vmalloc.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <linux/atomic.h>
  29. #include <linux/compiler.h>
  30. #include <linux/llist.h>
  31. #include <asm/uaccess.h>
  32. #include <asm/tlbflush.h>
  33. #include <asm/shmparam.h>
  34. struct vfree_deferred {
  35. struct llist_head list;
  36. struct work_struct wq;
  37. };
  38. static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  39. static void __vunmap(const void *, int);
  40. static void free_work(struct work_struct *w)
  41. {
  42. struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  43. struct llist_node *llnode = llist_del_all(&p->list);
  44. while (llnode) {
  45. void *p = llnode;
  46. llnode = llist_next(llnode);
  47. __vunmap(p, 1);
  48. }
  49. }
  50. /*** Page table manipulation functions ***/
  51. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  52. {
  53. pte_t *pte;
  54. pte = pte_offset_kernel(pmd, addr);
  55. do {
  56. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  57. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  58. } while (pte++, addr += PAGE_SIZE, addr != end);
  59. }
  60. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  61. {
  62. pmd_t *pmd;
  63. unsigned long next;
  64. pmd = pmd_offset(pud, addr);
  65. do {
  66. next = pmd_addr_end(addr, end);
  67. if (pmd_none_or_clear_bad(pmd))
  68. continue;
  69. vunmap_pte_range(pmd, addr, next);
  70. } while (pmd++, addr = next, addr != end);
  71. }
  72. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  73. {
  74. pud_t *pud;
  75. unsigned long next;
  76. pud = pud_offset(pgd, addr);
  77. do {
  78. next = pud_addr_end(addr, end);
  79. if (pud_none_or_clear_bad(pud))
  80. continue;
  81. vunmap_pmd_range(pud, addr, next);
  82. } while (pud++, addr = next, addr != end);
  83. }
  84. static void vunmap_page_range(unsigned long addr, unsigned long end)
  85. {
  86. pgd_t *pgd;
  87. unsigned long next;
  88. BUG_ON(addr >= end);
  89. pgd = pgd_offset_k(addr);
  90. do {
  91. next = pgd_addr_end(addr, end);
  92. if (pgd_none_or_clear_bad(pgd))
  93. continue;
  94. vunmap_pud_range(pgd, addr, next);
  95. } while (pgd++, addr = next, addr != end);
  96. }
  97. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  98. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  99. {
  100. pte_t *pte;
  101. /*
  102. * nr is a running index into the array which helps higher level
  103. * callers keep track of where we're up to.
  104. */
  105. pte = pte_alloc_kernel(pmd, addr);
  106. if (!pte)
  107. return -ENOMEM;
  108. do {
  109. struct page *page = pages[*nr];
  110. if (WARN_ON(!pte_none(*pte)))
  111. return -EBUSY;
  112. if (WARN_ON(!page))
  113. return -ENOMEM;
  114. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  115. (*nr)++;
  116. } while (pte++, addr += PAGE_SIZE, addr != end);
  117. return 0;
  118. }
  119. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  120. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  121. {
  122. pmd_t *pmd;
  123. unsigned long next;
  124. pmd = pmd_alloc(&init_mm, pud, addr);
  125. if (!pmd)
  126. return -ENOMEM;
  127. do {
  128. next = pmd_addr_end(addr, end);
  129. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  130. return -ENOMEM;
  131. } while (pmd++, addr = next, addr != end);
  132. return 0;
  133. }
  134. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  135. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  136. {
  137. pud_t *pud;
  138. unsigned long next;
  139. pud = pud_alloc(&init_mm, pgd, addr);
  140. if (!pud)
  141. return -ENOMEM;
  142. do {
  143. next = pud_addr_end(addr, end);
  144. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  145. return -ENOMEM;
  146. } while (pud++, addr = next, addr != end);
  147. return 0;
  148. }
  149. /*
  150. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  151. * will have pfns corresponding to the "pages" array.
  152. *
  153. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  154. */
  155. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. pgd_t *pgd;
  159. unsigned long next;
  160. unsigned long addr = start;
  161. int err = 0;
  162. int nr = 0;
  163. BUG_ON(addr >= end);
  164. pgd = pgd_offset_k(addr);
  165. do {
  166. next = pgd_addr_end(addr, end);
  167. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  168. if (err)
  169. return err;
  170. } while (pgd++, addr = next, addr != end);
  171. return nr;
  172. }
  173. static int vmap_page_range(unsigned long start, unsigned long end,
  174. pgprot_t prot, struct page **pages)
  175. {
  176. int ret;
  177. ret = vmap_page_range_noflush(start, end, prot, pages);
  178. flush_cache_vmap(start, end);
  179. return ret;
  180. }
  181. int is_vmalloc_or_module_addr(const void *x)
  182. {
  183. /*
  184. * ARM, x86-64 and sparc64 put modules in a special place,
  185. * and fall back on vmalloc() if that fails. Others
  186. * just put it in the vmalloc space.
  187. */
  188. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  189. unsigned long addr = (unsigned long)x;
  190. if (addr >= MODULES_VADDR && addr < MODULES_END)
  191. return 1;
  192. #endif
  193. return is_vmalloc_addr(x);
  194. }
  195. /*
  196. * Walk a vmap address to the struct page it maps.
  197. */
  198. struct page *vmalloc_to_page(const void *vmalloc_addr)
  199. {
  200. unsigned long addr = (unsigned long) vmalloc_addr;
  201. struct page *page = NULL;
  202. pgd_t *pgd = pgd_offset_k(addr);
  203. /*
  204. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  205. * architectures that do not vmalloc module space
  206. */
  207. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  208. if (!pgd_none(*pgd)) {
  209. pud_t *pud = pud_offset(pgd, addr);
  210. if (!pud_none(*pud)) {
  211. pmd_t *pmd = pmd_offset(pud, addr);
  212. if (!pmd_none(*pmd)) {
  213. pte_t *ptep, pte;
  214. ptep = pte_offset_map(pmd, addr);
  215. pte = *ptep;
  216. if (pte_present(pte))
  217. page = pte_page(pte);
  218. pte_unmap(ptep);
  219. }
  220. }
  221. }
  222. return page;
  223. }
  224. EXPORT_SYMBOL(vmalloc_to_page);
  225. /*
  226. * Map a vmalloc()-space virtual address to the physical page frame number.
  227. */
  228. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  229. {
  230. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  231. }
  232. EXPORT_SYMBOL(vmalloc_to_pfn);
  233. /*** Global kva allocator ***/
  234. #define VM_LAZY_FREE 0x01
  235. #define VM_LAZY_FREEING 0x02
  236. #define VM_VM_AREA 0x04
  237. static DEFINE_SPINLOCK(vmap_area_lock);
  238. /* Export for kexec only */
  239. LIST_HEAD(vmap_area_list);
  240. static struct rb_root vmap_area_root = RB_ROOT;
  241. /* The vmap cache globals are protected by vmap_area_lock */
  242. static struct rb_node *free_vmap_cache;
  243. static unsigned long cached_hole_size;
  244. static unsigned long cached_vstart;
  245. static unsigned long cached_align;
  246. static unsigned long vmap_area_pcpu_hole;
  247. static struct vmap_area *__find_vmap_area(unsigned long addr)
  248. {
  249. struct rb_node *n = vmap_area_root.rb_node;
  250. while (n) {
  251. struct vmap_area *va;
  252. va = rb_entry(n, struct vmap_area, rb_node);
  253. if (addr < va->va_start)
  254. n = n->rb_left;
  255. else if (addr >= va->va_end)
  256. n = n->rb_right;
  257. else
  258. return va;
  259. }
  260. return NULL;
  261. }
  262. static void __insert_vmap_area(struct vmap_area *va)
  263. {
  264. struct rb_node **p = &vmap_area_root.rb_node;
  265. struct rb_node *parent = NULL;
  266. struct rb_node *tmp;
  267. while (*p) {
  268. struct vmap_area *tmp_va;
  269. parent = *p;
  270. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  271. if (va->va_start < tmp_va->va_end)
  272. p = &(*p)->rb_left;
  273. else if (va->va_end > tmp_va->va_start)
  274. p = &(*p)->rb_right;
  275. else
  276. BUG();
  277. }
  278. rb_link_node(&va->rb_node, parent, p);
  279. rb_insert_color(&va->rb_node, &vmap_area_root);
  280. /* address-sort this list */
  281. tmp = rb_prev(&va->rb_node);
  282. if (tmp) {
  283. struct vmap_area *prev;
  284. prev = rb_entry(tmp, struct vmap_area, rb_node);
  285. list_add_rcu(&va->list, &prev->list);
  286. } else
  287. list_add_rcu(&va->list, &vmap_area_list);
  288. }
  289. static void purge_vmap_area_lazy(void);
  290. /*
  291. * Allocate a region of KVA of the specified size and alignment, within the
  292. * vstart and vend.
  293. */
  294. static struct vmap_area *alloc_vmap_area(unsigned long size,
  295. unsigned long align,
  296. unsigned long vstart, unsigned long vend,
  297. int node, gfp_t gfp_mask)
  298. {
  299. struct vmap_area *va;
  300. struct rb_node *n;
  301. unsigned long addr;
  302. int purged = 0;
  303. struct vmap_area *first;
  304. BUG_ON(!size);
  305. BUG_ON(size & ~PAGE_MASK);
  306. BUG_ON(!is_power_of_2(align));
  307. va = kmalloc_node(sizeof(struct vmap_area),
  308. gfp_mask & GFP_RECLAIM_MASK, node);
  309. if (unlikely(!va))
  310. return ERR_PTR(-ENOMEM);
  311. /*
  312. * Only scan the relevant parts containing pointers to other objects
  313. * to avoid false negatives.
  314. */
  315. kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
  316. retry:
  317. spin_lock(&vmap_area_lock);
  318. /*
  319. * Invalidate cache if we have more permissive parameters.
  320. * cached_hole_size notes the largest hole noticed _below_
  321. * the vmap_area cached in free_vmap_cache: if size fits
  322. * into that hole, we want to scan from vstart to reuse
  323. * the hole instead of allocating above free_vmap_cache.
