rmap.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * mapping->i_mmap_mutex
  26. * anon_vma->rwsem
  27. * mm->page_table_lock or pte_lock
  28. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  29. * swap_lock (in swap_duplicate, swap_info_get)
  30. * mmlist_lock (in mmput, drain_mmlist and others)
  31. * mapping->private_lock (in __set_page_dirty_buffers)
  32. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  33. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within bdi.wb->list_lock in __sync_single_inode)
  38. *
  39. * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
  40. * ->tasklist_lock
  41. * pte map lock
  42. */
  43. #include <linux/mm.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/swap.h>
  46. #include <linux/swapops.h>
  47. #include <linux/slab.h>
  48. #include <linux/init.h>
  49. #include <linux/ksm.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/export.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <linux/hugetlb.h>
  57. #include <linux/backing-dev.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. struct anon_vma *anon_vma;
  65. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  66. if (anon_vma) {
  67. atomic_set(&anon_vma->refcount, 1);
  68. /*
  69. * Initialise the anon_vma root to point to itself. If called
  70. * from fork, the root will be reset to the parents anon_vma.
  71. */
  72. anon_vma->root = anon_vma;
  73. }
  74. return anon_vma;
  75. }
  76. static inline void anon_vma_free(struct anon_vma *anon_vma)
  77. {
  78. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  79. /*
  80. * Synchronize against page_lock_anon_vma_read() such that
  81. * we can safely hold the lock without the anon_vma getting
  82. * freed.
  83. *
  84. * Relies on the full mb implied by the atomic_dec_and_test() from
  85. * put_anon_vma() against the acquire barrier implied by
  86. * down_read_trylock() from page_lock_anon_vma_read(). This orders:
  87. *
  88. * page_lock_anon_vma_read() VS put_anon_vma()
  89. * down_read_trylock() atomic_dec_and_test()
  90. * LOCK MB
  91. * atomic_read() rwsem_is_locked()
  92. *
  93. * LOCK should suffice since the actual taking of the lock must
  94. * happen _before_ what follows.
  95. */
  96. if (rwsem_is_locked(&anon_vma->root->rwsem)) {
  97. anon_vma_lock_write(anon_vma);
  98. anon_vma_unlock_write(anon_vma);
  99. }
  100. kmem_cache_free(anon_vma_cachep, anon_vma);
  101. }
  102. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  103. {
  104. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  105. }
  106. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  107. {
  108. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  109. }
  110. static void anon_vma_chain_link(struct vm_area_struct *vma,
  111. struct anon_vma_chain *avc,
  112. struct anon_vma *anon_vma)
  113. {
  114. avc->vma = vma;
  115. avc->anon_vma = anon_vma;
  116. list_add(&avc->same_vma, &vma->anon_vma_chain);
  117. anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
  118. }
  119. /**
  120. * anon_vma_prepare - attach an anon_vma to a memory region
  121. * @vma: the memory region in question
  122. *
  123. * This makes sure the memory mapping described by 'vma' has
  124. * an 'anon_vma' attached to it, so that we can associate the
  125. * anonymous pages mapped into it with that anon_vma.
  126. *
  127. * The common case will be that we already have one, but if
  128. * not we either need to find an adjacent mapping that we
  129. * can re-use the anon_vma from (very common when the only
  130. * reason for splitting a vma has been mprotect()), or we
  131. * allocate a new one.
  132. *
  133. * Anon-vma allocations are very subtle, because we may have
  134. * optimistically looked up an anon_vma in page_lock_anon_vma_read()
  135. * and that may actually touch the spinlock even in the newly
  136. * allocated vma (it depends on RCU to make sure that the
  137. * anon_vma isn't actually destroyed).
  138. *
  139. * As a result, we need to do proper anon_vma locking even
  140. * for the new allocation. At the same time, we do not want
  141. * to do any locking for the common case of already having
  142. * an anon_vma.
  143. *
  144. * This must be called with the mmap_sem held for reading.
  145. */
  146. int anon_vma_prepare(struct vm_area_struct *vma)
  147. {
  148. struct anon_vma *anon_vma = vma->anon_vma;
  149. struct anon_vma_chain *avc;
  150. might_sleep();
  151. if (unlikely(!anon_vma)) {
  152. struct mm_struct *mm = vma->vm_mm;
  153. struct anon_vma *allocated;
  154. avc = anon_vma_chain_alloc(GFP_KERNEL);
  155. if (!avc)
  156. goto out_enomem;
  157. anon_vma = find_mergeable_anon_vma(vma);
  158. allocated = NULL;
  159. if (!anon_vma) {
  160. anon_vma = anon_vma_alloc();
  161. if (unlikely(!anon_vma))
  162. goto out_enomem_free_avc;
  163. allocated = anon_vma;
  164. }
  165. anon_vma_lock_write(anon_vma);
  166. /* page_table_lock to protect against threads */
  167. spin_lock(&mm->page_table_lock);
  168. if (likely(!vma->anon_vma)) {
  169. vma->anon_vma = anon_vma;
  170. anon_vma_chain_link(vma, avc, anon_vma);
  171. allocated = NULL;
  172. avc = NULL;
  173. }
  174. spin_unlock(&mm->page_table_lock);
  175. anon_vma_unlock_write(anon_vma);
  176. if (unlikely(allocated))
  177. put_anon_vma(allocated);
  178. if (unlikely(avc))
  179. anon_vma_chain_free(avc);
  180. }
  181. return 0;
  182. out_enomem_free_avc:
  183. anon_vma_chain_free(avc);
  184. out_enomem:
  185. return -ENOMEM;
  186. }
  187. /*
  188. * This is a useful helper function for locking the anon_vma root as
  189. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  190. * have the same vma.
  191. *
  192. * Such anon_vma's should have the same root, so you'd expect to see
  193. * just a single mutex_lock for the whole traversal.
  194. */
  195. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  196. {
  197. struct anon_vma *new_root = anon_vma->root;
  198. if (new_root != root) {
  199. if (WARN_ON_ONCE(root))
  200. up_write(&root->rwsem);
  201. root = new_root;
  202. down_write(&root->rwsem);
  203. }
  204. return root;
  205. }
  206. static inline void unlock_anon_vma_root(struct anon_vma *root)
  207. {
  208. if (root)
  209. up_write(&root->rwsem);
  210. }
  211. /*
  212. * Attach the anon_vmas from src to dst.
  213. * Returns 0 on success, -ENOMEM on failure.
