huge_memory.c 76 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/shrinker.h>
  15. #include <linux/mm_inline.h>
  16. #include <linux/kthread.h>
  17. #include <linux/khugepaged.h>
  18. #include <linux/freezer.h>
  19. #include <linux/mman.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/migrate.h>
  22. #include <linux/hashtable.h>
  23. #include <asm/tlb.h>
  24. #include <asm/pgalloc.h>
  25. #include "internal.h"
  26. /*
  27. * By default transparent hugepage support is disabled in order that avoid
  28. * to risk increase the memory footprint of applications without a guaranteed
  29. * benefit. When transparent hugepage support is enabled, is for all mappings,
  30. * and khugepaged scans all mappings.
  31. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  32. * for all hugepage allocations.
  33. */
  34. unsigned long transparent_hugepage_flags __read_mostly =
  35. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  36. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  37. #endif
  38. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  39. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  40. #endif
  41. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  42. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  43. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  44. /* default scan 8*512 pte (or vmas) every 30 second */
  45. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  46. static unsigned int khugepaged_pages_collapsed;
  47. static unsigned int khugepaged_full_scans;
  48. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  49. /* during fragmentation poll the hugepage allocator once every minute */
  50. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  51. static struct task_struct *khugepaged_thread __read_mostly;
  52. static DEFINE_MUTEX(khugepaged_mutex);
  53. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  54. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  55. /*
  56. * default collapse hugepages if there is at least one pte mapped like
  57. * it would have happened if the vma was large enough during page
  58. * fault.
  59. */
  60. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  61. static int khugepaged(void *none);
  62. static int khugepaged_slab_init(void);
  63. #define MM_SLOTS_HASH_BITS 10
  64. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  65. static struct kmem_cache *mm_slot_cache __read_mostly;
  66. /**
  67. * struct mm_slot - hash lookup from mm to mm_slot
  68. * @hash: hash collision list
  69. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  70. * @mm: the mm that this information is valid for
  71. */
  72. struct mm_slot {
  73. struct hlist_node hash;
  74. struct list_head mm_node;
  75. struct mm_struct *mm;
  76. };
  77. /**
  78. * struct khugepaged_scan - cursor for scanning
  79. * @mm_head: the head of the mm list to scan
  80. * @mm_slot: the current mm_slot we are scanning
  81. * @address: the next address inside that to be scanned
  82. *
  83. * There is only the one khugepaged_scan instance of this cursor structure.
  84. */
  85. struct khugepaged_scan {
  86. struct list_head mm_head;
  87. struct mm_slot *mm_slot;
  88. unsigned long address;
  89. };
  90. static struct khugepaged_scan khugepaged_scan = {
  91. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  92. };
  93. static int set_recommended_min_free_kbytes(void)
  94. {
  95. struct zone *zone;
  96. int nr_zones = 0;
  97. unsigned long recommended_min;
  98. if (!khugepaged_enabled())
  99. return 0;
  100. for_each_populated_zone(zone)
  101. nr_zones++;
  102. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  103. recommended_min = pageblock_nr_pages * nr_zones * 2;
  104. /*
  105. * Make sure that on average at least two pageblocks are almost free
  106. * of another type, one for a migratetype to fall back to and a
  107. * second to avoid subsequent fallbacks of other types There are 3
  108. * MIGRATE_TYPES we care about.
  109. */
  110. recommended_min += pageblock_nr_pages * nr_zones *
  111. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  112. /* don't ever allow to reserve more than 5% of the lowmem */
  113. recommended_min = min(recommended_min,
  114. (unsigned long) nr_free_buffer_pages() / 20);
  115. recommended_min <<= (PAGE_SHIFT-10);
  116. if (recommended_min > min_free_kbytes) {
  117. if (user_min_free_kbytes >= 0)
  118. pr_info("raising min_free_kbytes from %d to %lu "
  119. "to help transparent hugepage allocations\n",
  120. min_free_kbytes, recommended_min);
  121. min_free_kbytes = recommended_min;
  122. }
  123. setup_per_zone_wmarks();
  124. return 0;
  125. }
  126. late_initcall(set_recommended_min_free_kbytes);
  127. static int start_khugepaged(void)
  128. {
  129. int err = 0;
  130. if (khugepaged_enabled()) {
  131. if (!khugepaged_thread)
  132. khugepaged_thread = kthread_run(khugepaged, NULL,
  133. "khugepaged");
  134. if (unlikely(IS_ERR(khugepaged_thread))) {
  135. printk(KERN_ERR
  136. "khugepaged: kthread_run(khugepaged) failed\n");
  137. err = PTR_ERR(khugepaged_thread);
  138. khugepaged_thread = NULL;
  139. }
  140. if (!list_empty(&khugepaged_scan.mm_head))
  141. wake_up_interruptible(&khugepaged_wait);
  142. set_recommended_min_free_kbytes();
  143. } else if (khugepaged_thread) {
  144. kthread_stop(khugepaged_thread);
  145. khugepaged_thread = NULL;
  146. }
  147. return err;
  148. }
  149. static atomic_t huge_zero_refcount;
  150. static struct page *huge_zero_page __read_mostly;
  151. static inline bool is_huge_zero_page(struct page *page)
  152. {
  153. return ACCESS_ONCE(huge_zero_page) == page;
  154. }
  155. static inline bool is_huge_zero_pmd(pmd_t pmd)
  156. {
  157. return is_huge_zero_page(pmd_page(pmd));
  158. }
  159. static struct page *get_huge_zero_page(void)
  160. {
  161. struct page *zero_page;
  162. retry:
  163. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  164. return ACCESS_ONCE(huge_zero_page);
  165. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  166. HPAGE_PMD_ORDER);
  167. if (!zero_page) {
  168. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  169. return NULL;
  170. }
  171. count_vm_event(THP_ZERO_PAGE_ALLOC);
  172. preempt_disable();
  173. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  174. preempt_enable();
  175. __free_page(zero_page);
  176. goto retry;
  177. }
  178. /* We take additional reference here. It will be put back by shrinker */
  179. atomic_set(&huge_zero_refcount, 2);
  180. preempt_enable();
  181. return ACCESS_ONCE(huge_zero_page);
  182. }
  183. static void put_huge_zero_page(void)
  184. {
  185. /*
  186. * Counter should never go to zero here. Only shrinker can put
  187. * last reference.
  188. */
  189. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  190. }
  191. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  192. struct shrink_control *sc)
  193. {
  194. /* we can free zero page only if last reference remains */
  195. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  196. }
  197. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  198. struct shrink_control *sc)
  199. {
  200. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  201. struct page *zero_page = xchg(&huge_zero_page, NULL);
  202. BUG_ON(zero_page == NULL);
  203. __free_page(zero_page);
  204. return HPAGE_PMD_NR;
  205. }
  206. return 0;
  207. }
  208. static struct shrinker huge_zero_page_shrinker = {
  209. .count_objects = shrink_huge_zero_page_count,
  210. .scan_objects = shrink_huge_zero_page_scan,
  211. .seeks = DEFAULT_SEEKS,
  212. };
  213. #ifdef CONFIG_SYSFS
  214. static ssize_t double_flag_show(struct kobject *kobj,
  215. struct kobj_attribute *attr, char *buf,
  216. enum transparent_hugepage_flag enabled,
  217. enum transparent_hugepage_flag req_madv)
  218. {
  219. if (test_bit(enabled, &transparent_hugepage_flags)) {
  220. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  221. return sprintf(buf, "[always] madvise never\n");
  222. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  223. return sprintf(buf, "always [madvise] never\n");
  224. else
  225. return sprintf(buf, "always madvise [never]\n");
  226. }
  227. static ssize_t double_flag_store(struct kobject *kobj,
  228. struct kobj_attribute *attr,
  229. const char *buf, size_t count,
  230. enum transparent_hugepage_flag enabled,
  231. enum transparent_hugepage_flag req_madv)
  232. {
  233. if (!memcmp("always", buf,
  234. min(sizeof("always")-1, count))) {
  235. set_bit(enabled, &transparent_hugepage_flags);
  236. clear_bit(req_madv, &transparent_hugepage_flags);
  237. } else if (!memcmp("madvise", buf,
  238. min(sizeof("madvise")-1, count))) {
  239. clear_bit(enabled, &transparent_hugepage_flags);
  240. set_bit(req_madv, &transparent_hugepage_flags);
  241. } else if (!memcmp("never", buf,
  242. min(sizeof("never")-1, count))) {
  243. clear_bit(enabled, &transparent_hugepage_flags);
  244. clear_bit(req_madv, &transparent_hugepage_flags);
  245. } else
  246. return -EINVAL;
  247. return count;
  248. }
  249. static ssize_t enabled_show(struct kobject *kobj,
  250. struct kobj_attribute *attr, char *buf)
  251. {
  252. return double_flag_show(kobj, attr, buf,
  253. TRANSPARENT_HUGEPAGE_FLAG,
  254. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  255. }
  256. static ssize_t enabled_store(struct kobject *kobj,
  257. struct kobj_attribute *attr,
  258. const char *buf, size_t count)
  259. {
  260. ssize_t ret;
  261. ret = double_flag_store(kobj, attr, buf, count,
  262. TRANSPARENT_HUGEPAGE_FLAG,
  263. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  264. if (ret > 0) {
  265. int err;
  266. mutex_lock(&khugepaged_mutex);
  267. err = start_khugepaged();
  268. mutex_unlock(&khugepaged_mutex);
  269. if (err)
  270. ret = err;
  271. }
  272. return ret;
  273. }
  274. static struct kobj_attribute enabled_attr =
  275. __ATTR(enabled, 0644, enabled_show, enabled_store);
  276. static ssize_t single_flag_show(struct kobject *kobj,
  277. struct kobj_attribute *attr, char *buf,
  278. enum transparent_hugepage_flag flag)
  279. {
  280. return sprintf(buf, "%d\n",
  281. !!test_bit(flag, &transparent_hugepage_flags));
  282. }
  283. static ssize_t single_flag_store(struct kobject *kobj,
  284. struct kobj_attribute *attr,
  285. const char *buf, size_t count,
  286. enum transparent_hugepage_flag flag)
  287. {
  288. unsigned long value;
  289. int ret;
  290. ret = kstrtoul(buf, 10, &value);
  291. if (ret < 0)
  292. return ret;
  293. if (value > 1)
  294. return -EINVAL;
  295. if (value)
  296. set_bit(flag, &transparent_hugepage_flags);
  297. else
  298. clear_bit(flag, &transparent_hugepage_flags);
  299. return count;
  300. }
  301. /*
  302. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  303. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  304. * memory just to allocate one more hugepage.
