core.c 189 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  89. {
  90. unsigned long delta;
  91. ktime_t soft, hard, now;
  92. for (;;) {
  93. if (hrtimer_active(period_timer))
  94. break;
  95. now = hrtimer_cb_get_time(period_timer);
  96. hrtimer_forward(period_timer, now, period);
  97. soft = hrtimer_get_softexpires(period_timer);
  98. hard = hrtimer_get_expires(period_timer);
  99. delta = ktime_to_ns(ktime_sub(hard, soft));
  100. __hrtimer_start_range_ns(period_timer, soft, delta,
  101. HRTIMER_MODE_ABS_PINNED, 0);
  102. }
  103. }
  104. DEFINE_MUTEX(sched_domains_mutex);
  105. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  106. static void update_rq_clock_task(struct rq *rq, s64 delta);
  107. void update_rq_clock(struct rq *rq)
  108. {
  109. s64 delta;
  110. if (rq->skip_clock_update > 0)
  111. return;
  112. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  113. rq->clock += delta;
  114. update_rq_clock_task(rq, delta);
  115. }
  116. /*
  117. * Debugging: various feature bits
  118. */
  119. #define SCHED_FEAT(name, enabled) \
  120. (1UL << __SCHED_FEAT_##name) * enabled |
  121. const_debug unsigned int sysctl_sched_features =
  122. #include "features.h"
  123. 0;
  124. #undef SCHED_FEAT
  125. #ifdef CONFIG_SCHED_DEBUG
  126. #define SCHED_FEAT(name, enabled) \
  127. #name ,
  128. static const char * const sched_feat_names[] = {
  129. #include "features.h"
  130. };
  131. #undef SCHED_FEAT
  132. static int sched_feat_show(struct seq_file *m, void *v)
  133. {
  134. int i;
  135. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  136. if (!(sysctl_sched_features & (1UL << i)))
  137. seq_puts(m, "NO_");
  138. seq_printf(m, "%s ", sched_feat_names[i]);
  139. }
  140. seq_puts(m, "\n");
  141. return 0;
  142. }
  143. #ifdef HAVE_JUMP_LABEL
  144. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  145. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  146. #define SCHED_FEAT(name, enabled) \
  147. jump_label_key__##enabled ,
  148. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  149. #include "features.h"
  150. };
  151. #undef SCHED_FEAT
  152. static void sched_feat_disable(int i)
  153. {
  154. if (static_key_enabled(&sched_feat_keys[i]))
  155. static_key_slow_dec(&sched_feat_keys[i]);
  156. }
  157. static void sched_feat_enable(int i)
  158. {
  159. if (!static_key_enabled(&sched_feat_keys[i]))
  160. static_key_slow_inc(&sched_feat_keys[i]);
  161. }
  162. #else
  163. static void sched_feat_disable(int i) { };
  164. static void sched_feat_enable(int i) { };
  165. #endif /* HAVE_JUMP_LABEL */
  166. static int sched_feat_set(char *cmp)
  167. {
  168. int i;
  169. int neg = 0;
  170. if (strncmp(cmp, "NO_", 3) == 0) {
  171. neg = 1;
  172. cmp += 3;
  173. }
  174. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  175. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  176. if (neg) {
  177. sysctl_sched_features &= ~(1UL << i);
  178. sched_feat_disable(i);
  179. } else {
  180. sysctl_sched_features |= (1UL << i);
  181. sched_feat_enable(i);
  182. }
  183. break;
  184. }
  185. }
  186. return i;
  187. }
  188. static ssize_t
  189. sched_feat_write(struct file *filp, const char __user *ubuf,
  190. size_t cnt, loff_t *ppos)
  191. {
  192. char buf[64];
  193. char *cmp;
  194. int i;
  195. if (cnt > 63)
  196. cnt = 63;
  197. if (copy_from_user(&buf, ubuf, cnt))
  198. return -EFAULT;
  199. buf[cnt] = 0;
  200. cmp = strstrip(buf);
  201. i = sched_feat_set(cmp);
  202. if (i == __SCHED_FEAT_NR)
  203. return -EINVAL;
  204. *ppos += cnt;
  205. return cnt;
  206. }
  207. static int sched_feat_open(struct inode *inode, struct file *filp)
  208. {
  209. return single_open(filp, sched_feat_show, NULL);
  210. }
  211. static const struct file_operations sched_feat_fops = {
  212. .open = sched_feat_open,
  213. .write = sched_feat_write,
  214. .read = seq_read,
  215. .llseek = seq_lseek,
  216. .release = single_release,
  217. };
  218. static __init int sched_init_debug(void)
  219. {
  220. debugfs_create_file("sched_features", 0644, NULL, NULL,
  221. &sched_feat_fops);
  222. return 0;
  223. }
  224. late_initcall(sched_init_debug);
  225. #endif /* CONFIG_SCHED_DEBUG */
  226. /*
  227. * Number of tasks to iterate in a single balance run.
  228. * Limited because this is done with IRQs disabled.
  229. */
  230. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  231. /*
  232. * period over which we average the RT time consumption, measured
  233. * in ms.
  234. *
  235. * default: 1s
  236. */
  237. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  238. /*
  239. * period over which we measure -rt task cpu usage in us.
  240. * default: 1s
  241. */
  242. unsigned int sysctl_sched_rt_period = 1000000;
  243. __read_mostly int scheduler_running;
  244. /*
  245. * part of the period that we allow rt tasks to run in us.
  246. * default: 0.95s
  247. */
  248. int sysctl_sched_rt_runtime = 950000;
  249. /*
  250. * __task_rq_lock - lock the rq @p resides on.
  251. */
  252. static inline struct rq *__task_rq_lock(struct task_struct *p)
  253. __acquires(rq->lock)
  254. {
  255. struct rq *rq;
  256. lockdep_assert_held(&p->pi_lock);
  257. for (;;) {
  258. rq = task_rq(p);
  259. raw_spin_lock(&rq->lock);
  260. if (likely(rq == task_rq(p)))
  261. return rq;
  262. raw_spin_unlock(&rq->lock);
  263. }
  264. }
  265. /*
  266. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  267. */
  268. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  269. __acquires(p->pi_lock)
  270. __acquires(rq->lock)
  271. {
  272. struct rq *rq;
  273. for (;;) {
  274. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  275. rq = task_rq(p);
  276. raw_spin_lock(&rq->lock);
  277. if (likely(rq == task_rq(p)))
  278. return rq;
  279. raw_spin_unlock(&rq->lock);
  280. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  281. }
  282. }
  283. static void __task_rq_unlock(struct rq *rq)
  284. __releases(rq->lock)
  285. {
  286. raw_spin_unlock(&rq->lock);
  287. }
  288. static inline void
  289. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  290. __releases(rq->lock)
  291. __releases(p->pi_lock)
  292. {
  293. raw_spin_unlock(&rq->lock);
  294. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  295. }
  296. /*
  297. * this_rq_lock - lock this runqueue and disable interrupts.
  298. */
  299. static struct rq *this_rq_lock(void)
  300. __acquires(rq->lock)
  301. {
  302. struct rq *rq;
  303. local_irq_disable();
  304. rq = this_rq();
  305. raw_spin_lock(&rq->lock);
  306. return rq;
  307. }
  308. #ifdef CONFIG_SCHED_HRTICK
  309. /*
  310. * Use HR-timers to deliver accurate preemption points.
  311. */
  312. static void hrtick_clear(struct rq *rq)
  313. {
  314. if (hrtimer_active(&rq->hrtick_timer))
  315. hrtimer_cancel(&rq->hrtick_timer);
  316. }
  317. /*
  318. * High-resolution timer tick.
  319. * Runs from hardirq context with interrupts disabled.
  320. */
  321. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  322. {
  323. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  324. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  325. raw_spin_lock(&rq->lock);
  326. update_rq_clock(rq);
  327. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  328. raw_spin_unlock(&rq->lock);
  329. return HRTIMER_NORESTART;
  330. }
  331. #ifdef CONFIG_SMP
  332. static int __hrtick_restart(struct rq *rq)
  333. {
  334. struct hrtimer *timer = &rq->hrtick_timer;
  335. ktime_t time = hrtimer_get_softexpires(timer);
  336. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  337. }
  338. /*
  339. * called from hardirq (IPI) context
  340. */
  341. static void __hrtick_start(void *arg)
  342. {
  343. struct rq *rq = arg;
  344. raw_spin_lock(&rq->lock);
  345. __hrtick_restart(rq);
  346. rq->hrtick_csd_pending = 0;
  347. raw_spin_unlock(&rq->lock);
  348. }
  349. /*
  350. * Called to set the hrtick timer state.
  351. *
  352. * called with rq->lock held and irqs disabled
  353. */
  354. void hrtick_start(struct rq *rq, u64 delay)
  355. {
  356. struct hrtimer *timer = &rq->hrtick_timer;
  357. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  358. hrtimer_set_expires(timer, time);
  359. if (rq == this_rq()) {
  360. __hrtick_restart(rq);
  361. } else if (!rq->hrtick_csd_pending) {
  362. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  363. rq->hrtick_csd_pending = 1;
  364. }
  365. }
  366. static int
  367. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  368. {
  369. int cpu = (int)(long)hcpu;
  370. switch (action) {
  371. case CPU_UP_CANCELED:
  372. case CPU_UP_CANCELED_FROZEN:
  373. case CPU_DOWN_PREPARE:
  374. case CPU_DOWN_PREPARE_FROZEN:
  375. case CPU_DEAD:
  376. case CPU_DEAD_FROZEN:
  377. hrtick_clear(cpu_rq(cpu));
  378. return NOTIFY_OK;
  379. }
  380. return NOTIFY_DONE;
  381. }
  382. static __init void init_hrtick(void)
  383. {
  384. hotcpu_notifier(hotplug_hrtick, 0);
  385. }
  386. #else
  387. /*
  388. * Called to set the hrtick timer state.
  389. *
  390. * called with rq->lock held and irqs disabled
  391. */
  392. void hrtick_start(struct rq *rq, u64 delay)
  393. {
  394. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  395. HRTIMER_MODE_REL_PINNED, 0);
  396. }
  397. static inline void init_hrtick(void)
  398. {
  399. }
  400. #endif /* CONFIG_SMP */
  401. static void init_rq_hrtick(struct rq *rq)
  402. {
  403. #ifdef CONFIG_SMP
  404. rq->hrtick_csd_pending = 0;
  405. rq->hrtick_csd.flags = 0;
  406. rq->hrtick_csd.func = __hrtick_start;
  407. rq->hrtick_csd.info = rq;
  408. #endif
  409. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  410. rq->hrtick_timer.function = hrtick;
  411. }
  412. #else /* CONFIG_SCHED_HRTICK */
  413. static inline void hrtick_clear(struct rq *rq)
  414. {
  415. }
  416. static inline void init_rq_hrtick(struct rq *rq)
  417. {
  418. }
  419. static inline void init_hrtick(void)
  420. {
  421. }
  422. #endif /* CONFIG_SCHED_HRTICK */
  423. /*
  424. * resched_task - mark a task 'to be rescheduled now'.
  425. *
  426. * On UP this means the setting of the need_resched flag, on SMP it
  427. * might also involve a cross-CPU call to trigger the scheduler on
  428. * the target CPU.
  429. */
  430. void resched_task(struct task_struct *p)
  431. {
  432. int cpu;
  433. lockdep_assert_held(&task_rq(p)->lock);
  434. if (test_tsk_need_resched(p))
  435. return;
  436. set_tsk_need_resched(p);
  437. cpu = task_cpu(p);
  438. if (cpu == smp_processor_id()) {
  439. set_preempt_need_resched();
  440. return;
  441. }
  442. /* NEED_RESCHED must be visible before we test polling */
  443. smp_mb();
  444. if (!tsk_is_polling(p))
  445. smp_send_reschedule(cpu);
  446. }
  447. void resched_cpu(int cpu)
  448. {
  449. struct rq *rq = cpu_rq(cpu);
  450. unsigned long flags;
  451. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  452. return;
  453. resched_task(cpu_curr(cpu));
  454. raw_spin_unlock_irqrestore(&rq->lock, flags);
  455. }
  456. #ifdef CONFIG_SMP
  457. #ifdef CONFIG_NO_HZ_COMMON
  458. /*
  459. * In the semi idle case, use the nearest busy cpu for migrating timers
  460. * from an idle cpu. This is good for power-savings.