  324. * Note that __free_vmap_area may update free_vmap_cache
  325. * without updating cached_hole_size or cached_align.
  326. */
  327. if (!free_vmap_cache ||
  328. size < cached_hole_size ||
  329. vstart < cached_vstart ||
  330. align < cached_align) {
  331. nocache:
  332. cached_hole_size = 0;
  333. free_vmap_cache = NULL;
  334. }
  335. /* record if we encounter less permissive parameters */
  336. cached_vstart = vstart;
  337. cached_align = align;
  338. /* find starting point for our search */
  339. if (free_vmap_cache) {
  340. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  341. addr = ALIGN(first->va_end, align);
  342. if (addr < vstart)
  343. goto nocache;
  344. if (addr + size < addr)
  345. goto overflow;
  346. } else {
  347. addr = ALIGN(vstart, align);
  348. if (addr + size < addr)
  349. goto overflow;
  350. n = vmap_area_root.rb_node;
  351. first = NULL;
  352. while (n) {
  353. struct vmap_area *tmp;
  354. tmp = rb_entry(n, struct vmap_area, rb_node);
  355. if (tmp->va_end >= addr) {
  356. first = tmp;
  357. if (tmp->va_start <= addr)
  358. break;
  359. n = n->rb_left;
  360. } else
  361. n = n->rb_right;
  362. }
  363. if (!first)
  364. goto found;
  365. }
  366. /* from the starting point, walk areas until a suitable hole is found */
  367. while (addr + size > first->va_start && addr + size <= vend) {
  368. if (addr + cached_hole_size < first->va_start)
  369. cached_hole_size = first->va_start - addr;
  370. addr = ALIGN(first->va_end, align);
  371. if (addr + size < addr)
  372. goto overflow;
  373. if (list_is_last(&first->list, &vmap_area_list))
  374. goto found;
  375. first = list_entry(first->list.next,
  376. struct vmap_area, list);
  377. }
  378. found:
  379. if (addr + size > vend)
  380. goto overflow;
  381. va->va_start = addr;
  382. va->va_end = addr + size;
  383. va->flags = 0;
  384. __insert_vmap_area(va);
  385. free_vmap_cache = &va->rb_node;
  386. spin_unlock(&vmap_area_lock);
  387. BUG_ON(va->va_start & (align-1));
  388. BUG_ON(va->va_start < vstart);
  389. BUG_ON(va->va_end > vend);
  390. return va;
  391. overflow:
  392. spin_unlock(&vmap_area_lock);
  393. if (!purged) {
  394. purge_vmap_area_lazy();
  395. purged = 1;
  396. goto retry;
  397. }
  398. if (printk_ratelimit())
  399. printk(KERN_WARNING
  400. "vmap allocation for size %lu failed: "
  401. "use vmalloc=<size> to increase size.\n", size);
  402. kfree(va);
  403. return ERR_PTR(-EBUSY);
  404. }
  405. static void __free_vmap_area(struct vmap_area *va)
  406. {
  407. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  408. if (free_vmap_cache) {
  409. if (va->va_end < cached_vstart) {
  410. free_vmap_cache = NULL;
  411. } else {
  412. struct vmap_area *cache;
  413. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  414. if (va->va_start <= cache->va_start) {
  415. free_vmap_cache = rb_prev(&va->rb_node);
  416. /*
  417. * We don't try to update cached_hole_size or
  418. * cached_align, but it won't go very wrong.
  419. */
  420. }
  421. }
  422. }
  423. rb_erase(&va->rb_node, &vmap_area_root);
  424. RB_CLEAR_NODE(&va->rb_node);
  425. list_del_rcu(&va->list);
  426. /*
  427. * Track the highest possible candidate for pcpu area
  428. * allocation. Areas outside of vmalloc area can be returned
  429. * here too, consider only end addresses which fall inside
  430. * vmalloc area proper.
  431. */
  432. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  433. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  434. kfree_rcu(va, rcu_head);
  435. }
  436. /*
  437. * Free a region of KVA allocated by alloc_vmap_area
  438. */
  439. static void free_vmap_area(struct vmap_area *va)
  440. {
  441. spin_lock(&vmap_area_lock);
  442. __free_vmap_area(va);
  443. spin_unlock(&vmap_area_lock);
  444. }
  445. /*
  446. * Clear the pagetable entries of a given vmap_area
  447. */
  448. static void unmap_vmap_area(struct vmap_area *va)
  449. {
  450. vunmap_page_range(va->va_start, va->va_end);
  451. }
  452. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  453. {
  454. /*
  455. * Unmap page tables and force a TLB flush immediately if
  456. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  457. * bugs similarly to those in linear kernel virtual address
  458. * space after a page has been freed.
  459. *
  460. * All the lazy freeing logic is still retained, in order to
  461. * minimise intrusiveness of this debugging feature.
  462. *
  463. * This is going to be *slow* (linear kernel virtual address
  464. * debugging doesn't do a broadcast TLB flush so it is a lot
  465. * faster).
  466. */
  467. #ifdef CONFIG_DEBUG_PAGEALLOC
  468. vunmap_page_range(start, end);
  469. flush_tlb_kernel_range(start, end);
  470. #endif
  471. }
  472. /*
  473. * lazy_max_pages is the maximum amount of virtual address space we gather up
  474. * before attempting to purge with a TLB flush.
  475. *
  476. * There is a tradeoff here: a larger number will cover more kernel page tables
  477. * and take slightly longer to purge, but it will linearly reduce the number of
  478. * global TLB flushes that must be performed. It would seem natural to scale
  479. * this number up linearly with the number of CPUs (because vmapping activity
  480. * could also scale linearly with the number of CPUs), however it is likely
  481. * that in practice, workloads might be constrained in other ways that mean
  482. * vmap activity will not scale linearly with CPUs. Also, I want to be
  483. * conservative and not introduce a big latency on huge systems, so go with
  484. * a less aggressive log scale. It will still be an improvement over the old
  485. * code, and it will be simple to change the scale factor if we find that it
  486. * becomes a problem on bigger systems.
  487. */
  488. static unsigned long lazy_max_pages(void)
  489. {
  490. unsigned int log;
  491. log = fls(num_online_cpus());
  492. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  493. }
  494. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  495. /* for per-CPU blocks */
  496. static void purge_fragmented_blocks_allcpus(void);
  497. /*
  498. * called before a call to iounmap() if the caller wants vm_area_struct's
  499. * immediately freed.
  500. */
  501. void set_iounmap_nonlazy(void)
  502. {
  503. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  504. }
  505. /*
  506. * Purges all lazily-freed vmap areas.
  507. *
  508. * If sync is 0 then don't purge if there is already a purge in progress.
  509. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  510. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  511. * their own TLB flushing).
  512. * Returns with *start = min(*start, lowest purged address)
  513. * *end = max(*end, highest purged address)
  514. */
  515. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  516. int sync, int force_flush)
  517. {
  518. static DEFINE_SPINLOCK(purge_lock);
  519. LIST_HEAD(valist);
  520. struct vmap_area *va;
  521. struct vmap_area *n_va;
  522. int nr = 0;
  523. /*
  524. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  525. * should not expect such behaviour. This just simplifies locking for
  526. * the case that isn't actually used at the moment anyway.
  527. */
  528. if (!sync && !force_flush) {
  529. if (!spin_trylock(&purge_lock))
  530. return;
  531. } else
  532. spin_lock(&purge_lock);
  533. if (sync)
  534. purge_fragmented_blocks_allcpus();
  535. rcu_read_lock();
  536. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  537. if (va->flags & VM_LAZY_FREE) {
  538. if (va->va_start < *start)
  539. *start = va->va_start;
  540. if (va->va_end > *end)
  541. *end = va->va_end;
  542. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  543. list_add_tail(&va->purge_list, &valist);
  544. va->flags |= VM_LAZY_FREEING;
  545. va->flags &= ~VM_LAZY_FREE;
  546. }
  547. }
  548. rcu_read_unlock();
  549. if (nr)
  550. atomic_sub(nr, &vmap_lazy_nr);
  551. if (nr || force_flush)
  552. flush_tlb_kernel_range(*start, *end);
  553. if (nr) {
  554. spin_lock(&vmap_area_lock);
  555. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  556. __free_vmap_area(va);
  557. spin_unlock(&vmap_area_lock);
  558. }
  559. spin_unlock(&purge_lock);
  560. }
  561. /*
  562. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  563. * is already purging.
  564. */
  565. static void try_purge_vmap_area_lazy(void)
  566. {
  567. unsigned long start = ULONG_MAX, end = 0;
  568. __purge_vmap_area_lazy(&start, &end, 0, 0);
  569. }
  570. /*
  571. * Kick off a purge of the outstanding lazy areas.
  572. */
  573. static void purge_vmap_area_lazy(void)
  574. {
  575. unsigned long start = ULONG_MAX, end = 0;
  576. __purge_vmap_area_lazy(&start, &end, 1, 0);
  577. }
  578. /*
  579. * Free a vmap area, caller ensuring that the area has been unmapped
  580. * and flush_cache_vunmap had been called for the correct range
  581. * previously.
  582. */
  583. static void free_vmap_area_noflush(struct vmap_area *va)
  584. {
  585. va->flags |= VM_LAZY_FREE;
  586. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  587. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  588. try_purge_vmap_area_lazy();
  589. }
  590. /*
  591. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  592. * called for the correct range previously.
  593. */
  594. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  595. {
  596. unmap_vmap_area(va);
  597. free_vmap_area_noflush(va);
  598. }
  599. /*
  600. * Free and unmap a vmap area
  601. */
  602. static void free_unmap_vmap_area(struct vmap_area *va)
  603. {
  604. flush_cache_vunmap(va->va_start, va->va_end);
  605. free_unmap_vmap_area_noflush(va);
  606. }
  607. static struct vmap_area *find_vmap_area(unsigned long addr)
  608. {
  609. struct vmap_area *va;
  610. spin_lock(&vmap_area_lock);
  611. va = __find_vmap_area(addr);
  612. spin_unlock(&vmap_area_lock);
  613. return va;
  614. }
  615. static void free_unmap_vmap_area_addr(unsigned long addr)
  616. {
  617. struct vmap_area *va;
  618. va = find_vmap_area(addr);
  619. BUG_ON(!va);
  620. free_unmap_vmap_area(va);
  621. }
  622. /*** Per cpu kva allocator ***/
  623. /*
  624. * vmap space is limited especially on 32 bit architectures. Ensure there is
  625. * room for at least 16 percpu vmap blocks per CPU.