  305. */
  306. static ssize_t defrag_show(struct kobject *kobj,
  307. struct kobj_attribute *attr, char *buf)
  308. {
  309. return double_flag_show(kobj, attr, buf,
  310. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  311. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  312. }
  313. static ssize_t defrag_store(struct kobject *kobj,
  314. struct kobj_attribute *attr,
  315. const char *buf, size_t count)
  316. {
  317. return double_flag_store(kobj, attr, buf, count,
  318. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  319. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  320. }
  321. static struct kobj_attribute defrag_attr =
  322. __ATTR(defrag, 0644, defrag_show, defrag_store);
  323. static ssize_t use_zero_page_show(struct kobject *kobj,
  324. struct kobj_attribute *attr, char *buf)
  325. {
  326. return single_flag_show(kobj, attr, buf,
  327. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  328. }
  329. static ssize_t use_zero_page_store(struct kobject *kobj,
  330. struct kobj_attribute *attr, const char *buf, size_t count)
  331. {
  332. return single_flag_store(kobj, attr, buf, count,
  333. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  334. }
  335. static struct kobj_attribute use_zero_page_attr =
  336. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  337. #ifdef CONFIG_DEBUG_VM
  338. static ssize_t debug_cow_show(struct kobject *kobj,
  339. struct kobj_attribute *attr, char *buf)
  340. {
  341. return single_flag_show(kobj, attr, buf,
  342. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  343. }
  344. static ssize_t debug_cow_store(struct kobject *kobj,
  345. struct kobj_attribute *attr,
  346. const char *buf, size_t count)
  347. {
  348. return single_flag_store(kobj, attr, buf, count,
  349. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  350. }
  351. static struct kobj_attribute debug_cow_attr =
  352. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  353. #endif /* CONFIG_DEBUG_VM */
  354. static struct attribute *hugepage_attr[] = {
  355. &enabled_attr.attr,
  356. &defrag_attr.attr,
  357. &use_zero_page_attr.attr,
  358. #ifdef CONFIG_DEBUG_VM
  359. &debug_cow_attr.attr,
  360. #endif
  361. NULL,
  362. };
  363. static struct attribute_group hugepage_attr_group = {
  364. .attrs = hugepage_attr,
  365. };
  366. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. char *buf)
  369. {
  370. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  371. }
  372. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  373. struct kobj_attribute *attr,
  374. const char *buf, size_t count)
  375. {
  376. unsigned long msecs;
  377. int err;
  378. err = kstrtoul(buf, 10, &msecs);
  379. if (err || msecs > UINT_MAX)
  380. return -EINVAL;
  381. khugepaged_scan_sleep_millisecs = msecs;
  382. wake_up_interruptible(&khugepaged_wait);
  383. return count;
  384. }
  385. static struct kobj_attribute scan_sleep_millisecs_attr =
  386. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  387. scan_sleep_millisecs_store);
  388. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  389. struct kobj_attribute *attr,
  390. char *buf)
  391. {
  392. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  393. }
  394. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  395. struct kobj_attribute *attr,
  396. const char *buf, size_t count)
  397. {
  398. unsigned long msecs;
  399. int err;
  400. err = kstrtoul(buf, 10, &msecs);
  401. if (err || msecs > UINT_MAX)
  402. return -EINVAL;
  403. khugepaged_alloc_sleep_millisecs = msecs;
  404. wake_up_interruptible(&khugepaged_wait);
  405. return count;
  406. }
  407. static struct kobj_attribute alloc_sleep_millisecs_attr =
  408. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  409. alloc_sleep_millisecs_store);
  410. static ssize_t pages_to_scan_show(struct kobject *kobj,
  411. struct kobj_attribute *attr,
  412. char *buf)
  413. {
  414. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  415. }
  416. static ssize_t pages_to_scan_store(struct kobject *kobj,
  417. struct kobj_attribute *attr,
  418. const char *buf, size_t count)
  419. {
  420. int err;
  421. unsigned long pages;
  422. err = kstrtoul(buf, 10, &pages);
  423. if (err || !pages || pages > UINT_MAX)
  424. return -EINVAL;
  425. khugepaged_pages_to_scan = pages;
  426. return count;
  427. }
  428. static struct kobj_attribute pages_to_scan_attr =
  429. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  430. pages_to_scan_store);
  431. static ssize_t pages_collapsed_show(struct kobject *kobj,
  432. struct kobj_attribute *attr,
  433. char *buf)
  434. {
  435. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  436. }
  437. static struct kobj_attribute pages_collapsed_attr =
  438. __ATTR_RO(pages_collapsed);
  439. static ssize_t full_scans_show(struct kobject *kobj,
  440. struct kobj_attribute *attr,
  441. char *buf)
  442. {
  443. return sprintf(buf, "%u\n", khugepaged_full_scans);
  444. }
  445. static struct kobj_attribute full_scans_attr =
  446. __ATTR_RO(full_scans);
  447. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  448. struct kobj_attribute *attr, char *buf)
  449. {
  450. return single_flag_show(kobj, attr, buf,
  451. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  452. }
  453. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  454. struct kobj_attribute *attr,
  455. const char *buf, size_t count)
  456. {
  457. return single_flag_store(kobj, attr, buf, count,
  458. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  459. }
  460. static struct kobj_attribute khugepaged_defrag_attr =
  461. __ATTR(defrag, 0644, khugepaged_defrag_show,
  462. khugepaged_defrag_store);
  463. /*
  464. * max_ptes_none controls if khugepaged should collapse hugepages over
  465. * any unmapped ptes in turn potentially increasing the memory
  466. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  467. * reduce the available free memory in the system as it
  468. * runs. Increasing max_ptes_none will instead potentially reduce the
  469. * free memory in the system during the khugepaged scan.
  470. */
  471. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  472. struct kobj_attribute *attr,
  473. char *buf)
  474. {
  475. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  476. }
  477. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  478. struct kobj_attribute *attr,
  479. const char *buf, size_t count)
  480. {
  481. int err;
  482. unsigned long max_ptes_none;
  483. err = kstrtoul(buf, 10, &max_ptes_none);
  484. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  485. return -EINVAL;
  486. khugepaged_max_ptes_none = max_ptes_none;
  487. return count;
  488. }
  489. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  490. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  491. khugepaged_max_ptes_none_store);
  492. static struct attribute *khugepaged_attr[] = {
  493. &khugepaged_defrag_attr.attr,
  494. &khugepaged_max_ptes_none_attr.attr,
  495. &pages_to_scan_attr.attr,
  496. &pages_collapsed_attr.attr,
  497. &full_scans_attr.attr,
  498. &scan_sleep_millisecs_attr.attr,
  499. &alloc_sleep_millisecs_attr.attr,
  500. NULL,
  501. };
  502. static struct attribute_group khugepaged_attr_group = {
  503. .attrs = khugepaged_attr,
  504. .name = "khugepaged",
  505. };
  506. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  507. {
  508. int err;
  509. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  510. if (unlikely(!*hugepage_kobj)) {
  511. printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
  512. return -ENOMEM;
  513. }
  514. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  515. if (err) {
  516. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  517. goto delete_obj;
  518. }
  519. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  520. if (err) {
  521. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  522. goto remove_hp_group;
  523. }
  524. return 0;
  525. remove_hp_group:
  526. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  527. delete_obj:
  528. kobject_put(*hugepage_kobj);
  529. return err;
  530. }
  531. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  532. {
  533. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  534. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  535. kobject_put(hugepage_kobj);
  536. }
  537. #else
  538. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  539. {
  540. return 0;
  541. }
  542. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  543. {
  544. }
  545. #endif /* CONFIG_SYSFS */
  546. static int __init hugepage_init(void)
  547. {
  548. int err;
  549. struct kobject *hugepage_kobj;
  550. if (!has_transparent_hugepage()) {
  551. transparent_hugepage_flags = 0;
  552. return -EINVAL;
  553. }
  554. err = hugepage_init_sysfs(&hugepage_kobj);
  555. if (err)
  556. return err;
  557. err = khugepaged_slab_init();
  558. if (err)
  559. goto out;
  560. register_shrinker(&huge_zero_page_shrinker);
  561. /*
  562. * By default disable transparent hugepages on smaller systems,
  563. * where the extra memory used could hurt more than TLB overhead
  564. * is likely to save. The admin can still enable it through /sys.
  565. */
  566. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  567. transparent_hugepage_flags = 0;
  568. start_khugepaged();
  569. return 0;
  570. out:
  571. hugepage_exit_sysfs(hugepage_kobj);
  572. return err;
  573. }
  574. subsys_initcall(hugepage_init);
  575. static int __init setup_transparent_hugepage(char *str)
  576. {
  577. int ret = 0;
  578. if (!str)
  579. goto out;
  580. if (!strcmp(str, "always")) {
  581. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  582. &transparent_hugepage_flags);
  583. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  584. &transparent_hugepage_flags);
  585. ret = 1;
  586. } else if (!strcmp(str, "madvise")) {
  587. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  588. &transparent_hugepage_flags);
  589. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  590. &transparent_hugepage_flags);
  591. ret = 1;
  592. } else if (!strcmp(str, "never")) {
  593. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  594. &transparent_hugepage_flags);
  595. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  596. &transparent_hugepage_flags);
  597. ret = 1;
  598. }
  599. out:
  600. if (!ret)
  601. printk(KERN_WARNING
  602. "transparent_hugepage= cannot parse, ignored\n");
  603. return ret;
  604. }
  605. __setup("transparent_hugepage=", setup_transparent_hugepage);
  606. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  607. {
  608. if (likely(vma->vm_flags & VM_WRITE))
  609. pmd = pmd_mkwrite(pmd);
  610. return pmd;
  611. }
  612. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  613. {
  614. pmd_t entry;
  615. entry = mk_pmd(page, prot);
  616. entry = pmd_mkhuge(entry);
  617. return entry;
  618. }
  619. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  620. struct vm_area_struct *vma,
  621. unsigned long haddr, pmd_t *pmd,
  622. struct page *page)
  623. {
  624. pgtable_t pgtable;
  625. spinlock_t *ptl;
  626. VM_BUG_ON_PAGE(!PageCompound(page), page);
  627. pgtable = pte_alloc_one(mm, haddr);
  628. if (unlikely(!pgtable))
  629. return VM_FAULT_OOM;
  630. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  631. /*
  632. * The memory barrier inside __SetPageUptodate makes sure that
  633. * clear_huge_page writes become visible before the set_pmd_at()
  634. * write.