  461. *
  462. * We don't do similar optimization for completely idle system, as
  463. * selecting an idle cpu will add more delays to the timers than intended
  464. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  465. */
  466. int get_nohz_timer_target(int pinned)
  467. {
  468. int cpu = smp_processor_id();
  469. int i;
  470. struct sched_domain *sd;
  471. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  472. return cpu;
  473. rcu_read_lock();
  474. for_each_domain(cpu, sd) {
  475. for_each_cpu(i, sched_domain_span(sd)) {
  476. if (!idle_cpu(i)) {
  477. cpu = i;
  478. goto unlock;
  479. }
  480. }
  481. }
  482. unlock:
  483. rcu_read_unlock();
  484. return cpu;
  485. }
  486. /*
  487. * When add_timer_on() enqueues a timer into the timer wheel of an
  488. * idle CPU then this timer might expire before the next timer event
  489. * which is scheduled to wake up that CPU. In case of a completely
  490. * idle system the next event might even be infinite time into the
  491. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  492. * leaves the inner idle loop so the newly added timer is taken into
  493. * account when the CPU goes back to idle and evaluates the timer
  494. * wheel for the next timer event.
  495. */
  496. static void wake_up_idle_cpu(int cpu)
  497. {
  498. struct rq *rq = cpu_rq(cpu);
  499. if (cpu == smp_processor_id())
  500. return;
  501. /*
  502. * This is safe, as this function is called with the timer
  503. * wheel base lock of (cpu) held. When the CPU is on the way
  504. * to idle and has not yet set rq->curr to idle then it will
  505. * be serialized on the timer wheel base lock and take the new
  506. * timer into account automatically.
  507. */
  508. if (rq->curr != rq->idle)
  509. return;
  510. /*
  511. * We can set TIF_RESCHED on the idle task of the other CPU
  512. * lockless. The worst case is that the other CPU runs the
  513. * idle task through an additional NOOP schedule()
  514. */
  515. set_tsk_need_resched(rq->idle);
  516. /* NEED_RESCHED must be visible before we test polling */
  517. smp_mb();
  518. if (!tsk_is_polling(rq->idle))
  519. smp_send_reschedule(cpu);
  520. }
  521. static bool wake_up_full_nohz_cpu(int cpu)
  522. {
  523. if (tick_nohz_full_cpu(cpu)) {
  524. if (cpu != smp_processor_id() ||
  525. tick_nohz_tick_stopped())
  526. smp_send_reschedule(cpu);
  527. return true;
  528. }
  529. return false;
  530. }
  531. void wake_up_nohz_cpu(int cpu)
  532. {
  533. if (!wake_up_full_nohz_cpu(cpu))
  534. wake_up_idle_cpu(cpu);
  535. }
  536. static inline bool got_nohz_idle_kick(void)
  537. {
  538. int cpu = smp_processor_id();
  539. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  540. return false;
  541. if (idle_cpu(cpu) && !need_resched())
  542. return true;
  543. /*
  544. * We can't run Idle Load Balance on this CPU for this time so we
  545. * cancel it and clear NOHZ_BALANCE_KICK
  546. */
  547. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  548. return false;
  549. }
  550. #else /* CONFIG_NO_HZ_COMMON */
  551. static inline bool got_nohz_idle_kick(void)
  552. {
  553. return false;
  554. }
  555. #endif /* CONFIG_NO_HZ_COMMON */
  556. #ifdef CONFIG_NO_HZ_FULL
  557. bool sched_can_stop_tick(void)
  558. {
  559. struct rq *rq;
  560. rq = this_rq();
  561. /* Make sure rq->nr_running update is visible after the IPI */
  562. smp_rmb();
  563. /* More than one running task need preemption */
  564. if (rq->nr_running > 1)
  565. return false;
  566. return true;
  567. }
  568. #endif /* CONFIG_NO_HZ_FULL */
  569. void sched_avg_update(struct rq *rq)
  570. {
  571. s64 period = sched_avg_period();
  572. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  573. /*
  574. * Inline assembly required to prevent the compiler
  575. * optimising this loop into a divmod call.
  576. * See __iter_div_u64_rem() for another example of this.
  577. */
  578. asm("" : "+rm" (rq->age_stamp));
  579. rq->age_stamp += period;
  580. rq->rt_avg /= 2;
  581. }
  582. }
  583. #endif /* CONFIG_SMP */
  584. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  585. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  586. /*
  587. * Iterate task_group tree rooted at *from, calling @down when first entering a
  588. * node and @up when leaving it for the final time.
  589. *
  590. * Caller must hold rcu_lock or sufficient equivalent.
  591. */
  592. int walk_tg_tree_from(struct task_group *from,
  593. tg_visitor down, tg_visitor up, void *data)
  594. {
  595. struct task_group *parent, *child;
  596. int ret;
  597. parent = from;
  598. down:
  599. ret = (*down)(parent, data);
  600. if (ret)
  601. goto out;
  602. list_for_each_entry_rcu(child, &parent->children, siblings) {
  603. parent = child;
  604. goto down;
  605. up:
  606. continue;
  607. }
  608. ret = (*up)(parent, data);
  609. if (ret || parent == from)
  610. goto out;
  611. child = parent;
  612. parent = parent->parent;
  613. if (parent)
  614. goto up;
  615. out:
  616. return ret;
  617. }
  618. int tg_nop(struct task_group *tg, void *data)
  619. {
  620. return 0;
  621. }
  622. #endif
  623. static void set_load_weight(struct task_struct *p)
  624. {
  625. int prio = p->static_prio - MAX_RT_PRIO;
  626. struct load_weight *load = &p->se.load;
  627. /*
  628. * SCHED_IDLE tasks get minimal weight:
  629. */
  630. if (p->policy == SCHED_IDLE) {
  631. load->weight = scale_load(WEIGHT_IDLEPRIO);
  632. load->inv_weight = WMULT_IDLEPRIO;
  633. return;
  634. }
  635. load->weight = scale_load(prio_to_weight[prio]);
  636. load->inv_weight = prio_to_wmult[prio];
  637. }
  638. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  639. {
  640. update_rq_clock(rq);
  641. sched_info_queued(rq, p);
  642. p->sched_class->enqueue_task(rq, p, flags);
  643. }
  644. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  645. {
  646. update_rq_clock(rq);
  647. sched_info_dequeued(rq, p);
  648. p->sched_class->dequeue_task(rq, p, flags);
  649. }
  650. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  651. {
  652. if (task_contributes_to_load(p))
  653. rq->nr_uninterruptible--;
  654. enqueue_task(rq, p, flags);
  655. }
  656. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  657. {
  658. if (task_contributes_to_load(p))
  659. rq->nr_uninterruptible++;
  660. dequeue_task(rq, p, flags);
  661. }
  662. static void update_rq_clock_task(struct rq *rq, s64 delta)
  663. {
  664. /*
  665. * In theory, the compile should just see 0 here, and optimize out the call
  666. * to sched_rt_avg_update. But I don't trust it...
  667. */
  668. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  669. s64 steal = 0, irq_delta = 0;
  670. #endif
  671. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  672. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  673. /*
  674. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  675. * this case when a previous update_rq_clock() happened inside a
  676. * {soft,}irq region.
  677. *
  678. * When this happens, we stop ->clock_task and only update the
  679. * prev_irq_time stamp to account for the part that fit, so that a next
  680. * update will consume the rest. This ensures ->clock_task is
  681. * monotonic.
  682. *
  683. * It does however cause some slight miss-attribution of {soft,}irq
  684. * time, a more accurate solution would be to update the irq_time using
  685. * the current rq->clock timestamp, except that would require using
  686. * atomic ops.
  687. */
  688. if (irq_delta > delta)
  689. irq_delta = delta;
  690. rq->prev_irq_time += irq_delta;
  691. delta -= irq_delta;
  692. #endif
  693. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  694. if (static_key_false((&paravirt_steal_rq_enabled))) {
  695. steal = paravirt_steal_clock(cpu_of(rq));
  696. steal -= rq->prev_steal_time_rq;
  697. if (unlikely(steal > delta))
  698. steal = delta;
  699. rq->prev_steal_time_rq += steal;
  700. delta -= steal;
  701. }
  702. #endif
  703. rq->clock_task += delta;
  704. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  705. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  706. sched_rt_avg_update(rq, irq_delta + steal);
  707. #endif
  708. }
  709. void sched_set_stop_task(int cpu, struct task_struct *stop)
  710. {
  711. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  712. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  713. if (stop) {
  714. /*
  715. * Make it appear like a SCHED_FIFO task, its something
  716. * userspace knows about and won't get confused about.
  717. *
  718. * Also, it will make PI more or less work without too
  719. * much confusion -- but then, stop work should not
  720. * rely on PI working anyway.
  721. */
  722. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  723. stop->sched_class = &stop_sched_class;
  724. }
  725. cpu_rq(cpu)->stop = stop;
  726. if (old_stop) {
  727. /*
  728. * Reset it back to a normal scheduling class so that
  729. * it can die in pieces.
  730. */
  731. old_stop->sched_class = &rt_sched_class;
  732. }
  733. }
  734. /*
  735. * __normal_prio - return the priority that is based on the static prio
  736. */
  737. static inline int __normal_prio(struct task_struct *p)
  738. {
  739. return p->static_prio;
  740. }
  741. /*
  742. * Calculate the expected normal priority: i.e. priority
  743. * without taking RT-inheritance into account. Might be
  744. * boosted by interactivity modifiers. Changes upon fork,
  745. * setprio syscalls, and whenever the interactivity
  746. * estimator recalculates.
  747. */
  748. static inline int normal_prio(struct task_struct *p)
  749. {
  750. int prio;
  751. if (task_has_dl_policy(p))
  752. prio = MAX_DL_PRIO-1;
  753. else if (task_has_rt_policy(p))
  754. prio = MAX_RT_PRIO-1 - p->rt_priority;
  755. else
  756. prio = __normal_prio(p);
  757. return prio;
  758. }
  759. /*
  760. * Calculate the current priority, i.e. the priority
  761. * taken into account by the scheduler. This value might
  762. * be boosted by RT tasks, or might be boosted by
  763. * interactivity modifiers. Will be RT if the task got
  764. * RT-boosted. If not then it returns p->normal_prio.
  765. */
  766. static int effective_prio(struct task_struct *p)
  767. {
  768. p->normal_prio = normal_prio(p);
  769. /*
  770. * If we are RT tasks or we were boosted to RT priority,
  771. * keep the priority unchanged. Otherwise, update priority
  772. * to the normal priority:
  773. */
  774. if (!rt_prio(p->prio))
  775. return p->normal_prio;
  776. return p->prio;
  777. }
  778. /**
  779. * task_curr - is this task currently executing on a CPU?
  780. * @p: the task in question.
  781. *
  782. * Return: 1 if the task is currently executing. 0 otherwise.
  783. */
  784. inline int task_curr(const struct task_struct *p)
  785. {
  786. return cpu_curr(task_cpu(p)) == p;
  787. }
  788. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  789. const struct sched_class *prev_class,
  790. int oldprio)
  791. {
  792. if (prev_class != p->sched_class) {
  793. if (prev_class->switched_from)
  794. prev_class->switched_from(rq, p);
  795. p->sched_class->switched_to(rq, p);
  796. } else if (oldprio != p->prio || dl_task(p))
  797. p->sched_class->prio_changed(rq, p, oldprio);
  798. }
  799. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  800. {
  801. const struct sched_class *class;
  802. if (p->sched_class == rq->curr->sched_class) {
  803. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  804. } else {
  805. for_each_class(class) {
  806. if (class == rq->curr->sched_class)
  807. break;
  808. if (class == p->sched_class) {
  809. resched_task(rq->curr);
  810. break;
  811. }
  812. }
  813. }
  814. /*
  815. * A queue event has occurred, and we're going to schedule. In
  816. * this case, we can save a useless back to back clock update.
  817. */
  818. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  819. rq->skip_clock_update = 1;
  820. }
  821. #ifdef CONFIG_SMP
  822. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  823. {
  824. #ifdef CONFIG_SCHED_DEBUG
  825. /*
  826. * We should never call set_task_cpu() on a blocked task,
  827. * ttwu() will sort out the placement.
