sk->sk_receive_queue),
  4040. NULL,
  4041. tp->copied_seq, tp->rcv_nxt);
  4042. sk_mem_reclaim(sk);
  4043. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4044. return 0;
  4045. /* Collapsing did not help, destructive actions follow.
  4046. * This must not ever occur. */
  4047. tcp_prune_ofo_queue(sk);
  4048. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4049. return 0;
  4050. /* If we are really being abused, tell the caller to silently
  4051. * drop receive data on the floor. It will get retransmitted
  4052. * and hopefully then we'll have sufficient space.
  4053. */
  4054. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4055. /* Massive buffer overcommit. */
  4056. tp->pred_flags = 0;
  4057. return -1;
  4058. }
  4059. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4060. {
  4061. const struct tcp_sock *tp = tcp_sk(sk);
  4062. /* If the user specified a specific send buffer setting, do
  4063. * not modify it.
  4064. */
  4065. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4066. return false;
  4067. /* If we are under global TCP memory pressure, do not expand. */
  4068. if (sk_under_memory_pressure(sk))
  4069. return false;
  4070. /* If we are under soft global TCP memory pressure, do not expand. */
  4071. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4072. return false;
  4073. /* If we filled the congestion window, do not expand. */
  4074. if (tp->packets_out >= tp->snd_cwnd)
  4075. return false;
  4076. return true;
  4077. }
  4078. /* When incoming ACK allowed to free some skb from write_queue,
  4079. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4080. * on the exit from tcp input handler.
  4081. *
  4082. * PROBLEM: sndbuf expansion does not work well with largesend.
  4083. */
  4084. static void tcp_new_space(struct sock *sk)
  4085. {
  4086. struct tcp_sock *tp = tcp_sk(sk);
  4087. if (tcp_should_expand_sndbuf(sk)) {
  4088. tcp_sndbuf_expand(sk);
  4089. tp->snd_cwnd_stamp = tcp_time_stamp;
  4090. }
  4091. sk->sk_write_space(sk);
  4092. }
  4093. static void tcp_check_space(struct sock *sk)
  4094. {
  4095. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4096. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4097. if (sk->sk_socket &&
  4098. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4099. tcp_new_space(sk);
  4100. }
  4101. }
  4102. static inline void tcp_data_snd_check(struct sock *sk)
  4103. {
  4104. tcp_push_pending_frames(sk);
  4105. tcp_check_space(sk);
  4106. }
  4107. /*
  4108. * Check if sending an ack is needed.
  4109. */
  4110. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4111. {
  4112. struct tcp_sock *tp = tcp_sk(sk);
  4113. /* More than one full frame received... */
  4114. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4115. /* ... and right edge of window advances far enough.
  4116. * (tcp_recvmsg() will send ACK otherwise). Or...
  4117. */
  4118. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4119. /* We ACK each frame or... */
  4120. tcp_in_quickack_mode(sk) ||
  4121. /* We have out of order data. */
  4122. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4123. /* Then ack it now */
  4124. tcp_send_ack(sk);
  4125. } else {
  4126. /* Else, send delayed ack. */
  4127. tcp_send_delayed_ack(sk);
  4128. }
  4129. }
  4130. static inline void tcp_ack_snd_check(struct sock *sk)
  4131. {
  4132. if (!inet_csk_ack_scheduled(sk)) {
  4133. /* We sent a data segment already. */
  4134. return;
  4135. }
  4136. __tcp_ack_snd_check(sk, 1);
  4137. }
  4138. /*
  4139. * This routine is only called when we have urgent data
  4140. * signaled. Its the 'slow' part of tcp_urg. It could be
  4141. * moved inline now as tcp_urg is only called from one
  4142. * place. We handle URGent data wrong. We have to - as
  4143. * BSD still doesn't use the correction from RFC961.
  4144. * For 1003.1g we should support a new option TCP_STDURG to permit
  4145. * either form (or just set the sysctl tcp_stdurg).
  4146. */
  4147. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4148. {
  4149. struct tcp_sock *tp = tcp_sk(sk);
  4150. u32 ptr = ntohs(th->urg_ptr);
  4151. if (ptr && !sysctl_tcp_stdurg)
  4152. ptr--;
  4153. ptr += ntohl(th->seq);
  4154. /* Ignore urgent data that we've already seen and read. */
  4155. if (after(tp->copied_seq, ptr))
  4156. return;
  4157. /* Do not replay urg ptr.
  4158. *
  4159. * NOTE: interesting situation not covered by specs.
  4160. * Misbehaving sender may send urg ptr, pointing to segment,
  4161. * which we already have in ofo queue. We are not able to fetch
  4162. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4163. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4164. * situations. But it is worth to think about possibility of some
  4165. * DoSes using some hypothetical application level deadlock.