  626. */
  627. /*
  628. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  629. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  630. * instead (we just need a rough idea)
  631. */
  632. #if BITS_PER_LONG == 32
  633. #define VMALLOC_SPACE (128UL*1024*1024)
  634. #else
  635. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  636. #endif
  637. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  638. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  639. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  640. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  641. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  642. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  643. #define VMAP_BBMAP_BITS \
  644. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  645. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  646. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  647. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  648. static bool vmap_initialized __read_mostly = false;
  649. struct vmap_block_queue {
  650. spinlock_t lock;
  651. struct list_head free;
  652. };
  653. struct vmap_block {
  654. spinlock_t lock;
  655. struct vmap_area *va;
  656. unsigned long free, dirty;
  657. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  658. struct list_head free_list;
  659. struct rcu_head rcu_head;
  660. struct list_head purge;
  661. };
  662. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  663. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  664. /*
  665. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  666. * in the free path. Could get rid of this if we change the API to return a
  667. * "cookie" from alloc, to be passed to free. But no big deal yet.
  668. */
  669. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  670. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  671. /*
  672. * We should probably have a fallback mechanism to allocate virtual memory
  673. * out of partially filled vmap blocks. However vmap block sizing should be
  674. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  675. * big problem.
  676. */
  677. static unsigned long addr_to_vb_idx(unsigned long addr)
  678. {
  679. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  680. addr /= VMAP_BLOCK_SIZE;
  681. return addr;
  682. }
  683. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  684. {
  685. struct vmap_block_queue *vbq;
  686. struct vmap_block *vb;
  687. struct vmap_area *va;
  688. unsigned long vb_idx;
  689. int node, err;
  690. node = numa_node_id();
  691. vb = kmalloc_node(sizeof(struct vmap_block),
  692. gfp_mask & GFP_RECLAIM_MASK, node);
  693. if (unlikely(!vb))
  694. return ERR_PTR(-ENOMEM);
  695. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  696. VMALLOC_START, VMALLOC_END,
  697. node, gfp_mask);
  698. if (IS_ERR(va)) {
  699. kfree(vb);
  700. return ERR_CAST(va);
  701. }
  702. err = radix_tree_preload(gfp_mask);
  703. if (unlikely(err)) {
  704. kfree(vb);
  705. free_vmap_area(va);
  706. return ERR_PTR(err);
  707. }
  708. spin_lock_init(&vb->lock);
  709. vb->va = va;
  710. vb->free = VMAP_BBMAP_BITS;
  711. vb->dirty = 0;
  712. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  713. INIT_LIST_HEAD(&vb->free_list);
  714. vb_idx = addr_to_vb_idx(va->va_start);
  715. spin_lock(&vmap_block_tree_lock);
  716. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  717. spin_unlock(&vmap_block_tree_lock);
  718. BUG_ON(err);
  719. radix_tree_preload_end();
  720. vbq = &get_cpu_var(vmap_block_queue);
  721. spin_lock(&vbq->lock);
  722. list_add_rcu(&vb->free_list, &vbq->free);
  723. spin_unlock(&vbq->lock);
  724. put_cpu_var(vmap_block_queue);
  725. return vb;
  726. }
  727. static void free_vmap_block(struct vmap_block *vb)
  728. {
  729. struct vmap_block *tmp;
  730. unsigned long vb_idx;
  731. vb_idx = addr_to_vb_idx(vb->va->va_start);
  732. spin_lock(&vmap_block_tree_lock);
  733. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  734. spin_unlock(&vmap_block_tree_lock);
  735. BUG_ON(tmp != vb);
  736. free_vmap_area_noflush(vb->va);
  737. kfree_rcu(vb, rcu_head);
  738. }
  739. static void purge_fragmented_blocks(int cpu)
  740. {
  741. LIST_HEAD(purge);
  742. struct vmap_block *vb;
  743. struct vmap_block *n_vb;
  744. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  745. rcu_read_lock();
  746. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  747. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  748. continue;
  749. spin_lock(&vb->lock);
  750. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  751. vb->free = 0; /* prevent further allocs after releasing lock */
  752. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  753. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  754. spin_lock(&vbq->lock);
  755. list_del_rcu(&vb->free_list);
  756. spin_unlock(&vbq->lock);
  757. spin_unlock(&vb->lock);
  758. list_add_tail(&vb->purge, &purge);
  759. } else
  760. spin_unlock(&vb->lock);
  761. }
  762. rcu_read_unlock();
  763. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  764. list_del(&vb->purge);
  765. free_vmap_block(vb);
  766. }
  767. }
  768. static void purge_fragmented_blocks_allcpus(void)
  769. {
  770. int cpu;
  771. for_each_possible_cpu(cpu)
  772. purge_fragmented_blocks(cpu);
  773. }
  774. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  775. {
  776. struct vmap_block_queue *vbq;
  777. struct vmap_block *vb;
  778. unsigned long addr = 0;
  779. unsigned int order;
  780. BUG_ON(size & ~PAGE_MASK);
  781. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  782. if (WARN_ON(size == 0)) {
  783. /*
  784. * Allocating 0 bytes isn't what caller wants since
  785. * get_order(0) returns funny result. Just warn and terminate
  786. * early.
  787. */
  788. return NULL;
  789. }
  790. order = get_order(size);
  791. again:
  792. rcu_read_lock();
  793. vbq = &get_cpu_var(vmap_block_queue);
  794. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  795. int i;
  796. spin_lock(&vb->lock);
  797. if (vb->free < 1UL << order)
  798. goto next;
  799. i = VMAP_BBMAP_BITS - vb->free;
  800. addr = vb->va->va_start + (i << PAGE_SHIFT);
  801. BUG_ON(addr_to_vb_idx(addr) !=
  802. addr_to_vb_idx(vb->va->va_start));
  803. vb->free -= 1UL << order;
  804. if (vb->free == 0) {
  805. spin_lock(&vbq->lock);
  806. list_del_rcu(&vb->free_list);
  807. spin_unlock(&vbq->lock);
  808. }
  809. spin_unlock(&vb->lock);
  810. break;
  811. next:
  812. spin_unlock(&vb->lock);
  813. }
  814. put_cpu_var(vmap_block_queue);
  815. rcu_read_unlock();
  816. if (!addr) {
  817. vb = new_vmap_block(gfp_mask);
  818. if (IS_ERR(vb))
  819. return vb;
  820. goto again;
  821. }
  822. return (void *)addr;
  823. }
  824. static void vb_free(const void *addr, unsigned long size)
  825. {
  826. unsigned long offset;
  827. unsigned long vb_idx;
  828. unsigned int order;
  829. struct vmap_block *vb;
  830. BUG_ON(size & ~PAGE_MASK);
  831. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  832. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  833. order = get_order(size);
  834. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  835. vb_idx = addr_to_vb_idx((unsigned long)addr);
  836. rcu_read_lock();
  837. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  838. rcu_read_unlock();
  839. BUG_ON(!vb);
  840. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  841. spin_lock(&vb->lock);
  842. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  843. vb->dirty += 1UL << order;
  844. if (vb->dirty == VMAP_BBMAP_BITS) {
  845. BUG_ON(vb->free);
  846. spin_unlock(&vb->lock);
  847. free_vmap_block(vb);
  848. } else
  849. spin_unlock(&vb->lock);
  850. }
  851. /**
  852. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  853. *
  854. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  855. * to amortize TLB flushing overheads. What this means is that any page you
  856. * have now, may, in a former life, have been mapped into kernel virtual
  857. * address by the vmap layer and so there might be some CPUs with TLB entries
  858. * still referencing that page (additional to the regular 1:1 kernel mapping).
  859. *
  860. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  861. * be sure that none of the pages we have control over will have any aliases
  862. * from the vmap layer.
  863. */
  864. void vm_unmap_aliases(void)
  865. {
  866. unsigned long start = ULONG_MAX, end = 0;
  867. int cpu;
  868. int flush = 0;
  869. if (unlikely(!vmap_initialized))
  870. return;
  871. for_each_possible_cpu(cpu) {
  872. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  873. struct vmap_block *vb;
  874. rcu_read_lock();
  875. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  876. int i, j;
  877. spin_lock(&vb->lock);
  878. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  879. if (i < VMAP_BBMAP_BITS) {
  880. unsigned long s, e;
  881. j = find_last_bit(vb->dirty_map,
  882. VMAP_BBMAP_BITS);
  883. j = j + 1; /* need exclusive index */
  884. s = vb->va->va_start + (i << PAGE_SHIFT);
  885. e = vb->va->va_start + (j << PAGE_SHIFT);
  886. flush = 1;
  887. if (s < start)
  888. start = s;
  889. if (e > end)
  890. end = e;
  891. }
  892. spin_unlock(&vb->lock);
  893. }
  894. rcu_read_unlock();
  895. }
  896. __purge_vmap_area_lazy(&start, &end, 1, flush);
  897. }
  898. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  899. /**
  900. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  901. * @mem: the pointer returned by vm_map_ram
  902. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  903. */
  904. void vm_unmap_ram(const void *mem, unsigned int count)
  905. {
  906. unsigned long size = count << PAGE_SHIFT;
  907. unsigned long addr = (unsigned long)mem;
  908. BUG_ON(!addr);
  909. BUG_ON(addr < VMALLOC_START);
  910. BUG_ON(addr > VMALLOC_END);
  911. BUG_ON(addr & (PAGE_SIZE-1));
  912. debug_check_no_locks_freed(mem, size);
  913. vmap_debug_free_range(addr, addr+size);
  914. if (likely(count <= VMAP_MAX_ALLOC))
  915. vb_free(mem, size);
  916. else
  917. free_unmap_vmap_area_addr(addr);
  918. }
  919. EXPORT_SYMBOL(vm_unmap_ram);
  920. /**
  921. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  922. * @pages: an array of pointers to the pages to be mapped
  923. * @count: number of pages
  924. * @node: prefer to allocate data structures on this node
  925. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  926. *
  927. * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
  928. * faster than vmap so it's good. But if you mix long-life and short-life
  929. * objects with vm_map_ram(), it could consume lots of address space through
  930. * fragmentation (especially on a 32bit machine). You could see failures in
  931. * the end. Please use this function for short-lived objects.