  828. */
  829. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  830. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  831. #ifdef CONFIG_LOCKDEP
  832. /*
  833. * The caller should hold either p->pi_lock or rq->lock, when changing
  834. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  835. *
  836. * sched_move_task() holds both and thus holding either pins the cgroup,
  837. * see task_group().
  838. *
  839. * Furthermore, all task_rq users should acquire both locks, see
  840. * task_rq_lock().
  841. */
  842. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  843. lockdep_is_held(&task_rq(p)->lock)));
  844. #endif
  845. #endif
  846. trace_sched_migrate_task(p, new_cpu);
  847. if (task_cpu(p) != new_cpu) {
  848. if (p->sched_class->migrate_task_rq)
  849. p->sched_class->migrate_task_rq(p, new_cpu);
  850. p->se.nr_migrations++;
  851. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  852. }
  853. __set_task_cpu(p, new_cpu);
  854. }
  855. static void __migrate_swap_task(struct task_struct *p, int cpu)
  856. {
  857. if (p->on_rq) {
  858. struct rq *src_rq, *dst_rq;
  859. src_rq = task_rq(p);
  860. dst_rq = cpu_rq(cpu);
  861. deactivate_task(src_rq, p, 0);
  862. set_task_cpu(p, cpu);
  863. activate_task(dst_rq, p, 0);
  864. check_preempt_curr(dst_rq, p, 0);
  865. } else {
  866. /*
  867. * Task isn't running anymore; make it appear like we migrated
  868. * it before it went to sleep. This means on wakeup we make the
  869. * previous cpu our targer instead of where it really is.
  870. */
  871. p->wake_cpu = cpu;
  872. }
  873. }
  874. struct migration_swap_arg {
  875. struct task_struct *src_task, *dst_task;
  876. int src_cpu, dst_cpu;
  877. };
  878. static int migrate_swap_stop(void *data)
  879. {
  880. struct migration_swap_arg *arg = data;
  881. struct rq *src_rq, *dst_rq;
  882. int ret = -EAGAIN;
  883. src_rq = cpu_rq(arg->src_cpu);
  884. dst_rq = cpu_rq(arg->dst_cpu);
  885. double_raw_lock(&arg->src_task->pi_lock,
  886. &arg->dst_task->pi_lock);
  887. double_rq_lock(src_rq, dst_rq);
  888. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  889. goto unlock;
  890. if (task_cpu(arg->src_task) != arg->src_cpu)
  891. goto unlock;
  892. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  893. goto unlock;
  894. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  895. goto unlock;
  896. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  897. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  898. ret = 0;
  899. unlock:
  900. double_rq_unlock(src_rq, dst_rq);
  901. raw_spin_unlock(&arg->dst_task->pi_lock);
  902. raw_spin_unlock(&arg->src_task->pi_lock);
  903. return ret;
  904. }
  905. /*
  906. * Cross migrate two tasks
  907. */
  908. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  909. {
  910. struct migration_swap_arg arg;
  911. int ret = -EINVAL;
  912. arg = (struct migration_swap_arg){
  913. .src_task = cur,
  914. .src_cpu = task_cpu(cur),
  915. .dst_task = p,
  916. .dst_cpu = task_cpu(p),
  917. };
  918. if (arg.src_cpu == arg.dst_cpu)
  919. goto out;
  920. /*
  921. * These three tests are all lockless; this is OK since all of them
  922. * will be re-checked with proper locks held further down the line.
  923. */
  924. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  925. goto out;
  926. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  927. goto out;
  928. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  929. goto out;
  930. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  931. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  932. out:
  933. return ret;
  934. }
  935. struct migration_arg {
  936. struct task_struct *task;
  937. int dest_cpu;
  938. };
  939. static int migration_cpu_stop(void *data);
  940. /*
  941. * wait_task_inactive - wait for a thread to unschedule.
  942. *
  943. * If @match_state is nonzero, it's the @p->state value just checked and
  944. * not expected to change. If it changes, i.e. @p might have woken up,
  945. * then return zero. When we succeed in waiting for @p to be off its CPU,
  946. * we return a positive number (its total switch count). If a second call
  947. * a short while later returns the same number, the caller can be sure that
  948. * @p has remained unscheduled the whole time.
  949. *
  950. * The caller must ensure that the task *will* unschedule sometime soon,
  951. * else this function might spin for a *long* time. This function can't
  952. * be called with interrupts off, or it may introduce deadlock with
  953. * smp_call_function() if an IPI is sent by the same process we are
  954. * waiting to become inactive.
  955. */
  956. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  957. {
  958. unsigned long flags;
  959. int running, on_rq;
  960. unsigned long ncsw;
  961. struct rq *rq;
  962. for (;;) {
  963. /*
  964. * We do the initial early heuristics without holding
  965. * any task-queue locks at all. We'll only try to get
  966. * the runqueue lock when things look like they will
  967. * work out!
  968. */
  969. rq = task_rq(p);
  970. /*
  971. * If the task is actively running on another CPU
  972. * still, just relax and busy-wait without holding
  973. * any locks.
  974. *
  975. * NOTE! Since we don't hold any locks, it's not
  976. * even sure that "rq" stays as the right runqueue!
  977. * But we don't care, since "task_running()" will
  978. * return false if the runqueue has changed and p
  979. * is actually now running somewhere else!
  980. */
  981. while (task_running(rq, p)) {
  982. if (match_state && unlikely(p->state != match_state))
  983. return 0;
  984. cpu_relax();
  985. }
  986. /*
  987. * Ok, time to look more closely! We need the rq
  988. * lock now, to be *sure*. If we're wrong, we'll
  989. * just go back and repeat.
  990. */
  991. rq = task_rq_lock(p, &flags);
  992. trace_sched_wait_task(p);
  993. running = task_running(rq, p);
  994. on_rq = p->on_rq;
  995. ncsw = 0;
  996. if (!match_state || p->state == match_state)
  997. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  998. task_rq_unlock(rq, p, &flags);
  999. /*
  1000. * If it changed from the expected state, bail out now.
  1001. */
  1002. if (unlikely(!ncsw))
  1003. break;
  1004. /*
  1005. * Was it really running after all now that we
  1006. * checked with the proper locks actually held?
  1007. *
  1008. * Oops. Go back and try again..
  1009. */
  1010. if (unlikely(running)) {
  1011. cpu_relax();
  1012. continue;
  1013. }
  1014. /*
  1015. * It's not enough that it's not actively running,
  1016. * it must be off the runqueue _entirely_, and not
  1017. * preempted!
  1018. *
  1019. * So if it was still runnable (but just not actively
  1020. * running right now), it's preempted, and we should
  1021. * yield - it could be a while.
  1022. */
  1023. if (unlikely(on_rq)) {
  1024. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1025. set_current_state(TASK_UNINTERRUPTIBLE);
  1026. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1027. continue;
  1028. }
  1029. /*
  1030. * Ahh, all good. It wasn't running, and it wasn't
  1031. * runnable, which means that it will never become
  1032. * running in the future either. We're all done!
  1033. */
  1034. break;
  1035. }
  1036. return ncsw;
  1037. }
  1038. /***
  1039. * kick_process - kick a running thread to enter/exit the kernel
  1040. * @p: the to-be-kicked thread
  1041. *
  1042. * Cause a process which is running on another CPU to enter
  1043. * kernel-mode, without any delay. (to get signals handled.)
  1044. *
  1045. * NOTE: this function doesn't have to take the runqueue lock,
  1046. * because all it wants to ensure is that the remote task enters
  1047. * the kernel. If the IPI races and the task has been migrated
  1048. * to another CPU then no harm is done and the purpose has been
  1049. * achieved as well.
  1050. */
  1051. void kick_process(struct task_struct *p)
  1052. {
  1053. int cpu;
  1054. preempt_disable();
  1055. cpu = task_cpu(p);
  1056. if ((cpu != smp_processor_id()) && task_curr(p))
  1057. smp_send_reschedule(cpu);
  1058. preempt_enable();
  1059. }
  1060. EXPORT_SYMBOL_GPL(kick_process);
  1061. #endif /* CONFIG_SMP */
  1062. #ifdef CONFIG_SMP
  1063. /*
  1064. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1065. */
  1066. static int select_fallback_rq(int cpu, struct task_struct *p)
  1067. {
  1068. int nid = cpu_to_node(cpu);
  1069. const struct cpumask *nodemask = NULL;
  1070. enum { cpuset, possible, fail } state = cpuset;
  1071. int dest_cpu;
  1072. /*
  1073. * If the node that the cpu is on has been offlined, cpu_to_node()
  1074. * will return -1. There is no cpu on the node, and we should
  1075. * select the cpu on the other node.
  1076. */
  1077. if (nid != -1) {
  1078. nodemask = cpumask_of_node(nid);
  1079. /* Look for allowed, online CPU in same node. */
  1080. for_each_cpu(dest_cpu, nodemask) {
  1081. if (!cpu_online(dest_cpu))
  1082. continue;
  1083. if (!cpu_active(dest_cpu))
  1084. continue;
  1085. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1086. return dest_cpu;
  1087. }
  1088. }
  1089. for (;;) {
  1090. /* Any allowed, online CPU? */
  1091. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1092. if (!cpu_online(dest_cpu))
  1093. continue;
  1094. if (!cpu_active(dest_cpu))
  1095. continue;
  1096. goto out;
  1097. }
  1098. switch (state) {
  1099. case cpuset:
  1100. /* No more Mr. Nice Guy. */
  1101. cpuset_cpus_allowed_fallback(p);
  1102. state = possible;
  1103. break;
  1104. case possible:
  1105. do_set_cpus_allowed(p, cpu_possible_mask);
  1106. state = fail;
  1107. break;
  1108. case fail:
  1109. BUG();
  1110. break;
  1111. }
  1112. }
  1113. out:
  1114. if (state != cpuset) {
  1115. /*
  1116. * Don't tell them about moving exiting tasks or
  1117. * kernel threads (both mm NULL), since they never
  1118. * leave kernel.
  1119. */
  1120. if (p->mm && printk_ratelimit()) {
  1121. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1122. task_pid_nr(p), p->comm, cpu);
  1123. }
  1124. }
  1125. return dest_cpu;
  1126. }
  1127. /*
  1128. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1129. */
  1130. static inline
  1131. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1132. {
  1133. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1134. /*
  1135. * In order not to call set_task_cpu() on a blocking task we need
  1136. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1137. * cpu.
  1138. *
  1139. * Since this is common to all placement strategies, this lives here.
  1140. *
  1141. * [ this allows ->select_task() to simply return task_cpu(p) and
  1142. * not worry about this generic constraint ]
  1143. */
  1144. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1145. !cpu_online(cpu)))
  1146. cpu = select_fallback_rq(task_cpu(p), p);
  1147. return cpu;
  1148. }
  1149. static void update_avg(u64 *avg, u64 sample)
  1150. {
  1151. s64 diff = sample - *avg;
  1152. *avg += diff >> 3;
  1153. }
  1154. #endif
  1155. static void
  1156. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1157. {
  1158. #ifdef CONFIG_SCHEDSTATS
  1159. struct rq *rq = this_rq();
  1160. #ifdef CONFIG_SMP
  1161. int this_cpu = smp_processor_id();
  1162. if (cpu == this_cpu) {
  1163. schedstat_inc(rq, ttwu_local);
  1164. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1165. } else {
  1166. struct sched_domain *sd;
  1167. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1168. rcu_read_lock();
  1169. for_each_domain(this_cpu, sd) {
  1170. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1171. schedstat_inc(sd, ttwu_wake_remote);
  1172. break;
  1173. }
  1174. }
  1175. rcu_read_unlock();
  1176. }
  1177. if (wake_flags & WF_MIGRATED)
  1178. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1179. #endif /* CONFIG_SMP */
  1180. schedstat_inc(rq, ttwu_count);
  1181. schedstat_inc(p, se.statistics.nr_wakeups);
  1182. if (wake_flags & WF_SYNC)
  1183. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1184. #endif /* CONFIG_SCHEDSTATS */
  1185. }
  1186. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1187. {
  1188. activate_task(rq, p, en_flags);
  1189. p->on_rq = 1;
  1190. /* if a worker is waking up, notify workqueue */
  1191. if (p->flags & PF_WQ_WORKER)
  1192. wq_worker_waking_up(p, cpu_of(rq));
  1193. }
  1194. /*
  1195. * Mark the task runnable and perform wakeup-preemption.