  4166. */
  4167. if (before(ptr, tp->rcv_nxt))
  4168. return;
  4169. /* Do we already have a newer (or duplicate) urgent pointer? */
  4170. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4171. return;
  4172. /* Tell the world about our new urgent pointer. */
  4173. sk_send_sigurg(sk);
  4174. /* We may be adding urgent data when the last byte read was
  4175. * urgent. To do this requires some care. We cannot just ignore
  4176. * tp->copied_seq since we would read the last urgent byte again
  4177. * as data, nor can we alter copied_seq until this data arrives
  4178. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4179. *
  4180. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4181. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4182. * and expect that both A and B disappear from stream. This is _wrong_.
  4183. * Though this happens in BSD with high probability, this is occasional.
  4184. * Any application relying on this is buggy. Note also, that fix "works"
  4185. * only in this artificial test. Insert some normal data between A and B and we will
  4186. * decline of BSD again. Verdict: it is better to remove to trap
  4187. * buggy users.
  4188. */
  4189. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4190. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4191. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4192. tp->copied_seq++;
  4193. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4194. __skb_unlink(skb, &sk->sk_receive_queue);
  4195. __kfree_skb(skb);
  4196. }
  4197. }
  4198. tp->urg_data = TCP_URG_NOTYET;
  4199. tp->urg_seq = ptr;
  4200. /* Disable header prediction. */
  4201. tp->pred_flags = 0;
  4202. }
  4203. /* This is the 'fast' part of urgent handling. */
  4204. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4205. {
  4206. struct tcp_sock *tp = tcp_sk(sk);
  4207. /* Check if we get a new urgent pointer - normally not. */
  4208. if (th->urg)
  4209. tcp_check_urg(sk, th);
  4210. /* Do we wait for any urgent data? - normally not... */
  4211. if (tp->urg_data == TCP_URG_NOTYET) {
  4212. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4213. th->syn;
  4214. /* Is the urgent pointer pointing into this packet? */
  4215. if (ptr < skb->len) {
  4216. u8 tmp;
  4217. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4218. BUG();
  4219. tp->urg_data = TCP_URG_VALID | tmp;
  4220. if (!sock_flag(sk, SOCK_DEAD))
  4221. sk->sk_data_ready(sk);
  4222. }
  4223. }
  4224. }
  4225. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4226. {
  4227. struct tcp_sock *tp = tcp_sk(sk);
  4228. int chunk = skb->len - hlen;
  4229. int err;
  4230. local_bh_enable();
  4231. if (skb_csum_unnecessary(skb))
  4232. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4233. else
  4234. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4235. tp->ucopy.iov);
  4236. if (!err) {
  4237. tp->ucopy.len -= chunk;
  4238. tp->copied_seq += chunk;
  4239. tcp_rcv_space_adjust(sk);
  4240. }
  4241. local_bh_disable();
  4242. return err;
  4243. }
  4244. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4245. struct sk_buff *skb)
  4246. {
  4247. __sum16 result;
  4248. if (sock_owned_by_user(sk)) {
  4249. local_bh_enable();
  4250. result = __tcp_checksum_complete(skb);
  4251. local_bh_disable();
  4252. } else {
  4253. result = __tcp_checksum_complete(skb);
  4254. }
  4255. return result;
  4256. }
  4257. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4258. struct sk_buff *skb)
  4259. {
  4260. return !skb_csum_unnecessary(skb) &&
  4261. __tcp_checksum_complete_user(sk, skb);
  4262. }
  4263. #ifdef CONFIG_NET_DMA
  4264. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4265. int hlen)
  4266. {
  4267. struct tcp_sock *tp = tcp_sk(sk);
  4268. int chunk = skb->len - hlen;
  4269. int dma_cookie;
  4270. bool copied_early = false;
  4271. if (tp->ucopy.wakeup)
  4272. return false;
  4273. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4274. tp->ucopy.dma_chan = net_dma_find_channel();
  4275. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4276. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4277. skb, hlen,
  4278. tp->ucopy.iov, chunk,
  4279. tp->ucopy.pinned_list);
  4280. if (dma_cookie < 0)
  4281. goto out;
  4282. tp->ucopy.dma_cookie = dma_cookie;
  4283. copied_early = true;
  4284. tp->ucopy.len -= chunk;
  4285. tp->copied_seq += chunk;
  4286. tcp_rcv_space_adjust(sk);
  4287. if ((tp->ucopy.len == 0) ||
  4288. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4289. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4290. tp->ucopy.wakeup = 1;
  4291. sk->sk_data_ready(sk);
  4292. }
  4293. } else if (chunk > 0) {
  4294. tp->ucopy.wakeup = 1;
  4295. sk->sk_data_ready(sk);
  4296. }
  4297. out:
  4298. return copied_early;
  4299. }
  4300. #endif /* CONFIG_NET_DMA */
  4301. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4302. * play significant role here.