  635. */
  636. __SetPageUptodate(page);
  637. ptl = pmd_lock(mm, pmd);
  638. if (unlikely(!pmd_none(*pmd))) {
  639. spin_unlock(ptl);
  640. mem_cgroup_uncharge_page(page);
  641. put_page(page);
  642. pte_free(mm, pgtable);
  643. } else {
  644. pmd_t entry;
  645. entry = mk_huge_pmd(page, vma->vm_page_prot);
  646. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  647. page_add_new_anon_rmap(page, vma, haddr);
  648. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  649. set_pmd_at(mm, haddr, pmd, entry);
  650. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  651. atomic_long_inc(&mm->nr_ptes);
  652. spin_unlock(ptl);
  653. }
  654. return 0;
  655. }
  656. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  657. {
  658. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  659. }
  660. static inline struct page *alloc_hugepage_vma(int defrag,
  661. struct vm_area_struct *vma,
  662. unsigned long haddr, int nd,
  663. gfp_t extra_gfp)
  664. {
  665. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  666. HPAGE_PMD_ORDER, vma, haddr, nd);
  667. }
  668. /* Caller must hold page table lock. */
  669. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  670. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  671. struct page *zero_page)
  672. {
  673. pmd_t entry;
  674. if (!pmd_none(*pmd))
  675. return false;
  676. entry = mk_pmd(zero_page, vma->vm_page_prot);
  677. entry = pmd_wrprotect(entry);
  678. entry = pmd_mkhuge(entry);
  679. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  680. set_pmd_at(mm, haddr, pmd, entry);
  681. atomic_long_inc(&mm->nr_ptes);
  682. return true;
  683. }
  684. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  685. unsigned long address, pmd_t *pmd,
  686. unsigned int flags)
  687. {
  688. struct page *page;
  689. unsigned long haddr = address & HPAGE_PMD_MASK;
  690. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  691. return VM_FAULT_FALLBACK;
  692. if (unlikely(anon_vma_prepare(vma)))
  693. return VM_FAULT_OOM;
  694. if (unlikely(khugepaged_enter(vma)))
  695. return VM_FAULT_OOM;
  696. if (!(flags & FAULT_FLAG_WRITE) &&
  697. transparent_hugepage_use_zero_page()) {
  698. spinlock_t *ptl;
  699. pgtable_t pgtable;
  700. struct page *zero_page;
  701. bool set;
  702. pgtable = pte_alloc_one(mm, haddr);
  703. if (unlikely(!pgtable))
  704. return VM_FAULT_OOM;
  705. zero_page = get_huge_zero_page();
  706. if (unlikely(!zero_page)) {
  707. pte_free(mm, pgtable);
  708. count_vm_event(THP_FAULT_FALLBACK);
  709. return VM_FAULT_FALLBACK;
  710. }
  711. ptl = pmd_lock(mm, pmd);
  712. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  713. zero_page);
  714. spin_unlock(ptl);
  715. if (!set) {
  716. pte_free(mm, pgtable);
  717. put_huge_zero_page();
  718. }
  719. return 0;
  720. }
  721. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  722. vma, haddr, numa_node_id(), 0);
  723. if (unlikely(!page)) {
  724. count_vm_event(THP_FAULT_FALLBACK);
  725. return VM_FAULT_FALLBACK;
  726. }
  727. if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
  728. put_page(page);
  729. count_vm_event(THP_FAULT_FALLBACK);
  730. return VM_FAULT_FALLBACK;
  731. }
  732. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
  733. mem_cgroup_uncharge_page(page);
  734. put_page(page);
  735. count_vm_event(THP_FAULT_FALLBACK);
  736. return VM_FAULT_FALLBACK;
  737. }
  738. count_vm_event(THP_FAULT_ALLOC);
  739. return 0;
  740. }
  741. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  742. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  743. struct vm_area_struct *vma)
  744. {
  745. spinlock_t *dst_ptl, *src_ptl;
  746. struct page *src_page;
  747. pmd_t pmd;
  748. pgtable_t pgtable;
  749. int ret;
  750. ret = -ENOMEM;
  751. pgtable = pte_alloc_one(dst_mm, addr);
  752. if (unlikely(!pgtable))
  753. goto out;
  754. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  755. src_ptl = pmd_lockptr(src_mm, src_pmd);
  756. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  757. ret = -EAGAIN;
  758. pmd = *src_pmd;
  759. if (unlikely(!pmd_trans_huge(pmd))) {
  760. pte_free(dst_mm, pgtable);
  761. goto out_unlock;
  762. }
  763. /*
  764. * When page table lock is held, the huge zero pmd should not be
  765. * under splitting since we don't split the page itself, only pmd to
  766. * a page table.
  767. */
  768. if (is_huge_zero_pmd(pmd)) {
  769. struct page *zero_page;
  770. bool set;
  771. /*
  772. * get_huge_zero_page() will never allocate a new page here,
  773. * since we already have a zero page to copy. It just takes a
  774. * reference.
  775. */
  776. zero_page = get_huge_zero_page();
  777. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  778. zero_page);
  779. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  780. ret = 0;
  781. goto out_unlock;
  782. }
  783. if (unlikely(pmd_trans_splitting(pmd))) {
  784. /* split huge page running from under us */
  785. spin_unlock(src_ptl);
  786. spin_unlock(dst_ptl);
  787. pte_free(dst_mm, pgtable);
  788. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  789. goto out;
  790. }
  791. src_page = pmd_page(pmd);
  792. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  793. get_page(src_page);
  794. page_dup_rmap(src_page);
  795. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  796. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  797. pmd = pmd_mkold(pmd_wrprotect(pmd));
  798. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  799. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  800. atomic_long_inc(&dst_mm->nr_ptes);
  801. ret = 0;
  802. out_unlock:
  803. spin_unlock(src_ptl);
  804. spin_unlock(dst_ptl);
  805. out:
  806. return ret;
  807. }
  808. void huge_pmd_set_accessed(struct mm_struct *mm,
  809. struct vm_area_struct *vma,
  810. unsigned long address,
  811. pmd_t *pmd, pmd_t orig_pmd,
  812. int dirty)
  813. {
  814. spinlock_t *ptl;
  815. pmd_t entry;
  816. unsigned long haddr;
  817. ptl = pmd_lock(mm, pmd);
  818. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  819. goto unlock;
  820. entry = pmd_mkyoung(orig_pmd);
  821. haddr = address & HPAGE_PMD_MASK;
  822. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  823. update_mmu_cache_pmd(vma, address, pmd);
  824. unlock:
  825. spin_unlock(ptl);
  826. }
  827. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  828. struct vm_area_struct *vma,
  829. unsigned long address,
  830. pmd_t *pmd, pmd_t orig_pmd,
  831. struct page *page,
  832. unsigned long haddr)
  833. {
  834. spinlock_t *ptl;
  835. pgtable_t pgtable;
  836. pmd_t _pmd;
  837. int ret = 0, i;
  838. struct page **pages;
  839. unsigned long mmun_start; /* For mmu_notifiers */
  840. unsigned long mmun_end; /* For mmu_notifiers */
  841. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  842. GFP_KERNEL);
  843. if (unlikely(!pages)) {
  844. ret |= VM_FAULT_OOM;
  845. goto out;
  846. }
  847. for (i = 0; i < HPAGE_PMD_NR; i++) {
  848. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  849. __GFP_OTHER_NODE,
  850. vma, address, page_to_nid(page));
  851. if (unlikely(!pages[i] ||
  852. mem_cgroup_charge_anon(pages[i], mm,
  853. GFP_KERNEL))) {
  854. if (pages[i])
  855. put_page(pages[i]);
  856. mem_cgroup_uncharge_start();
  857. while (--i >= 0) {
  858. mem_cgroup_uncharge_page(pages[i]);
  859. put_page(pages[i]);
  860. }
  861. mem_cgroup_uncharge_end();
  862. kfree(pages);
  863. ret |= VM_FAULT_OOM;
  864. goto out;
  865. }
  866. }
  867. for (i = 0; i < HPAGE_PMD_NR; i++) {
  868. copy_user_highpage(pages[i], page + i,
  869. haddr + PAGE_SIZE * i, vma);
  870. __SetPageUptodate(pages[i]);
  871. cond_resched();
  872. }
  873. mmun_start = haddr;
  874. mmun_end = haddr + HPAGE_PMD_SIZE;
  875. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  876. ptl = pmd_lock(mm, pmd);
  877. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  878. goto out_free_pages;
  879. VM_BUG_ON_PAGE(!PageHead(page), page);
  880. pmdp_clear_flush(vma, haddr, pmd);
  881. /* leave pmd empty until pte is filled */
  882. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  883. pmd_populate(mm, &_pmd, pgtable);
  884. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  885. pte_t *pte, entry;
  886. entry = mk_pte(pages[i], vma->vm_page_prot);
  887. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  888. page_add_new_anon_rmap(pages[i], vma, haddr);
  889. pte = pte_offset_map(&_pmd, haddr);
  890. VM_BUG_ON(!pte_none(*pte));
  891. set_pte_at(mm, haddr, pte, entry);
  892. pte_unmap(pte);
  893. }
  894. kfree(pages);
  895. smp_wmb(); /* make pte visible before pmd */
  896. pmd_populate(mm, pmd, pgtable);
  897. page_remove_rmap(page);
  898. spin_unlock(ptl);
  899. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  900. ret |= VM_FAULT_WRITE;
  901. put_page(page);
  902. out:
  903. return ret;
  904. out_free_pages:
  905. spin_unlock(ptl);
  906. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  907. mem_cgroup_uncharge_start();
  908. for (i = 0; i < HPAGE_PMD_NR; i++) {
  909. mem_cgroup_uncharge_page(pages[i]);
  910. put_page(pages[i]);
  911. }
  912. mem_cgroup_uncharge_end();
  913. kfree(pages);
  914. goto out;
  915. }
  916. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  917. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  918. {
  919. spinlock_t *ptl;
  920. int ret = 0;
  921. struct page *page = NULL, *new_page;
  922. unsigned long haddr;
  923. unsigned long mmun_start; /* For mmu_notifiers */
  924. unsigned long mmun_end; /* For mmu_notifiers */
  925. ptl = pmd_lockptr(mm, pmd);
  926. VM_BUG_ON(!vma->anon_vma);
  927. haddr = address & HPAGE_PMD_MASK;
  928. if (is_huge_zero_pmd(orig_pmd))
  929. goto alloc;
  930. spin_lock(ptl);
  931. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  932. goto out_unlock;
  933. page = pmd_page(orig_pmd);
  934. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  935. if (page_mapcount(page) == 1) {
  936. pmd_t entry;
  937. entry = pmd_mkyoung(orig_pmd);
  938. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  939. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  940. update_mmu_cache_pmd(vma, address, pmd);
  941. ret |= VM_FAULT_WRITE;
  942. goto out_unlock;
  943. }
  944. get_page(page);
  945. spin_unlock(ptl);
  946. alloc:
  947. if (transparent_hugepage_enabled(vma) &&
  948. !transparent_hugepage_debug_cow())
  949. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  950. vma, haddr, numa_node_id(), 0);
  951. else
  952. new_page = NULL;
  953. if (unlikely(!new_page)) {
  954. if (!page) {
  955. split_huge_page_pmd(vma, address, pmd);
  956. ret |= VM_FAULT_FALLBACK;
  957. } else {
  958. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  959. pmd, orig_pmd, page, haddr);
  960. if (ret & VM_FAULT_OOM) {
  961. split_huge_page(page);
  962. ret |= VM_FAULT_FALLBACK;
  963. }
  964. put_page(page);
  965. }
  966. count_vm_event(THP_FAULT_FALLBACK);
  967. goto out;
  968. }
  969. if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
  970. put_page(new_page);
  971. if (page) {
  972. split_huge_page(page);
  973. put_page(page);
  974. } else
  975. split_huge_page_pmd(vma, address, pmd);
  976. ret |= VM_FAULT_FALLBACK;
  977. count_vm_event(THP_FAULT_FALLBACK);
  978. goto out;
  979. }
  980. count_vm_event(THP_FAULT_ALLOC);
  981. if (!page)
  982. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  983. else
  984. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  985. __SetPageUptodate(new_page);
  986. mmun_start = haddr;
  987. mmun_end = haddr + HPAGE_PMD_SIZE;
  988. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  989. spin_lock(ptl);
  990. if (page)
  991. put_page(page);
  992. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  993. spin_unlock(ptl);
  994. mem_cgroup_uncharge_page(new_page);
  995. put_page(new_page);
  996. goto out_mn;
  997. } else {
  998. pmd_t entry;
  999. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1000. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1001. pmdp_clear_flush(vma, haddr, pmd);
  1002. page_add_new_anon_rmap(new_page, vma, haddr);
  1003. set_pmd_at(mm, haddr, pmd, entry);
  1004. update_mmu_cache_pmd(vma, address, pmd);
  1005. if (!page) {
  1006. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1007. put_huge_zero_page();
  1008. } else {
  1009. VM_BUG_ON_PAGE(!PageHead(page), page);
  1010. page_remove_rmap(page);
  1011. put_page(page);
  1012. }
  1013. ret |= VM_FAULT_WRITE;
  1014. }
  1015. spin_unlock(ptl);
  1016. out_mn:
  1017. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1018. out:
  1019. return ret;
  1020. out_unlock:
  1021. spin_unlock(ptl);
  1022. return ret;
  1023. }
  1024. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1025. unsigned long addr,
  1026. pmd_t *pmd,
  1027. unsigned int flags)
  1028. {
  1029. struct mm_struct *mm = vma->vm_mm;
  1030. struct page *page = NULL;
  1031. assert_spin_locked(pmd_lockptr(mm, pmd));
  1032. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1033. goto out;
  1034. /* Avoid dumping huge zero page */
  1035. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1036. return ERR_PTR(-EFAULT);
  1037. /* Full NUMA hinting faults to serialise migration in fault paths */
  1038. if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
  1039. goto out;
  1040. page = pmd_page(*pmd);
  1041. VM_BUG_ON_PAGE(!PageHead(page), page);
  1042. if (flags & FOLL_TOUCH) {
  1043. pmd_t _pmd;
  1044. /*
  1045. * We should set the dirty bit only for FOLL_WRITE but
  1046. * for now the dirty bit in the pmd is meaningless.