  1196. */
  1197. static void
  1198. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1199. {
  1200. check_preempt_curr(rq, p, wake_flags);
  1201. trace_sched_wakeup(p, true);
  1202. p->state = TASK_RUNNING;
  1203. #ifdef CONFIG_SMP
  1204. if (p->sched_class->task_woken)
  1205. p->sched_class->task_woken(rq, p);
  1206. if (rq->idle_stamp) {
  1207. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1208. u64 max = 2*rq->max_idle_balance_cost;
  1209. update_avg(&rq->avg_idle, delta);
  1210. if (rq->avg_idle > max)
  1211. rq->avg_idle = max;
  1212. rq->idle_stamp = 0;
  1213. }
  1214. #endif
  1215. }
  1216. static void
  1217. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1218. {
  1219. #ifdef CONFIG_SMP
  1220. if (p->sched_contributes_to_load)
  1221. rq->nr_uninterruptible--;
  1222. #endif
  1223. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1224. ttwu_do_wakeup(rq, p, wake_flags);
  1225. }
  1226. /*
  1227. * Called in case the task @p isn't fully descheduled from its runqueue,
  1228. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1229. * since all we need to do is flip p->state to TASK_RUNNING, since
  1230. * the task is still ->on_rq.
  1231. */
  1232. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1233. {
  1234. struct rq *rq;
  1235. int ret = 0;
  1236. rq = __task_rq_lock(p);
  1237. if (p->on_rq) {
  1238. /* check_preempt_curr() may use rq clock */
  1239. update_rq_clock(rq);
  1240. ttwu_do_wakeup(rq, p, wake_flags);
  1241. ret = 1;
  1242. }
  1243. __task_rq_unlock(rq);
  1244. return ret;
  1245. }
  1246. #ifdef CONFIG_SMP
  1247. static void sched_ttwu_pending(void)
  1248. {
  1249. struct rq *rq = this_rq();
  1250. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1251. struct task_struct *p;
  1252. raw_spin_lock(&rq->lock);
  1253. while (llist) {
  1254. p = llist_entry(llist, struct task_struct, wake_entry);
  1255. llist = llist_next(llist);
  1256. ttwu_do_activate(rq, p, 0);
  1257. }
  1258. raw_spin_unlock(&rq->lock);
  1259. }
  1260. void scheduler_ipi(void)
  1261. {
  1262. /*
  1263. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1264. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1265. * this IPI.
  1266. */
  1267. preempt_fold_need_resched();
  1268. if (llist_empty(&this_rq()->wake_list)
  1269. && !tick_nohz_full_cpu(smp_processor_id())
  1270. && !got_nohz_idle_kick())
  1271. return;
  1272. /*
  1273. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1274. * traditionally all their work was done from the interrupt return
  1275. * path. Now that we actually do some work, we need to make sure
  1276. * we do call them.
  1277. *
  1278. * Some archs already do call them, luckily irq_enter/exit nest
  1279. * properly.
  1280. *
  1281. * Arguably we should visit all archs and update all handlers,
  1282. * however a fair share of IPIs are still resched only so this would
  1283. * somewhat pessimize the simple resched case.
  1284. */
  1285. irq_enter();
  1286. tick_nohz_full_check();
  1287. sched_ttwu_pending();
  1288. /*
  1289. * Check if someone kicked us for doing the nohz idle load balance.
  1290. */
  1291. if (unlikely(got_nohz_idle_kick())) {
  1292. this_rq()->idle_balance = 1;
  1293. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1294. }
  1295. irq_exit();
  1296. }
  1297. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1298. {
  1299. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1300. smp_send_reschedule(cpu);
  1301. }
  1302. bool cpus_share_cache(int this_cpu, int that_cpu)
  1303. {
  1304. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1305. }
  1306. #endif /* CONFIG_SMP */
  1307. static void ttwu_queue(struct task_struct *p, int cpu)
  1308. {
  1309. struct rq *rq = cpu_rq(cpu);
  1310. #if defined(CONFIG_SMP)
  1311. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1312. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1313. ttwu_queue_remote(p, cpu);
  1314. return;
  1315. }
  1316. #endif
  1317. raw_spin_lock(&rq->lock);
  1318. ttwu_do_activate(rq, p, 0);
  1319. raw_spin_unlock(&rq->lock);
  1320. }
  1321. /**
  1322. * try_to_wake_up - wake up a thread
  1323. * @p: the thread to be awakened
  1324. * @state: the mask of task states that can be woken
  1325. * @wake_flags: wake modifier flags (WF_*)
  1326. *
  1327. * Put it on the run-queue if it's not already there. The "current"
  1328. * thread is always on the run-queue (except when the actual
  1329. * re-schedule is in progress), and as such you're allowed to do
  1330. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1331. * runnable without the overhead of this.
  1332. *
  1333. * Return: %true if @p was woken up, %false if it was already running.
  1334. * or @state didn't match @p's state.
  1335. */
  1336. static int
  1337. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1338. {
  1339. unsigned long flags;
  1340. int cpu, success = 0;
  1341. /*
  1342. * If we are going to wake up a thread waiting for CONDITION we
  1343. * need to ensure that CONDITION=1 done by the caller can not be
  1344. * reordered with p->state check below. This pairs with mb() in
  1345. * set_current_state() the waiting thread does.
  1346. */
  1347. smp_mb__before_spinlock();
  1348. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1349. if (!(p->state & state))
  1350. goto out;
  1351. success = 1; /* we're going to change ->state */
  1352. cpu = task_cpu(p);
  1353. if (p->on_rq && ttwu_remote(p, wake_flags))
  1354. goto stat;
  1355. #ifdef CONFIG_SMP
  1356. /*
  1357. * If the owning (remote) cpu is still in the middle of schedule() with
  1358. * this task as prev, wait until its done referencing the task.
  1359. */
  1360. while (p->on_cpu)
  1361. cpu_relax();
  1362. /*
  1363. * Pairs with the smp_wmb() in finish_lock_switch().
  1364. */
  1365. smp_rmb();
  1366. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1367. p->state = TASK_WAKING;
  1368. if (p->sched_class->task_waking)
  1369. p->sched_class->task_waking(p);
  1370. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1371. if (task_cpu(p) != cpu) {
  1372. wake_flags |= WF_MIGRATED;
  1373. set_task_cpu(p, cpu);
  1374. }
  1375. #endif /* CONFIG_SMP */
  1376. ttwu_queue(p, cpu);
  1377. stat:
  1378. ttwu_stat(p, cpu, wake_flags);
  1379. out:
  1380. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1381. return success;
  1382. }
  1383. /**
  1384. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1385. * @p: the thread to be awakened
  1386. *
  1387. * Put @p on the run-queue if it's not already there. The caller must
  1388. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1389. * the current task.
  1390. */
  1391. static void try_to_wake_up_local(struct task_struct *p)
  1392. {
  1393. struct rq *rq = task_rq(p);
  1394. if (WARN_ON_ONCE(rq != this_rq()) ||
  1395. WARN_ON_ONCE(p == current))
  1396. return;
  1397. lockdep_assert_held(&rq->lock);
  1398. if (!raw_spin_trylock(&p->pi_lock)) {
  1399. raw_spin_unlock(&rq->lock);
  1400. raw_spin_lock(&p->pi_lock);
  1401. raw_spin_lock(&rq->lock);
  1402. }
  1403. if (!(p->state & TASK_NORMAL))
  1404. goto out;
  1405. if (!p->on_rq)
  1406. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1407. ttwu_do_wakeup(rq, p, 0);
  1408. ttwu_stat(p, smp_processor_id(), 0);
  1409. out:
  1410. raw_spin_unlock(&p->pi_lock);
  1411. }
  1412. /**
  1413. * wake_up_process - Wake up a specific process
  1414. * @p: The process to be woken up.
  1415. *
  1416. * Attempt to wake up the nominated process and move it to the set of runnable
  1417. * processes.
  1418. *
  1419. * Return: 1 if the process was woken up, 0 if it was already running.
  1420. *
  1421. * It may be assumed that this function implies a write memory barrier before
  1422. * changing the task state if and only if any tasks are woken up.
  1423. */
  1424. int wake_up_process(struct task_struct *p)
  1425. {
  1426. WARN_ON(task_is_stopped_or_traced(p));
  1427. return try_to_wake_up(p, TASK_NORMAL, 0);
  1428. }
  1429. EXPORT_SYMBOL(wake_up_process);
  1430. int wake_up_state(struct task_struct *p, unsigned int state)
  1431. {
  1432. return try_to_wake_up(p, state, 0);
  1433. }
  1434. /*
  1435. * Perform scheduler related setup for a newly forked process p.
  1436. * p is forked by current.
  1437. *
  1438. * __sched_fork() is basic setup used by init_idle() too:
  1439. */
  1440. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1441. {
  1442. p->on_rq = 0;
  1443. p->se.on_rq = 0;
  1444. p->se.exec_start = 0;
  1445. p->se.sum_exec_runtime = 0;
  1446. p->se.prev_sum_exec_runtime = 0;
  1447. p->se.nr_migrations = 0;
  1448. p->se.vruntime = 0;
  1449. INIT_LIST_HEAD(&p->se.group_node);
  1450. #ifdef CONFIG_SCHEDSTATS
  1451. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1452. #endif
  1453. RB_CLEAR_NODE(&p->dl.rb_node);
  1454. hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1455. p->dl.dl_runtime = p->dl.runtime = 0;
  1456. p->dl.dl_deadline = p->dl.deadline = 0;
  1457. p->dl.dl_period = 0;
  1458. p->dl.flags = 0;
  1459. INIT_LIST_HEAD(&p->rt.run_list);
  1460. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1461. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1462. #endif
  1463. #ifdef CONFIG_NUMA_BALANCING
  1464. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1465. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1466. p->mm->numa_scan_seq = 0;
  1467. }
  1468. if (clone_flags & CLONE_VM)
  1469. p->numa_preferred_nid = current->numa_preferred_nid;
  1470. else
  1471. p->numa_preferred_nid = -1;
  1472. p->node_stamp = 0ULL;
  1473. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1474. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1475. p->numa_work.next = &p->numa_work;
  1476. p->numa_faults_memory = NULL;
  1477. p->numa_faults_buffer_memory = NULL;
  1478. p->last_task_numa_placement = 0;
  1479. p->last_sum_exec_runtime = 0;
  1480. INIT_LIST_HEAD(&p->numa_entry);
  1481. p->numa_group = NULL;
  1482. #endif /* CONFIG_NUMA_BALANCING */
  1483. }
  1484. #ifdef CONFIG_NUMA_BALANCING
  1485. #ifdef CONFIG_SCHED_DEBUG
  1486. void set_numabalancing_state(bool enabled)
  1487. {
  1488. if (enabled)
  1489. sched_feat_set("NUMA");
  1490. else
  1491. sched_feat_set("NO_NUMA");
  1492. }
  1493. #else
  1494. __read_mostly bool numabalancing_enabled;
  1495. void set_numabalancing_state(bool enabled)
  1496. {
  1497. numabalancing_enabled = enabled;
  1498. }
  1499. #endif /* CONFIG_SCHED_DEBUG */
  1500. #ifdef CONFIG_PROC_SYSCTL
  1501. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1502. void __user *buffer, size_t *lenp, loff_t *ppos)
  1503. {
  1504. struct ctl_table t;
  1505. int err;
  1506. int state = numabalancing_enabled;
  1507. if (write && !capable(CAP_SYS_ADMIN))
  1508. return -EPERM;
  1509. t = *table;
  1510. t.data = &state;
  1511. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1512. if (err < 0)
  1513. return err;
  1514. if (write)
  1515. set_numabalancing_state(state);
  1516. return err;
  1517. }
  1518. #endif
  1519. #endif
  1520. /*
  1521. * fork()/clone()-time setup:
  1522. */
  1523. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1524. {
  1525. unsigned long flags;
  1526. int cpu = get_cpu();
  1527. __sched_fork(clone_flags, p);
  1528. /*
  1529. * We mark the process as running here. This guarantees that
  1530. * nobody will actually run it, and a signal or other external
  1531. * event cannot wake it up and insert it on the runqueue either.