  214. */
  215. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  216. {
  217. struct anon_vma_chain *avc, *pavc;
  218. struct anon_vma *root = NULL;
  219. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  220. struct anon_vma *anon_vma;
  221. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  222. if (unlikely(!avc)) {
  223. unlock_anon_vma_root(root);
  224. root = NULL;
  225. avc = anon_vma_chain_alloc(GFP_KERNEL);
  226. if (!avc)
  227. goto enomem_failure;
  228. }
  229. anon_vma = pavc->anon_vma;
  230. root = lock_anon_vma_root(root, anon_vma);
  231. anon_vma_chain_link(dst, avc, anon_vma);
  232. }
  233. unlock_anon_vma_root(root);
  234. return 0;
  235. enomem_failure:
  236. unlink_anon_vmas(dst);
  237. return -ENOMEM;
  238. }
  239. /*
  240. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  241. * the corresponding VMA in the parent process is attached to.
  242. * Returns 0 on success, non-zero on failure.
  243. */
  244. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  245. {
  246. struct anon_vma_chain *avc;
  247. struct anon_vma *anon_vma;
  248. /* Don't bother if the parent process has no anon_vma here. */
  249. if (!pvma->anon_vma)
  250. return 0;
  251. /*
  252. * First, attach the new VMA to the parent VMA's anon_vmas,
  253. * so rmap can find non-COWed pages in child processes.
  254. */
  255. if (anon_vma_clone(vma, pvma))
  256. return -ENOMEM;
  257. /* Then add our own anon_vma. */
  258. anon_vma = anon_vma_alloc();
  259. if (!anon_vma)
  260. goto out_error;
  261. avc = anon_vma_chain_alloc(GFP_KERNEL);
  262. if (!avc)
  263. goto out_error_free_anon_vma;
  264. /*
  265. * The root anon_vma's spinlock is the lock actually used when we
  266. * lock any of the anon_vmas in this anon_vma tree.
  267. */
  268. anon_vma->root = pvma->anon_vma->root;
  269. /*
  270. * With refcounts, an anon_vma can stay around longer than the
  271. * process it belongs to. The root anon_vma needs to be pinned until
  272. * this anon_vma is freed, because the lock lives in the root.
  273. */
  274. get_anon_vma(anon_vma->root);
  275. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  276. vma->anon_vma = anon_vma;
  277. anon_vma_lock_write(anon_vma);
  278. anon_vma_chain_link(vma, avc, anon_vma);
  279. anon_vma_unlock_write(anon_vma);
  280. return 0;
  281. out_error_free_anon_vma:
  282. put_anon_vma(anon_vma);
  283. out_error:
  284. unlink_anon_vmas(vma);
  285. return -ENOMEM;
  286. }
  287. void unlink_anon_vmas(struct vm_area_struct *vma)
  288. {
  289. struct anon_vma_chain *avc, *next;
  290. struct anon_vma *root = NULL;
  291. /*
  292. * Unlink each anon_vma chained to the VMA. This list is ordered
  293. * from newest to oldest, ensuring the root anon_vma gets freed last.
  294. */
  295. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  296. struct anon_vma *anon_vma = avc->anon_vma;
  297. root = lock_anon_vma_root(root, anon_vma);
  298. anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
  299. /*
  300. * Leave empty anon_vmas on the list - we'll need
  301. * to free them outside the lock.
  302. */
  303. if (RB_EMPTY_ROOT(&anon_vma->rb_root))
  304. continue;
  305. list_del(&avc->same_vma);
  306. anon_vma_chain_free(avc);
  307. }
  308. unlock_anon_vma_root(root);
  309. /*
  310. * Iterate the list once more, it now only contains empty and unlinked
  311. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  312. * needing to write-acquire the anon_vma->root->rwsem.
  313. */
  314. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  315. struct anon_vma *anon_vma = avc->anon_vma;
  316. put_anon_vma(anon_vma);
  317. list_del(&avc->same_vma);
  318. anon_vma_chain_free(avc);
  319. }
  320. }
  321. static void anon_vma_ctor(void *data)
  322. {
  323. struct anon_vma *anon_vma = data;
  324. init_rwsem(&anon_vma->rwsem);
  325. atomic_set(&anon_vma->refcount, 0);
  326. anon_vma->rb_root = RB_ROOT;
  327. }
  328. void __init anon_vma_init(void)
  329. {
  330. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  331. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  332. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  333. }
  334. /*
  335. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  336. *
  337. * Since there is no serialization what so ever against page_remove_rmap()
  338. * the best this function can do is return a locked anon_vma that might
  339. * have been relevant to this page.
  340. *
  341. * The page might have been remapped to a different anon_vma or the anon_vma
  342. * returned may already be freed (and even reused).
  343. *
  344. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  345. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  346. * ensure that any anon_vma obtained from the page will still be valid for as
  347. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  348. *
  349. * All users of this function must be very careful when walking the anon_vma
  350. * chain and verify that the page in question is indeed mapped in it
  351. * [ something equivalent to page_mapped_in_vma() ].
  352. *
  353. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  354. * that the anon_vma pointer from page->mapping is valid if there is a
  355. * mapcount, we can dereference the anon_vma after observing those.
  356. */
  357. struct anon_vma *page_get_anon_vma(struct page *page)
  358. {
  359. struct anon_vma *anon_vma = NULL;
  360. unsigned long anon_mapping;
  361. rcu_read_lock();
  362. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  363. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  364. goto out;
  365. if (!page_mapped(page))
  366. goto out;
  367. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  368. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  369. anon_vma = NULL;
  370. goto out;
  371. }
  372. /*
  373. * If this page is still mapped, then its anon_vma cannot have been
  374. * freed. But if it has been unmapped, we have no security against the
  375. * anon_vma structure being freed and reused (for another anon_vma:
  376. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  377. * above cannot corrupt).
  378. */
  379. if (!page_mapped(page)) {
  380. put_anon_vma(anon_vma);
  381. anon_vma = NULL;
  382. }
  383. out:
  384. rcu_read_unlock();
  385. return anon_vma;
  386. }
  387. /*
  388. * Similar to page_get_anon_vma() except it locks the anon_vma.
  389. *
  390. * Its a little more complex as it tries to keep the fast path to a single
  391. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  392. * reference like with page_get_anon_vma() and then block on the mutex.
  393. */
  394. struct anon_vma *page_lock_anon_vma_read(struct page *page)
  395. {
  396. struct anon_vma *anon_vma = NULL;
  397. struct anon_vma *root_anon_vma;
  398. unsigned long anon_mapping;
  399. rcu_read_lock();
  400. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  401. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  402. goto out;
  403. if (!page_mapped(page))
  404. goto out;
  405. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  406. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  407. if (down_read_trylock(&root_anon_vma->rwsem)) {
  408. /*
  409. * If the page is still mapped, then this anon_vma is still
  410. * its anon_vma, and holding the mutex ensures that it will
  411. * not go away, see anon_vma_free().