  4303. */
  4304. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4305. const struct tcphdr *th, int syn_inerr)
  4306. {
  4307. struct tcp_sock *tp = tcp_sk(sk);
  4308. /* RFC1323: H1. Apply PAWS check first. */
  4309. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4310. tcp_paws_discard(sk, skb)) {
  4311. if (!th->rst) {
  4312. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4313. tcp_send_dupack(sk, skb);
  4314. goto discard;
  4315. }
  4316. /* Reset is accepted even if it did not pass PAWS. */
  4317. }
  4318. /* Step 1: check sequence number */
  4319. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4320. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4321. * (RST) segments are validated by checking their SEQ-fields."
  4322. * And page 69: "If an incoming segment is not acceptable,
  4323. * an acknowledgment should be sent in reply (unless the RST
  4324. * bit is set, if so drop the segment and return)".
  4325. */
  4326. if (!th->rst) {
  4327. if (th->syn)
  4328. goto syn_challenge;
  4329. tcp_send_dupack(sk, skb);
  4330. }
  4331. goto discard;
  4332. }
  4333. /* Step 2: check RST bit */
  4334. if (th->rst) {
  4335. /* RFC 5961 3.2 :
  4336. * If sequence number exactly matches RCV.NXT, then
  4337. * RESET the connection
  4338. * else
  4339. * Send a challenge ACK
  4340. */
  4341. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4342. tcp_reset(sk);
  4343. else
  4344. tcp_send_challenge_ack(sk);
  4345. goto discard;
  4346. }
  4347. /* step 3: check security and precedence [ignored] */
  4348. /* step 4: Check for a SYN
  4349. * RFC 5691 4.2 : Send a challenge ack
  4350. */
  4351. if (th->syn) {
  4352. syn_challenge:
  4353. if (syn_inerr)
  4354. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4355. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4356. tcp_send_challenge_ack(sk);
  4357. goto discard;
  4358. }
  4359. return true;
  4360. discard:
  4361. __kfree_skb(skb);
  4362. return false;
  4363. }
  4364. /*
  4365. * TCP receive function for the ESTABLISHED state.
  4366. *
  4367. * It is split into a fast path and a slow path. The fast path is
  4368. * disabled when:
  4369. * - A zero window was announced from us - zero window probing
  4370. * is only handled properly in the slow path.
  4371. * - Out of order segments arrived.
  4372. * - Urgent data is expected.
  4373. * - There is no buffer space left
  4374. * - Unexpected TCP flags/window values/header lengths are received
  4375. * (detected by checking the TCP header against pred_flags)
  4376. * - Data is sent in both directions. Fast path only supports pure senders
  4377. * or pure receivers (this means either the sequence number or the ack
  4378. * value must stay constant)
  4379. * - Unexpected TCP option.
  4380. *
  4381. * When these conditions are not satisfied it drops into a standard
  4382. * receive procedure patterned after RFC793 to handle all cases.
  4383. * The first three cases are guaranteed by proper pred_flags setting,
  4384. * the rest is checked inline. Fast processing is turned on in
  4385. * tcp_data_queue when everything is OK.
  4386. */
  4387. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4388. const struct tcphdr *th, unsigned int len)
  4389. {
  4390. struct tcp_sock *tp = tcp_sk(sk);
  4391. if (unlikely(sk->sk_rx_dst == NULL))
  4392. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4393. /*
  4394. * Header prediction.
  4395. * The code loosely follows the one in the famous
  4396. * "30 instruction TCP receive" Van Jacobson mail.
  4397. *
  4398. * Van's trick is to deposit buffers into socket queue
  4399. * on a device interrupt, to call tcp_recv function
  4400. * on the receive process context and checksum and copy
  4401. * the buffer to user space. smart...
  4402. *
  4403. * Our current scheme is not silly either but we take the
  4404. * extra cost of the net_bh soft interrupt processing...
  4405. * We do checksum and copy also but from device to kernel.
  4406. */
  4407. tp->rx_opt.saw_tstamp = 0;
  4408. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4409. * if header_prediction is to be made
  4410. * 'S' will always be tp->tcp_header_len >> 2
  4411. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4412. * turn it off (when there are holes in the receive
  4413. * space for instance)
  4414. * PSH flag is ignored.
  4415. */
  4416. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4417. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4418. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4419. int tcp_header_len = tp->tcp_header_len;
  4420. /* Timestamp header prediction: tcp_header_len
  4421. * is automatically equal to th->doff*4 due to pred_flags
  4422. * match.