  1532. */
  1533. p->state = TASK_RUNNING;
  1534. /*
  1535. * Make sure we do not leak PI boosting priority to the child.
  1536. */
  1537. p->prio = current->normal_prio;
  1538. /*
  1539. * Revert to default priority/policy on fork if requested.
  1540. */
  1541. if (unlikely(p->sched_reset_on_fork)) {
  1542. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1543. p->policy = SCHED_NORMAL;
  1544. p->static_prio = NICE_TO_PRIO(0);
  1545. p->rt_priority = 0;
  1546. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1547. p->static_prio = NICE_TO_PRIO(0);
  1548. p->prio = p->normal_prio = __normal_prio(p);
  1549. set_load_weight(p);
  1550. /*
  1551. * We don't need the reset flag anymore after the fork. It has
  1552. * fulfilled its duty:
  1553. */
  1554. p->sched_reset_on_fork = 0;
  1555. }
  1556. if (dl_prio(p->prio)) {
  1557. put_cpu();
  1558. return -EAGAIN;
  1559. } else if (rt_prio(p->prio)) {
  1560. p->sched_class = &rt_sched_class;
  1561. } else {
  1562. p->sched_class = &fair_sched_class;
  1563. }
  1564. if (p->sched_class->task_fork)
  1565. p->sched_class->task_fork(p);
  1566. /*
  1567. * The child is not yet in the pid-hash so no cgroup attach races,
  1568. * and the cgroup is pinned to this child due to cgroup_fork()
  1569. * is ran before sched_fork().
  1570. *
  1571. * Silence PROVE_RCU.
  1572. */
  1573. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1574. set_task_cpu(p, cpu);
  1575. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1576. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1577. if (likely(sched_info_on()))
  1578. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1579. #endif
  1580. #if defined(CONFIG_SMP)
  1581. p->on_cpu = 0;
  1582. #endif
  1583. init_task_preempt_count(p);
  1584. #ifdef CONFIG_SMP
  1585. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1586. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1587. #endif
  1588. put_cpu();
  1589. return 0;
  1590. }
  1591. unsigned long to_ratio(u64 period, u64 runtime)
  1592. {
  1593. if (runtime == RUNTIME_INF)
  1594. return 1ULL << 20;
  1595. /*
  1596. * Doing this here saves a lot of checks in all
  1597. * the calling paths, and returning zero seems
  1598. * safe for them anyway.
  1599. */
  1600. if (period == 0)
  1601. return 0;
  1602. return div64_u64(runtime << 20, period);
  1603. }
  1604. #ifdef CONFIG_SMP
  1605. inline struct dl_bw *dl_bw_of(int i)
  1606. {
  1607. return &cpu_rq(i)->rd->dl_bw;
  1608. }
  1609. static inline int dl_bw_cpus(int i)
  1610. {
  1611. struct root_domain *rd = cpu_rq(i)->rd;
  1612. int cpus = 0;
  1613. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1614. cpus++;
  1615. return cpus;
  1616. }
  1617. #else
  1618. inline struct dl_bw *dl_bw_of(int i)
  1619. {
  1620. return &cpu_rq(i)->dl.dl_bw;
  1621. }
  1622. static inline int dl_bw_cpus(int i)
  1623. {
  1624. return 1;
  1625. }
  1626. #endif
  1627. static inline
  1628. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  1629. {
  1630. dl_b->total_bw -= tsk_bw;
  1631. }
  1632. static inline
  1633. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  1634. {
  1635. dl_b->total_bw += tsk_bw;
  1636. }
  1637. static inline
  1638. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  1639. {
  1640. return dl_b->bw != -1 &&
  1641. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  1642. }
  1643. /*
  1644. * We must be sure that accepting a new task (or allowing changing the
  1645. * parameters of an existing one) is consistent with the bandwidth
  1646. * constraints. If yes, this function also accordingly updates the currently
  1647. * allocated bandwidth to reflect the new situation.
  1648. *
  1649. * This function is called while holding p's rq->lock.
  1650. */
  1651. static int dl_overflow(struct task_struct *p, int policy,
  1652. const struct sched_attr *attr)
  1653. {
  1654. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1655. u64 period = attr->sched_period ?: attr->sched_deadline;
  1656. u64 runtime = attr->sched_runtime;
  1657. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1658. int cpus, err = -1;
  1659. if (new_bw == p->dl.dl_bw)
  1660. return 0;
  1661. /*
  1662. * Either if a task, enters, leave, or stays -deadline but changes
  1663. * its parameters, we may need to update accordingly the total
  1664. * allocated bandwidth of the container.
  1665. */
  1666. raw_spin_lock(&dl_b->lock);
  1667. cpus = dl_bw_cpus(task_cpu(p));
  1668. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1669. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1670. __dl_add(dl_b, new_bw);
  1671. err = 0;
  1672. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1673. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1674. __dl_clear(dl_b, p->dl.dl_bw);
  1675. __dl_add(dl_b, new_bw);
  1676. err = 0;
  1677. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1678. __dl_clear(dl_b, p->dl.dl_bw);
  1679. err = 0;
  1680. }
  1681. raw_spin_unlock(&dl_b->lock);
  1682. return err;
  1683. }
  1684. extern void init_dl_bw(struct dl_bw *dl_b);
  1685. /*
  1686. * wake_up_new_task - wake up a newly created task for the first time.
  1687. *
  1688. * This function will do some initial scheduler statistics housekeeping
  1689. * that must be done for every newly created context, then puts the task
  1690. * on the runqueue and wakes it.
  1691. */
  1692. void wake_up_new_task(struct task_struct *p)
  1693. {
  1694. unsigned long flags;
  1695. struct rq *rq;
  1696. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1697. #ifdef CONFIG_SMP
  1698. /*
  1699. * Fork balancing, do it here and not earlier because:
  1700. * - cpus_allowed can change in the fork path
  1701. * - any previously selected cpu might disappear through hotplug
  1702. */
  1703. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1704. #endif
  1705. /* Initialize new task's runnable average */
  1706. init_task_runnable_average(p);
  1707. rq = __task_rq_lock(p);
  1708. activate_task(rq, p, 0);
  1709. p->on_rq = 1;
  1710. trace_sched_wakeup_new(p, true);
  1711. check_preempt_curr(rq, p, WF_FORK);
  1712. #ifdef CONFIG_SMP
  1713. if (p->sched_class->task_woken)
  1714. p->sched_class->task_woken(rq, p);
  1715. #endif
  1716. task_rq_unlock(rq, p, &flags);
  1717. }
  1718. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1719. /**
  1720. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1721. * @notifier: notifier struct to register
  1722. */
  1723. void preempt_notifier_register(struct preempt_notifier *notifier)
  1724. {
  1725. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1726. }
  1727. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1728. /**
  1729. * preempt_notifier_unregister - no longer interested in preemption notifications
  1730. * @notifier: notifier struct to unregister
  1731. *
  1732. * This is safe to call from within a preemption notifier.
  1733. */
  1734. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1735. {
  1736. hlist_del(&notifier->link);
  1737. }
  1738. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1739. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1740. {
  1741. struct preempt_notifier *notifier;
  1742. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1743. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1744. }
  1745. static void
  1746. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1747. struct task_struct *next)
  1748. {
  1749. struct preempt_notifier *notifier;
  1750. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1751. notifier->ops->sched_out(notifier, next);
  1752. }
  1753. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1754. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1755. {
  1756. }
  1757. static void
  1758. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1759. struct task_struct *next)
  1760. {
  1761. }
  1762. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1763. /**
  1764. * prepare_task_switch - prepare to switch tasks
  1765. * @rq: the runqueue preparing to switch
  1766. * @prev: the current task that is being switched out
  1767. * @next: the task we are going to switch to.
  1768. *
  1769. * This is called with the rq lock held and interrupts off. It must
  1770. * be paired with a subsequent finish_task_switch after the context
  1771. * switch.
  1772. *
  1773. * prepare_task_switch sets up locking and calls architecture specific
  1774. * hooks.
  1775. */
  1776. static inline void
  1777. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1778. struct task_struct *next)
  1779. {
  1780. trace_sched_switch(prev, next);
  1781. sched_info_switch(rq, prev, next);
  1782. perf_event_task_sched_out(prev, next);
  1783. fire_sched_out_preempt_notifiers(prev, next);
  1784. prepare_lock_switch(rq, next);
  1785. prepare_arch_switch(next);
  1786. }
  1787. /**
  1788. * finish_task_switch - clean up after a task-switch
  1789. * @rq: runqueue associated with task-switch
  1790. * @prev: the thread we just switched away from.
  1791. *
  1792. * finish_task_switch must be called after the context switch, paired
  1793. * with a prepare_task_switch call before the context switch.
  1794. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1795. * and do any other architecture-specific cleanup actions.
  1796. *
  1797. * Note that we may have delayed dropping an mm in context_switch(). If
  1798. * so, we finish that here outside of the runqueue lock. (Doing it
  1799. * with the lock held can cause deadlocks; see schedule() for
  1800. * details.)
  1801. */
  1802. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1803. __releases(rq->lock)
  1804. {
  1805. struct mm_struct *mm = rq->prev_mm;
  1806. long prev_state;
  1807. rq->prev_mm = NULL;
  1808. /*
  1809. * A task struct has one reference for the use as "current".
  1810. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1811. * schedule one last time. The schedule call will never return, and
  1812. * the scheduled task must drop that reference.
  1813. * The test for TASK_DEAD must occur while the runqueue locks are
  1814. * still held, otherwise prev could be scheduled on another cpu, die
  1815. * there before we look at prev->state, and then the reference would
  1816. * be dropped twice.
  1817. * Manfred Spraul <manfred@colorfullife.com>
  1818. */
  1819. prev_state = prev->state;
  1820. vtime_task_switch(prev);
  1821. finish_arch_switch(prev);
  1822. perf_event_task_sched_in(prev, current);
  1823. finish_lock_switch(rq, prev);
  1824. finish_arch_post_lock_switch();
  1825. fire_sched_in_preempt_notifiers(current);
  1826. if (mm)
  1827. mmdrop(mm);
  1828. if (unlikely(prev_state == TASK_DEAD)) {
  1829. if (prev->sched_class->task_dead)
  1830. prev->sched_class->task_dead(prev);
  1831. /*
  1832. * Remove function-return probe instances associated with this
  1833. * task and put them back on the free list.
  1834. */
  1835. kprobe_flush_task(prev);
  1836. put_task_struct(prev);
  1837. }
  1838. tick_nohz_task_switch(current);
  1839. }
  1840. #ifdef CONFIG_SMP
  1841. /* rq->lock is NOT held, but preemption is disabled */
  1842. static inline void post_schedule(struct rq *rq)
  1843. {
  1844. if (rq->post_schedule) {
  1845. unsigned long flags;
  1846. raw_spin_lock_irqsave(&rq->lock, flags);
  1847. if (rq->curr->sched_class->post_schedule)
  1848. rq->curr->sched_class->post_schedule(rq);
  1849. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1850. rq->post_schedule = 0;
  1851. }
  1852. }
  1853. #else
  1854. static inline void post_schedule(struct rq *rq)
  1855. {
  1856. }
  1857. #endif
  1858. /**
  1859. * schedule_tail - first thing a freshly forked thread must call.
  1860. * @prev: the thread we just switched away from.
  1861. */
  1862. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  1863. __releases(rq->lock)
  1864. {
  1865. struct rq *rq = this_rq();
  1866. finish_task_switch(rq, prev);
  1867. /*
  1868. * FIXME: do we need to worry about rq being invalidated by the
  1869. * task_switch?
  1870. */
  1871. post_schedule(rq);
  1872. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1873. /* In this case, finish_task_switch does not reenable preemption */
  1874. preempt_enable();
  1875. #endif
  1876. if (current->set_child_tid)
  1877. put_user(task_pid_vnr(current), current->set_child_tid);
  1878. }
  1879. /*
  1880. * context_switch - switch to the new MM and the new
  1881. * thread's register state.
