slab.h 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292
  1. #ifndef MM_SLAB_H
  2. #define MM_SLAB_H
  3. /*
  4. * Internal slab definitions
  5. */
  6. /*
  7. * State of the slab allocator.
  8. *
  9. * This is used to describe the states of the allocator during bootup.
  10. * Allocators use this to gradually bootstrap themselves. Most allocators
  11. * have the problem that the structures used for managing slab caches are
  12. * allocated from slab caches themselves.
  13. */
  14. enum slab_state {
  15. DOWN, /* No slab functionality yet */
  16. PARTIAL, /* SLUB: kmem_cache_node available */
  17. PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
  18. PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
  19. UP, /* Slab caches usable but not all extras yet */
  20. FULL /* Everything is working */
  21. };
  22. extern enum slab_state slab_state;
  23. /* The slab cache mutex protects the management structures during changes */
  24. extern struct mutex slab_mutex;
  25. /* The list of all slab caches on the system */
  26. extern struct list_head slab_caches;
  27. /* The slab cache that manages slab cache information */
  28. extern struct kmem_cache *kmem_cache;
  29. unsigned long calculate_alignment(unsigned long flags,
  30. unsigned long align, unsigned long size);
  31. #ifndef CONFIG_SLOB
  32. /* Kmalloc array related functions */
  33. void create_kmalloc_caches(unsigned long);
  34. /* Find the kmalloc slab corresponding for a certain size */
  35. struct kmem_cache *kmalloc_slab(size_t, gfp_t);
  36. #endif
  37. /* Functions provided by the slab allocators */
  38. extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
  39. extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
  40. unsigned long flags);
  41. extern void create_boot_cache(struct kmem_cache *, const char *name,
  42. size_t size, unsigned long flags);
  43. struct mem_cgroup;
  44. #ifdef CONFIG_SLUB
  45. struct kmem_cache *
  46. __kmem_cache_alias(const char *name, size_t size, size_t align,
  47. unsigned long flags, void (*ctor)(void *));
  48. #else
  49. static inline struct kmem_cache *
  50. __kmem_cache_alias(const char *name, size_t size, size_t align,
  51. unsigned long flags, void (*ctor)(void *))
  52. { return NULL; }
  53. #endif
  54. /* Legal flag mask for kmem_cache_create(), for various configurations */
  55. #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
  56. SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
  57. #if defined(CONFIG_DEBUG_SLAB)
  58. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  59. #elif defined(CONFIG_SLUB_DEBUG)
  60. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  61. SLAB_TRACE | SLAB_DEBUG_FREE)
  62. #else
  63. #define SLAB_DEBUG_FLAGS (0)
  64. #endif
  65. #if defined(CONFIG_SLAB)
  66. #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
  67. SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
  68. #elif defined(CONFIG_SLUB)
  69. #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
  70. SLAB_TEMPORARY | SLAB_NOTRACK)
  71. #else
  72. #define SLAB_CACHE_FLAGS (0)
  73. #endif
  74. #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
  75. int __kmem_cache_shutdown(struct kmem_cache *);
  76. void slab_kmem_cache_release(struct kmem_cache *);
  77. struct seq_file;
  78. struct file;
  79. struct slabinfo {
  80. unsigned long active_objs;
  81. unsigned long num_objs;
  82. unsigned long active_slabs;
  83. unsigned long num_slabs;
  84. unsigned long shared_avail;
  85. unsigned int limit;
  86. unsigned int batchcount;
  87. unsigned int shared;
  88. unsigned int objects_per_slab;
  89. unsigned int cache_order;
  90. };
  91. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
  92. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
  93. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  94. size_t count, loff_t *ppos);
  95. #ifdef CONFIG_MEMCG_KMEM
  96. static inline bool is_root_cache(struct kmem_cache *s)
  97. {
  98. return !s->memcg_params || s->memcg_params->is_root_cache;
  99. }
  100. static inline void memcg_bind_pages(struct kmem_cache *s, int order)
  101. {
  102. if (!is_root_cache(s))
  103. atomic_add(1 << order, &s->memcg_params->nr_pages);
  104. }
  105. static inline void memcg_release_pages(struct kmem_cache *s, int order)
  106. {
  107. if (is_root_cache(s))
  108. return;
  109. if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
  110. mem_cgroup_destroy_cache(s);
  111. }
  112. static inline bool slab_equal_or_root(struct kmem_cache *s,
  113. struct kmem_cache *p)
  114. {
  115. return (p == s) ||
  116. (s->memcg_params && (p == s->memcg_params->root_cache));
  117. }
  118. /*
  119. * We use suffixes to the name in memcg because we can't have caches
  120. * created in the system with the same name. But when we print them
  121. * locally, better refer to them with the base name
  122. */
  123. static inline const char *cache_name(struct kmem_cache *s)
  124. {
  125. if (!is_root_cache(s))
  126. return s->memcg_params->root_cache->name;
  127. return s->name;
  128. }
  129. /*
  130. * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
  131. * That said the caller must assure the memcg's cache won't go away. Since once
  132. * created a memcg's cache is destroyed only along with the root cache, it is
  133. * true if we are going to allocate from the cache or hold a reference to the
  134. * root cache by other means. Otherwise, we should hold either the slab_mutex
  135. * or the memcg's slab_caches_mutex while calling this function and accessing
  136. * the returned value.