  4423. */
  4424. /* Check timestamp */
  4425. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4426. /* No? Slow path! */
  4427. if (!tcp_parse_aligned_timestamp(tp, th))
  4428. goto slow_path;
  4429. /* If PAWS failed, check it more carefully in slow path */
  4430. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4431. goto slow_path;
  4432. /* DO NOT update ts_recent here, if checksum fails
  4433. * and timestamp was corrupted part, it will result
  4434. * in a hung connection since we will drop all
  4435. * future packets due to the PAWS test.
  4436. */
  4437. }
  4438. if (len <= tcp_header_len) {
  4439. /* Bulk data transfer: sender */
  4440. if (len == tcp_header_len) {
  4441. /* Predicted packet is in window by definition.
  4442. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4443. * Hence, check seq<=rcv_wup reduces to:
  4444. */
  4445. if (tcp_header_len ==
  4446. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4447. tp->rcv_nxt == tp->rcv_wup)
  4448. tcp_store_ts_recent(tp);
  4449. /* We know that such packets are checksummed
  4450. * on entry.
  4451. */
  4452. tcp_ack(sk, skb, 0);
  4453. __kfree_skb(skb);
  4454. tcp_data_snd_check(sk);
  4455. return;
  4456. } else { /* Header too small */
  4457. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4458. goto discard;
  4459. }
  4460. } else {
  4461. int eaten = 0;
  4462. int copied_early = 0;
  4463. bool fragstolen = false;
  4464. if (tp->copied_seq == tp->rcv_nxt &&
  4465. len - tcp_header_len <= tp->ucopy.len) {
  4466. #ifdef CONFIG_NET_DMA
  4467. if (tp->ucopy.task == current &&
  4468. sock_owned_by_user(sk) &&
  4469. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4470. copied_early = 1;
  4471. eaten = 1;
  4472. }
  4473. #endif
  4474. if (tp->ucopy.task == current &&
  4475. sock_owned_by_user(sk) && !copied_early) {
  4476. __set_current_state(TASK_RUNNING);
  4477. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4478. eaten = 1;
  4479. }
  4480. if (eaten) {
  4481. /* Predicted packet is in window by definition.
  4482. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4483. * Hence, check seq<=rcv_wup reduces to:
  4484. */
  4485. if (tcp_header_len ==
  4486. (sizeof(struct tcphdr) +
  4487. TCPOLEN_TSTAMP_ALIGNED) &&
  4488. tp->rcv_nxt == tp->rcv_wup)
  4489. tcp_store_ts_recent(tp);
  4490. tcp_rcv_rtt_measure_ts(sk, skb);
  4491. __skb_pull(skb, tcp_header_len);
  4492. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4493. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4494. }
  4495. if (copied_early)
  4496. tcp_cleanup_rbuf(sk, skb->len);
  4497. }
  4498. if (!eaten) {
  4499. if (tcp_checksum_complete_user(sk, skb))
  4500. goto csum_error;
  4501. if ((int)skb->truesize > sk->sk_forward_alloc)
  4502. goto step5;
  4503. /* Predicted packet is in window by definition.
  4504. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4505. * Hence, check seq<=rcv_wup reduces to:
  4506. */
  4507. if (tcp_header_len ==
  4508. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4509. tp->rcv_nxt == tp->rcv_wup)
  4510. tcp_store_ts_recent(tp);
  4511. tcp_rcv_rtt_measure_ts(sk, skb);
  4512. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4513. /* Bulk data transfer: receiver */
  4514. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4515. &fragstolen);
  4516. }
  4517. tcp_event_data_recv(sk, skb);
  4518. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4519. /* Well, only one small jumplet in fast path... */
  4520. tcp_ack(sk, skb, FLAG_DATA);
  4521. tcp_data_snd_check(sk);
  4522. if (!inet_csk_ack_scheduled(sk))
  4523. goto no_ack;
  4524. }
  4525. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4526. __tcp_ack_snd_check(sk, 0);
  4527. no_ack:
  4528. #ifdef CONFIG_NET_DMA
  4529. if (copied_early)
  4530. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4531. else
  4532. #endif
  4533. if (eaten)
  4534. kfree_skb_partial(skb, fragstolen);
  4535. sk->sk_data_ready(sk);
  4536. return;
  4537. }
  4538. }
  4539. slow_path:
  4540. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4541. goto csum_error;
  4542. if (!th->ack && !th->rst)
  4543. goto discard;
  4544. /*
  4545. * Standard slow path.