  1047. * And if the dirty bit will become meaningful and
  1048. * we'll only set it with FOLL_WRITE, an atomic
  1049. * set_bit will be required on the pmd to set the
  1050. * young bit, instead of the current set_pmd_at.
  1051. */
  1052. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1053. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1054. pmd, _pmd, 1))
  1055. update_mmu_cache_pmd(vma, addr, pmd);
  1056. }
  1057. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1058. if (page->mapping && trylock_page(page)) {
  1059. lru_add_drain();
  1060. if (page->mapping)
  1061. mlock_vma_page(page);
  1062. unlock_page(page);
  1063. }
  1064. }
  1065. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1066. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1067. if (flags & FOLL_GET)
  1068. get_page_foll(page);
  1069. out:
  1070. return page;
  1071. }
  1072. /* NUMA hinting page fault entry point for trans huge pmds */
  1073. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1074. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1075. {
  1076. spinlock_t *ptl;
  1077. struct anon_vma *anon_vma = NULL;
  1078. struct page *page;
  1079. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1080. int page_nid = -1, this_nid = numa_node_id();
  1081. int target_nid, last_cpupid = -1;
  1082. bool page_locked;
  1083. bool migrated = false;
  1084. int flags = 0;
  1085. ptl = pmd_lock(mm, pmdp);
  1086. if (unlikely(!pmd_same(pmd, *pmdp)))
  1087. goto out_unlock;
  1088. /*
  1089. * If there are potential migrations, wait for completion and retry
  1090. * without disrupting NUMA hinting information. Do not relock and
  1091. * check_same as the page may no longer be mapped.
  1092. */
  1093. if (unlikely(pmd_trans_migrating(*pmdp))) {
  1094. spin_unlock(ptl);
  1095. wait_migrate_huge_page(vma->anon_vma, pmdp);
  1096. goto out;
  1097. }
  1098. page = pmd_page(pmd);
  1099. BUG_ON(is_huge_zero_page(page));
  1100. page_nid = page_to_nid(page);
  1101. last_cpupid = page_cpupid_last(page);
  1102. count_vm_numa_event(NUMA_HINT_FAULTS);
  1103. if (page_nid == this_nid) {
  1104. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1105. flags |= TNF_FAULT_LOCAL;
  1106. }
  1107. /*
  1108. * Avoid grouping on DSO/COW pages in specific and RO pages
  1109. * in general, RO pages shouldn't hurt as much anyway since
  1110. * they can be in shared cache state.
  1111. */
  1112. if (!pmd_write(pmd))
  1113. flags |= TNF_NO_GROUP;
  1114. /*
  1115. * Acquire the page lock to serialise THP migrations but avoid dropping
  1116. * page_table_lock if at all possible
  1117. */
  1118. page_locked = trylock_page(page);
  1119. target_nid = mpol_misplaced(page, vma, haddr);
  1120. if (target_nid == -1) {
  1121. /* If the page was locked, there are no parallel migrations */
  1122. if (page_locked)
  1123. goto clear_pmdnuma;
  1124. }
  1125. /* Migration could have started since the pmd_trans_migrating check */
  1126. if (!page_locked) {
  1127. spin_unlock(ptl);
  1128. wait_on_page_locked(page);
  1129. page_nid = -1;
  1130. goto out;
  1131. }
  1132. /*
  1133. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1134. * to serialises splits
  1135. */
  1136. get_page(page);
  1137. spin_unlock(ptl);
  1138. anon_vma = page_lock_anon_vma_read(page);
  1139. /* Confirm the PMD did not change while page_table_lock was released */
  1140. spin_lock(ptl);
  1141. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1142. unlock_page(page);
  1143. put_page(page);
  1144. page_nid = -1;
  1145. goto out_unlock;
  1146. }
  1147. /* Bail if we fail to protect against THP splits for any reason */
  1148. if (unlikely(!anon_vma)) {
  1149. put_page(page);
  1150. page_nid = -1;
  1151. goto clear_pmdnuma;
  1152. }
  1153. /*
  1154. * Migrate the THP to the requested node, returns with page unlocked
  1155. * and pmd_numa cleared.
  1156. */
  1157. spin_unlock(ptl);
  1158. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1159. pmdp, pmd, addr, page, target_nid);
  1160. if (migrated) {
  1161. flags |= TNF_MIGRATED;
  1162. page_nid = target_nid;
  1163. }
  1164. goto out;
  1165. clear_pmdnuma:
  1166. BUG_ON(!PageLocked(page));
  1167. pmd = pmd_mknonnuma(pmd);
  1168. set_pmd_at(mm, haddr, pmdp, pmd);
  1169. VM_BUG_ON(pmd_numa(*pmdp));
  1170. update_mmu_cache_pmd(vma, addr, pmdp);
  1171. unlock_page(page);
  1172. out_unlock:
  1173. spin_unlock(ptl);
  1174. out:
  1175. if (anon_vma)
  1176. page_unlock_anon_vma_read(anon_vma);
  1177. if (page_nid != -1)
  1178. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1179. return 0;
  1180. }
  1181. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1182. pmd_t *pmd, unsigned long addr)
  1183. {
  1184. spinlock_t *ptl;
  1185. int ret = 0;
  1186. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1187. struct page *page;
  1188. pgtable_t pgtable;
  1189. pmd_t orig_pmd;
  1190. /*
  1191. * For architectures like ppc64 we look at deposited pgtable
  1192. * when calling pmdp_get_and_clear. So do the
  1193. * pgtable_trans_huge_withdraw after finishing pmdp related
  1194. * operations.
  1195. */
  1196. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1197. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1198. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1199. if (is_huge_zero_pmd(orig_pmd)) {
  1200. atomic_long_dec(&tlb->mm->nr_ptes);
  1201. spin_unlock(ptl);
  1202. put_huge_zero_page();
  1203. } else {
  1204. page = pmd_page(orig_pmd);
  1205. page_remove_rmap(page);
  1206. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1207. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1208. VM_BUG_ON_PAGE(!PageHead(page), page);
  1209. atomic_long_dec(&tlb->mm->nr_ptes);
  1210. spin_unlock(ptl);
  1211. tlb_remove_page(tlb, page);
  1212. }
  1213. pte_free(tlb->mm, pgtable);
  1214. ret = 1;
  1215. }
  1216. return ret;
  1217. }
  1218. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1219. unsigned long addr, unsigned long end,
  1220. unsigned char *vec)
  1221. {
  1222. spinlock_t *ptl;
  1223. int ret = 0;
  1224. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1225. /*
  1226. * All logical pages in the range are present
  1227. * if backed by a huge page.
  1228. */
  1229. spin_unlock(ptl);
  1230. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1231. ret = 1;
  1232. }
  1233. return ret;
  1234. }
  1235. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1236. unsigned long old_addr,
  1237. unsigned long new_addr, unsigned long old_end,
  1238. pmd_t *old_pmd, pmd_t *new_pmd)
  1239. {
  1240. spinlock_t *old_ptl, *new_ptl;
  1241. int ret = 0;
  1242. pmd_t pmd;
  1243. struct mm_struct *mm = vma->vm_mm;
  1244. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1245. (new_addr & ~HPAGE_PMD_MASK) ||
  1246. old_end - old_addr < HPAGE_PMD_SIZE ||
  1247. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1248. goto out;
  1249. /*
  1250. * The destination pmd shouldn't be established, free_pgtables()
  1251. * should have release it.
  1252. */
  1253. if (WARN_ON(!pmd_none(*new_pmd))) {
  1254. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1255. goto out;
  1256. }
  1257. /*
  1258. * We don't have to worry about the ordering of src and dst
  1259. * ptlocks because exclusive mmap_sem prevents deadlock.
  1260. */
  1261. ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
  1262. if (ret == 1) {
  1263. new_ptl = pmd_lockptr(mm, new_pmd);
  1264. if (new_ptl != old_ptl)
  1265. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1266. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1267. VM_BUG_ON(!pmd_none(*new_pmd));
  1268. if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
  1269. pgtable_t pgtable;
  1270. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1271. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1272. }
  1273. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1274. if (new_ptl != old_ptl)
  1275. spin_unlock(new_ptl);
  1276. spin_unlock(old_ptl);
  1277. }
  1278. out:
  1279. return ret;
  1280. }
  1281. /*
  1282. * Returns
  1283. * - 0 if PMD could not be locked
  1284. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1285. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1286. */
  1287. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1288. unsigned long addr, pgprot_t newprot, int prot_numa)
  1289. {
  1290. struct mm_struct *mm = vma->vm_mm;
  1291. spinlock_t *ptl;
  1292. int ret = 0;
  1293. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1294. pmd_t entry;
  1295. ret = 1;
  1296. if (!prot_numa) {
  1297. entry = pmdp_get_and_clear(mm, addr, pmd);
  1298. if (pmd_numa(entry))
  1299. entry = pmd_mknonnuma(entry);
  1300. entry = pmd_modify(entry, newprot);
  1301. ret = HPAGE_PMD_NR;
  1302. set_pmd_at(mm, addr, pmd, entry);
  1303. BUG_ON(pmd_write(entry));
  1304. } else {
  1305. struct page *page = pmd_page(*pmd);
  1306. /*
  1307. * Do not trap faults against the zero page. The
  1308. * read-only data is likely to be read-cached on the
  1309. * local CPU cache and it is less useful to know about
  1310. * local vs remote hits on the zero page.
  1311. */
  1312. if (!is_huge_zero_page(page) &&
  1313. !pmd_numa(*pmd)) {
  1314. pmdp_set_numa(mm, addr, pmd);
  1315. ret = HPAGE_PMD_NR;
  1316. }
  1317. }
  1318. spin_unlock(ptl);
  1319. }
  1320. return ret;
  1321. }
  1322. /*
  1323. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1324. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1325. *
  1326. * Note that if it returns 1, this routine returns without unlocking page
  1327. * table locks. So callers must unlock them.