  932. *
  933. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  934. */
  935. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  936. {
  937. unsigned long size = count << PAGE_SHIFT;
  938. unsigned long addr;
  939. void *mem;
  940. if (likely(count <= VMAP_MAX_ALLOC)) {
  941. mem = vb_alloc(size, GFP_KERNEL);
  942. if (IS_ERR(mem))
  943. return NULL;
  944. addr = (unsigned long)mem;
  945. } else {
  946. struct vmap_area *va;
  947. va = alloc_vmap_area(size, PAGE_SIZE,
  948. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  949. if (IS_ERR(va))
  950. return NULL;
  951. addr = va->va_start;
  952. mem = (void *)addr;
  953. }
  954. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  955. vm_unmap_ram(mem, count);
  956. return NULL;
  957. }
  958. return mem;
  959. }
  960. EXPORT_SYMBOL(vm_map_ram);
  961. static struct vm_struct *vmlist __initdata;
  962. /**
  963. * vm_area_add_early - add vmap area early during boot
  964. * @vm: vm_struct to add
  965. *
  966. * This function is used to add fixed kernel vm area to vmlist before
  967. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  968. * should contain proper values and the other fields should be zero.
  969. *
  970. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  971. */
  972. void __init vm_area_add_early(struct vm_struct *vm)
  973. {
  974. struct vm_struct *tmp, **p;
  975. BUG_ON(vmap_initialized);
  976. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  977. if (tmp->addr >= vm->addr) {
  978. BUG_ON(tmp->addr < vm->addr + vm->size);
  979. break;
  980. } else
  981. BUG_ON(tmp->addr + tmp->size > vm->addr);
  982. }
  983. vm->next = *p;
  984. *p = vm;
  985. }
  986. /**
  987. * vm_area_register_early - register vmap area early during boot
  988. * @vm: vm_struct to register
  989. * @align: requested alignment
  990. *
  991. * This function is used to register kernel vm area before
  992. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  993. * proper values on entry and other fields should be zero. On return,
  994. * vm->addr contains the allocated address.
  995. *
  996. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  997. */
  998. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  999. {
  1000. static size_t vm_init_off __initdata;
  1001. unsigned long addr;
  1002. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1003. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1004. vm->addr = (void *)addr;
  1005. vm_area_add_early(vm);
  1006. }
  1007. void __init vmalloc_init(void)
  1008. {
  1009. struct vmap_area *va;
  1010. struct vm_struct *tmp;
  1011. int i;
  1012. for_each_possible_cpu(i) {
  1013. struct vmap_block_queue *vbq;
  1014. struct vfree_deferred *p;
  1015. vbq = &per_cpu(vmap_block_queue, i);
  1016. spin_lock_init(&vbq->lock);
  1017. INIT_LIST_HEAD(&vbq->free);
  1018. p = &per_cpu(vfree_deferred, i);
  1019. init_llist_head(&p->list);
  1020. INIT_WORK(&p->wq, free_work);
  1021. }
  1022. /* Import existing vmlist entries. */
  1023. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1024. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1025. va->flags = VM_VM_AREA;
  1026. va->va_start = (unsigned long)tmp->addr;
  1027. va->va_end = va->va_start + tmp->size;
  1028. va->vm = tmp;
  1029. __insert_vmap_area(va);
  1030. }
  1031. vmap_area_pcpu_hole = VMALLOC_END;
  1032. vmap_initialized = true;
  1033. }
  1034. /**
  1035. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1036. * @addr: start of the VM area to map
  1037. * @size: size of the VM area to map
  1038. * @prot: page protection flags to use
  1039. * @pages: pages to map
  1040. *
  1041. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1042. * specify should have been allocated using get_vm_area() and its
  1043. * friends.
  1044. *
  1045. * NOTE:
  1046. * This function does NOT do any cache flushing. The caller is
  1047. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1048. * before calling this function.
  1049. *
  1050. * RETURNS:
  1051. * The number of pages mapped on success, -errno on failure.
  1052. */
  1053. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1054. pgprot_t prot, struct page **pages)
  1055. {
  1056. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1057. }
  1058. /**
  1059. * unmap_kernel_range_noflush - unmap kernel VM area
  1060. * @addr: start of the VM area to unmap
  1061. * @size: size of the VM area to unmap
  1062. *
  1063. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1064. * specify should have been allocated using get_vm_area() and its
  1065. * friends.
  1066. *
  1067. * NOTE:
  1068. * This function does NOT do any cache flushing. The caller is
  1069. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1070. * before calling this function and flush_tlb_kernel_range() after.
  1071. */
  1072. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1073. {
  1074. vunmap_page_range(addr, addr + size);
  1075. }
  1076. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1077. /**
  1078. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1079. * @addr: start of the VM area to unmap
  1080. * @size: size of the VM area to unmap
  1081. *
  1082. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1083. * the unmapping and tlb after.
  1084. */
  1085. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1086. {
  1087. unsigned long end = addr + size;
  1088. flush_cache_vunmap(addr, end);
  1089. vunmap_page_range(addr, end);
  1090. flush_tlb_kernel_range(addr, end);
  1091. }
  1092. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  1093. {
  1094. unsigned long addr = (unsigned long)area->addr;
  1095. unsigned long end = addr + get_vm_area_size(area);
  1096. int err;
  1097. err = vmap_page_range(addr, end, prot, *pages);
  1098. if (err > 0) {
  1099. *pages += err;
  1100. err = 0;
  1101. }
  1102. return err;
  1103. }
  1104. EXPORT_SYMBOL_GPL(map_vm_area);
  1105. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1106. unsigned long flags, const void *caller)
  1107. {
  1108. spin_lock(&vmap_area_lock);
  1109. vm->flags = flags;
  1110. vm->addr = (void *)va->va_start;
  1111. vm->size = va->va_end - va->va_start;
  1112. vm->caller = caller;
  1113. va->vm = vm;
  1114. va->flags |= VM_VM_AREA;
  1115. spin_unlock(&vmap_area_lock);
  1116. }
  1117. static void clear_vm_uninitialized_flag(struct vm_struct *vm)
  1118. {
  1119. /*
  1120. * Before removing VM_UNINITIALIZED,
  1121. * we should make sure that vm has proper values.
  1122. * Pair with smp_rmb() in show_numa_info().
  1123. */
  1124. smp_wmb();
  1125. vm->flags &= ~VM_UNINITIALIZED;
  1126. }
  1127. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1128. unsigned long align, unsigned long flags, unsigned long start,
  1129. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1130. {
  1131. struct vmap_area *va;
  1132. struct vm_struct *area;
  1133. BUG_ON(in_interrupt());
  1134. if (flags & VM_IOREMAP)
  1135. align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
  1136. size = PAGE_ALIGN(size);
  1137. if (unlikely(!size))
  1138. return NULL;
  1139. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1140. if (unlikely(!area))
  1141. return NULL;
  1142. /*
  1143. * We always allocate a guard page.
  1144. */
  1145. size += PAGE_SIZE;
  1146. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1147. if (IS_ERR(va)) {
  1148. kfree(area);
  1149. return NULL;
  1150. }
  1151. setup_vmalloc_vm(area, va, flags, caller);
  1152. return area;
  1153. }
  1154. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1155. unsigned long start, unsigned long end)
  1156. {
  1157. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1158. GFP_KERNEL, __builtin_return_address(0));
  1159. }
  1160. EXPORT_SYMBOL_GPL(__get_vm_area);
  1161. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1162. unsigned long start, unsigned long end,
  1163. const void *caller)
  1164. {
  1165. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1166. GFP_KERNEL, caller);
  1167. }
  1168. /**
  1169. * get_vm_area - reserve a contiguous kernel virtual area
  1170. * @size: size of the area
  1171. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1172. *
  1173. * Search an area of @size in the kernel virtual mapping area,
  1174. * and reserved it for out purposes. Returns the area descriptor
  1175. * on success or %NULL on failure.
  1176. */
  1177. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1178. {
  1179. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1180. NUMA_NO_NODE, GFP_KERNEL,
  1181. __builtin_return_address(0));
  1182. }
  1183. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1184. const void *caller)
  1185. {
  1186. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1187. NUMA_NO_NODE, GFP_KERNEL, caller);
  1188. }
  1189. /**
  1190. * find_vm_area - find a continuous kernel virtual area
  1191. * @addr: base address
  1192. *
  1193. * Search for the kernel VM area starting at @addr, and return it.
  1194. * It is up to the caller to do all required locking to keep the returned
  1195. * pointer valid.
  1196. */
  1197. struct vm_struct *find_vm_area(const void *addr)
  1198. {
  1199. struct vmap_area *va;
  1200. va = find_vmap_area((unsigned long)addr);
  1201. if (va && va->flags & VM_VM_AREA)
  1202. return va->vm;
  1203. return NULL;
  1204. }
  1205. /**
  1206. * remove_vm_area - find and remove a continuous kernel virtual area
  1207. * @addr: base address
  1208. *
  1209. * Search for the kernel VM area starting at @addr, and remove it.
  1210. * This function returns the found VM area, but using it is NOT safe
  1211. * on SMP machines, except for its size or flags.