  4546. */
  4547. if (!tcp_validate_incoming(sk, skb, th, 1))
  4548. return;
  4549. step5:
  4550. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4551. goto discard;
  4552. tcp_rcv_rtt_measure_ts(sk, skb);
  4553. /* Process urgent data. */
  4554. tcp_urg(sk, skb, th);
  4555. /* step 7: process the segment text */
  4556. tcp_data_queue(sk, skb);
  4557. tcp_data_snd_check(sk);
  4558. tcp_ack_snd_check(sk);
  4559. return;
  4560. csum_error:
  4561. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
  4562. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4563. discard:
  4564. __kfree_skb(skb);
  4565. }
  4566. EXPORT_SYMBOL(tcp_rcv_established);
  4567. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4568. {
  4569. struct tcp_sock *tp = tcp_sk(sk);
  4570. struct inet_connection_sock *icsk = inet_csk(sk);
  4571. tcp_set_state(sk, TCP_ESTABLISHED);
  4572. if (skb != NULL) {
  4573. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4574. security_inet_conn_established(sk, skb);
  4575. }
  4576. /* Make sure socket is routed, for correct metrics. */
  4577. icsk->icsk_af_ops->rebuild_header(sk);
  4578. tcp_init_metrics(sk);
  4579. tcp_init_congestion_control(sk);
  4580. /* Prevent spurious tcp_cwnd_restart() on first data
  4581. * packet.
  4582. */
  4583. tp->lsndtime = tcp_time_stamp;
  4584. tcp_init_buffer_space(sk);
  4585. if (sock_flag(sk, SOCK_KEEPOPEN))
  4586. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4587. if (!tp->rx_opt.snd_wscale)
  4588. __tcp_fast_path_on(tp, tp->snd_wnd);
  4589. else
  4590. tp->pred_flags = 0;
  4591. if (!sock_flag(sk, SOCK_DEAD)) {
  4592. sk->sk_state_change(sk);
  4593. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4594. }
  4595. }
  4596. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4597. struct tcp_fastopen_cookie *cookie)
  4598. {
  4599. struct tcp_sock *tp = tcp_sk(sk);
  4600. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4601. u16 mss = tp->rx_opt.mss_clamp;
  4602. bool syn_drop;
  4603. if (mss == tp->rx_opt.user_mss) {
  4604. struct tcp_options_received opt;
  4605. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4606. tcp_clear_options(&opt);
  4607. opt.user_mss = opt.mss_clamp = 0;
  4608. tcp_parse_options(synack, &opt, 0, NULL);
  4609. mss = opt.mss_clamp;
  4610. }
  4611. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4612. cookie->len = -1;
  4613. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4614. * the remote receives only the retransmitted (regular) SYNs: either
  4615. * the original SYN-data or the corresponding SYN-ACK is lost.
  4616. */
  4617. syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
  4618. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4619. if (data) { /* Retransmit unacked data in SYN */
  4620. tcp_for_write_queue_from(data, sk) {
  4621. if (data == tcp_send_head(sk) ||
  4622. __tcp_retransmit_skb(sk, data))
  4623. break;
  4624. }
  4625. tcp_rearm_rto(sk);
  4626. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4627. return true;
  4628. }
  4629. tp->syn_data_acked = tp->syn_data;
  4630. if (tp->syn_data_acked)
  4631. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
  4632. return false;
  4633. }
  4634. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4635. const struct tcphdr *th, unsigned int len)
  4636. {
  4637. struct inet_connection_sock *icsk = inet_csk(sk);
  4638. struct tcp_sock *tp = tcp_sk(sk);
  4639. struct tcp_fastopen_cookie foc = { .len = -1 };
  4640. int saved_clamp = tp->rx_opt.mss_clamp;
  4641. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4642. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4643. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4644. if (th->ack) {
  4645. /* rfc793:
  4646. * "If the state is SYN-SENT then
  4647. * first check the ACK bit
  4648. * If the ACK bit is set
  4649. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4650. * a reset (unless the RST bit is set, if so drop
  4651. * the segment and return)"
  4652. */
  4653. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4654. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4655. goto reset_and_undo;
  4656. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4657. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4658. tcp_time_stamp)) {
  4659. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4660. goto reset_and_undo;
  4661. }
  4662. /* Now ACK is acceptable.
  4663. *
  4664. * "If the RST bit is set
  4665. * If the ACK was acceptable then signal the user "error:
  4666. * connection reset", drop the segment, enter CLOSED state,
  4667. * delete TCB, and return."
  4668. */
  4669. if (th->rst) {
  4670. tcp_reset(sk);
  4671. goto discard;
  4672. }
  4673. /* rfc793:
  4674. * "fifth, if neither of the SYN or RST bits is set then
  4675. * drop the segment and return."
  4676. *
  4677. * See note below!
  4678. * --ANK(990513)
  4679. */
  4680. if (!th->syn)
  4681. goto discard_and_undo;
  4682. /* rfc793:
  4683. * "If the SYN bit is on ...