  1328. */
  1329. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
  1330. spinlock_t **ptl)
  1331. {
  1332. *ptl = pmd_lock(vma->vm_mm, pmd);
  1333. if (likely(pmd_trans_huge(*pmd))) {
  1334. if (unlikely(pmd_trans_splitting(*pmd))) {
  1335. spin_unlock(*ptl);
  1336. wait_split_huge_page(vma->anon_vma, pmd);
  1337. return -1;
  1338. } else {
  1339. /* Thp mapped by 'pmd' is stable, so we can
  1340. * handle it as it is. */
  1341. return 1;
  1342. }
  1343. }
  1344. spin_unlock(*ptl);
  1345. return 0;
  1346. }
  1347. /*
  1348. * This function returns whether a given @page is mapped onto the @address
  1349. * in the virtual space of @mm.
  1350. *
  1351. * When it's true, this function returns *pmd with holding the page table lock
  1352. * and passing it back to the caller via @ptl.
  1353. * If it's false, returns NULL without holding the page table lock.
  1354. */
  1355. pmd_t *page_check_address_pmd(struct page *page,
  1356. struct mm_struct *mm,
  1357. unsigned long address,
  1358. enum page_check_address_pmd_flag flag,
  1359. spinlock_t **ptl)
  1360. {
  1361. pgd_t *pgd;
  1362. pud_t *pud;
  1363. pmd_t *pmd;
  1364. if (address & ~HPAGE_PMD_MASK)
  1365. return NULL;
  1366. pgd = pgd_offset(mm, address);
  1367. if (!pgd_present(*pgd))
  1368. return NULL;
  1369. pud = pud_offset(pgd, address);
  1370. if (!pud_present(*pud))
  1371. return NULL;
  1372. pmd = pmd_offset(pud, address);
  1373. *ptl = pmd_lock(mm, pmd);
  1374. if (!pmd_present(*pmd))
  1375. goto unlock;
  1376. if (pmd_page(*pmd) != page)
  1377. goto unlock;
  1378. /*
  1379. * split_vma() may create temporary aliased mappings. There is
  1380. * no risk as long as all huge pmd are found and have their
  1381. * splitting bit set before __split_huge_page_refcount
  1382. * runs. Finding the same huge pmd more than once during the
  1383. * same rmap walk is not a problem.
  1384. */
  1385. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1386. pmd_trans_splitting(*pmd))
  1387. goto unlock;
  1388. if (pmd_trans_huge(*pmd)) {
  1389. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1390. !pmd_trans_splitting(*pmd));
  1391. return pmd;
  1392. }
  1393. unlock:
  1394. spin_unlock(*ptl);
  1395. return NULL;
  1396. }
  1397. static int __split_huge_page_splitting(struct page *page,
  1398. struct vm_area_struct *vma,
  1399. unsigned long address)
  1400. {
  1401. struct mm_struct *mm = vma->vm_mm;
  1402. spinlock_t *ptl;
  1403. pmd_t *pmd;
  1404. int ret = 0;
  1405. /* For mmu_notifiers */
  1406. const unsigned long mmun_start = address;
  1407. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1408. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1409. pmd = page_check_address_pmd(page, mm, address,
  1410. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
  1411. if (pmd) {
  1412. /*
  1413. * We can't temporarily set the pmd to null in order
  1414. * to split it, the pmd must remain marked huge at all
  1415. * times or the VM won't take the pmd_trans_huge paths
  1416. * and it won't wait on the anon_vma->root->rwsem to
  1417. * serialize against split_huge_page*.
  1418. */
  1419. pmdp_splitting_flush(vma, address, pmd);
  1420. ret = 1;
  1421. spin_unlock(ptl);
  1422. }
  1423. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1424. return ret;
  1425. }
  1426. static void __split_huge_page_refcount(struct page *page,
  1427. struct list_head *list)
  1428. {
  1429. int i;
  1430. struct zone *zone = page_zone(page);
  1431. struct lruvec *lruvec;
  1432. int tail_count = 0;
  1433. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1434. spin_lock_irq(&zone->lru_lock);
  1435. lruvec = mem_cgroup_page_lruvec(page, zone);
  1436. compound_lock(page);
  1437. /* complete memcg works before add pages to LRU */
  1438. mem_cgroup_split_huge_fixup(page);
  1439. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1440. struct page *page_tail = page + i;
  1441. /* tail_page->_mapcount cannot change */
  1442. BUG_ON(page_mapcount(page_tail) < 0);
  1443. tail_count += page_mapcount(page_tail);
  1444. /* check for overflow */
  1445. BUG_ON(tail_count < 0);
  1446. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1447. /*
  1448. * tail_page->_count is zero and not changing from
  1449. * under us. But get_page_unless_zero() may be running
  1450. * from under us on the tail_page. If we used
  1451. * atomic_set() below instead of atomic_add(), we
  1452. * would then run atomic_set() concurrently with
  1453. * get_page_unless_zero(), and atomic_set() is
  1454. * implemented in C not using locked ops. spin_unlock
  1455. * on x86 sometime uses locked ops because of PPro
  1456. * errata 66, 92, so unless somebody can guarantee
  1457. * atomic_set() here would be safe on all archs (and
  1458. * not only on x86), it's safer to use atomic_add().
  1459. */
  1460. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1461. &page_tail->_count);
  1462. /* after clearing PageTail the gup refcount can be released */
  1463. smp_mb();
  1464. /*
  1465. * retain hwpoison flag of the poisoned tail page:
  1466. * fix for the unsuitable process killed on Guest Machine(KVM)
  1467. * by the memory-failure.
  1468. */
  1469. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1470. page_tail->flags |= (page->flags &
  1471. ((1L << PG_referenced) |
  1472. (1L << PG_swapbacked) |
  1473. (1L << PG_mlocked) |
  1474. (1L << PG_uptodate) |
  1475. (1L << PG_active) |
  1476. (1L << PG_unevictable)));
  1477. page_tail->flags |= (1L << PG_dirty);
  1478. /* clear PageTail before overwriting first_page */
  1479. smp_wmb();
  1480. /*
  1481. * __split_huge_page_splitting() already set the
  1482. * splitting bit in all pmd that could map this
  1483. * hugepage, that will ensure no CPU can alter the
  1484. * mapcount on the head page. The mapcount is only
  1485. * accounted in the head page and it has to be
  1486. * transferred to all tail pages in the below code. So
  1487. * for this code to be safe, the split the mapcount
  1488. * can't change. But that doesn't mean userland can't
  1489. * keep changing and reading the page contents while
  1490. * we transfer the mapcount, so the pmd splitting
  1491. * status is achieved setting a reserved bit in the
  1492. * pmd, not by clearing the present bit.
  1493. */
  1494. page_tail->_mapcount = page->_mapcount;
  1495. BUG_ON(page_tail->mapping);
  1496. page_tail->mapping = page->mapping;
  1497. page_tail->index = page->index + i;
  1498. page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
  1499. BUG_ON(!PageAnon(page_tail));
  1500. BUG_ON(!PageUptodate(page_tail));
  1501. BUG_ON(!PageDirty(page_tail));
  1502. BUG_ON(!PageSwapBacked(page_tail));
  1503. lru_add_page_tail(page, page_tail, lruvec, list);
  1504. }
  1505. atomic_sub(tail_count, &page->_count);
  1506. BUG_ON(atomic_read(&page->_count) <= 0);
  1507. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1508. ClearPageCompound(page);
  1509. compound_unlock(page);
  1510. spin_unlock_irq(&zone->lru_lock);
  1511. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1512. struct page *page_tail = page + i;
  1513. BUG_ON(page_count(page_tail) <= 0);
  1514. /*
  1515. * Tail pages may be freed if there wasn't any mapping
  1516. * like if add_to_swap() is running on a lru page that
  1517. * had its mapping zapped. And freeing these pages
  1518. * requires taking the lru_lock so we do the put_page
  1519. * of the tail pages after the split is complete.
  1520. */
  1521. put_page(page_tail);
  1522. }
  1523. /*
  1524. * Only the head page (now become a regular page) is required
  1525. * to be pinned by the caller.
  1526. */
  1527. BUG_ON(page_count(page) <= 0);
  1528. }
  1529. static int __split_huge_page_map(struct page *page,
  1530. struct vm_area_struct *vma,
  1531. unsigned long address)
  1532. {
  1533. struct mm_struct *mm = vma->vm_mm;
  1534. spinlock_t *ptl;
  1535. pmd_t *pmd, _pmd;
  1536. int ret = 0, i;
  1537. pgtable_t pgtable;
  1538. unsigned long haddr;
  1539. pmd = page_check_address_pmd(page, mm, address,
  1540. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
  1541. if (pmd) {
  1542. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1543. pmd_populate(mm, &_pmd, pgtable);
  1544. haddr = address;
  1545. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1546. pte_t *pte, entry;
  1547. BUG_ON(PageCompound(page+i));
  1548. entry = mk_pte(page + i, vma->vm_page_prot);
  1549. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1550. if (!pmd_write(*pmd))
  1551. entry = pte_wrprotect(entry);
  1552. else
  1553. BUG_ON(page_mapcount(page) != 1);
  1554. if (!pmd_young(*pmd))
  1555. entry = pte_mkold(entry);
  1556. if (pmd_numa(*pmd))
  1557. entry = pte_mknuma(entry);
  1558. pte = pte_offset_map(&_pmd, haddr);
  1559. BUG_ON(!pte_none(*pte));
  1560. set_pte_at(mm, haddr, pte, entry);
  1561. pte_unmap(pte);
  1562. }
  1563. smp_wmb(); /* make pte visible before pmd */
  1564. /*
  1565. * Up to this point the pmd is present and huge and
  1566. * userland has the whole access to the hugepage
  1567. * during the split (which happens in place). If we
  1568. * overwrite the pmd with the not-huge version
  1569. * pointing to the pte here (which of course we could
  1570. * if all CPUs were bug free), userland could trigger
  1571. * a small page size TLB miss on the small sized TLB
  1572. * while the hugepage TLB entry is still established
  1573. * in the huge TLB. Some CPU doesn't like that. See
  1574. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1575. * Erratum 383 on page 93. Intel should be safe but is
  1576. * also warns that it's only safe if the permission
  1577. * and cache attributes of the two entries loaded in
  1578. * the two TLB is identical (which should be the case
  1579. * here). But it is generally safer to never allow
  1580. * small and huge TLB entries for the same virtual
  1581. * address to be loaded simultaneously. So instead of
  1582. * doing "pmd_populate(); flush_tlb_range();" we first
  1583. * mark the current pmd notpresent (atomically because
  1584. * here the pmd_trans_huge and pmd_trans_splitting
  1585. * must remain set at all times on the pmd until the
  1586. * split is complete for this pmd), then we flush the
  1587. * SMP TLB and finally we write the non-huge version
  1588. * of the pmd entry with pmd_populate.