  412. */
  413. if (!page_mapped(page)) {
  414. up_read(&root_anon_vma->rwsem);
  415. anon_vma = NULL;
  416. }
  417. goto out;
  418. }
  419. /* trylock failed, we got to sleep */
  420. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  421. anon_vma = NULL;
  422. goto out;
  423. }
  424. if (!page_mapped(page)) {
  425. put_anon_vma(anon_vma);
  426. anon_vma = NULL;
  427. goto out;
  428. }
  429. /* we pinned the anon_vma, its safe to sleep */
  430. rcu_read_unlock();
  431. anon_vma_lock_read(anon_vma);
  432. if (atomic_dec_and_test(&anon_vma->refcount)) {
  433. /*
  434. * Oops, we held the last refcount, release the lock
  435. * and bail -- can't simply use put_anon_vma() because
  436. * we'll deadlock on the anon_vma_lock_write() recursion.
  437. */
  438. anon_vma_unlock_read(anon_vma);
  439. __put_anon_vma(anon_vma);
  440. anon_vma = NULL;
  441. }
  442. return anon_vma;
  443. out:
  444. rcu_read_unlock();
  445. return anon_vma;
  446. }
  447. void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
  448. {
  449. anon_vma_unlock_read(anon_vma);
  450. }
  451. /*
  452. * At what user virtual address is page expected in @vma?
  453. */
  454. static inline unsigned long
  455. __vma_address(struct page *page, struct vm_area_struct *vma)
  456. {
  457. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  458. if (unlikely(is_vm_hugetlb_page(vma)))
  459. pgoff = page->index << huge_page_order(page_hstate(page));
  460. return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  461. }
  462. inline unsigned long
  463. vma_address(struct page *page, struct vm_area_struct *vma)
  464. {
  465. unsigned long address = __vma_address(page, vma);
  466. /* page should be within @vma mapping range */
  467. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  468. return address;
  469. }
  470. /*
  471. * At what user virtual address is page expected in vma?
  472. * Caller should check the page is actually part of the vma.
  473. */
  474. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  475. {
  476. unsigned long address;
  477. if (PageAnon(page)) {
  478. struct anon_vma *page__anon_vma = page_anon_vma(page);
  479. /*
  480. * Note: swapoff's unuse_vma() is more efficient with this
  481. * check, and needs it to match anon_vma when KSM is active.
  482. */
  483. if (!vma->anon_vma || !page__anon_vma ||
  484. vma->anon_vma->root != page__anon_vma->root)
  485. return -EFAULT;
  486. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  487. if (!vma->vm_file ||
  488. vma->vm_file->f_mapping != page->mapping)
  489. return -EFAULT;
  490. } else
  491. return -EFAULT;
  492. address = __vma_address(page, vma);
  493. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  494. return -EFAULT;
  495. return address;
  496. }
  497. pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
  498. {
  499. pgd_t *pgd;
  500. pud_t *pud;
  501. pmd_t *pmd = NULL;
  502. pgd = pgd_offset(mm, address);
  503. if (!pgd_present(*pgd))
  504. goto out;
  505. pud = pud_offset(pgd, address);
  506. if (!pud_present(*pud))
  507. goto out;
  508. pmd = pmd_offset(pud, address);
  509. if (!pmd_present(*pmd))
  510. pmd = NULL;
  511. out:
  512. return pmd;
  513. }
  514. /*
  515. * Check that @page is mapped at @address into @mm.
  516. *
  517. * If @sync is false, page_check_address may perform a racy check to avoid
  518. * the page table lock when the pte is not present (helpful when reclaiming
  519. * highly shared pages).
  520. *
  521. * On success returns with pte mapped and locked.
  522. */
  523. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  524. unsigned long address, spinlock_t **ptlp, int sync)
  525. {
  526. pmd_t *pmd;
  527. pte_t *pte;
  528. spinlock_t *ptl;
  529. if (unlikely(PageHuge(page))) {
  530. /* when pud is not present, pte will be NULL */
  531. pte = huge_pte_offset(mm, address);
  532. if (!pte)
  533. return NULL;
  534. ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
  535. goto check;
  536. }
  537. pmd = mm_find_pmd(mm, address);
  538. if (!pmd)
  539. return NULL;
  540. if (pmd_trans_huge(*pmd))
  541. return NULL;
  542. pte = pte_offset_map(pmd, address);
  543. /* Make a quick check before getting the lock */
  544. if (!sync && !pte_present(*pte)) {
  545. pte_unmap(pte);
  546. return NULL;
  547. }
  548. ptl = pte_lockptr(mm, pmd);
  549. check:
  550. spin_lock(ptl);
  551. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  552. *ptlp = ptl;
  553. return pte;
  554. }
  555. pte_unmap_unlock(pte, ptl);
  556. return NULL;
  557. }
  558. /**
  559. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  560. * @page: the page to test
  561. * @vma: the VMA to test
  562. *
  563. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  564. * if the page is not mapped into the page tables of this VMA. Only
  565. * valid for normal file or anonymous VMAs.
  566. */
  567. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  568. {
  569. unsigned long address;
  570. pte_t *pte;
  571. spinlock_t *ptl;
  572. address = __vma_address(page, vma);
  573. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  574. return 0;
  575. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  576. if (!pte) /* the page is not in this mm */
  577. return 0;
  578. pte_unmap_unlock(pte, ptl);
  579. return 1;
  580. }
  581. struct page_referenced_arg {
  582. int mapcount;
  583. int referenced;
  584. unsigned long vm_flags;
  585. struct mem_cgroup *memcg;
  586. };
  587. /*
  588. * arg: page_referenced_arg will be passed
  589. */
  590. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  591. unsigned long address, void *arg)
  592. {
  593. struct mm_struct *mm = vma->vm_mm;
  594. spinlock_t *ptl;
  595. int referenced = 0;
  596. struct page_referenced_arg *pra = arg;
  597. if (unlikely(PageTransHuge(page))) {
  598. pmd_t *pmd;
  599. /*
  600. * rmap might return false positives; we must filter
  601. * these out using page_check_address_pmd().
  602. */
  603. pmd = page_check_address_pmd(page, mm, address,
  604. PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
  605. if (!pmd)
  606. return SWAP_AGAIN;
  607. if (vma->vm_flags & VM_LOCKED) {
  608. spin_unlock(ptl);
  609. pra->vm_flags |= VM_LOCKED;
  610. return SWAP_FAIL; /* To break the loop */
  611. }
  612. /* go ahead even if the pmd is pmd_trans_splitting() */
  613. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  614. referenced++;
  615. spin_unlock(ptl);
  616. } else {
  617. pte_t *pte;
  618. /*
  619. * rmap might return false positives; we must filter
  620. * these out using page_check_address().
  621. */
  622. pte = page_check_address(page, mm, address, &ptl, 0);
  623. if (!pte)
  624. return SWAP_AGAIN;
  625. if (vma->vm_flags & VM_LOCKED) {
  626. pte_unmap_unlock(pte, ptl);
  627. pra->vm_flags |= VM_LOCKED;
  628. return SWAP_FAIL; /* To break the loop */
  629. }
  630. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  631. /*
  632. * Don't treat a reference through a sequentially read
  633. * mapping as such. If the page has been used in
  634. * another mapping, we will catch it; if this other
  635. * mapping is already gone, the unmap path will have
  636. * set PG_referenced or activated the page.