  1882. */
  1883. static inline void
  1884. context_switch(struct rq *rq, struct task_struct *prev,
  1885. struct task_struct *next)
  1886. {
  1887. struct mm_struct *mm, *oldmm;
  1888. prepare_task_switch(rq, prev, next);
  1889. mm = next->mm;
  1890. oldmm = prev->active_mm;
  1891. /*
  1892. * For paravirt, this is coupled with an exit in switch_to to
  1893. * combine the page table reload and the switch backend into
  1894. * one hypercall.
  1895. */
  1896. arch_start_context_switch(prev);
  1897. if (!mm) {
  1898. next->active_mm = oldmm;
  1899. atomic_inc(&oldmm->mm_count);
  1900. enter_lazy_tlb(oldmm, next);
  1901. } else
  1902. switch_mm(oldmm, mm, next);
  1903. if (!prev->mm) {
  1904. prev->active_mm = NULL;
  1905. rq->prev_mm = oldmm;
  1906. }
  1907. /*
  1908. * Since the runqueue lock will be released by the next
  1909. * task (which is an invalid locking op but in the case
  1910. * of the scheduler it's an obvious special-case), so we
  1911. * do an early lockdep release here:
  1912. */
  1913. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1914. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1915. #endif
  1916. context_tracking_task_switch(prev, next);
  1917. /* Here we just switch the register state and the stack. */
  1918. switch_to(prev, next, prev);
  1919. barrier();
  1920. /*
  1921. * this_rq must be evaluated again because prev may have moved
  1922. * CPUs since it called schedule(), thus the 'rq' on its stack
  1923. * frame will be invalid.
  1924. */
  1925. finish_task_switch(this_rq(), prev);
  1926. }
  1927. /*
  1928. * nr_running and nr_context_switches:
  1929. *
  1930. * externally visible scheduler statistics: current number of runnable
  1931. * threads, total number of context switches performed since bootup.
  1932. */
  1933. unsigned long nr_running(void)
  1934. {
  1935. unsigned long i, sum = 0;
  1936. for_each_online_cpu(i)
  1937. sum += cpu_rq(i)->nr_running;
  1938. return sum;
  1939. }
  1940. unsigned long long nr_context_switches(void)
  1941. {
  1942. int i;
  1943. unsigned long long sum = 0;
  1944. for_each_possible_cpu(i)
  1945. sum += cpu_rq(i)->nr_switches;
  1946. return sum;
  1947. }
  1948. unsigned long nr_iowait(void)
  1949. {
  1950. unsigned long i, sum = 0;
  1951. for_each_possible_cpu(i)
  1952. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1953. return sum;
  1954. }
  1955. unsigned long nr_iowait_cpu(int cpu)
  1956. {
  1957. struct rq *this = cpu_rq(cpu);
  1958. return atomic_read(&this->nr_iowait);
  1959. }
  1960. #ifdef CONFIG_SMP
  1961. /*
  1962. * sched_exec - execve() is a valuable balancing opportunity, because at
  1963. * this point the task has the smallest effective memory and cache footprint.
  1964. */
  1965. void sched_exec(void)
  1966. {
  1967. struct task_struct *p = current;
  1968. unsigned long flags;
  1969. int dest_cpu;
  1970. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1971. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  1972. if (dest_cpu == smp_processor_id())
  1973. goto unlock;
  1974. if (likely(cpu_active(dest_cpu))) {
  1975. struct migration_arg arg = { p, dest_cpu };
  1976. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1977. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  1978. return;
  1979. }
  1980. unlock:
  1981. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1982. }
  1983. #endif
  1984. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1985. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  1986. EXPORT_PER_CPU_SYMBOL(kstat);
  1987. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  1988. /*
  1989. * Return any ns on the sched_clock that have not yet been accounted in
  1990. * @p in case that task is currently running.
  1991. *
  1992. * Called with task_rq_lock() held on @rq.
  1993. */
  1994. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  1995. {
  1996. u64 ns = 0;
  1997. if (task_current(rq, p)) {
  1998. update_rq_clock(rq);
  1999. ns = rq_clock_task(rq) - p->se.exec_start;
  2000. if ((s64)ns < 0)
  2001. ns = 0;
  2002. }
  2003. return ns;
  2004. }
  2005. unsigned long long task_delta_exec(struct task_struct *p)
  2006. {
  2007. unsigned long flags;
  2008. struct rq *rq;
  2009. u64 ns = 0;
  2010. rq = task_rq_lock(p, &flags);
  2011. ns = do_task_delta_exec(p, rq);
  2012. task_rq_unlock(rq, p, &flags);
  2013. return ns;
  2014. }
  2015. /*
  2016. * Return accounted runtime for the task.
  2017. * In case the task is currently running, return the runtime plus current's
  2018. * pending runtime that have not been accounted yet.
  2019. */
  2020. unsigned long long task_sched_runtime(struct task_struct *p)
  2021. {
  2022. unsigned long flags;
  2023. struct rq *rq;
  2024. u64 ns = 0;
  2025. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2026. /*
  2027. * 64-bit doesn't need locks to atomically read a 64bit value.
  2028. * So we have a optimization chance when the task's delta_exec is 0.
  2029. * Reading ->on_cpu is racy, but this is ok.
  2030. *
  2031. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2032. * If we race with it entering cpu, unaccounted time is 0. This is
  2033. * indistinguishable from the read occurring a few cycles earlier.
  2034. */
  2035. if (!p->on_cpu)
  2036. return p->se.sum_exec_runtime;
  2037. #endif
  2038. rq = task_rq_lock(p, &flags);
  2039. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2040. task_rq_unlock(rq, p, &flags);
  2041. return ns;
  2042. }
  2043. /*
  2044. * This function gets called by the timer code, with HZ frequency.
  2045. * We call it with interrupts disabled.
  2046. */
  2047. void scheduler_tick(void)
  2048. {
  2049. int cpu = smp_processor_id();
  2050. struct rq *rq = cpu_rq(cpu);
  2051. struct task_struct *curr = rq->curr;
  2052. sched_clock_tick();
  2053. raw_spin_lock(&rq->lock);
  2054. update_rq_clock(rq);
  2055. curr->sched_class->task_tick(rq, curr, 0);
  2056. update_cpu_load_active(rq);
  2057. raw_spin_unlock(&rq->lock);
  2058. perf_event_task_tick();
  2059. #ifdef CONFIG_SMP
  2060. rq->idle_balance = idle_cpu(cpu);
  2061. trigger_load_balance(rq);
  2062. #endif
  2063. rq_last_tick_reset(rq);
  2064. }
  2065. #ifdef CONFIG_NO_HZ_FULL
  2066. /**
  2067. * scheduler_tick_max_deferment
  2068. *
  2069. * Keep at least one tick per second when a single
  2070. * active task is running because the scheduler doesn't
  2071. * yet completely support full dynticks environment.
  2072. *
  2073. * This makes sure that uptime, CFS vruntime, load
  2074. * balancing, etc... continue to move forward, even
  2075. * with a very low granularity.
  2076. *
  2077. * Return: Maximum deferment in nanoseconds.
  2078. */
  2079. u64 scheduler_tick_max_deferment(void)
  2080. {
  2081. struct rq *rq = this_rq();
  2082. unsigned long next, now = ACCESS_ONCE(jiffies);
  2083. next = rq->last_sched_tick + HZ;
  2084. if (time_before_eq(next, now))
  2085. return 0;
  2086. return jiffies_to_nsecs(next - now);
  2087. }
  2088. #endif
  2089. notrace unsigned long get_parent_ip(unsigned long addr)
  2090. {
  2091. if (in_lock_functions(addr)) {
  2092. addr = CALLER_ADDR2;
  2093. if (in_lock_functions(addr))
  2094. addr = CALLER_ADDR3;
  2095. }
  2096. return addr;
  2097. }
  2098. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2099. defined(CONFIG_PREEMPT_TRACER))
  2100. void __kprobes preempt_count_add(int val)
  2101. {
  2102. #ifdef CONFIG_DEBUG_PREEMPT
  2103. /*
  2104. * Underflow?
  2105. */
  2106. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2107. return;
  2108. #endif
  2109. __preempt_count_add(val);
  2110. #ifdef CONFIG_DEBUG_PREEMPT
  2111. /*
  2112. * Spinlock count overflowing soon?
  2113. */
  2114. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2115. PREEMPT_MASK - 10);
  2116. #endif
  2117. if (preempt_count() == val) {
  2118. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2119. #ifdef CONFIG_DEBUG_PREEMPT
  2120. current->preempt_disable_ip = ip;
  2121. #endif
  2122. trace_preempt_off(CALLER_ADDR0, ip);
  2123. }
  2124. }
  2125. EXPORT_SYMBOL(preempt_count_add);
  2126. void __kprobes preempt_count_sub(int val)
  2127. {
  2128. #ifdef CONFIG_DEBUG_PREEMPT
  2129. /*
  2130. * Underflow?
  2131. */
  2132. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2133. return;
  2134. /*
  2135. * Is the spinlock portion underflowing?
  2136. */
  2137. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2138. !(preempt_count() & PREEMPT_MASK)))
  2139. return;
  2140. #endif
  2141. if (preempt_count() == val)
  2142. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2143. __preempt_count_sub(val);
  2144. }
  2145. EXPORT_SYMBOL(preempt_count_sub);
  2146. #endif
  2147. /*
  2148. * Print scheduling while atomic bug:
  2149. */
  2150. static noinline void __schedule_bug(struct task_struct *prev)
  2151. {
  2152. if (oops_in_progress)
  2153. return;
  2154. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2155. prev->comm, prev->pid, preempt_count());
  2156. debug_show_held_locks(prev);
  2157. print_modules();
  2158. if (irqs_disabled())
  2159. print_irqtrace_events(prev);
  2160. #ifdef CONFIG_DEBUG_PREEMPT
  2161. if (in_atomic_preempt_off()) {
  2162. pr_err("Preemption disabled at:");
  2163. print_ip_sym(current->preempt_disable_ip);
  2164. pr_cont("\n");
  2165. }
  2166. #endif
  2167. dump_stack();
  2168. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2169. }
  2170. /*
  2171. * Various schedule()-time debugging checks and statistics:
  2172. */
  2173. static inline void schedule_debug(struct task_struct *prev)
  2174. {
  2175. /*
  2176. * Test if we are atomic. Since do_exit() needs to call into
  2177. * schedule() atomically, we ignore that path. Otherwise whine
  2178. * if we are scheduling when we should not.
  2179. */
  2180. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2181. __schedule_bug(prev);
  2182. rcu_sleep_check();
  2183. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2184. schedstat_inc(this_rq(), sched_count);
  2185. }
  2186. /*
  2187. * Pick up the highest-prio task:
  2188. */
  2189. static inline struct task_struct *
  2190. pick_next_task(struct rq *rq, struct task_struct *prev)
  2191. {
  2192. const struct sched_class *class = &fair_sched_class;
  2193. struct task_struct *p;
  2194. /*
  2195. * Optimization: we know that if all tasks are in
  2196. * the fair class we can call that function directly:
  2197. */
  2198. if (likely(prev->sched_class == class &&
  2199. rq->nr_running == rq->cfs.h_nr_running)) {
  2200. p = fair_sched_class.pick_next_task(rq, prev);
  2201. if (unlikely(p == RETRY_TASK))
  2202. goto again;
  2203. /* assumes fair_sched_class->next == idle_sched_class */
  2204. if (unlikely(!p))
  2205. p = idle_sched_class.pick_next_task(rq, prev);
  2206. return p;
  2207. }
  2208. again:
  2209. for_each_class(class) {
  2210. p = class->pick_next_task(rq, prev);
  2211. if (p) {
  2212. if (unlikely(p == RETRY_TASK))
  2213. goto again;
  2214. return p;
  2215. }
  2216. }
  2217. BUG(); /* the idle class will always have a runnable task */
  2218. }
  2219. /*
  2220. * __schedule() is the main scheduler function.
  2221. *
  2222. * The main means of driving the scheduler and thus entering this function are:
  2223. *
  2224. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2225. *
  2226. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2227. * paths. For example, see arch/x86/entry_64.S.