  4684. * are acceptable then ...
  4685. * (our SYN has been ACKed), change the connection
  4686. * state to ESTABLISHED..."
  4687. */
  4688. TCP_ECN_rcv_synack(tp, th);
  4689. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4690. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4691. /* Ok.. it's good. Set up sequence numbers and
  4692. * move to established.
  4693. */
  4694. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4695. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4696. /* RFC1323: The window in SYN & SYN/ACK segments is
  4697. * never scaled.
  4698. */
  4699. tp->snd_wnd = ntohs(th->window);
  4700. if (!tp->rx_opt.wscale_ok) {
  4701. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4702. tp->window_clamp = min(tp->window_clamp, 65535U);
  4703. }
  4704. if (tp->rx_opt.saw_tstamp) {
  4705. tp->rx_opt.tstamp_ok = 1;
  4706. tp->tcp_header_len =
  4707. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4708. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4709. tcp_store_ts_recent(tp);
  4710. } else {
  4711. tp->tcp_header_len = sizeof(struct tcphdr);
  4712. }
  4713. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4714. tcp_enable_fack(tp);
  4715. tcp_mtup_init(sk);
  4716. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4717. tcp_initialize_rcv_mss(sk);
  4718. /* Remember, tcp_poll() does not lock socket!
  4719. * Change state from SYN-SENT only after copied_seq
  4720. * is initialized. */
  4721. tp->copied_seq = tp->rcv_nxt;
  4722. smp_mb();
  4723. tcp_finish_connect(sk, skb);
  4724. if ((tp->syn_fastopen || tp->syn_data) &&
  4725. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4726. return -1;
  4727. if (sk->sk_write_pending ||
  4728. icsk->icsk_accept_queue.rskq_defer_accept ||
  4729. icsk->icsk_ack.pingpong) {
  4730. /* Save one ACK. Data will be ready after
  4731. * several ticks, if write_pending is set.
  4732. *
  4733. * It may be deleted, but with this feature tcpdumps
  4734. * look so _wonderfully_ clever, that I was not able
  4735. * to stand against the temptation 8) --ANK
  4736. */
  4737. inet_csk_schedule_ack(sk);
  4738. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4739. tcp_enter_quickack_mode(sk);
  4740. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4741. TCP_DELACK_MAX, TCP_RTO_MAX);
  4742. discard:
  4743. __kfree_skb(skb);
  4744. return 0;
  4745. } else {
  4746. tcp_send_ack(sk);
  4747. }
  4748. return -1;
  4749. }
  4750. /* No ACK in the segment */
  4751. if (th->rst) {
  4752. /* rfc793:
  4753. * "If the RST bit is set
  4754. *
  4755. * Otherwise (no ACK) drop the segment and return."
  4756. */
  4757. goto discard_and_undo;
  4758. }
  4759. /* PAWS check. */
  4760. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4761. tcp_paws_reject(&tp->rx_opt, 0))
  4762. goto discard_and_undo;
  4763. if (th->syn) {
  4764. /* We see SYN without ACK. It is attempt of
  4765. * simultaneous connect with crossed SYNs.
  4766. * Particularly, it can be connect to self.
  4767. */
  4768. tcp_set_state(sk, TCP_SYN_RECV);
  4769. if (tp->rx_opt.saw_tstamp) {
  4770. tp->rx_opt.tstamp_ok = 1;
  4771. tcp_store_ts_recent(tp);
  4772. tp->tcp_header_len =
  4773. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4774. } else {
  4775. tp->tcp_header_len = sizeof(struct tcphdr);
  4776. }
  4777. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4778. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4779. /* RFC1323: The window in SYN & SYN/ACK segments is
  4780. * never scaled.
  4781. */
  4782. tp->snd_wnd = ntohs(th->window);
  4783. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4784. tp->max_window = tp->snd_wnd;
  4785. TCP_ECN_rcv_syn(tp, th);
  4786. tcp_mtup_init(sk);
  4787. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4788. tcp_initialize_rcv_mss(sk);
  4789. tcp_send_synack(sk);
  4790. #if 0
  4791. /* Note, we could accept data and URG from this segment.
  4792. * There are no obstacles to make this (except that we must
  4793. * either change tcp_recvmsg() to prevent it from returning data
  4794. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4795. *
  4796. * However, if we ignore data in ACKless segments sometimes,
  4797. * we have no reasons to accept it sometimes.
  4798. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4799. * is not flawless. So, discard packet for sanity.
  4800. * Uncomment this return to process the data.
  4801. */
  4802. return -1;
  4803. #else
  4804. goto discard;
  4805. #endif
  4806. }
  4807. /* "fifth, if neither of the SYN or RST bits is set then
  4808. * drop the segment and return."