  637. */
  638. if (likely(!(vma->vm_flags & VM_SEQ_READ)))
  639. referenced++;
  640. }
  641. pte_unmap_unlock(pte, ptl);
  642. }
  643. if (referenced) {
  644. pra->referenced++;
  645. pra->vm_flags |= vma->vm_flags;
  646. }
  647. pra->mapcount--;
  648. if (!pra->mapcount)
  649. return SWAP_SUCCESS; /* To break the loop */
  650. return SWAP_AGAIN;
  651. }
  652. static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
  653. {
  654. struct page_referenced_arg *pra = arg;
  655. struct mem_cgroup *memcg = pra->memcg;
  656. if (!mm_match_cgroup(vma->vm_mm, memcg))
  657. return true;
  658. return false;
  659. }
  660. /**
  661. * page_referenced - test if the page was referenced
  662. * @page: the page to test
  663. * @is_locked: caller holds lock on the page
  664. * @memcg: target memory cgroup
  665. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  666. *
  667. * Quick test_and_clear_referenced for all mappings to a page,
  668. * returns the number of ptes which referenced the page.
  669. */
  670. int page_referenced(struct page *page,
  671. int is_locked,
  672. struct mem_cgroup *memcg,
  673. unsigned long *vm_flags)
  674. {
  675. int ret;
  676. int we_locked = 0;
  677. struct page_referenced_arg pra = {
  678. .mapcount = page_mapcount(page),
  679. .memcg = memcg,
  680. };
  681. struct rmap_walk_control rwc = {
  682. .rmap_one = page_referenced_one,
  683. .arg = (void *)&pra,
  684. .anon_lock = page_lock_anon_vma_read,
  685. };
  686. *vm_flags = 0;
  687. if (!page_mapped(page))
  688. return 0;
  689. if (!page_rmapping(page))
  690. return 0;
  691. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  692. we_locked = trylock_page(page);
  693. if (!we_locked)
  694. return 1;
  695. }
  696. /*
  697. * If we are reclaiming on behalf of a cgroup, skip
  698. * counting on behalf of references from different
  699. * cgroups
  700. */
  701. if (memcg) {
  702. rwc.invalid_vma = invalid_page_referenced_vma;
  703. }
  704. ret = rmap_walk(page, &rwc);
  705. *vm_flags = pra.vm_flags;
  706. if (we_locked)
  707. unlock_page(page);
  708. return pra.referenced;
  709. }
  710. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  711. unsigned long address, void *arg)
  712. {
  713. struct mm_struct *mm = vma->vm_mm;
  714. pte_t *pte;
  715. spinlock_t *ptl;
  716. int ret = 0;
  717. int *cleaned = arg;
  718. pte = page_check_address(page, mm, address, &ptl, 1);
  719. if (!pte)
  720. goto out;
  721. if (pte_dirty(*pte) || pte_write(*pte)) {
  722. pte_t entry;
  723. flush_cache_page(vma, address, pte_pfn(*pte));
  724. entry = ptep_clear_flush(vma, address, pte);
  725. entry = pte_wrprotect(entry);
  726. entry = pte_mkclean(entry);
  727. set_pte_at(mm, address, pte, entry);
  728. ret = 1;
  729. }
  730. pte_unmap_unlock(pte, ptl);
  731. if (ret) {
  732. mmu_notifier_invalidate_page(mm, address);
  733. (*cleaned)++;
  734. }
  735. out:
  736. return SWAP_AGAIN;
  737. }
  738. static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
  739. {
  740. if (vma->vm_flags & VM_SHARED)
  741. return false;
  742. return true;
  743. }
  744. int page_mkclean(struct page *page)
  745. {
  746. int cleaned = 0;
  747. struct address_space *mapping;
  748. struct rmap_walk_control rwc = {
  749. .arg = (void *)&cleaned,
  750. .rmap_one = page_mkclean_one,
  751. .invalid_vma = invalid_mkclean_vma,
  752. };
  753. BUG_ON(!PageLocked(page));
  754. if (!page_mapped(page))
  755. return 0;
  756. mapping = page_mapping(page);
  757. if (!mapping)
  758. return 0;
  759. rmap_walk(page, &rwc);
  760. return cleaned;
  761. }
  762. EXPORT_SYMBOL_GPL(page_mkclean);
  763. /**
  764. * page_move_anon_rmap - move a page to our anon_vma
  765. * @page: the page to move to our anon_vma
  766. * @vma: the vma the page belongs to
  767. * @address: the user virtual address mapped
  768. *
  769. * When a page belongs exclusively to one process after a COW event,
  770. * that page can be moved into the anon_vma that belongs to just that
  771. * process, so the rmap code will not search the parent or sibling
  772. * processes.
  773. */
  774. void page_move_anon_rmap(struct page *page,
  775. struct vm_area_struct *vma, unsigned long address)
  776. {
  777. struct anon_vma *anon_vma = vma->anon_vma;
  778. VM_BUG_ON_PAGE(!PageLocked(page), page);
  779. VM_BUG_ON(!anon_vma);
  780. VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
  781. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  782. page->mapping = (struct address_space *) anon_vma;
  783. }
  784. /**
  785. * __page_set_anon_rmap - set up new anonymous rmap
  786. * @page: Page to add to rmap
  787. * @vma: VM area to add page to.
  788. * @address: User virtual address of the mapping
  789. * @exclusive: the page is exclusively owned by the current process
  790. */
  791. static void __page_set_anon_rmap(struct page *page,
  792. struct vm_area_struct *vma, unsigned long address, int exclusive)
  793. {
  794. struct anon_vma *anon_vma = vma->anon_vma;
  795. BUG_ON(!anon_vma);
  796. if (PageAnon(page))
  797. return;
  798. /*
  799. * If the page isn't exclusively mapped into this vma,
  800. * we must use the _oldest_ possible anon_vma for the
  801. * page mapping!
  802. */
  803. if (!exclusive)
  804. anon_vma = anon_vma->root;
  805. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  806. page->mapping = (struct address_space *) anon_vma;
  807. page->index = linear_page_index(vma, address);
  808. }
  809. /**
  810. * __page_check_anon_rmap - sanity check anonymous rmap addition
  811. * @page: the page to add the mapping to
  812. * @vma: the vm area in which the mapping is added
  813. * @address: the user virtual address mapped
  814. */
  815. static void __page_check_anon_rmap(struct page *page,
  816. struct vm_area_struct *vma, unsigned long address)
  817. {
  818. #ifdef CONFIG_DEBUG_VM
  819. /*
  820. * The page's anon-rmap details (mapping and index) are guaranteed to
  821. * be set up correctly at this point.
  822. *
  823. * We have exclusion against page_add_anon_rmap because the caller
  824. * always holds the page locked, except if called from page_dup_rmap,
  825. * in which case the page is already known to be setup.