  1212. */
  1213. struct vm_struct *remove_vm_area(const void *addr)
  1214. {
  1215. struct vmap_area *va;
  1216. va = find_vmap_area((unsigned long)addr);
  1217. if (va && va->flags & VM_VM_AREA) {
  1218. struct vm_struct *vm = va->vm;
  1219. spin_lock(&vmap_area_lock);
  1220. va->vm = NULL;
  1221. va->flags &= ~VM_VM_AREA;
  1222. spin_unlock(&vmap_area_lock);
  1223. vmap_debug_free_range(va->va_start, va->va_end);
  1224. free_unmap_vmap_area(va);
  1225. vm->size -= PAGE_SIZE;
  1226. return vm;
  1227. }
  1228. return NULL;
  1229. }
  1230. static void __vunmap(const void *addr, int deallocate_pages)
  1231. {
  1232. struct vm_struct *area;
  1233. if (!addr)
  1234. return;
  1235. if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
  1236. addr))
  1237. return;
  1238. area = remove_vm_area(addr);
  1239. if (unlikely(!area)) {
  1240. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1241. addr);
  1242. return;
  1243. }
  1244. debug_check_no_locks_freed(addr, area->size);
  1245. debug_check_no_obj_freed(addr, area->size);
  1246. if (deallocate_pages) {
  1247. int i;
  1248. for (i = 0; i < area->nr_pages; i++) {
  1249. struct page *page = area->pages[i];
  1250. BUG_ON(!page);
  1251. __free_page(page);
  1252. }
  1253. if (area->flags & VM_VPAGES)
  1254. vfree(area->pages);
  1255. else
  1256. kfree(area->pages);
  1257. }
  1258. kfree(area);
  1259. return;
  1260. }
  1261. /**
  1262. * vfree - release memory allocated by vmalloc()
  1263. * @addr: memory base address
  1264. *
  1265. * Free the virtually continuous memory area starting at @addr, as
  1266. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1267. * NULL, no operation is performed.
  1268. *
  1269. * Must not be called in NMI context (strictly speaking, only if we don't
  1270. * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
  1271. * conventions for vfree() arch-depenedent would be a really bad idea)
  1272. *
  1273. * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
  1274. */
  1275. void vfree(const void *addr)
  1276. {
  1277. BUG_ON(in_nmi());
  1278. kmemleak_free(addr);
  1279. if (!addr)
  1280. return;
  1281. if (unlikely(in_interrupt())) {
  1282. struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
  1283. if (llist_add((struct llist_node *)addr, &p->list))
  1284. schedule_work(&p->wq);
  1285. } else
  1286. __vunmap(addr, 1);
  1287. }
  1288. EXPORT_SYMBOL(vfree);
  1289. /**
  1290. * vunmap - release virtual mapping obtained by vmap()
  1291. * @addr: memory base address
  1292. *
  1293. * Free the virtually contiguous memory area starting at @addr,
  1294. * which was created from the page array passed to vmap().
  1295. *
  1296. * Must not be called in interrupt context.
  1297. */
  1298. void vunmap(const void *addr)
  1299. {
  1300. BUG_ON(in_interrupt());
  1301. might_sleep();
  1302. if (addr)
  1303. __vunmap(addr, 0);
  1304. }
  1305. EXPORT_SYMBOL(vunmap);
  1306. /**
  1307. * vmap - map an array of pages into virtually contiguous space
  1308. * @pages: array of page pointers
  1309. * @count: number of pages to map
  1310. * @flags: vm_area->flags
  1311. * @prot: page protection for the mapping
  1312. *
  1313. * Maps @count pages from @pages into contiguous kernel virtual
  1314. * space.
  1315. */
  1316. void *vmap(struct page **pages, unsigned int count,
  1317. unsigned long flags, pgprot_t prot)
  1318. {
  1319. struct vm_struct *area;
  1320. might_sleep();
  1321. if (count > totalram_pages)
  1322. return NULL;
  1323. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1324. __builtin_return_address(0));
  1325. if (!area)
  1326. return NULL;
  1327. if (map_vm_area(area, prot, &pages)) {
  1328. vunmap(area->addr);
  1329. return NULL;
  1330. }
  1331. return area->addr;
  1332. }
  1333. EXPORT_SYMBOL(vmap);
  1334. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1335. gfp_t gfp_mask, pgprot_t prot,
  1336. int node, const void *caller);
  1337. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1338. pgprot_t prot, int node)
  1339. {
  1340. const int order = 0;
  1341. struct page **pages;
  1342. unsigned int nr_pages, array_size, i;
  1343. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1344. nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
  1345. array_size = (nr_pages * sizeof(struct page *));
  1346. area->nr_pages = nr_pages;
  1347. /* Please note that the recursion is strictly bounded. */
  1348. if (array_size > PAGE_SIZE) {
  1349. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1350. PAGE_KERNEL, node, area->caller);
  1351. area->flags |= VM_VPAGES;
  1352. } else {
  1353. pages = kmalloc_node(array_size, nested_gfp, node);
  1354. }
  1355. area->pages = pages;
  1356. if (!area->pages) {
  1357. remove_vm_area(area->addr);
  1358. kfree(area);
  1359. return NULL;
  1360. }
  1361. for (i = 0; i < area->nr_pages; i++) {
  1362. struct page *page;
  1363. gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
  1364. if (node == NUMA_NO_NODE)
  1365. page = alloc_page(tmp_mask);
  1366. else
  1367. page = alloc_pages_node(node, tmp_mask, order);
  1368. if (unlikely(!page)) {
  1369. /* Successfully allocated i pages, free them in __vunmap() */
  1370. area->nr_pages = i;
  1371. goto fail;
  1372. }
  1373. area->pages[i] = page;
  1374. }
  1375. if (map_vm_area(area, prot, &pages))
  1376. goto fail;
  1377. return area->addr;
  1378. fail:
  1379. warn_alloc_failed(gfp_mask, order,
  1380. "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
  1381. (area->nr_pages*PAGE_SIZE), area->size);
  1382. vfree(area->addr);
  1383. return NULL;
  1384. }
  1385. /**
  1386. * __vmalloc_node_range - allocate virtually contiguous memory
  1387. * @size: allocation size
  1388. * @align: desired alignment
  1389. * @start: vm area range start
  1390. * @end: vm area range end
  1391. * @gfp_mask: flags for the page level allocator
  1392. * @prot: protection mask for the allocated pages
  1393. * @node: node to use for allocation or NUMA_NO_NODE
  1394. * @caller: caller's return address
  1395. *
  1396. * Allocate enough pages to cover @size from the page level
  1397. * allocator with @gfp_mask flags. Map them into contiguous
  1398. * kernel virtual space, using a pagetable protection of @prot.
  1399. */
  1400. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1401. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1402. pgprot_t prot, int node, const void *caller)
  1403. {
  1404. struct vm_struct *area;
  1405. void *addr;
  1406. unsigned long real_size = size;
  1407. size = PAGE_ALIGN(size);
  1408. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1409. goto fail;
  1410. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
  1411. start, end, node, gfp_mask, caller);
  1412. if (!area)
  1413. goto fail;
  1414. addr = __vmalloc_area_node(area, gfp_mask, prot, node);
  1415. if (!addr)
  1416. return NULL;
  1417. /*
  1418. * In this function, newly allocated vm_struct has VM_UNINITIALIZED
  1419. * flag. It means that vm_struct is not fully initialized.
  1420. * Now, it is fully initialized, so remove this flag here.
  1421. */
  1422. clear_vm_uninitialized_flag(area);
  1423. /*
  1424. * A ref_count = 2 is needed because vm_struct allocated in
  1425. * __get_vm_area_node() contains a reference to the virtual address of
  1426. * the vmalloc'ed block.
  1427. */
  1428. kmemleak_alloc(addr, real_size, 2, gfp_mask);
  1429. return addr;
  1430. fail:
  1431. warn_alloc_failed(gfp_mask, 0,
  1432. "vmalloc: allocation failure: %lu bytes\n",
  1433. real_size);
  1434. return NULL;
  1435. }
  1436. /**
  1437. * __vmalloc_node - allocate virtually contiguous memory
  1438. * @size: allocation size
  1439. * @align: desired alignment
  1440. * @gfp_mask: flags for the page level allocator
  1441. * @prot: protection mask for the allocated pages
  1442. * @node: node to use for allocation or NUMA_NO_NODE
  1443. * @caller: caller's return address
  1444. *
  1445. * Allocate enough pages to cover @size from the page level
  1446. * allocator with @gfp_mask flags. Map them into contiguous
  1447. * kernel virtual space, using a pagetable protection of @prot.
  1448. */
  1449. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1450. gfp_t gfp_mask, pgprot_t prot,
  1451. int node, const void *caller)
  1452. {
  1453. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1454. gfp_mask, prot, node, caller);
  1455. }
  1456. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1457. {
  1458. return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
  1459. __builtin_return_address(0));
  1460. }
  1461. EXPORT_SYMBOL(__vmalloc);
  1462. static inline void *__vmalloc_node_flags(unsigned long size,
  1463. int node, gfp_t flags)
  1464. {
  1465. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1466. node, __builtin_return_address(0));
  1467. }
  1468. /**
  1469. * vmalloc - allocate virtually contiguous memory
  1470. * @size: allocation size
  1471. * Allocate enough pages to cover @size from the page level
  1472. * allocator and map them into contiguous kernel virtual space.
  1473. *
  1474. * For tight control over page level allocator and protection flags
  1475. * use __vmalloc() instead.
  1476. */
  1477. void *vmalloc(unsigned long size)
  1478. {
  1479. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1480. GFP_KERNEL | __GFP_HIGHMEM);
  1481. }
  1482. EXPORT_SYMBOL(vmalloc);
  1483. /**
  1484. * vzalloc - allocate virtually contiguous memory with zero fill
  1485. * @size: allocation size
  1486. * Allocate enough pages to cover @size from the page level
  1487. * allocator and map them into contiguous kernel virtual space.
  1488. * The memory allocated is set to zero.
  1489. *
  1490. * For tight control over page level allocator and protection flags
  1491. * use __vmalloc() instead.
  1492. */
  1493. void *vzalloc(unsigned long size)
  1494. {
  1495. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1496. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1497. }
  1498. EXPORT_SYMBOL(vzalloc);
  1499. /**
  1500. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1501. * @size: allocation size
  1502. *
  1503. * The resulting memory area is zeroed so it can be mapped to userspace
  1504. * without leaking data.