  1589. */
  1590. pmdp_invalidate(vma, address, pmd);
  1591. pmd_populate(mm, pmd, pgtable);
  1592. ret = 1;
  1593. spin_unlock(ptl);
  1594. }
  1595. return ret;
  1596. }
  1597. /* must be called with anon_vma->root->rwsem held */
  1598. static void __split_huge_page(struct page *page,
  1599. struct anon_vma *anon_vma,
  1600. struct list_head *list)
  1601. {
  1602. int mapcount, mapcount2;
  1603. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1604. struct anon_vma_chain *avc;
  1605. BUG_ON(!PageHead(page));
  1606. BUG_ON(PageTail(page));
  1607. mapcount = 0;
  1608. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1609. struct vm_area_struct *vma = avc->vma;
  1610. unsigned long addr = vma_address(page, vma);
  1611. BUG_ON(is_vma_temporary_stack(vma));
  1612. mapcount += __split_huge_page_splitting(page, vma, addr);
  1613. }
  1614. /*
  1615. * It is critical that new vmas are added to the tail of the
  1616. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1617. * and establishes a child pmd before
  1618. * __split_huge_page_splitting() freezes the parent pmd (so if
  1619. * we fail to prevent copy_huge_pmd() from running until the
  1620. * whole __split_huge_page() is complete), we will still see
  1621. * the newly established pmd of the child later during the
  1622. * walk, to be able to set it as pmd_trans_splitting too.
  1623. */
  1624. if (mapcount != page_mapcount(page))
  1625. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1626. mapcount, page_mapcount(page));
  1627. BUG_ON(mapcount != page_mapcount(page));
  1628. __split_huge_page_refcount(page, list);
  1629. mapcount2 = 0;
  1630. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1631. struct vm_area_struct *vma = avc->vma;
  1632. unsigned long addr = vma_address(page, vma);
  1633. BUG_ON(is_vma_temporary_stack(vma));
  1634. mapcount2 += __split_huge_page_map(page, vma, addr);
  1635. }
  1636. if (mapcount != mapcount2)
  1637. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1638. mapcount, mapcount2, page_mapcount(page));
  1639. BUG_ON(mapcount != mapcount2);
  1640. }
  1641. /*
  1642. * Split a hugepage into normal pages. This doesn't change the position of head
  1643. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1644. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1645. * from the hugepage.
  1646. * Return 0 if the hugepage is split successfully otherwise return 1.
  1647. */
  1648. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1649. {
  1650. struct anon_vma *anon_vma;
  1651. int ret = 1;
  1652. BUG_ON(is_huge_zero_page(page));
  1653. BUG_ON(!PageAnon(page));
  1654. /*
  1655. * The caller does not necessarily hold an mmap_sem that would prevent
  1656. * the anon_vma disappearing so we first we take a reference to it
  1657. * and then lock the anon_vma for write. This is similar to
  1658. * page_lock_anon_vma_read except the write lock is taken to serialise
  1659. * against parallel split or collapse operations.
  1660. */
  1661. anon_vma = page_get_anon_vma(page);
  1662. if (!anon_vma)
  1663. goto out;
  1664. anon_vma_lock_write(anon_vma);
  1665. ret = 0;
  1666. if (!PageCompound(page))
  1667. goto out_unlock;
  1668. BUG_ON(!PageSwapBacked(page));
  1669. __split_huge_page(page, anon_vma, list);
  1670. count_vm_event(THP_SPLIT);
  1671. BUG_ON(PageCompound(page));
  1672. out_unlock:
  1673. anon_vma_unlock_write(anon_vma);
  1674. put_anon_vma(anon_vma);
  1675. out:
  1676. return ret;
  1677. }
  1678. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1679. int hugepage_madvise(struct vm_area_struct *vma,
  1680. unsigned long *vm_flags, int advice)
  1681. {
  1682. switch (advice) {
  1683. case MADV_HUGEPAGE:
  1684. #ifdef CONFIG_S390
  1685. /*
  1686. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  1687. * can't handle this properly after s390_enable_sie, so we simply
  1688. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  1689. */
  1690. if (mm_has_pgste(vma->vm_mm))
  1691. return 0;
  1692. #endif
  1693. /*
  1694. * Be somewhat over-protective like KSM for now!
  1695. */
  1696. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1697. return -EINVAL;
  1698. *vm_flags &= ~VM_NOHUGEPAGE;
  1699. *vm_flags |= VM_HUGEPAGE;
  1700. /*
  1701. * If the vma become good for khugepaged to scan,
  1702. * register it here without waiting a page fault that
  1703. * may not happen any time soon.
  1704. */
  1705. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1706. return -ENOMEM;
  1707. break;
  1708. case MADV_NOHUGEPAGE:
  1709. /*
  1710. * Be somewhat over-protective like KSM for now!
  1711. */
  1712. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1713. return -EINVAL;
  1714. *vm_flags &= ~VM_HUGEPAGE;
  1715. *vm_flags |= VM_NOHUGEPAGE;
  1716. /*
  1717. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1718. * this vma even if we leave the mm registered in khugepaged if
  1719. * it got registered before VM_NOHUGEPAGE was set.
  1720. */
  1721. break;
  1722. }
  1723. return 0;
  1724. }
  1725. static int __init khugepaged_slab_init(void)
  1726. {
  1727. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1728. sizeof(struct mm_slot),
  1729. __alignof__(struct mm_slot), 0, NULL);
  1730. if (!mm_slot_cache)
  1731. return -ENOMEM;
  1732. return 0;
  1733. }
  1734. static inline struct mm_slot *alloc_mm_slot(void)
  1735. {
  1736. if (!mm_slot_cache) /* initialization failed */
  1737. return NULL;
  1738. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1739. }
  1740. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1741. {
  1742. kmem_cache_free(mm_slot_cache, mm_slot);
  1743. }
  1744. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1745. {
  1746. struct mm_slot *mm_slot;
  1747. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1748. if (mm == mm_slot->mm)
  1749. return mm_slot;
  1750. return NULL;
  1751. }
  1752. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1753. struct mm_slot *mm_slot)
  1754. {
  1755. mm_slot->mm = mm;
  1756. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1757. }
  1758. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1759. {
  1760. return atomic_read(&mm->mm_users) == 0;
  1761. }
  1762. int __khugepaged_enter(struct mm_struct *mm)
  1763. {
  1764. struct mm_slot *mm_slot;
  1765. int wakeup;
  1766. mm_slot = alloc_mm_slot();
  1767. if (!mm_slot)
  1768. return -ENOMEM;
  1769. /* __khugepaged_exit() must not run from under us */
  1770. VM_BUG_ON(khugepaged_test_exit(mm));
  1771. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1772. free_mm_slot(mm_slot);
  1773. return 0;
  1774. }
  1775. spin_lock(&khugepaged_mm_lock);
  1776. insert_to_mm_slots_hash(mm, mm_slot);
  1777. /*
  1778. * Insert just behind the scanning cursor, to let the area settle
  1779. * down a little.
  1780. */
  1781. wakeup = list_empty(&khugepaged_scan.mm_head);
  1782. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1783. spin_unlock(&khugepaged_mm_lock);
  1784. atomic_inc(&mm->mm_count);
  1785. if (wakeup)
  1786. wake_up_interruptible(&khugepaged_wait);
  1787. return 0;
  1788. }
  1789. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1790. {
  1791. unsigned long hstart, hend;
  1792. if (!vma->anon_vma)
  1793. /*
  1794. * Not yet faulted in so we will register later in the
  1795. * page fault if needed.
  1796. */
  1797. return 0;
  1798. if (vma->vm_ops)
  1799. /* khugepaged not yet working on file or special mappings */
  1800. return 0;
  1801. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1802. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1803. hend = vma->vm_end & HPAGE_PMD_MASK;
  1804. if (hstart < hend)
  1805. return khugepaged_enter(vma);
  1806. return 0;
  1807. }
  1808. void __khugepaged_exit(struct mm_struct *mm)
  1809. {
  1810. struct mm_slot *mm_slot;
  1811. int free = 0;
  1812. spin_lock(&khugepaged_mm_lock);
  1813. mm_slot = get_mm_slot(mm);
  1814. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1815. hash_del(&mm_slot->hash);
  1816. list_del(&mm_slot->mm_node);
  1817. free = 1;
  1818. }
  1819. spin_unlock(&khugepaged_mm_lock);
  1820. if (free) {
  1821. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1822. free_mm_slot(mm_slot);
  1823. mmdrop(mm);
  1824. } else if (mm_slot) {
  1825. /*
  1826. * This is required to serialize against
  1827. * khugepaged_test_exit() (which is guaranteed to run
  1828. * under mmap sem read mode). Stop here (after we
  1829. * return all pagetables will be destroyed) until
  1830. * khugepaged has finished working on the pagetables
  1831. * under the mmap_sem.
  1832. */
  1833. down_write(&mm->mmap_sem);
  1834. up_write(&mm->mmap_sem);
  1835. }
  1836. }
  1837. static void release_pte_page(struct page *page)
  1838. {
  1839. /* 0 stands for page_is_file_cache(page) == false */
  1840. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1841. unlock_page(page);
  1842. putback_lru_page(page);
  1843. }
  1844. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1845. {
  1846. while (--_pte >= pte) {
  1847. pte_t pteval = *_pte;
  1848. if (!pte_none(pteval))
  1849. release_pte_page(pte_page(pteval));
  1850. }
  1851. }
  1852. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1853. unsigned long address,
  1854. pte_t *pte)
  1855. {
  1856. struct page *page;
  1857. pte_t *_pte;
  1858. int referenced = 0, none = 0;
  1859. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1860. _pte++, address += PAGE_SIZE) {
  1861. pte_t pteval = *_pte;
  1862. if (pte_none(pteval)) {
  1863. if (++none <= khugepaged_max_ptes_none)
  1864. continue;
  1865. else
  1866. goto out;
  1867. }
  1868. if (!pte_present(pteval) || !pte_write(pteval))
  1869. goto out;
  1870. page = vm_normal_page(vma, address, pteval);
  1871. if (unlikely(!page))
  1872. goto out;
  1873. VM_BUG_ON_PAGE(PageCompound(page), page);
  1874. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1875. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1876. /* cannot use mapcount: can't collapse if there's a gup pin */
  1877. if (page_count(page) != 1)
  1878. goto out;
  1879. /*
  1880. * We can do it before isolate_lru_page because the
  1881. * page can't be freed from under us. NOTE: PG_lock
  1882. * is needed to serialize against split_huge_page
  1883. * when invoked from the VM.
  1884. */
  1885. if (!trylock_page(page))
  1886. goto out;
  1887. /*
  1888. * Isolate the page to avoid collapsing an hugepage
  1889. * currently in use by the VM.
  1890. */
  1891. if (isolate_lru_page(page)) {
  1892. unlock_page(page);
  1893. goto out;
  1894. }
  1895. /* 0 stands for page_is_file_cache(page) == false */
  1896. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1897. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1898. VM_BUG_ON_PAGE(PageLRU(page), page);
  1899. /* If there is no mapped pte young don't collapse the page */
  1900. if (pte_young(pteval) || PageReferenced(page) ||
  1901. mmu_notifier_test_young(vma->vm_mm, address))
  1902. referenced = 1;
  1903. }
  1904. if (likely(referenced))
  1905. return 1;
  1906. out:
  1907. release_pte_pages(pte, _pte);
  1908. return 0;
  1909. }
  1910. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1911. struct vm_area_struct *vma,
  1912. unsigned long address,
  1913. spinlock_t *ptl)
  1914. {
  1915. pte_t *_pte;
  1916. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1917. pte_t pteval = *_pte;
  1918. struct page *src_page;
  1919. if (pte_none(pteval)) {
  1920. clear_user_highpage(page, address);
  1921. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1922. } else {
  1923. src_page = pte_page(pteval);
  1924. copy_user_highpage(page, src_page, address, vma);
  1925. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  1926. release_pte_page(src_page);
  1927. /*
  1928. * ptl mostly unnecessary, but preempt has to
  1929. * be disabled to update the per-cpu stats
  1930. * inside page_remove_rmap().