  826. *
  827. * We have exclusion against page_add_new_anon_rmap because those pages
  828. * are initially only visible via the pagetables, and the pte is locked
  829. * over the call to page_add_new_anon_rmap.
  830. */
  831. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  832. BUG_ON(page->index != linear_page_index(vma, address));
  833. #endif
  834. }
  835. /**
  836. * page_add_anon_rmap - add pte mapping to an anonymous page
  837. * @page: the page to add the mapping to
  838. * @vma: the vm area in which the mapping is added
  839. * @address: the user virtual address mapped
  840. *
  841. * The caller needs to hold the pte lock, and the page must be locked in
  842. * the anon_vma case: to serialize mapping,index checking after setting,
  843. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  844. * (but PageKsm is never downgraded to PageAnon).
  845. */
  846. void page_add_anon_rmap(struct page *page,
  847. struct vm_area_struct *vma, unsigned long address)
  848. {
  849. do_page_add_anon_rmap(page, vma, address, 0);
  850. }
  851. /*
  852. * Special version of the above for do_swap_page, which often runs
  853. * into pages that are exclusively owned by the current process.
  854. * Everybody else should continue to use page_add_anon_rmap above.
  855. */
  856. void do_page_add_anon_rmap(struct page *page,
  857. struct vm_area_struct *vma, unsigned long address, int exclusive)
  858. {
  859. int first = atomic_inc_and_test(&page->_mapcount);
  860. if (first) {
  861. if (PageTransHuge(page))
  862. __inc_zone_page_state(page,
  863. NR_ANON_TRANSPARENT_HUGEPAGES);
  864. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  865. hpage_nr_pages(page));
  866. }
  867. if (unlikely(PageKsm(page)))
  868. return;
  869. VM_BUG_ON_PAGE(!PageLocked(page), page);
  870. /* address might be in next vma when migration races vma_adjust */
  871. if (first)
  872. __page_set_anon_rmap(page, vma, address, exclusive);
  873. else
  874. __page_check_anon_rmap(page, vma, address);
  875. }
  876. /**
  877. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  878. * @page: the page to add the mapping to
  879. * @vma: the vm area in which the mapping is added
  880. * @address: the user virtual address mapped
  881. *
  882. * Same as page_add_anon_rmap but must only be called on *new* pages.
  883. * This means the inc-and-test can be bypassed.
  884. * Page does not have to be locked.
  885. */
  886. void page_add_new_anon_rmap(struct page *page,
  887. struct vm_area_struct *vma, unsigned long address)
  888. {
  889. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  890. SetPageSwapBacked(page);
  891. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  892. if (PageTransHuge(page))
  893. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  894. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  895. hpage_nr_pages(page));
  896. __page_set_anon_rmap(page, vma, address, 1);
  897. if (!mlocked_vma_newpage(vma, page)) {
  898. SetPageActive(page);
  899. lru_cache_add(page);
  900. } else
  901. add_page_to_unevictable_list(page);
  902. }
  903. /**
  904. * page_add_file_rmap - add pte mapping to a file page
  905. * @page: the page to add the mapping to
  906. *
  907. * The caller needs to hold the pte lock.
  908. */
  909. void page_add_file_rmap(struct page *page)
  910. {
  911. bool locked;
  912. unsigned long flags;
  913. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  914. if (atomic_inc_and_test(&page->_mapcount)) {
  915. __inc_zone_page_state(page, NR_FILE_MAPPED);
  916. mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
  917. }
  918. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  919. }
  920. /**
  921. * page_remove_rmap - take down pte mapping from a page
  922. * @page: page to remove mapping from
  923. *
  924. * The caller needs to hold the pte lock.
  925. */
  926. void page_remove_rmap(struct page *page)
  927. {
  928. bool anon = PageAnon(page);
  929. bool locked;
  930. unsigned long flags;
  931. /*
  932. * The anon case has no mem_cgroup page_stat to update; but may
  933. * uncharge_page() below, where the lock ordering can deadlock if
  934. * we hold the lock against page_stat move: so avoid it on anon.
  935. */
  936. if (!anon)
  937. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  938. /* page still mapped by someone else? */
  939. if (!atomic_add_negative(-1, &page->_mapcount))
  940. goto out;
  941. /*
  942. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  943. * and not charged by memcg for now.
  944. */
  945. if (unlikely(PageHuge(page)))
  946. goto out;
  947. if (anon) {
  948. mem_cgroup_uncharge_page(page);
  949. if (PageTransHuge(page))
  950. __dec_zone_page_state(page,
  951. NR_ANON_TRANSPARENT_HUGEPAGES);
  952. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  953. -hpage_nr_pages(page));
  954. } else {
  955. __dec_zone_page_state(page, NR_FILE_MAPPED);
  956. mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
  957. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  958. }
  959. if (unlikely(PageMlocked(page)))
  960. clear_page_mlock(page);
  961. /*
  962. * It would be tidy to reset the PageAnon mapping here,
  963. * but that might overwrite a racing page_add_anon_rmap
  964. * which increments mapcount after us but sets mapping
  965. * before us: so leave the reset to free_hot_cold_page,
  966. * and remember that it's only reliable while mapped.
  967. * Leaving it set also helps swapoff to reinstate ptes
  968. * faster for those pages still in swapcache.
  969. */
  970. return;
  971. out:
  972. if (!anon)
  973. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  974. }
  975. /*
  976. * @arg: enum ttu_flags will be passed to this argument
  977. */
  978. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  979. unsigned long address, void *arg)
  980. {
  981. struct mm_struct *mm = vma->vm_mm;
  982. pte_t *pte;
  983. pte_t pteval;
  984. spinlock_t *ptl;
  985. int ret = SWAP_AGAIN;
  986. enum ttu_flags flags = (enum ttu_flags)arg;
  987. pte = page_check_address(page, mm, address, &ptl, 0);
  988. if (!pte)
  989. goto out;
  990. /*
  991. * If the page is mlock()d, we cannot swap it out.
  992. * If it's recently referenced (perhaps page_referenced
  993. * skipped over this mm) then we should reactivate it.
  994. */
  995. if (!(flags & TTU_IGNORE_MLOCK)) {
  996. if (vma->vm_flags & VM_LOCKED)
  997. goto out_mlock;
  998. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  999. goto out_unmap;
  1000. }
  1001. if (!(flags & TTU_IGNORE_ACCESS)) {
  1002. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1003. ret = SWAP_FAIL;
  1004. goto out_unmap;
  1005. }
  1006. }
  1007. /* Nuke the page table entry. */
  1008. flush_cache_page(vma, address, page_to_pfn(page));
  1009. pteval = ptep_clear_flush(vma, address, pte);
  1010. /* Move the dirty bit to the physical page now the pte is gone. */
  1011. if (pte_dirty(pteval))
  1012. set_page_dirty(page);
  1013. /* Update high watermark before we lower rss */
  1014. update_hiwater_rss(mm);
  1015. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1016. if (!PageHuge(page)) {
  1017. if (PageAnon(page))
  1018. dec_mm_counter(mm, MM_ANONPAGES);
  1019. else
  1020. dec_mm_counter(mm, MM_FILEPAGES);
  1021. }
  1022. set_pte_at(mm, address, pte,
  1023. swp_entry_to_pte(make_hwpoison_entry(page)));
  1024. } else if (pte_unused(pteval)) {
  1025. /*
  1026. * The guest indicated that the page content is of no
  1027. * interest anymore. Simply discard the pte, vmscan
  1028. * will take care of the rest.