  1505. */
  1506. void *vmalloc_user(unsigned long size)
  1507. {
  1508. struct vm_struct *area;
  1509. void *ret;
  1510. ret = __vmalloc_node(size, SHMLBA,
  1511. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1512. PAGE_KERNEL, NUMA_NO_NODE,
  1513. __builtin_return_address(0));
  1514. if (ret) {
  1515. area = find_vm_area(ret);
  1516. area->flags |= VM_USERMAP;
  1517. }
  1518. return ret;
  1519. }
  1520. EXPORT_SYMBOL(vmalloc_user);
  1521. /**
  1522. * vmalloc_node - allocate memory on a specific node
  1523. * @size: allocation size
  1524. * @node: numa node
  1525. *
  1526. * Allocate enough pages to cover @size from the page level
  1527. * allocator and map them into contiguous kernel virtual space.
  1528. *
  1529. * For tight control over page level allocator and protection flags
  1530. * use __vmalloc() instead.
  1531. */
  1532. void *vmalloc_node(unsigned long size, int node)
  1533. {
  1534. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1535. node, __builtin_return_address(0));
  1536. }
  1537. EXPORT_SYMBOL(vmalloc_node);
  1538. /**
  1539. * vzalloc_node - allocate memory on a specific node with zero fill
  1540. * @size: allocation size
  1541. * @node: numa node
  1542. *
  1543. * Allocate enough pages to cover @size from the page level
  1544. * allocator and map them into contiguous kernel virtual space.
  1545. * The memory allocated is set to zero.
  1546. *
  1547. * For tight control over page level allocator and protection flags
  1548. * use __vmalloc_node() instead.
  1549. */
  1550. void *vzalloc_node(unsigned long size, int node)
  1551. {
  1552. return __vmalloc_node_flags(size, node,
  1553. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1554. }
  1555. EXPORT_SYMBOL(vzalloc_node);
  1556. #ifndef PAGE_KERNEL_EXEC
  1557. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1558. #endif
  1559. /**
  1560. * vmalloc_exec - allocate virtually contiguous, executable memory
  1561. * @size: allocation size
  1562. *
  1563. * Kernel-internal function to allocate enough pages to cover @size
  1564. * the page level allocator and map them into contiguous and
  1565. * executable kernel virtual space.
  1566. *
  1567. * For tight control over page level allocator and protection flags
  1568. * use __vmalloc() instead.
  1569. */
  1570. void *vmalloc_exec(unsigned long size)
  1571. {
  1572. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1573. NUMA_NO_NODE, __builtin_return_address(0));
  1574. }
  1575. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1576. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1577. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1578. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1579. #else
  1580. #define GFP_VMALLOC32 GFP_KERNEL
  1581. #endif
  1582. /**
  1583. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1584. * @size: allocation size
  1585. *
  1586. * Allocate enough 32bit PA addressable pages to cover @size from the
  1587. * page level allocator and map them into contiguous kernel virtual space.
  1588. */
  1589. void *vmalloc_32(unsigned long size)
  1590. {
  1591. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1592. NUMA_NO_NODE, __builtin_return_address(0));
  1593. }
  1594. EXPORT_SYMBOL(vmalloc_32);
  1595. /**
  1596. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1597. * @size: allocation size
  1598. *
  1599. * The resulting memory area is 32bit addressable and zeroed so it can be
  1600. * mapped to userspace without leaking data.
  1601. */
  1602. void *vmalloc_32_user(unsigned long size)
  1603. {
  1604. struct vm_struct *area;
  1605. void *ret;
  1606. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1607. NUMA_NO_NODE, __builtin_return_address(0));
  1608. if (ret) {
  1609. area = find_vm_area(ret);
  1610. area->flags |= VM_USERMAP;
  1611. }
  1612. return ret;
  1613. }
  1614. EXPORT_SYMBOL(vmalloc_32_user);
  1615. /*
  1616. * small helper routine , copy contents to buf from addr.
  1617. * If the page is not present, fill zero.
  1618. */
  1619. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1620. {
  1621. struct page *p;
  1622. int copied = 0;
  1623. while (count) {
  1624. unsigned long offset, length;
  1625. offset = (unsigned long)addr & ~PAGE_MASK;
  1626. length = PAGE_SIZE - offset;
  1627. if (length > count)
  1628. length = count;
  1629. p = vmalloc_to_page(addr);
  1630. /*
  1631. * To do safe access to this _mapped_ area, we need
  1632. * lock. But adding lock here means that we need to add
  1633. * overhead of vmalloc()/vfree() calles for this _debug_
  1634. * interface, rarely used. Instead of that, we'll use
  1635. * kmap() and get small overhead in this access function.
  1636. */
  1637. if (p) {
  1638. /*
  1639. * we can expect USER0 is not used (see vread/vwrite's
  1640. * function description)
  1641. */
  1642. void *map = kmap_atomic(p);
  1643. memcpy(buf, map + offset, length);
  1644. kunmap_atomic(map);
  1645. } else
  1646. memset(buf, 0, length);
  1647. addr += length;
  1648. buf += length;
  1649. copied += length;
  1650. count -= length;
  1651. }
  1652. return copied;
  1653. }
  1654. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1655. {
  1656. struct page *p;
  1657. int copied = 0;
  1658. while (count) {
  1659. unsigned long offset, length;
  1660. offset = (unsigned long)addr & ~PAGE_MASK;
  1661. length = PAGE_SIZE - offset;
  1662. if (length > count)
  1663. length = count;
  1664. p = vmalloc_to_page(addr);
  1665. /*
  1666. * To do safe access to this _mapped_ area, we need
  1667. * lock. But adding lock here means that we need to add
  1668. * overhead of vmalloc()/vfree() calles for this _debug_
  1669. * interface, rarely used. Instead of that, we'll use
  1670. * kmap() and get small overhead in this access function.
  1671. */
  1672. if (p) {
  1673. /*
  1674. * we can expect USER0 is not used (see vread/vwrite's
  1675. * function description)
  1676. */
  1677. void *map = kmap_atomic(p);
  1678. memcpy(map + offset, buf, length);
  1679. kunmap_atomic(map);
  1680. }
  1681. addr += length;
  1682. buf += length;
  1683. copied += length;
  1684. count -= length;
  1685. }
  1686. return copied;
  1687. }
  1688. /**
  1689. * vread() - read vmalloc area in a safe way.
  1690. * @buf: buffer for reading data
  1691. * @addr: vm address.
  1692. * @count: number of bytes to be read.
  1693. *
  1694. * Returns # of bytes which addr and buf should be increased.
  1695. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1696. * includes any intersect with alive vmalloc area.
  1697. *
  1698. * This function checks that addr is a valid vmalloc'ed area, and
  1699. * copy data from that area to a given buffer. If the given memory range
  1700. * of [addr...addr+count) includes some valid address, data is copied to
  1701. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1702. * IOREMAP area is treated as memory hole and no copy is done.
  1703. *
  1704. * If [addr...addr+count) doesn't includes any intersects with alive
  1705. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1706. *
  1707. * Note: In usual ops, vread() is never necessary because the caller
  1708. * should know vmalloc() area is valid and can use memcpy().
  1709. * This is for routines which have to access vmalloc area without
  1710. * any informaion, as /dev/kmem.
  1711. *
  1712. */
  1713. long vread(char *buf, char *addr, unsigned long count)
  1714. {
  1715. struct vmap_area *va;
  1716. struct vm_struct *vm;
  1717. char *vaddr, *buf_start = buf;
  1718. unsigned long buflen = count;
  1719. unsigned long n;
  1720. /* Don't allow overflow */
  1721. if ((unsigned long) addr + count < count)
  1722. count = -(unsigned long) addr;
  1723. spin_lock(&vmap_area_lock);
  1724. list_for_each_entry(va, &vmap_area_list, list) {
  1725. if (!count)
  1726. break;
  1727. if (!(va->flags & VM_VM_AREA))
  1728. continue;
  1729. vm = va->vm;
  1730. vaddr = (char *) vm->addr;
  1731. if (addr >= vaddr + get_vm_area_size(vm))
  1732. continue;
  1733. while (addr < vaddr) {
  1734. if (count == 0)
  1735. goto finished;
  1736. *buf = '\0';
  1737. buf++;
  1738. addr++;
  1739. count--;
  1740. }
  1741. n = vaddr + get_vm_area_size(vm) - addr;
  1742. if (n > count)
  1743. n = count;
  1744. if (!(vm->flags & VM_IOREMAP))
  1745. aligned_vread(buf, addr, n);
  1746. else /* IOREMAP area is treated as memory hole */
  1747. memset(buf, 0, n);
  1748. buf += n;
  1749. addr += n;
  1750. count -= n;
  1751. }
  1752. finished:
  1753. spin_unlock(&vmap_area_lock);
  1754. if (buf == buf_start)
  1755. return 0;
  1756. /* zero-fill memory holes */
  1757. if (buf != buf_start + buflen)
  1758. memset(buf, 0, buflen - (buf - buf_start));
  1759. return buflen;
  1760. }
  1761. /**
  1762. * vwrite() - write vmalloc area in a safe way.
  1763. * @buf: buffer for source data
  1764. * @addr: vm address.
  1765. * @count: number of bytes to be read.
  1766. *
  1767. * Returns # of bytes which addr and buf should be incresed.
  1768. * (same number to @count).
  1769. * If [addr...addr+count) doesn't includes any intersect with valid
  1770. * vmalloc area, returns 0.
  1771. *
  1772. * This function checks that addr is a valid vmalloc'ed area, and
  1773. * copy data from a buffer to the given addr. If specified range of
  1774. * [addr...addr+count) includes some valid address, data is copied from
  1775. * proper area of @buf. If there are memory holes, no copy to hole.
  1776. * IOREMAP area is treated as memory hole and no copy is done.
  1777. *
  1778. * If [addr...addr+count) doesn't includes any intersects with alive
  1779. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1780. *
  1781. * Note: In usual ops, vwrite() is never necessary because the caller
  1782. * should know vmalloc() area is valid and can use memcpy().