  2228. *
  2229. * To drive preemption between tasks, the scheduler sets the flag in timer
  2230. * interrupt handler scheduler_tick().
  2231. *
  2232. * 3. Wakeups don't really cause entry into schedule(). They add a
  2233. * task to the run-queue and that's it.
  2234. *
  2235. * Now, if the new task added to the run-queue preempts the current
  2236. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2237. * called on the nearest possible occasion:
  2238. *
  2239. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2240. *
  2241. * - in syscall or exception context, at the next outmost
  2242. * preempt_enable(). (this might be as soon as the wake_up()'s
  2243. * spin_unlock()!)
  2244. *
  2245. * - in IRQ context, return from interrupt-handler to
  2246. * preemptible context
  2247. *
  2248. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2249. * then at the next:
  2250. *
  2251. * - cond_resched() call
  2252. * - explicit schedule() call
  2253. * - return from syscall or exception to user-space
  2254. * - return from interrupt-handler to user-space
  2255. */
  2256. static void __sched __schedule(void)
  2257. {
  2258. struct task_struct *prev, *next;
  2259. unsigned long *switch_count;
  2260. struct rq *rq;
  2261. int cpu;
  2262. need_resched:
  2263. preempt_disable();
  2264. cpu = smp_processor_id();
  2265. rq = cpu_rq(cpu);
  2266. rcu_note_context_switch(cpu);
  2267. prev = rq->curr;
  2268. schedule_debug(prev);
  2269. if (sched_feat(HRTICK))
  2270. hrtick_clear(rq);
  2271. /*
  2272. * Make sure that signal_pending_state()->signal_pending() below
  2273. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2274. * done by the caller to avoid the race with signal_wake_up().
  2275. */
  2276. smp_mb__before_spinlock();
  2277. raw_spin_lock_irq(&rq->lock);
  2278. switch_count = &prev->nivcsw;
  2279. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2280. if (unlikely(signal_pending_state(prev->state, prev))) {
  2281. prev->state = TASK_RUNNING;
  2282. } else {
  2283. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2284. prev->on_rq = 0;
  2285. /*
  2286. * If a worker went to sleep, notify and ask workqueue
  2287. * whether it wants to wake up a task to maintain
  2288. * concurrency.
  2289. */
  2290. if (prev->flags & PF_WQ_WORKER) {
  2291. struct task_struct *to_wakeup;
  2292. to_wakeup = wq_worker_sleeping(prev, cpu);
  2293. if (to_wakeup)
  2294. try_to_wake_up_local(to_wakeup);
  2295. }
  2296. }
  2297. switch_count = &prev->nvcsw;
  2298. }
  2299. if (prev->on_rq || rq->skip_clock_update < 0)
  2300. update_rq_clock(rq);
  2301. next = pick_next_task(rq, prev);
  2302. clear_tsk_need_resched(prev);
  2303. clear_preempt_need_resched();
  2304. rq->skip_clock_update = 0;
  2305. if (likely(prev != next)) {
  2306. rq->nr_switches++;
  2307. rq->curr = next;
  2308. ++*switch_count;
  2309. context_switch(rq, prev, next); /* unlocks the rq */
  2310. /*
  2311. * The context switch have flipped the stack from under us
  2312. * and restored the local variables which were saved when
  2313. * this task called schedule() in the past. prev == current
  2314. * is still correct, but it can be moved to another cpu/rq.
  2315. */
  2316. cpu = smp_processor_id();
  2317. rq = cpu_rq(cpu);
  2318. } else
  2319. raw_spin_unlock_irq(&rq->lock);
  2320. post_schedule(rq);
  2321. sched_preempt_enable_no_resched();
  2322. if (need_resched())
  2323. goto need_resched;
  2324. }
  2325. static inline void sched_submit_work(struct task_struct *tsk)
  2326. {
  2327. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2328. return;
  2329. /*
  2330. * If we are going to sleep and we have plugged IO queued,
  2331. * make sure to submit it to avoid deadlocks.
  2332. */
  2333. if (blk_needs_flush_plug(tsk))
  2334. blk_schedule_flush_plug(tsk);
  2335. }
  2336. asmlinkage __visible void __sched schedule(void)
  2337. {
  2338. struct task_struct *tsk = current;
  2339. sched_submit_work(tsk);
  2340. __schedule();
  2341. }
  2342. EXPORT_SYMBOL(schedule);
  2343. #ifdef CONFIG_CONTEXT_TRACKING
  2344. asmlinkage __visible void __sched schedule_user(void)
  2345. {
  2346. /*
  2347. * If we come here after a random call to set_need_resched(),
  2348. * or we have been woken up remotely but the IPI has not yet arrived,
  2349. * we haven't yet exited the RCU idle mode. Do it here manually until
  2350. * we find a better solution.
  2351. */
  2352. user_exit();
  2353. schedule();
  2354. user_enter();
  2355. }
  2356. #endif
  2357. /**
  2358. * schedule_preempt_disabled - called with preemption disabled
  2359. *
  2360. * Returns with preemption disabled. Note: preempt_count must be 1
  2361. */
  2362. void __sched schedule_preempt_disabled(void)
  2363. {
  2364. sched_preempt_enable_no_resched();
  2365. schedule();
  2366. preempt_disable();
  2367. }
  2368. #ifdef CONFIG_PREEMPT
  2369. /*
  2370. * this is the entry point to schedule() from in-kernel preemption
  2371. * off of preempt_enable. Kernel preemptions off return from interrupt
  2372. * occur there and call schedule directly.
  2373. */
  2374. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2375. {
  2376. /*
  2377. * If there is a non-zero preempt_count or interrupts are disabled,
  2378. * we do not want to preempt the current task. Just return..
  2379. */
  2380. if (likely(!preemptible()))
  2381. return;
  2382. do {
  2383. __preempt_count_add(PREEMPT_ACTIVE);
  2384. __schedule();
  2385. __preempt_count_sub(PREEMPT_ACTIVE);
  2386. /*
  2387. * Check again in case we missed a preemption opportunity
  2388. * between schedule and now.
  2389. */
  2390. barrier();
  2391. } while (need_resched());
  2392. }
  2393. EXPORT_SYMBOL(preempt_schedule);
  2394. #endif /* CONFIG_PREEMPT */
  2395. /*
  2396. * this is the entry point to schedule() from kernel preemption
  2397. * off of irq context.
  2398. * Note, that this is called and return with irqs disabled. This will
  2399. * protect us against recursive calling from irq.
  2400. */
  2401. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2402. {
  2403. enum ctx_state prev_state;
  2404. /* Catch callers which need to be fixed */
  2405. BUG_ON(preempt_count() || !irqs_disabled());
  2406. prev_state = exception_enter();
  2407. do {
  2408. __preempt_count_add(PREEMPT_ACTIVE);
  2409. local_irq_enable();
  2410. __schedule();
  2411. local_irq_disable();
  2412. __preempt_count_sub(PREEMPT_ACTIVE);
  2413. /*
  2414. * Check again in case we missed a preemption opportunity
  2415. * between schedule and now.
  2416. */
  2417. barrier();
  2418. } while (need_resched());
  2419. exception_exit(prev_state);
  2420. }
  2421. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2422. void *key)
  2423. {
  2424. return try_to_wake_up(curr->private, mode, wake_flags);
  2425. }
  2426. EXPORT_SYMBOL(default_wake_function);
  2427. #ifdef CONFIG_RT_MUTEXES
  2428. /*
  2429. * rt_mutex_setprio - set the current priority of a task
  2430. * @p: task
  2431. * @prio: prio value (kernel-internal form)
  2432. *
  2433. * This function changes the 'effective' priority of a task. It does
  2434. * not touch ->normal_prio like __setscheduler().
  2435. *
  2436. * Used by the rt_mutex code to implement priority inheritance
  2437. * logic. Call site only calls if the priority of the task changed.
  2438. */
  2439. void rt_mutex_setprio(struct task_struct *p, int prio)
  2440. {
  2441. int oldprio, on_rq, running, enqueue_flag = 0;
  2442. struct rq *rq;
  2443. const struct sched_class *prev_class;
  2444. BUG_ON(prio > MAX_PRIO);
  2445. rq = __task_rq_lock(p);
  2446. /*
  2447. * Idle task boosting is a nono in general. There is one
  2448. * exception, when PREEMPT_RT and NOHZ is active:
  2449. *
  2450. * The idle task calls get_next_timer_interrupt() and holds
  2451. * the timer wheel base->lock on the CPU and another CPU wants
  2452. * to access the timer (probably to cancel it). We can safely
  2453. * ignore the boosting request, as the idle CPU runs this code
  2454. * with interrupts disabled and will complete the lock
  2455. * protected section without being interrupted. So there is no
  2456. * real need to boost.
  2457. */
  2458. if (unlikely(p == rq->idle)) {
  2459. WARN_ON(p != rq->curr);
  2460. WARN_ON(p->pi_blocked_on);
  2461. goto out_unlock;
  2462. }
  2463. trace_sched_pi_setprio(p, prio);
  2464. p->pi_top_task = rt_mutex_get_top_task(p);
  2465. oldprio = p->prio;
  2466. prev_class = p->sched_class;
  2467. on_rq = p->on_rq;
  2468. running = task_current(rq, p);
  2469. if (on_rq)
  2470. dequeue_task(rq, p, 0);
  2471. if (running)
  2472. p->sched_class->put_prev_task(rq, p);
  2473. /*
  2474. * Boosting condition are:
  2475. * 1. -rt task is running and holds mutex A
  2476. * --> -dl task blocks on mutex A
  2477. *
  2478. * 2. -dl task is running and holds mutex A
  2479. * --> -dl task blocks on mutex A and could preempt the
  2480. * running task
  2481. */
  2482. if (dl_prio(prio)) {
  2483. if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
  2484. dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
  2485. p->dl.dl_boosted = 1;
  2486. p->dl.dl_throttled = 0;
  2487. enqueue_flag = ENQUEUE_REPLENISH;
  2488. } else
  2489. p->dl.dl_boosted = 0;
  2490. p->sched_class = &dl_sched_class;
  2491. } else if (rt_prio(prio)) {
  2492. if (dl_prio(oldprio))
  2493. p->dl.dl_boosted = 0;
  2494. if (oldprio < prio)
  2495. enqueue_flag = ENQUEUE_HEAD;
  2496. p->sched_class = &rt_sched_class;
  2497. } else {
  2498. if (dl_prio(oldprio))
  2499. p->dl.dl_boosted = 0;
  2500. p->sched_class = &fair_sched_class;
  2501. }
  2502. p->prio = prio;
  2503. if (running)
  2504. p->sched_class->set_curr_task(rq);
  2505. if (on_rq)
  2506. enqueue_task(rq, p, enqueue_flag);
  2507. check_class_changed(rq, p, prev_class, oldprio);
  2508. out_unlock:
  2509. __task_rq_unlock(rq);
  2510. }
  2511. #endif
  2512. void set_user_nice(struct task_struct *p, long nice)
  2513. {
  2514. int old_prio, delta, on_rq;
  2515. unsigned long flags;
  2516. struct rq *rq;
  2517. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2518. return;
  2519. /*
  2520. * We have to be careful, if called from sys_setpriority(),
  2521. * the task might be in the middle of scheduling on another CPU.
  2522. */
  2523. rq = task_rq_lock(p, &flags);
  2524. /*
  2525. * The RT priorities are set via sched_setscheduler(), but we still
  2526. * allow the 'normal' nice value to be set - but as expected
  2527. * it wont have any effect on scheduling until the task is
  2528. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2529. */
  2530. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2531. p->static_prio = NICE_TO_PRIO(nice);
  2532. goto out_unlock;
  2533. }
  2534. on_rq = p->on_rq;
  2535. if (on_rq)
  2536. dequeue_task(rq, p, 0);
  2537. p->static_prio = NICE_TO_PRIO(nice);
  2538. set_load_weight(p);
  2539. old_prio = p->prio;
  2540. p->prio = effective_prio(p);
  2541. delta = p->prio - old_prio;
  2542. if (on_rq) {
  2543. enqueue_task(rq, p, 0);
  2544. /*
  2545. * If the task increased its priority or is running and
  2546. * lowered its priority, then reschedule its CPU:
  2547. */
  2548. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2549. resched_task(rq->curr);
  2550. }
  2551. out_unlock:
  2552. task_rq_unlock(rq, p, &flags);
  2553. }
  2554. EXPORT_SYMBOL(set_user_nice);
  2555. /*
  2556. * can_nice - check if a task can reduce its nice value
  2557. * @p: task
  2558. * @nice: nice value
  2559. */
  2560. int can_nice(const struct task_struct *p, const int nice)
  2561. {
  2562. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2563. int nice_rlim = 20 - nice;
  2564. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2565. capable(CAP_SYS_NICE));
  2566. }
  2567. #ifdef __ARCH_WANT_SYS_NICE
  2568. /*
  2569. * sys_nice - change the priority of the current process.