  4809. */
  4810. discard_and_undo:
  4811. tcp_clear_options(&tp->rx_opt);
  4812. tp->rx_opt.mss_clamp = saved_clamp;
  4813. goto discard;
  4814. reset_and_undo:
  4815. tcp_clear_options(&tp->rx_opt);
  4816. tp->rx_opt.mss_clamp = saved_clamp;
  4817. return 1;
  4818. }
  4819. /*
  4820. * This function implements the receiving procedure of RFC 793 for
  4821. * all states except ESTABLISHED and TIME_WAIT.
  4822. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4823. * address independent.
  4824. */
  4825. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4826. const struct tcphdr *th, unsigned int len)
  4827. {
  4828. struct tcp_sock *tp = tcp_sk(sk);
  4829. struct inet_connection_sock *icsk = inet_csk(sk);
  4830. struct request_sock *req;
  4831. int queued = 0;
  4832. bool acceptable;
  4833. u32 synack_stamp;
  4834. tp->rx_opt.saw_tstamp = 0;
  4835. switch (sk->sk_state) {
  4836. case TCP_CLOSE:
  4837. goto discard;
  4838. case TCP_LISTEN:
  4839. if (th->ack)
  4840. return 1;
  4841. if (th->rst)
  4842. goto discard;
  4843. if (th->syn) {
  4844. if (th->fin)
  4845. goto discard;
  4846. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4847. return 1;
  4848. /* Now we have several options: In theory there is
  4849. * nothing else in the frame. KA9Q has an option to
  4850. * send data with the syn, BSD accepts data with the
  4851. * syn up to the [to be] advertised window and
  4852. * Solaris 2.1 gives you a protocol error. For now
  4853. * we just ignore it, that fits the spec precisely
  4854. * and avoids incompatibilities. It would be nice in
  4855. * future to drop through and process the data.
  4856. *
  4857. * Now that TTCP is starting to be used we ought to
  4858. * queue this data.
  4859. * But, this leaves one open to an easy denial of
  4860. * service attack, and SYN cookies can't defend
  4861. * against this problem. So, we drop the data
  4862. * in the interest of security over speed unless
  4863. * it's still in use.
  4864. */
  4865. kfree_skb(skb);
  4866. return 0;
  4867. }
  4868. goto discard;
  4869. case TCP_SYN_SENT:
  4870. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4871. if (queued >= 0)
  4872. return queued;
  4873. /* Do step6 onward by hand. */
  4874. tcp_urg(sk, skb, th);
  4875. __kfree_skb(skb);
  4876. tcp_data_snd_check(sk);
  4877. return 0;
  4878. }
  4879. req = tp->fastopen_rsk;
  4880. if (req != NULL) {
  4881. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4882. sk->sk_state != TCP_FIN_WAIT1);
  4883. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  4884. goto discard;
  4885. }
  4886. if (!th->ack && !th->rst)
  4887. goto discard;
  4888. if (!tcp_validate_incoming(sk, skb, th, 0))
  4889. return 0;
  4890. /* step 5: check the ACK field */
  4891. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  4892. FLAG_UPDATE_TS_RECENT) > 0;
  4893. switch (sk->sk_state) {
  4894. case TCP_SYN_RECV:
  4895. if (!acceptable)
  4896. return 1;
  4897. /* Once we leave TCP_SYN_RECV, we no longer need req
  4898. * so release it.
  4899. */
  4900. if (req) {
  4901. synack_stamp = tcp_rsk(req)->snt_synack;
  4902. tp->total_retrans = req->num_retrans;
  4903. reqsk_fastopen_remove(sk, req, false);
  4904. } else {
  4905. synack_stamp = tp->lsndtime;
  4906. /* Make sure socket is routed, for correct metrics. */
  4907. icsk->icsk_af_ops->rebuild_header(sk);
  4908. tcp_init_congestion_control(sk);
  4909. tcp_mtup_init(sk);
  4910. tp->copied_seq = tp->rcv_nxt;
  4911. tcp_init_buffer_space(sk);
  4912. }
  4913. smp_mb();
  4914. tcp_set_state(sk, TCP_ESTABLISHED);
  4915. sk->sk_state_change(sk);
  4916. /* Note, that this wakeup is only for marginal crossed SYN case.
  4917. * Passively open sockets are not waked up, because
  4918. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  4919. */
  4920. if (sk->sk_socket)
  4921. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4922. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4923. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  4924. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4925. tcp_synack_rtt_meas(sk, synack_stamp);
  4926. if (tp->rx_opt.tstamp_ok)
  4927. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4928. if (req) {
  4929. /* Re-arm the timer because data may have been sent out.