  1783. * This is for routines which have to access vmalloc area without
  1784. * any informaion, as /dev/kmem.
  1785. */
  1786. long vwrite(char *buf, char *addr, unsigned long count)
  1787. {
  1788. struct vmap_area *va;
  1789. struct vm_struct *vm;
  1790. char *vaddr;
  1791. unsigned long n, buflen;
  1792. int copied = 0;
  1793. /* Don't allow overflow */
  1794. if ((unsigned long) addr + count < count)
  1795. count = -(unsigned long) addr;
  1796. buflen = count;
  1797. spin_lock(&vmap_area_lock);
  1798. list_for_each_entry(va, &vmap_area_list, list) {
  1799. if (!count)
  1800. break;
  1801. if (!(va->flags & VM_VM_AREA))
  1802. continue;
  1803. vm = va->vm;
  1804. vaddr = (char *) vm->addr;
  1805. if (addr >= vaddr + get_vm_area_size(vm))
  1806. continue;
  1807. while (addr < vaddr) {
  1808. if (count == 0)
  1809. goto finished;
  1810. buf++;
  1811. addr++;
  1812. count--;
  1813. }
  1814. n = vaddr + get_vm_area_size(vm) - addr;
  1815. if (n > count)
  1816. n = count;
  1817. if (!(vm->flags & VM_IOREMAP)) {
  1818. aligned_vwrite(buf, addr, n);
  1819. copied++;
  1820. }
  1821. buf += n;
  1822. addr += n;
  1823. count -= n;
  1824. }
  1825. finished:
  1826. spin_unlock(&vmap_area_lock);
  1827. if (!copied)
  1828. return 0;
  1829. return buflen;
  1830. }
  1831. /**
  1832. * remap_vmalloc_range_partial - map vmalloc pages to userspace
  1833. * @vma: vma to cover
  1834. * @uaddr: target user address to start at
  1835. * @kaddr: virtual address of vmalloc kernel memory
  1836. * @size: size of map area
  1837. *
  1838. * Returns: 0 for success, -Exxx on failure
  1839. *
  1840. * This function checks that @kaddr is a valid vmalloc'ed area,
  1841. * and that it is big enough to cover the range starting at
  1842. * @uaddr in @vma. Will return failure if that criteria isn't
  1843. * met.
  1844. *
  1845. * Similar to remap_pfn_range() (see mm/memory.c)
  1846. */
  1847. int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
  1848. void *kaddr, unsigned long size)
  1849. {
  1850. struct vm_struct *area;
  1851. size = PAGE_ALIGN(size);
  1852. if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
  1853. return -EINVAL;
  1854. area = find_vm_area(kaddr);
  1855. if (!area)
  1856. return -EINVAL;
  1857. if (!(area->flags & VM_USERMAP))
  1858. return -EINVAL;
  1859. if (kaddr + size > area->addr + area->size)
  1860. return -EINVAL;
  1861. do {
  1862. struct page *page = vmalloc_to_page(kaddr);
  1863. int ret;
  1864. ret = vm_insert_page(vma, uaddr, page);
  1865. if (ret)
  1866. return ret;
  1867. uaddr += PAGE_SIZE;
  1868. kaddr += PAGE_SIZE;
  1869. size -= PAGE_SIZE;
  1870. } while (size > 0);
  1871. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1872. return 0;
  1873. }
  1874. EXPORT_SYMBOL(remap_vmalloc_range_partial);
  1875. /**
  1876. * remap_vmalloc_range - map vmalloc pages to userspace
  1877. * @vma: vma to cover (map full range of vma)
  1878. * @addr: vmalloc memory
  1879. * @pgoff: number of pages into addr before first page to map
  1880. *
  1881. * Returns: 0 for success, -Exxx on failure
  1882. *
  1883. * This function checks that addr is a valid vmalloc'ed area, and
  1884. * that it is big enough to cover the vma. Will return failure if
  1885. * that criteria isn't met.
  1886. *
  1887. * Similar to remap_pfn_range() (see mm/memory.c)
  1888. */
  1889. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1890. unsigned long pgoff)
  1891. {
  1892. return remap_vmalloc_range_partial(vma, vma->vm_start,
  1893. addr + (pgoff << PAGE_SHIFT),
  1894. vma->vm_end - vma->vm_start);
  1895. }
  1896. EXPORT_SYMBOL(remap_vmalloc_range);
  1897. /*
  1898. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1899. * have one.
  1900. */
  1901. void __weak vmalloc_sync_all(void)
  1902. {
  1903. }
  1904. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1905. {
  1906. pte_t ***p = data;
  1907. if (p) {
  1908. *(*p) = pte;
  1909. (*p)++;
  1910. }
  1911. return 0;
  1912. }
  1913. /**
  1914. * alloc_vm_area - allocate a range of kernel address space
  1915. * @size: size of the area
  1916. * @ptes: returns the PTEs for the address space
  1917. *
  1918. * Returns: NULL on failure, vm_struct on success
  1919. *
  1920. * This function reserves a range of kernel address space, and
  1921. * allocates pagetables to map that range. No actual mappings
  1922. * are created.
  1923. *
  1924. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  1925. * allocated for the VM area are returned.
  1926. */
  1927. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  1928. {
  1929. struct vm_struct *area;
  1930. area = get_vm_area_caller(size, VM_IOREMAP,
  1931. __builtin_return_address(0));
  1932. if (area == NULL)
  1933. return NULL;
  1934. /*
  1935. * This ensures that page tables are constructed for this region
  1936. * of kernel virtual address space and mapped into init_mm.
  1937. */
  1938. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1939. size, f, ptes ? &ptes : NULL)) {
  1940. free_vm_area(area);
  1941. return NULL;
  1942. }
  1943. return area;
  1944. }
  1945. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1946. void free_vm_area(struct vm_struct *area)
  1947. {
  1948. struct vm_struct *ret;
  1949. ret = remove_vm_area(area->addr);
  1950. BUG_ON(ret != area);
  1951. kfree(area);
  1952. }
  1953. EXPORT_SYMBOL_GPL(free_vm_area);
  1954. #ifdef CONFIG_SMP
  1955. static struct vmap_area *node_to_va(struct rb_node *n)
  1956. {
  1957. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1958. }
  1959. /**
  1960. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1961. * @end: target address
  1962. * @pnext: out arg for the next vmap_area
  1963. * @pprev: out arg for the previous vmap_area
  1964. *
  1965. * Returns: %true if either or both of next and prev are found,
  1966. * %false if no vmap_area exists
  1967. *
  1968. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1969. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1970. */
  1971. static bool pvm_find_next_prev(unsigned long end,
  1972. struct vmap_area **pnext,
  1973. struct vmap_area **pprev)
  1974. {
  1975. struct rb_node *n = vmap_area_root.rb_node;
  1976. struct vmap_area *va = NULL;
  1977. while (n) {
  1978. va = rb_entry(n, struct vmap_area, rb_node);
  1979. if (end < va->va_end)
  1980. n = n->rb_left;
  1981. else if (end > va->va_end)
  1982. n = n->rb_right;
  1983. else
  1984. break;
  1985. }
  1986. if (!va)
  1987. return false;
  1988. if (va->va_end > end) {
  1989. *pnext = va;
  1990. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1991. } else {
  1992. *pprev = va;
  1993. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  1994. }
  1995. return true;
  1996. }
  1997. /**
  1998. * pvm_determine_end - find the highest aligned address between two vmap_areas
  1999. * @pnext: in/out arg for the next vmap_area
  2000. * @pprev: in/out arg for the previous vmap_area
  2001. * @align: alignment
  2002. *
  2003. * Returns: determined end address
  2004. *
  2005. * Find the highest aligned address between *@pnext and *@pprev below
  2006. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2007. * down address is between the end addresses of the two vmap_areas.
  2008. *
  2009. * Please note that the address returned by this function may fall
  2010. * inside *@pnext vmap_area. The caller is responsible for checking
  2011. * that.
  2012. */
  2013. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2014. struct vmap_area **pprev,
  2015. unsigned long align)
  2016. {
  2017. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2018. unsigned long addr;
  2019. if (*pnext)
  2020. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2021. else
  2022. addr = vmalloc_end;
  2023. while (*pprev && (*pprev)->va_end > addr) {
  2024. *pnext = *pprev;
  2025. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2026. }
  2027. return addr;
  2028. }
  2029. /**
  2030. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2031. * @offsets: array containing offset of each area
  2032. * @sizes: array containing size of each area
  2033. * @nr_vms: the number of areas to allocate
  2034. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2035. *
  2036. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2037. * vm_structs on success, %NULL on failure
  2038. *
  2039. * Percpu allocator wants to use congruent vm areas so that it can
  2040. * maintain the offsets among percpu areas. This function allocates
  2041. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2042. * be scattered pretty far, distance between two areas easily going up
  2043. * to gigabytes. To avoid interacting with regular vmallocs, these
  2044. * areas are allocated from top.
  2045. *
  2046. * Despite its complicated look, this allocator is rather simple. It
  2047. * does everything top-down and scans areas from the end looking for
  2048. * matching slot. While scanning, if any of the areas overlaps with
  2049. * existing vmap_area, the base address is pulled down to fit the
  2050. * area. Scanning is repeated till all the areas fit and then all
  2051. * necessary data structres are inserted and the result is returned.