  137. */
  138. static inline struct kmem_cache *
  139. cache_from_memcg_idx(struct kmem_cache *s, int idx)
  140. {
  141. struct kmem_cache *cachep;
  142. struct memcg_cache_params *params;
  143. if (!s->memcg_params)
  144. return NULL;
  145. rcu_read_lock();
  146. params = rcu_dereference(s->memcg_params);
  147. cachep = params->memcg_caches[idx];
  148. rcu_read_unlock();
  149. /*
  150. * Make sure we will access the up-to-date value. The code updating
  151. * memcg_caches issues a write barrier to match this (see
  152. * memcg_register_cache()).
  153. */
  154. smp_read_barrier_depends();
  155. return cachep;
  156. }
  157. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  158. {
  159. if (is_root_cache(s))
  160. return s;
  161. return s->memcg_params->root_cache;
  162. }
  163. #else
  164. static inline bool is_root_cache(struct kmem_cache *s)
  165. {
  166. return true;
  167. }
  168. static inline void memcg_bind_pages(struct kmem_cache *s, int order)
  169. {
  170. }
  171. static inline void memcg_release_pages(struct kmem_cache *s, int order)
  172. {
  173. }
  174. static inline bool slab_equal_or_root(struct kmem_cache *s,
  175. struct kmem_cache *p)
  176. {
  177. return true;
  178. }
  179. static inline const char *cache_name(struct kmem_cache *s)
  180. {
  181. return s->name;
  182. }
  183. static inline struct kmem_cache *
  184. cache_from_memcg_idx(struct kmem_cache *s, int idx)
  185. {
  186. return NULL;
  187. }
  188. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  189. {
  190. return s;
  191. }
  192. #endif
  193. static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
  194. {
  195. struct kmem_cache *cachep;
  196. struct page *page;
  197. /*
  198. * When kmemcg is not being used, both assignments should return the
  199. * same value. but we don't want to pay the assignment price in that
  200. * case. If it is not compiled in, the compiler should be smart enough
  201. * to not do even the assignment. In that case, slab_equal_or_root
  202. * will also be a constant.
  203. */
  204. if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
  205. return s;
  206. page = virt_to_head_page(x);
  207. cachep = page->slab_cache;
  208. if (slab_equal_or_root(cachep, s))
  209. return cachep;
  210. pr_err("%s: Wrong slab cache. %s but object is from %s\n",
  211. __FUNCTION__, cachep->name, s->name);
  212. WARN_ON_ONCE(1);
  213. return s;
  214. }
  215. #endif
  216. /*
  217. * The slab lists for all objects.
  218. */
  219. struct kmem_cache_node {
  220. spinlock_t list_lock;
  221. #ifdef CONFIG_SLAB
  222. struct list_head slabs_partial; /* partial list first, better asm code */
  223. struct list_head slabs_full;
  224. struct list_head slabs_free;
  225. unsigned long free_objects;
  226. unsigned int free_limit;
  227. unsigned int colour_next; /* Per-node cache coloring */
  228. struct array_cache *shared; /* shared per node */
  229. struct array_cache **alien; /* on other nodes */
  230. unsigned long next_reap; /* updated without locking */
  231. int free_touched; /* updated without locking */
  232. #endif
  233. #ifdef CONFIG_SLUB
  234. unsigned long nr_partial;
  235. struct list_head partial;
  236. #ifdef CONFIG_SLUB_DEBUG
  237. atomic_long_t nr_slabs;
  238. atomic_long_t total_objects;
  239. struct list_head full;
  240. #endif
  241. #endif
  242. };
  243. void *slab_next(struct seq_file *m, void *p, loff_t *pos);
  244. void slab_stop(struct seq_file *m, void *p);