  4930. * This is similar to the regular data transmission case
  4931. * when new data has just been ack'ed.
  4932. *
  4933. * (TFO) - we could try to be more aggressive and
  4934. * retransmitting any data sooner based on when they
  4935. * are sent out.
  4936. */
  4937. tcp_rearm_rto(sk);
  4938. } else
  4939. tcp_init_metrics(sk);
  4940. tcp_update_pacing_rate(sk);
  4941. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  4942. tp->lsndtime = tcp_time_stamp;
  4943. tcp_initialize_rcv_mss(sk);
  4944. tcp_fast_path_on(tp);
  4945. break;
  4946. case TCP_FIN_WAIT1: {
  4947. struct dst_entry *dst;
  4948. int tmo;
  4949. /* If we enter the TCP_FIN_WAIT1 state and we are a
  4950. * Fast Open socket and this is the first acceptable
  4951. * ACK we have received, this would have acknowledged
  4952. * our SYNACK so stop the SYNACK timer.
  4953. */
  4954. if (req != NULL) {
  4955. /* Return RST if ack_seq is invalid.
  4956. * Note that RFC793 only says to generate a
  4957. * DUPACK for it but for TCP Fast Open it seems
  4958. * better to treat this case like TCP_SYN_RECV
  4959. * above.
  4960. */
  4961. if (!acceptable)
  4962. return 1;
  4963. /* We no longer need the request sock. */
  4964. reqsk_fastopen_remove(sk, req, false);
  4965. tcp_rearm_rto(sk);
  4966. }
  4967. if (tp->snd_una != tp->write_seq)
  4968. break;
  4969. tcp_set_state(sk, TCP_FIN_WAIT2);
  4970. sk->sk_shutdown |= SEND_SHUTDOWN;
  4971. dst = __sk_dst_get(sk);
  4972. if (dst)
  4973. dst_confirm(dst);
  4974. if (!sock_flag(sk, SOCK_DEAD)) {
  4975. /* Wake up lingering close() */
  4976. sk->sk_state_change(sk);
  4977. break;
  4978. }
  4979. if (tp->linger2 < 0 ||
  4980. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4981. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4982. tcp_done(sk);
  4983. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4984. return 1;
  4985. }
  4986. tmo = tcp_fin_time(sk);
  4987. if (tmo > TCP_TIMEWAIT_LEN) {
  4988. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4989. } else if (th->fin || sock_owned_by_user(sk)) {
  4990. /* Bad case. We could lose such FIN otherwise.
  4991. * It is not a big problem, but it looks confusing
  4992. * and not so rare event. We still can lose it now,
  4993. * if it spins in bh_lock_sock(), but it is really
  4994. * marginal case.
  4995. */
  4996. inet_csk_reset_keepalive_timer(sk, tmo);
  4997. } else {
  4998. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4999. goto discard;
  5000. }
  5001. break;
  5002. }
  5003. case TCP_CLOSING:
  5004. if (tp->snd_una == tp->write_seq) {
  5005. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5006. goto discard;
  5007. }
  5008. break;
  5009. case TCP_LAST_ACK:
  5010. if (tp->snd_una == tp->write_seq) {
  5011. tcp_update_metrics(sk);
  5012. tcp_done(sk);
  5013. goto discard;
  5014. }
  5015. break;
  5016. }
  5017. /* step 6: check the URG bit */
  5018. tcp_urg(sk, skb, th);
  5019. /* step 7: process the segment text */
  5020. switch (sk->sk_state) {
  5021. case TCP_CLOSE_WAIT:
  5022. case TCP_CLOSING:
  5023. case TCP_LAST_ACK:
  5024. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5025. break;
  5026. case TCP_FIN_WAIT1:
  5027. case TCP_FIN_WAIT2:
  5028. /* RFC 793 says to queue data in these states,
  5029. * RFC 1122 says we MUST send a reset.
  5030. * BSD 4.4 also does reset.
  5031. */
  5032. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5033. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5034. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5035. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5036. tcp_reset(sk);
  5037. return 1;
  5038. }
  5039. }
  5040. /* Fall through */
  5041. case TCP_ESTABLISHED:
  5042. tcp_data_queue(sk, skb);
  5043. queued = 1;
  5044. break;
  5045. }
  5046. /* tcp_data could move socket to TIME-WAIT */
  5047. if (sk->sk_state != TCP_CLOSE) {
  5048. tcp_data_snd_check(sk);
  5049. tcp_ack_snd_check(sk);
  5050. }
  5051. if (!queued) {
  5052. discard:
  5053. __kfree_skb(skb);
  5054. }
  5055. return 0;
  5056. }
  5057. EXPORT_SYMBOL(tcp_rcv_state_process);