  1029. */
  1030. if (PageAnon(page))
  1031. dec_mm_counter(mm, MM_ANONPAGES);
  1032. else
  1033. dec_mm_counter(mm, MM_FILEPAGES);
  1034. } else if (PageAnon(page)) {
  1035. swp_entry_t entry = { .val = page_private(page) };
  1036. pte_t swp_pte;
  1037. if (PageSwapCache(page)) {
  1038. /*
  1039. * Store the swap location in the pte.
  1040. * See handle_pte_fault() ...
  1041. */
  1042. if (swap_duplicate(entry) < 0) {
  1043. set_pte_at(mm, address, pte, pteval);
  1044. ret = SWAP_FAIL;
  1045. goto out_unmap;
  1046. }
  1047. if (list_empty(&mm->mmlist)) {
  1048. spin_lock(&mmlist_lock);
  1049. if (list_empty(&mm->mmlist))
  1050. list_add(&mm->mmlist, &init_mm.mmlist);
  1051. spin_unlock(&mmlist_lock);
  1052. }
  1053. dec_mm_counter(mm, MM_ANONPAGES);
  1054. inc_mm_counter(mm, MM_SWAPENTS);
  1055. } else if (IS_ENABLED(CONFIG_MIGRATION)) {
  1056. /*
  1057. * Store the pfn of the page in a special migration
  1058. * pte. do_swap_page() will wait until the migration
  1059. * pte is removed and then restart fault handling.
  1060. */
  1061. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  1062. entry = make_migration_entry(page, pte_write(pteval));
  1063. }
  1064. swp_pte = swp_entry_to_pte(entry);
  1065. if (pte_soft_dirty(pteval))
  1066. swp_pte = pte_swp_mksoft_dirty(swp_pte);
  1067. set_pte_at(mm, address, pte, swp_pte);
  1068. BUG_ON(pte_file(*pte));
  1069. } else if (IS_ENABLED(CONFIG_MIGRATION) &&
  1070. (TTU_ACTION(flags) == TTU_MIGRATION)) {
  1071. /* Establish migration entry for a file page */
  1072. swp_entry_t entry;
  1073. entry = make_migration_entry(page, pte_write(pteval));
  1074. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1075. } else
  1076. dec_mm_counter(mm, MM_FILEPAGES);
  1077. page_remove_rmap(page);
  1078. page_cache_release(page);
  1079. out_unmap:
  1080. pte_unmap_unlock(pte, ptl);
  1081. if (ret != SWAP_FAIL)
  1082. mmu_notifier_invalidate_page(mm, address);
  1083. out:
  1084. return ret;
  1085. out_mlock:
  1086. pte_unmap_unlock(pte, ptl);
  1087. /*
  1088. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1089. * unstable result and race. Plus, We can't wait here because
  1090. * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
  1091. * if trylock failed, the page remain in evictable lru and later
  1092. * vmscan could retry to move the page to unevictable lru if the
  1093. * page is actually mlocked.
  1094. */
  1095. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1096. if (vma->vm_flags & VM_LOCKED) {
  1097. mlock_vma_page(page);
  1098. ret = SWAP_MLOCK;
  1099. }
  1100. up_read(&vma->vm_mm->mmap_sem);
  1101. }
  1102. return ret;
  1103. }
  1104. /*
  1105. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1106. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1107. * Consequently, given a particular page and its ->index, we cannot locate the
  1108. * ptes which are mapping that page without an exhaustive linear search.
  1109. *
  1110. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1111. * maps the file to which the target page belongs. The ->vm_private_data field
  1112. * holds the current cursor into that scan. Successive searches will circulate
  1113. * around the vma's virtual address space.
  1114. *
  1115. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1116. * more scanning pressure is placed against them as well. Eventually pages
  1117. * will become fully unmapped and are eligible for eviction.
  1118. *
  1119. * For very sparsely populated VMAs this is a little inefficient - chances are
  1120. * there there won't be many ptes located within the scan cluster. In this case
  1121. * maybe we could scan further - to the end of the pte page, perhaps.
  1122. *
  1123. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1124. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1125. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1126. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1127. */
  1128. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1129. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1130. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1131. struct vm_area_struct *vma, struct page *check_page)
  1132. {
  1133. struct mm_struct *mm = vma->vm_mm;
  1134. pmd_t *pmd;
  1135. pte_t *pte;
  1136. pte_t pteval;
  1137. spinlock_t *ptl;
  1138. struct page *page;
  1139. unsigned long address;
  1140. unsigned long mmun_start; /* For mmu_notifiers */
  1141. unsigned long mmun_end; /* For mmu_notifiers */
  1142. unsigned long end;
  1143. int ret = SWAP_AGAIN;
  1144. int locked_vma = 0;
  1145. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1146. end = address + CLUSTER_SIZE;
  1147. if (address < vma->vm_start)
  1148. address = vma->vm_start;
  1149. if (end > vma->vm_end)
  1150. end = vma->vm_end;
  1151. pmd = mm_find_pmd(mm, address);
  1152. if (!pmd)
  1153. return ret;
  1154. mmun_start = address;
  1155. mmun_end = end;
  1156. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1157. /*
  1158. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1159. * keep the sem while scanning the cluster for mlocking pages.
  1160. */
  1161. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1162. locked_vma = (vma->vm_flags & VM_LOCKED);
  1163. if (!locked_vma)
  1164. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1165. }
  1166. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1167. /* Update high watermark before we lower rss */
  1168. update_hiwater_rss(mm);
  1169. for (; address < end; pte++, address += PAGE_SIZE) {
  1170. if (!pte_present(*pte))
  1171. continue;
  1172. page = vm_normal_page(vma, address, *pte);
  1173. BUG_ON(!page || PageAnon(page));
  1174. if (locked_vma) {
  1175. if (page == check_page) {
  1176. /* we know we have check_page locked */
  1177. mlock_vma_page(page);
  1178. ret = SWAP_MLOCK;
  1179. } else if (trylock_page(page)) {
  1180. /*
  1181. * If we can lock the page, perform mlock.
  1182. * Otherwise leave the page alone, it will be
  1183. * eventually encountered again later.