  1931. */
  1932. spin_lock(ptl);
  1933. /*
  1934. * paravirt calls inside pte_clear here are
  1935. * superfluous.
  1936. */
  1937. pte_clear(vma->vm_mm, address, _pte);
  1938. page_remove_rmap(src_page);
  1939. spin_unlock(ptl);
  1940. free_page_and_swap_cache(src_page);
  1941. }
  1942. address += PAGE_SIZE;
  1943. page++;
  1944. }
  1945. }
  1946. static void khugepaged_alloc_sleep(void)
  1947. {
  1948. wait_event_freezable_timeout(khugepaged_wait, false,
  1949. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1950. }
  1951. static int khugepaged_node_load[MAX_NUMNODES];
  1952. #ifdef CONFIG_NUMA
  1953. static int khugepaged_find_target_node(void)
  1954. {
  1955. static int last_khugepaged_target_node = NUMA_NO_NODE;
  1956. int nid, target_node = 0, max_value = 0;
  1957. /* find first node with max normal pages hit */
  1958. for (nid = 0; nid < MAX_NUMNODES; nid++)
  1959. if (khugepaged_node_load[nid] > max_value) {
  1960. max_value = khugepaged_node_load[nid];
  1961. target_node = nid;
  1962. }
  1963. /* do some balance if several nodes have the same hit record */
  1964. if (target_node <= last_khugepaged_target_node)
  1965. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  1966. nid++)
  1967. if (max_value == khugepaged_node_load[nid]) {
  1968. target_node = nid;
  1969. break;
  1970. }
  1971. last_khugepaged_target_node = target_node;
  1972. return target_node;
  1973. }
  1974. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1975. {
  1976. if (IS_ERR(*hpage)) {
  1977. if (!*wait)
  1978. return false;
  1979. *wait = false;
  1980. *hpage = NULL;
  1981. khugepaged_alloc_sleep();
  1982. } else if (*hpage) {
  1983. put_page(*hpage);
  1984. *hpage = NULL;
  1985. }
  1986. return true;
  1987. }
  1988. static struct page
  1989. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1990. struct vm_area_struct *vma, unsigned long address,
  1991. int node)
  1992. {
  1993. VM_BUG_ON_PAGE(*hpage, *hpage);
  1994. /*
  1995. * Allocate the page while the vma is still valid and under
  1996. * the mmap_sem read mode so there is no memory allocation
  1997. * later when we take the mmap_sem in write mode. This is more
  1998. * friendly behavior (OTOH it may actually hide bugs) to
  1999. * filesystems in userland with daemons allocating memory in
  2000. * the userland I/O paths. Allocating memory with the
  2001. * mmap_sem in read mode is good idea also to allow greater
  2002. * scalability.
  2003. */
  2004. *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
  2005. khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
  2006. /*
  2007. * After allocating the hugepage, release the mmap_sem read lock in
  2008. * preparation for taking it in write mode.
  2009. */
  2010. up_read(&mm->mmap_sem);
  2011. if (unlikely(!*hpage)) {
  2012. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2013. *hpage = ERR_PTR(-ENOMEM);
  2014. return NULL;
  2015. }
  2016. count_vm_event(THP_COLLAPSE_ALLOC);
  2017. return *hpage;
  2018. }
  2019. #else
  2020. static int khugepaged_find_target_node(void)
  2021. {
  2022. return 0;
  2023. }
  2024. static inline struct page *alloc_hugepage(int defrag)
  2025. {
  2026. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  2027. HPAGE_PMD_ORDER);
  2028. }
  2029. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2030. {
  2031. struct page *hpage;
  2032. do {
  2033. hpage = alloc_hugepage(khugepaged_defrag());
  2034. if (!hpage) {
  2035. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2036. if (!*wait)
  2037. return NULL;
  2038. *wait = false;
  2039. khugepaged_alloc_sleep();
  2040. } else
  2041. count_vm_event(THP_COLLAPSE_ALLOC);
  2042. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2043. return hpage;
  2044. }
  2045. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2046. {
  2047. if (!*hpage)
  2048. *hpage = khugepaged_alloc_hugepage(wait);
  2049. if (unlikely(!*hpage))
  2050. return false;
  2051. return true;
  2052. }
  2053. static struct page
  2054. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  2055. struct vm_area_struct *vma, unsigned long address,
  2056. int node)
  2057. {
  2058. up_read(&mm->mmap_sem);
  2059. VM_BUG_ON(!*hpage);
  2060. return *hpage;
  2061. }
  2062. #endif
  2063. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2064. {
  2065. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2066. (vma->vm_flags & VM_NOHUGEPAGE))
  2067. return false;
  2068. if (!vma->anon_vma || vma->vm_ops)
  2069. return false;
  2070. if (is_vma_temporary_stack(vma))
  2071. return false;
  2072. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  2073. return true;
  2074. }
  2075. static void collapse_huge_page(struct mm_struct *mm,
  2076. unsigned long address,
  2077. struct page **hpage,
  2078. struct vm_area_struct *vma,
  2079. int node)
  2080. {
  2081. pmd_t *pmd, _pmd;
  2082. pte_t *pte;
  2083. pgtable_t pgtable;
  2084. struct page *new_page;
  2085. spinlock_t *pmd_ptl, *pte_ptl;
  2086. int isolated;
  2087. unsigned long hstart, hend;
  2088. unsigned long mmun_start; /* For mmu_notifiers */
  2089. unsigned long mmun_end; /* For mmu_notifiers */
  2090. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2091. /* release the mmap_sem read lock. */
  2092. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  2093. if (!new_page)
  2094. return;
  2095. if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
  2096. return;
  2097. /*
  2098. * Prevent all access to pagetables with the exception of
  2099. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2100. * handled by the anon_vma lock + PG_lock.
  2101. */
  2102. down_write(&mm->mmap_sem);
  2103. if (unlikely(khugepaged_test_exit(mm)))
  2104. goto out;
  2105. vma = find_vma(mm, address);
  2106. if (!vma)
  2107. goto out;
  2108. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2109. hend = vma->vm_end & HPAGE_PMD_MASK;
  2110. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2111. goto out;
  2112. if (!hugepage_vma_check(vma))
  2113. goto out;
  2114. pmd = mm_find_pmd(mm, address);
  2115. if (!pmd)
  2116. goto out;
  2117. if (pmd_trans_huge(*pmd))
  2118. goto out;
  2119. anon_vma_lock_write(vma->anon_vma);
  2120. pte = pte_offset_map(pmd, address);
  2121. pte_ptl = pte_lockptr(mm, pmd);
  2122. mmun_start = address;
  2123. mmun_end = address + HPAGE_PMD_SIZE;
  2124. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2125. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2126. /*
  2127. * After this gup_fast can't run anymore. This also removes
  2128. * any huge TLB entry from the CPU so we won't allow
  2129. * huge and small TLB entries for the same virtual address
  2130. * to avoid the risk of CPU bugs in that area.
  2131. */
  2132. _pmd = pmdp_clear_flush(vma, address, pmd);
  2133. spin_unlock(pmd_ptl);
  2134. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2135. spin_lock(pte_ptl);
  2136. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2137. spin_unlock(pte_ptl);
  2138. if (unlikely(!isolated)) {
  2139. pte_unmap(pte);
  2140. spin_lock(pmd_ptl);
  2141. BUG_ON(!pmd_none(*pmd));
  2142. /*
  2143. * We can only use set_pmd_at when establishing
  2144. * hugepmds and never for establishing regular pmds that
  2145. * points to regular pagetables. Use pmd_populate for that
  2146. */
  2147. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2148. spin_unlock(pmd_ptl);
  2149. anon_vma_unlock_write(vma->anon_vma);
  2150. goto out;
  2151. }
  2152. /*
  2153. * All pages are isolated and locked so anon_vma rmap
  2154. * can't run anymore.
  2155. */
  2156. anon_vma_unlock_write(vma->anon_vma);
  2157. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2158. pte_unmap(pte);
  2159. __SetPageUptodate(new_page);
  2160. pgtable = pmd_pgtable(_pmd);
  2161. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2162. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2163. /*
  2164. * spin_lock() below is not the equivalent of smp_wmb(), so
  2165. * this is needed to avoid the copy_huge_page writes to become
  2166. * visible after the set_pmd_at() write.
  2167. */
  2168. smp_wmb();
  2169. spin_lock(pmd_ptl);
  2170. BUG_ON(!pmd_none(*pmd));
  2171. page_add_new_anon_rmap(new_page, vma, address);
  2172. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2173. set_pmd_at(mm, address, pmd, _pmd);
  2174. update_mmu_cache_pmd(vma, address, pmd);
  2175. spin_unlock(pmd_ptl);
  2176. *hpage = NULL;
  2177. khugepaged_pages_collapsed++;
  2178. out_up_write:
  2179. up_write(&mm->mmap_sem);
  2180. return;
  2181. out:
  2182. mem_cgroup_uncharge_page(new_page);
  2183. goto out_up_write;
  2184. }
  2185. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2186. struct vm_area_struct *vma,
  2187. unsigned long address,
  2188. struct page **hpage)
  2189. {
  2190. pmd_t *pmd;
  2191. pte_t *pte, *_pte;
  2192. int ret = 0, referenced = 0, none = 0;
  2193. struct page *page;
  2194. unsigned long _address;
  2195. spinlock_t *ptl;
  2196. int node = NUMA_NO_NODE;
  2197. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2198. pmd = mm_find_pmd(mm, address);
  2199. if (!pmd)
  2200. goto out;
  2201. if (pmd_trans_huge(*pmd))
  2202. goto out;
  2203. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2204. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2205. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2206. _pte++, _address += PAGE_SIZE) {
  2207. pte_t pteval = *_pte;
  2208. if (pte_none(pteval)) {
  2209. if (++none <= khugepaged_max_ptes_none)
  2210. continue;
  2211. else
  2212. goto out_unmap;
  2213. }
  2214. if (!pte_present(pteval) || !pte_write(pteval))
  2215. goto out_unmap;
  2216. page = vm_normal_page(vma, _address, pteval);
  2217. if (unlikely(!page))
  2218. goto out_unmap;
  2219. /*
  2220. * Record which node the original page is from and save this
  2221. * information to khugepaged_node_load[].
  2222. * Khupaged will allocate hugepage from the node has the max
  2223. * hit record.
  2224. */
  2225. node = page_to_nid(page);
  2226. khugepaged_node_load[node]++;
  2227. VM_BUG_ON_PAGE(PageCompound(page), page);
  2228. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2229. goto out_unmap;
  2230. /* cannot use mapcount: can't collapse if there's a gup pin */
  2231. if (page_count(page) != 1)
  2232. goto out_unmap;
  2233. if (pte_young(pteval) || PageReferenced(page) ||
  2234. mmu_notifier_test_young(vma->vm_mm, address))
  2235. referenced = 1;
  2236. }
  2237. if (referenced)
  2238. ret = 1;
  2239. out_unmap:
  2240. pte_unmap_unlock(pte, ptl);
  2241. if (ret) {
  2242. node = khugepaged_find_target_node();
  2243. /* collapse_huge_page will return with the mmap_sem released */
  2244. collapse_huge_page(mm, address, hpage, vma, node);
  2245. }
  2246. out:
  2247. return ret;
  2248. }
  2249. static void collect_mm_slot(struct mm_slot *mm_slot)
  2250. {
  2251. struct mm_struct *mm = mm_slot->mm;
  2252. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2253. if (khugepaged_test_exit(mm)) {
  2254. /* free mm_slot */
  2255. hash_del(&mm_slot->hash);
  2256. list_del(&mm_slot->mm_node);
  2257. /*
  2258. * Not strictly needed because the mm exited already.