  2052. */
  2053. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2054. const size_t *sizes, int nr_vms,
  2055. size_t align)
  2056. {
  2057. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2058. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2059. struct vmap_area **vas, *prev, *next;
  2060. struct vm_struct **vms;
  2061. int area, area2, last_area, term_area;
  2062. unsigned long base, start, end, last_end;
  2063. bool purged = false;
  2064. /* verify parameters and allocate data structures */
  2065. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  2066. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2067. start = offsets[area];
  2068. end = start + sizes[area];
  2069. /* is everything aligned properly? */
  2070. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2071. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2072. /* detect the area with the highest address */
  2073. if (start > offsets[last_area])
  2074. last_area = area;
  2075. for (area2 = 0; area2 < nr_vms; area2++) {
  2076. unsigned long start2 = offsets[area2];
  2077. unsigned long end2 = start2 + sizes[area2];
  2078. if (area2 == area)
  2079. continue;
  2080. BUG_ON(start2 >= start && start2 < end);
  2081. BUG_ON(end2 <= end && end2 > start);
  2082. }
  2083. }
  2084. last_end = offsets[last_area] + sizes[last_area];
  2085. if (vmalloc_end - vmalloc_start < last_end) {
  2086. WARN_ON(true);
  2087. return NULL;
  2088. }
  2089. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2090. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2091. if (!vas || !vms)
  2092. goto err_free2;
  2093. for (area = 0; area < nr_vms; area++) {
  2094. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2095. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2096. if (!vas[area] || !vms[area])
  2097. goto err_free;
  2098. }
  2099. retry:
  2100. spin_lock(&vmap_area_lock);
  2101. /* start scanning - we scan from the top, begin with the last area */
  2102. area = term_area = last_area;
  2103. start = offsets[area];
  2104. end = start + sizes[area];
  2105. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2106. base = vmalloc_end - last_end;
  2107. goto found;
  2108. }
  2109. base = pvm_determine_end(&next, &prev, align) - end;
  2110. while (true) {
  2111. BUG_ON(next && next->va_end <= base + end);
  2112. BUG_ON(prev && prev->va_end > base + end);
  2113. /*
  2114. * base might have underflowed, add last_end before
  2115. * comparing.
  2116. */
  2117. if (base + last_end < vmalloc_start + last_end) {
  2118. spin_unlock(&vmap_area_lock);
  2119. if (!purged) {
  2120. purge_vmap_area_lazy();
  2121. purged = true;
  2122. goto retry;
  2123. }
  2124. goto err_free;
  2125. }
  2126. /*
  2127. * If next overlaps, move base downwards so that it's
  2128. * right below next and then recheck.
  2129. */
  2130. if (next && next->va_start < base + end) {
  2131. base = pvm_determine_end(&next, &prev, align) - end;
  2132. term_area = area;
  2133. continue;
  2134. }
  2135. /*
  2136. * If prev overlaps, shift down next and prev and move
  2137. * base so that it's right below new next and then
  2138. * recheck.
  2139. */
  2140. if (prev && prev->va_end > base + start) {
  2141. next = prev;
  2142. prev = node_to_va(rb_prev(&next->rb_node));
  2143. base = pvm_determine_end(&next, &prev, align) - end;
  2144. term_area = area;
  2145. continue;
  2146. }
  2147. /*
  2148. * This area fits, move on to the previous one. If
  2149. * the previous one is the terminal one, we're done.
  2150. */
  2151. area = (area + nr_vms - 1) % nr_vms;
  2152. if (area == term_area)
  2153. break;
  2154. start = offsets[area];
  2155. end = start + sizes[area];
  2156. pvm_find_next_prev(base + end, &next, &prev);
  2157. }
  2158. found:
  2159. /* we've found a fitting base, insert all va's */
  2160. for (area = 0; area < nr_vms; area++) {
  2161. struct vmap_area *va = vas[area];
  2162. va->va_start = base + offsets[area];
  2163. va->va_end = va->va_start + sizes[area];
  2164. __insert_vmap_area(va);
  2165. }
  2166. vmap_area_pcpu_hole = base + offsets[last_area];
  2167. spin_unlock(&vmap_area_lock);
  2168. /* insert all vm's */
  2169. for (area = 0; area < nr_vms; area++)
  2170. setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2171. pcpu_get_vm_areas);
  2172. kfree(vas);
  2173. return vms;
  2174. err_free:
  2175. for (area = 0; area < nr_vms; area++) {
  2176. kfree(vas[area]);
  2177. kfree(vms[area]);
  2178. }
  2179. err_free2:
  2180. kfree(vas);
  2181. kfree(vms);
  2182. return NULL;
  2183. }
  2184. /**
  2185. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2186. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2187. * @nr_vms: the number of allocated areas
  2188. *
  2189. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2190. */
  2191. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2192. {
  2193. int i;
  2194. for (i = 0; i < nr_vms; i++)
  2195. free_vm_area(vms[i]);
  2196. kfree(vms);
  2197. }
  2198. #endif /* CONFIG_SMP */
  2199. #ifdef CONFIG_PROC_FS
  2200. static void *s_start(struct seq_file *m, loff_t *pos)
  2201. __acquires(&vmap_area_lock)
  2202. {
  2203. loff_t n = *pos;
  2204. struct vmap_area *va;
  2205. spin_lock(&vmap_area_lock);
  2206. va = list_entry((&vmap_area_list)->next, typeof(*va), list);
  2207. while (n > 0 && &va->list != &vmap_area_list) {
  2208. n--;
  2209. va = list_entry(va->list.next, typeof(*va), list);
  2210. }
  2211. if (!n && &va->list != &vmap_area_list)
  2212. return va;
  2213. return NULL;
  2214. }
  2215. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2216. {
  2217. struct vmap_area *va = p, *next;
  2218. ++*pos;
  2219. next = list_entry(va->list.next, typeof(*va), list);
  2220. if (&next->list != &vmap_area_list)
  2221. return next;
  2222. return NULL;
  2223. }
  2224. static void s_stop(struct seq_file *m, void *p)
  2225. __releases(&vmap_area_lock)
  2226. {
  2227. spin_unlock(&vmap_area_lock);
  2228. }
  2229. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2230. {
  2231. if (IS_ENABLED(CONFIG_NUMA)) {
  2232. unsigned int nr, *counters = m->private;
  2233. if (!counters)
  2234. return;
  2235. /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
  2236. smp_rmb();
  2237. if (v->flags & VM_UNINITIALIZED)
  2238. return;
  2239. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2240. for (nr = 0; nr < v->nr_pages; nr++)
  2241. counters[page_to_nid(v->pages[nr])]++;
  2242. for_each_node_state(nr, N_HIGH_MEMORY)
  2243. if (counters[nr])
  2244. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2245. }
  2246. }
  2247. static int s_show(struct seq_file *m, void *p)
  2248. {
  2249. struct vmap_area *va = p;
  2250. struct vm_struct *v;
  2251. /*
  2252. * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
  2253. * behalf of vmap area is being tear down or vm_map_ram allocation.
  2254. */
  2255. if (!(va->flags & VM_VM_AREA))
  2256. return 0;
  2257. v = va->vm;
  2258. seq_printf(m, "0x%pK-0x%pK %7ld",
  2259. v->addr, v->addr + v->size, v->size);
  2260. if (v->caller)
  2261. seq_printf(m, " %pS", v->caller);
  2262. if (v->nr_pages)
  2263. seq_printf(m, " pages=%d", v->nr_pages);
  2264. if (v->phys_addr)
  2265. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2266. if (v->flags & VM_IOREMAP)
  2267. seq_printf(m, " ioremap");
  2268. if (v->flags & VM_ALLOC)
  2269. seq_printf(m, " vmalloc");
  2270. if (v->flags & VM_MAP)
  2271. seq_printf(m, " vmap");
  2272. if (v->flags & VM_USERMAP)
  2273. seq_printf(m, " user");
  2274. if (v->flags & VM_VPAGES)
  2275. seq_printf(m, " vpages");
  2276. show_numa_info(m, v);
  2277. seq_putc(m, '\n');
  2278. return 0;
  2279. }
  2280. static const struct seq_operations vmalloc_op = {
  2281. .start = s_start,
  2282. .next = s_next,
  2283. .stop = s_stop,
  2284. .show = s_show,
  2285. };
  2286. static int vmalloc_open(struct inode *inode, struct file *file)
  2287. {
  2288. unsigned int *ptr = NULL;
  2289. int ret;
  2290. if (IS_ENABLED(CONFIG_NUMA)) {
  2291. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2292. if (ptr == NULL)
  2293. return -ENOMEM;
  2294. }
  2295. ret = seq_open(file, &vmalloc_op);
  2296. if (!ret) {
  2297. struct seq_file *m = file->private_data;
  2298. m->private = ptr;
  2299. } else
  2300. kfree(ptr);
  2301. return ret;
  2302. }
  2303. static const struct file_operations proc_vmalloc_operations = {
  2304. .open = vmalloc_open,
  2305. .read = seq_read,
  2306. .llseek = seq_lseek,
  2307. .release = seq_release_private,
  2308. };
  2309. static int __init proc_vmalloc_init(void)
  2310. {
  2311. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2312. return 0;
  2313. }
  2314. module_init(proc_vmalloc_init);
  2315. void get_vmalloc_info(struct vmalloc_info *vmi)
  2316. {
  2317. struct vmap_area *va;
  2318. unsigned long free_area_size;
  2319. unsigned long prev_end;
  2320. vmi->used = 0;
  2321. vmi->largest_chunk = 0;
  2322. prev_end = VMALLOC_START;
  2323. spin_lock(&vmap_area_lock);
  2324. if (list_empty(&vmap_area_list)) {
  2325. vmi->largest_chunk = VMALLOC_TOTAL;
  2326. goto out;
  2327. }
  2328. list_for_each_entry(va, &vmap_area_list, list) {
  2329. unsigned long addr = va->va_start;
  2330. /*
  2331. * Some archs keep another range for modules in vmalloc space
  2332. */
  2333. if (addr < VMALLOC_START)
  2334. continue;
  2335. if (addr >= VMALLOC_END)
  2336. break;
  2337. if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
  2338. continue;
  2339. vmi->used += (va->va_end - va->va_start);
  2340. free_area_size = addr - prev_end;
  2341. if (vmi->largest_chunk < free_area_size)
  2342. vmi->largest_chunk = free_area_size;
  2343. prev_end = va->va_end;
  2344. }
  2345. if (VMALLOC_END - prev_end > vmi->largest_chunk)
  2346. vmi->largest_chunk = VMALLOC_END - prev_end;
  2347. out:
  2348. spin_unlock(&vmap_area_lock);
  2349. }
  2350. #endif