  1184. */
  1185. mlock_vma_page(page);
  1186. unlock_page(page);
  1187. }
  1188. continue; /* don't unmap */
  1189. }
  1190. if (ptep_clear_flush_young_notify(vma, address, pte))
  1191. continue;
  1192. /* Nuke the page table entry. */
  1193. flush_cache_page(vma, address, pte_pfn(*pte));
  1194. pteval = ptep_clear_flush(vma, address, pte);
  1195. /* If nonlinear, store the file page offset in the pte. */
  1196. if (page->index != linear_page_index(vma, address)) {
  1197. pte_t ptfile = pgoff_to_pte(page->index);
  1198. if (pte_soft_dirty(pteval))
  1199. pte_file_mksoft_dirty(ptfile);
  1200. set_pte_at(mm, address, pte, ptfile);
  1201. }
  1202. /* Move the dirty bit to the physical page now the pte is gone. */
  1203. if (pte_dirty(pteval))
  1204. set_page_dirty(page);
  1205. page_remove_rmap(page);
  1206. page_cache_release(page);
  1207. dec_mm_counter(mm, MM_FILEPAGES);
  1208. (*mapcount)--;
  1209. }
  1210. pte_unmap_unlock(pte - 1, ptl);
  1211. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1212. if (locked_vma)
  1213. up_read(&vma->vm_mm->mmap_sem);
  1214. return ret;
  1215. }
  1216. static int try_to_unmap_nonlinear(struct page *page,
  1217. struct address_space *mapping, void *arg)
  1218. {
  1219. struct vm_area_struct *vma;
  1220. int ret = SWAP_AGAIN;
  1221. unsigned long cursor;
  1222. unsigned long max_nl_cursor = 0;
  1223. unsigned long max_nl_size = 0;
  1224. unsigned int mapcount;
  1225. list_for_each_entry(vma,
  1226. &mapping->i_mmap_nonlinear, shared.nonlinear) {
  1227. cursor = (unsigned long) vma->vm_private_data;
  1228. if (cursor > max_nl_cursor)
  1229. max_nl_cursor = cursor;
  1230. cursor = vma->vm_end - vma->vm_start;
  1231. if (cursor > max_nl_size)
  1232. max_nl_size = cursor;
  1233. }
  1234. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1235. return SWAP_FAIL;
  1236. }
  1237. /*
  1238. * We don't try to search for this page in the nonlinear vmas,
  1239. * and page_referenced wouldn't have found it anyway. Instead
  1240. * just walk the nonlinear vmas trying to age and unmap some.
  1241. * The mapcount of the page we came in with is irrelevant,
  1242. * but even so use it as a guide to how hard we should try?
  1243. */
  1244. mapcount = page_mapcount(page);
  1245. if (!mapcount)
  1246. return ret;
  1247. cond_resched();
  1248. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1249. if (max_nl_cursor == 0)
  1250. max_nl_cursor = CLUSTER_SIZE;
  1251. do {
  1252. list_for_each_entry(vma,
  1253. &mapping->i_mmap_nonlinear, shared.nonlinear) {
  1254. cursor = (unsigned long) vma->vm_private_data;
  1255. while (cursor < max_nl_cursor &&
  1256. cursor < vma->vm_end - vma->vm_start) {
  1257. if (try_to_unmap_cluster(cursor, &mapcount,
  1258. vma, page) == SWAP_MLOCK)
  1259. ret = SWAP_MLOCK;
  1260. cursor += CLUSTER_SIZE;
  1261. vma->vm_private_data = (void *) cursor;
  1262. if ((int)mapcount <= 0)
  1263. return ret;
  1264. }
  1265. vma->vm_private_data = (void *) max_nl_cursor;
  1266. }
  1267. cond_resched();
  1268. max_nl_cursor += CLUSTER_SIZE;
  1269. } while (max_nl_cursor <= max_nl_size);
  1270. /*
  1271. * Don't loop forever (perhaps all the remaining pages are
  1272. * in locked vmas). Reset cursor on all unreserved nonlinear
  1273. * vmas, now forgetting on which ones it had fallen behind.
  1274. */
  1275. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
  1276. vma->vm_private_data = NULL;
  1277. return ret;
  1278. }
  1279. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1280. {
  1281. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1282. if (!maybe_stack)
  1283. return false;
  1284. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1285. VM_STACK_INCOMPLETE_SETUP)
  1286. return true;
  1287. return false;
  1288. }
  1289. static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
  1290. {
  1291. return is_vma_temporary_stack(vma);
  1292. }
  1293. static int page_not_mapped(struct page *page)
  1294. {
  1295. return !page_mapped(page);
  1296. };
  1297. /**
  1298. * try_to_unmap - try to remove all page table mappings to a page
  1299. * @page: the page to get unmapped
  1300. * @flags: action and flags
  1301. *
  1302. * Tries to remove all the page table entries which are mapping this
  1303. * page, used in the pageout path. Caller must hold the page lock.
  1304. * Return values are:
  1305. *
  1306. * SWAP_SUCCESS - we succeeded in removing all mappings
  1307. * SWAP_AGAIN - we missed a mapping, try again later
  1308. * SWAP_FAIL - the page is unswappable
  1309. * SWAP_MLOCK - page is mlocked.
  1310. */
  1311. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1312. {
  1313. int ret;
  1314. struct rmap_walk_control rwc = {
  1315. .rmap_one = try_to_unmap_one,
  1316. .arg = (void *)flags,
  1317. .done = page_not_mapped,
  1318. .file_nonlinear = try_to_unmap_nonlinear,
  1319. .anon_lock = page_lock_anon_vma_read,
  1320. };
  1321. VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
  1322. /*
  1323. * During exec, a temporary VMA is setup and later moved.
  1324. * The VMA is moved under the anon_vma lock but not the
  1325. * page tables leading to a race where migration cannot
  1326. * find the migration ptes. Rather than increasing the
  1327. * locking requirements of exec(), migration skips
  1328. * temporary VMAs until after exec() completes.
  1329. */
  1330. if (flags & TTU_MIGRATION && !PageKsm(page) && PageAnon(page))
  1331. rwc.invalid_vma = invalid_migration_vma;
  1332. ret = rmap_walk(page, &rwc);
  1333. if (ret != SWAP_MLOCK && !page_mapped(page))
  1334. ret = SWAP_SUCCESS;
  1335. return ret;
  1336. }
  1337. /**
  1338. * try_to_munlock - try to munlock a page
  1339. * @page: the page to be munlocked
  1340. *
  1341. * Called from munlock code. Checks all of the VMAs mapping the page
  1342. * to make sure nobody else has this page mlocked. The page will be
  1343. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1344. *
  1345. * Return values are:
  1346. *
  1347. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1348. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1349. * SWAP_FAIL - page cannot be located at present
  1350. * SWAP_MLOCK - page is now mlocked.