  2259. *
  2260. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2261. */
  2262. /* khugepaged_mm_lock actually not necessary for the below */
  2263. free_mm_slot(mm_slot);
  2264. mmdrop(mm);
  2265. }
  2266. }
  2267. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2268. struct page **hpage)
  2269. __releases(&khugepaged_mm_lock)
  2270. __acquires(&khugepaged_mm_lock)
  2271. {
  2272. struct mm_slot *mm_slot;
  2273. struct mm_struct *mm;
  2274. struct vm_area_struct *vma;
  2275. int progress = 0;
  2276. VM_BUG_ON(!pages);
  2277. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2278. if (khugepaged_scan.mm_slot)
  2279. mm_slot = khugepaged_scan.mm_slot;
  2280. else {
  2281. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2282. struct mm_slot, mm_node);
  2283. khugepaged_scan.address = 0;
  2284. khugepaged_scan.mm_slot = mm_slot;
  2285. }
  2286. spin_unlock(&khugepaged_mm_lock);
  2287. mm = mm_slot->mm;
  2288. down_read(&mm->mmap_sem);
  2289. if (unlikely(khugepaged_test_exit(mm)))
  2290. vma = NULL;
  2291. else
  2292. vma = find_vma(mm, khugepaged_scan.address);
  2293. progress++;
  2294. for (; vma; vma = vma->vm_next) {
  2295. unsigned long hstart, hend;
  2296. cond_resched();
  2297. if (unlikely(khugepaged_test_exit(mm))) {
  2298. progress++;
  2299. break;
  2300. }
  2301. if (!hugepage_vma_check(vma)) {
  2302. skip:
  2303. progress++;
  2304. continue;
  2305. }
  2306. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2307. hend = vma->vm_end & HPAGE_PMD_MASK;
  2308. if (hstart >= hend)
  2309. goto skip;
  2310. if (khugepaged_scan.address > hend)
  2311. goto skip;
  2312. if (khugepaged_scan.address < hstart)
  2313. khugepaged_scan.address = hstart;
  2314. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2315. while (khugepaged_scan.address < hend) {
  2316. int ret;
  2317. cond_resched();
  2318. if (unlikely(khugepaged_test_exit(mm)))
  2319. goto breakouterloop;
  2320. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2321. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2322. hend);
  2323. ret = khugepaged_scan_pmd(mm, vma,
  2324. khugepaged_scan.address,
  2325. hpage);
  2326. /* move to next address */
  2327. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2328. progress += HPAGE_PMD_NR;
  2329. if (ret)
  2330. /* we released mmap_sem so break loop */
  2331. goto breakouterloop_mmap_sem;
  2332. if (progress >= pages)
  2333. goto breakouterloop;
  2334. }
  2335. }
  2336. breakouterloop:
  2337. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2338. breakouterloop_mmap_sem:
  2339. spin_lock(&khugepaged_mm_lock);
  2340. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2341. /*
  2342. * Release the current mm_slot if this mm is about to die, or
  2343. * if we scanned all vmas of this mm.
  2344. */
  2345. if (khugepaged_test_exit(mm) || !vma) {
  2346. /*
  2347. * Make sure that if mm_users is reaching zero while
  2348. * khugepaged runs here, khugepaged_exit will find
  2349. * mm_slot not pointing to the exiting mm.
  2350. */
  2351. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2352. khugepaged_scan.mm_slot = list_entry(
  2353. mm_slot->mm_node.next,
  2354. struct mm_slot, mm_node);
  2355. khugepaged_scan.address = 0;
  2356. } else {
  2357. khugepaged_scan.mm_slot = NULL;
  2358. khugepaged_full_scans++;
  2359. }
  2360. collect_mm_slot(mm_slot);
  2361. }
  2362. return progress;
  2363. }
  2364. static int khugepaged_has_work(void)
  2365. {
  2366. return !list_empty(&khugepaged_scan.mm_head) &&
  2367. khugepaged_enabled();
  2368. }
  2369. static int khugepaged_wait_event(void)
  2370. {
  2371. return !list_empty(&khugepaged_scan.mm_head) ||
  2372. kthread_should_stop();
  2373. }
  2374. static void khugepaged_do_scan(void)
  2375. {
  2376. struct page *hpage = NULL;
  2377. unsigned int progress = 0, pass_through_head = 0;
  2378. unsigned int pages = khugepaged_pages_to_scan;
  2379. bool wait = true;
  2380. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2381. while (progress < pages) {
  2382. if (!khugepaged_prealloc_page(&hpage, &wait))
  2383. break;
  2384. cond_resched();
  2385. if (unlikely(kthread_should_stop() || freezing(current)))
  2386. break;
  2387. spin_lock(&khugepaged_mm_lock);
  2388. if (!khugepaged_scan.mm_slot)
  2389. pass_through_head++;
  2390. if (khugepaged_has_work() &&
  2391. pass_through_head < 2)
  2392. progress += khugepaged_scan_mm_slot(pages - progress,
  2393. &hpage);
  2394. else
  2395. progress = pages;
  2396. spin_unlock(&khugepaged_mm_lock);
  2397. }
  2398. if (!IS_ERR_OR_NULL(hpage))
  2399. put_page(hpage);
  2400. }
  2401. static void khugepaged_wait_work(void)
  2402. {
  2403. try_to_freeze();
  2404. if (khugepaged_has_work()) {
  2405. if (!khugepaged_scan_sleep_millisecs)
  2406. return;
  2407. wait_event_freezable_timeout(khugepaged_wait,
  2408. kthread_should_stop(),
  2409. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2410. return;
  2411. }
  2412. if (khugepaged_enabled())
  2413. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2414. }
  2415. static int khugepaged(void *none)
  2416. {
  2417. struct mm_slot *mm_slot;
  2418. set_freezable();
  2419. set_user_nice(current, 19);
  2420. while (!kthread_should_stop()) {
  2421. khugepaged_do_scan();
  2422. khugepaged_wait_work();
  2423. }
  2424. spin_lock(&khugepaged_mm_lock);
  2425. mm_slot = khugepaged_scan.mm_slot;
  2426. khugepaged_scan.mm_slot = NULL;
  2427. if (mm_slot)
  2428. collect_mm_slot(mm_slot);
  2429. spin_unlock(&khugepaged_mm_lock);
  2430. return 0;
  2431. }
  2432. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2433. unsigned long haddr, pmd_t *pmd)
  2434. {
  2435. struct mm_struct *mm = vma->vm_mm;
  2436. pgtable_t pgtable;
  2437. pmd_t _pmd;
  2438. int i;
  2439. pmdp_clear_flush(vma, haddr, pmd);
  2440. /* leave pmd empty until pte is filled */
  2441. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2442. pmd_populate(mm, &_pmd, pgtable);
  2443. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2444. pte_t *pte, entry;
  2445. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2446. entry = pte_mkspecial(entry);
  2447. pte = pte_offset_map(&_pmd, haddr);
  2448. VM_BUG_ON(!pte_none(*pte));
  2449. set_pte_at(mm, haddr, pte, entry);
  2450. pte_unmap(pte);
  2451. }
  2452. smp_wmb(); /* make pte visible before pmd */
  2453. pmd_populate(mm, pmd, pgtable);
  2454. put_huge_zero_page();
  2455. }
  2456. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2457. pmd_t *pmd)
  2458. {
  2459. spinlock_t *ptl;
  2460. struct page *page;
  2461. struct mm_struct *mm = vma->vm_mm;
  2462. unsigned long haddr = address & HPAGE_PMD_MASK;
  2463. unsigned long mmun_start; /* For mmu_notifiers */
  2464. unsigned long mmun_end; /* For mmu_notifiers */
  2465. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2466. mmun_start = haddr;
  2467. mmun_end = haddr + HPAGE_PMD_SIZE;
  2468. again:
  2469. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2470. ptl = pmd_lock(mm, pmd);
  2471. if (unlikely(!pmd_trans_huge(*pmd))) {
  2472. spin_unlock(ptl);
  2473. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2474. return;
  2475. }
  2476. if (is_huge_zero_pmd(*pmd)) {
  2477. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2478. spin_unlock(ptl);
  2479. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2480. return;
  2481. }
  2482. page = pmd_page(*pmd);
  2483. VM_BUG_ON_PAGE(!page_count(page), page);
  2484. get_page(page);
  2485. spin_unlock(ptl);
  2486. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2487. split_huge_page(page);
  2488. put_page(page);
  2489. /*
  2490. * We don't always have down_write of mmap_sem here: a racing
  2491. * do_huge_pmd_wp_page() might have copied-on-write to another
  2492. * huge page before our split_huge_page() got the anon_vma lock.
  2493. */
  2494. if (unlikely(pmd_trans_huge(*pmd)))
  2495. goto again;
  2496. }
  2497. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2498. pmd_t *pmd)
  2499. {
  2500. struct vm_area_struct *vma;
  2501. vma = find_vma(mm, address);
  2502. BUG_ON(vma == NULL);
  2503. split_huge_page_pmd(vma, address, pmd);
  2504. }
  2505. static void split_huge_page_address(struct mm_struct *mm,
  2506. unsigned long address)
  2507. {
  2508. pmd_t *pmd;
  2509. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2510. pmd = mm_find_pmd(mm, address);
  2511. if (!pmd)
  2512. return;
  2513. /*
  2514. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2515. * materialize from under us.
  2516. */
  2517. split_huge_page_pmd_mm(mm, address, pmd);
  2518. }
  2519. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2520. unsigned long start,
  2521. unsigned long end,
  2522. long adjust_next)
  2523. {
  2524. /*
  2525. * If the new start address isn't hpage aligned and it could
  2526. * previously contain an hugepage: check if we need to split
  2527. * an huge pmd.
  2528. */
  2529. if (start & ~HPAGE_PMD_MASK &&
  2530. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2531. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2532. split_huge_page_address(vma->vm_mm, start);
  2533. /*
  2534. * If the new end address isn't hpage aligned and it could
  2535. * previously contain an hugepage: check if we need to split
  2536. * an huge pmd.
  2537. */
  2538. if (end & ~HPAGE_PMD_MASK &&
  2539. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2540. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2541. split_huge_page_address(vma->vm_mm, end);
  2542. /*
  2543. * If we're also updating the vma->vm_next->vm_start, if the new
  2544. * vm_next->vm_start isn't page aligned and it could previously
  2545. * contain an hugepage: check if we need to split an huge pmd.
  2546. */
  2547. if (adjust_next > 0) {
  2548. struct vm_area_struct *next = vma->vm_next;
  2549. unsigned long nstart = next->vm_start;
  2550. nstart += adjust_next << PAGE_SHIFT;
  2551. if (nstart & ~HPAGE_PMD_MASK &&
  2552. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2553. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2554. split_huge_page_address(next->vm_mm, nstart);
  2555. }
  2556. }