  1351. */
  1352. int try_to_munlock(struct page *page)
  1353. {
  1354. int ret;
  1355. struct rmap_walk_control rwc = {
  1356. .rmap_one = try_to_unmap_one,
  1357. .arg = (void *)TTU_MUNLOCK,
  1358. .done = page_not_mapped,
  1359. /*
  1360. * We don't bother to try to find the munlocked page in
  1361. * nonlinears. It's costly. Instead, later, page reclaim logic
  1362. * may call try_to_unmap() and recover PG_mlocked lazily.
  1363. */
  1364. .file_nonlinear = NULL,
  1365. .anon_lock = page_lock_anon_vma_read,
  1366. };
  1367. VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
  1368. ret = rmap_walk(page, &rwc);
  1369. return ret;
  1370. }
  1371. void __put_anon_vma(struct anon_vma *anon_vma)
  1372. {
  1373. struct anon_vma *root = anon_vma->root;
  1374. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1375. anon_vma_free(root);
  1376. anon_vma_free(anon_vma);
  1377. }
  1378. static struct anon_vma *rmap_walk_anon_lock(struct page *page,
  1379. struct rmap_walk_control *rwc)
  1380. {
  1381. struct anon_vma *anon_vma;
  1382. if (rwc->anon_lock)
  1383. return rwc->anon_lock(page);
  1384. /*
  1385. * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
  1386. * because that depends on page_mapped(); but not all its usages
  1387. * are holding mmap_sem. Users without mmap_sem are required to
  1388. * take a reference count to prevent the anon_vma disappearing
  1389. */
  1390. anon_vma = page_anon_vma(page);
  1391. if (!anon_vma)
  1392. return NULL;
  1393. anon_vma_lock_read(anon_vma);
  1394. return anon_vma;
  1395. }
  1396. /*
  1397. * rmap_walk_anon - do something to anonymous page using the object-based
  1398. * rmap method
  1399. * @page: the page to be handled
  1400. * @rwc: control variable according to each walk type
  1401. *
  1402. * Find all the mappings of a page using the mapping pointer and the vma chains
  1403. * contained in the anon_vma struct it points to.
  1404. *
  1405. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1406. * where the page was found will be held for write. So, we won't recheck
  1407. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1408. * LOCKED.
  1409. */
  1410. static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
  1411. {
  1412. struct anon_vma *anon_vma;
  1413. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1414. struct anon_vma_chain *avc;
  1415. int ret = SWAP_AGAIN;
  1416. anon_vma = rmap_walk_anon_lock(page, rwc);
  1417. if (!anon_vma)
  1418. return ret;
  1419. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1420. struct vm_area_struct *vma = avc->vma;
  1421. unsigned long address = vma_address(page, vma);
  1422. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1423. continue;
  1424. ret = rwc->rmap_one(page, vma, address, rwc->arg);
  1425. if (ret != SWAP_AGAIN)
  1426. break;
  1427. if (rwc->done && rwc->done(page))
  1428. break;
  1429. }
  1430. anon_vma_unlock_read(anon_vma);
  1431. return ret;
  1432. }
  1433. /*
  1434. * rmap_walk_file - do something to file page using the object-based rmap method
  1435. * @page: the page to be handled
  1436. * @rwc: control variable according to each walk type
  1437. *
  1438. * Find all the mappings of a page using the mapping pointer and the vma chains
  1439. * contained in the address_space struct it points to.
  1440. *
  1441. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1442. * where the page was found will be held for write. So, we won't recheck
  1443. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1444. * LOCKED.
  1445. */
  1446. static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
  1447. {
  1448. struct address_space *mapping = page->mapping;
  1449. pgoff_t pgoff = page->index << compound_order(page);
  1450. struct vm_area_struct *vma;
  1451. int ret = SWAP_AGAIN;
  1452. /*
  1453. * The page lock not only makes sure that page->mapping cannot
  1454. * suddenly be NULLified by truncation, it makes sure that the
  1455. * structure at mapping cannot be freed and reused yet,
  1456. * so we can safely take mapping->i_mmap_mutex.
  1457. */
  1458. VM_BUG_ON(!PageLocked(page));
  1459. if (!mapping)
  1460. return ret;
  1461. mutex_lock(&mapping->i_mmap_mutex);
  1462. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1463. unsigned long address = vma_address(page, vma);
  1464. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1465. continue;
  1466. ret = rwc->rmap_one(page, vma, address, rwc->arg);
  1467. if (ret != SWAP_AGAIN)
  1468. goto done;
  1469. if (rwc->done && rwc->done(page))
  1470. goto done;
  1471. }
  1472. if (!rwc->file_nonlinear)
  1473. goto done;
  1474. if (list_empty(&mapping->i_mmap_nonlinear))
  1475. goto done;
  1476. ret = rwc->file_nonlinear(page, mapping, rwc->arg);
  1477. done:
  1478. mutex_unlock(&mapping->i_mmap_mutex);
  1479. return ret;
  1480. }
  1481. int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
  1482. {
  1483. if (unlikely(PageKsm(page)))
  1484. return rmap_walk_ksm(page, rwc);
  1485. else if (PageAnon(page))
  1486. return rmap_walk_anon(page, rwc);
  1487. else
  1488. return rmap_walk_file(page, rwc);
  1489. }
  1490. #ifdef CONFIG_HUGETLB_PAGE
  1491. /*
  1492. * The following three functions are for anonymous (private mapped) hugepages.
  1493. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1494. * and no lru code, because we handle hugepages differently from common pages.
  1495. */
  1496. static void __hugepage_set_anon_rmap(struct page *page,
  1497. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1498. {
  1499. struct anon_vma *anon_vma = vma->anon_vma;
  1500. BUG_ON(!anon_vma);
  1501. if (PageAnon(page))
  1502. return;
  1503. if (!exclusive)
  1504. anon_vma = anon_vma->root;
  1505. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1506. page->mapping = (struct address_space *) anon_vma;
  1507. page->index = linear_page_index(vma, address);
  1508. }
  1509. void hugepage_add_anon_rmap(struct page *page,
  1510. struct vm_area_struct *vma, unsigned long address)
  1511. {
  1512. struct anon_vma *anon_vma = vma->anon_vma;
  1513. int first;
  1514. BUG_ON(!PageLocked(page));
  1515. BUG_ON(!anon_vma);
  1516. /* address might be in next vma when migration races vma_adjust */
  1517. first = atomic_inc_and_test(&page->_mapcount);
  1518. if (first)
  1519. __hugepage_set_anon_rmap(page, vma, address, 0);
  1520. }
  1521. void hugepage_add_new_anon_rmap(struct page *page,
  1522. struct vm_area_struct *vma, unsigned long address)
  1523. {
  1524. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1525. atomic_set(&page->_mapcount, 0);
  1526. __hugepage_set_anon_rmap(page, vma, address, 1);
  1527. }
  1528. #endif /* CONFIG_HUGETLB_PAGE */