  2570. * @increment: priority increment
  2571. *
  2572. * sys_setpriority is a more generic, but much slower function that
  2573. * does similar things.
  2574. */
  2575. SYSCALL_DEFINE1(nice, int, increment)
  2576. {
  2577. long nice, retval;
  2578. /*
  2579. * Setpriority might change our priority at the same moment.
  2580. * We don't have to worry. Conceptually one call occurs first
  2581. * and we have a single winner.
  2582. */
  2583. if (increment < -40)
  2584. increment = -40;
  2585. if (increment > 40)
  2586. increment = 40;
  2587. nice = task_nice(current) + increment;
  2588. if (nice < MIN_NICE)
  2589. nice = MIN_NICE;
  2590. if (nice > MAX_NICE)
  2591. nice = MAX_NICE;
  2592. if (increment < 0 && !can_nice(current, nice))
  2593. return -EPERM;
  2594. retval = security_task_setnice(current, nice);
  2595. if (retval)
  2596. return retval;
  2597. set_user_nice(current, nice);
  2598. return 0;
  2599. }
  2600. #endif
  2601. /**
  2602. * task_prio - return the priority value of a given task.
  2603. * @p: the task in question.
  2604. *
  2605. * Return: The priority value as seen by users in /proc.
  2606. * RT tasks are offset by -200. Normal tasks are centered
  2607. * around 0, value goes from -16 to +15.
  2608. */
  2609. int task_prio(const struct task_struct *p)
  2610. {
  2611. return p->prio - MAX_RT_PRIO;
  2612. }
  2613. /**
  2614. * idle_cpu - is a given cpu idle currently?
  2615. * @cpu: the processor in question.
  2616. *
  2617. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2618. */
  2619. int idle_cpu(int cpu)
  2620. {
  2621. struct rq *rq = cpu_rq(cpu);
  2622. if (rq->curr != rq->idle)
  2623. return 0;
  2624. if (rq->nr_running)
  2625. return 0;
  2626. #ifdef CONFIG_SMP
  2627. if (!llist_empty(&rq->wake_list))
  2628. return 0;
  2629. #endif
  2630. return 1;
  2631. }
  2632. /**
  2633. * idle_task - return the idle task for a given cpu.
  2634. * @cpu: the processor in question.
  2635. *
  2636. * Return: The idle task for the cpu @cpu.
  2637. */
  2638. struct task_struct *idle_task(int cpu)
  2639. {
  2640. return cpu_rq(cpu)->idle;
  2641. }
  2642. /**
  2643. * find_process_by_pid - find a process with a matching PID value.
  2644. * @pid: the pid in question.
  2645. *
  2646. * The task of @pid, if found. %NULL otherwise.
  2647. */
  2648. static struct task_struct *find_process_by_pid(pid_t pid)
  2649. {
  2650. return pid ? find_task_by_vpid(pid) : current;
  2651. }
  2652. /*
  2653. * This function initializes the sched_dl_entity of a newly becoming
  2654. * SCHED_DEADLINE task.
  2655. *
  2656. * Only the static values are considered here, the actual runtime and the
  2657. * absolute deadline will be properly calculated when the task is enqueued
  2658. * for the first time with its new policy.
  2659. */
  2660. static void
  2661. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2662. {
  2663. struct sched_dl_entity *dl_se = &p->dl;
  2664. init_dl_task_timer(dl_se);
  2665. dl_se->dl_runtime = attr->sched_runtime;
  2666. dl_se->dl_deadline = attr->sched_deadline;
  2667. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2668. dl_se->flags = attr->sched_flags;
  2669. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2670. dl_se->dl_throttled = 0;
  2671. dl_se->dl_new = 1;
  2672. dl_se->dl_yielded = 0;
  2673. }
  2674. static void __setscheduler_params(struct task_struct *p,
  2675. const struct sched_attr *attr)
  2676. {
  2677. int policy = attr->sched_policy;
  2678. if (policy == -1) /* setparam */
  2679. policy = p->policy;
  2680. p->policy = policy;
  2681. if (dl_policy(policy))
  2682. __setparam_dl(p, attr);
  2683. else if (fair_policy(policy))
  2684. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2685. /*
  2686. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2687. * !rt_policy. Always setting this ensures that things like
  2688. * getparam()/getattr() don't report silly values for !rt tasks.
  2689. */
  2690. p->rt_priority = attr->sched_priority;
  2691. p->normal_prio = normal_prio(p);
  2692. set_load_weight(p);
  2693. }
  2694. /* Actually do priority change: must hold pi & rq lock. */
  2695. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2696. const struct sched_attr *attr)
  2697. {
  2698. __setscheduler_params(p, attr);
  2699. /*
  2700. * If we get here, there was no pi waiters boosting the
  2701. * task. It is safe to use the normal prio.
  2702. */
  2703. p->prio = normal_prio(p);
  2704. if (dl_prio(p->prio))
  2705. p->sched_class = &dl_sched_class;
  2706. else if (rt_prio(p->prio))
  2707. p->sched_class = &rt_sched_class;
  2708. else
  2709. p->sched_class = &fair_sched_class;
  2710. }
  2711. static void
  2712. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2713. {
  2714. struct sched_dl_entity *dl_se = &p->dl;
  2715. attr->sched_priority = p->rt_priority;
  2716. attr->sched_runtime = dl_se->dl_runtime;
  2717. attr->sched_deadline = dl_se->dl_deadline;
  2718. attr->sched_period = dl_se->dl_period;
  2719. attr->sched_flags = dl_se->flags;
  2720. }
  2721. /*
  2722. * This function validates the new parameters of a -deadline task.
  2723. * We ask for the deadline not being zero, and greater or equal
  2724. * than the runtime, as well as the period of being zero or
  2725. * greater than deadline. Furthermore, we have to be sure that
  2726. * user parameters are above the internal resolution of 1us (we
  2727. * check sched_runtime only since it is always the smaller one) and
  2728. * below 2^63 ns (we have to check both sched_deadline and
  2729. * sched_period, as the latter can be zero).
  2730. */
  2731. static bool
  2732. __checkparam_dl(const struct sched_attr *attr)
  2733. {
  2734. /* deadline != 0 */
  2735. if (attr->sched_deadline == 0)
  2736. return false;
  2737. /*
  2738. * Since we truncate DL_SCALE bits, make sure we're at least
  2739. * that big.
  2740. */
  2741. if (attr->sched_runtime < (1ULL << DL_SCALE))
  2742. return false;
  2743. /*
  2744. * Since we use the MSB for wrap-around and sign issues, make
  2745. * sure it's not set (mind that period can be equal to zero).
  2746. */
  2747. if (attr->sched_deadline & (1ULL << 63) ||
  2748. attr->sched_period & (1ULL << 63))
  2749. return false;
  2750. /* runtime <= deadline <= period (if period != 0) */
  2751. if ((attr->sched_period != 0 &&
  2752. attr->sched_period < attr->sched_deadline) ||
  2753. attr->sched_deadline < attr->sched_runtime)
  2754. return false;
  2755. return true;
  2756. }
  2757. /*
  2758. * check the target process has a UID that matches the current process's
  2759. */
  2760. static bool check_same_owner(struct task_struct *p)
  2761. {
  2762. const struct cred *cred = current_cred(), *pcred;
  2763. bool match;
  2764. rcu_read_lock();
  2765. pcred = __task_cred(p);
  2766. match = (uid_eq(cred->euid, pcred->euid) ||
  2767. uid_eq(cred->euid, pcred->uid));
  2768. rcu_read_unlock();
  2769. return match;
  2770. }
  2771. static int __sched_setscheduler(struct task_struct *p,
  2772. const struct sched_attr *attr,
  2773. bool user)
  2774. {
  2775. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  2776. MAX_RT_PRIO - 1 - attr->sched_priority;
  2777. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2778. int policy = attr->sched_policy;
  2779. unsigned long flags;
  2780. const struct sched_class *prev_class;
  2781. struct rq *rq;
  2782. int reset_on_fork;
  2783. /* may grab non-irq protected spin_locks */
  2784. BUG_ON(in_interrupt());
  2785. recheck:
  2786. /* double check policy once rq lock held */
  2787. if (policy < 0) {
  2788. reset_on_fork = p->sched_reset_on_fork;
  2789. policy = oldpolicy = p->policy;
  2790. } else {
  2791. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2792. if (policy != SCHED_DEADLINE &&
  2793. policy != SCHED_FIFO && policy != SCHED_RR &&
  2794. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2795. policy != SCHED_IDLE)
  2796. return -EINVAL;
  2797. }
  2798. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2799. return -EINVAL;
  2800. /*
  2801. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2802. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2803. * SCHED_BATCH and SCHED_IDLE is 0.
  2804. */
  2805. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2806. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2807. return -EINVAL;
  2808. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2809. (rt_policy(policy) != (attr->sched_priority != 0)))
  2810. return -EINVAL;
  2811. /*
  2812. * Allow unprivileged RT tasks to decrease priority:
  2813. */
  2814. if (user && !capable(CAP_SYS_NICE)) {
  2815. if (fair_policy(policy)) {
  2816. if (attr->sched_nice < task_nice(p) &&
  2817. !can_nice(p, attr->sched_nice))
  2818. return -EPERM;
  2819. }
  2820. if (rt_policy(policy)) {
  2821. unsigned long rlim_rtprio =
  2822. task_rlimit(p, RLIMIT_RTPRIO);
  2823. /* can't set/change the rt policy */
  2824. if (policy != p->policy && !rlim_rtprio)
  2825. return -EPERM;
  2826. /* can't increase priority */
  2827. if (attr->sched_priority > p->rt_priority &&
  2828. attr->sched_priority > rlim_rtprio)
  2829. return -EPERM;
  2830. }
  2831. /*
  2832. * Can't set/change SCHED_DEADLINE policy at all for now
  2833. * (safest behavior); in the future we would like to allow
  2834. * unprivileged DL tasks to increase their relative deadline
  2835. * or reduce their runtime (both ways reducing utilization)
  2836. */
  2837. if (dl_policy(policy))
  2838. return -EPERM;
  2839. /*
  2840. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2841. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2842. */
  2843. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2844. if (!can_nice(p, task_nice(p)))
  2845. return -EPERM;
  2846. }
  2847. /* can't change other user's priorities */
  2848. if (!check_same_owner(p))
  2849. return -EPERM;
  2850. /* Normal users shall not reset the sched_reset_on_fork flag */
  2851. if (p->sched_reset_on_fork && !reset_on_fork)
  2852. return -EPERM;
  2853. }
  2854. if (user) {
  2855. retval = security_task_setscheduler(p);
  2856. if (retval)
  2857. return retval;
  2858. }
  2859. /*
  2860. * make sure no PI-waiters arrive (or leave) while we are
  2861. * changing the priority of the task:
  2862. *
  2863. * To be able to change p->policy safely, the appropriate
  2864. * runqueue lock must be held.
  2865. */
  2866. rq = task_rq_lock(p, &flags);
  2867. /*
  2868. * Changing the policy of the stop threads its a very bad idea
  2869. */
  2870. if (p == rq->stop) {
  2871. task_rq_unlock(rq, p, &flags);
  2872. return -EINVAL;
  2873. }
  2874. /*
  2875. * If not changing anything there's no need to proceed further,
  2876. * but store a possible modification of reset_on_fork.
  2877. */
  2878. if (unlikely(policy == p->policy)) {
  2879. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  2880. goto change;
  2881. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  2882. goto change;
  2883. if (dl_policy(policy))
  2884. goto change;
  2885. p->sched_reset_on_fork = reset_on_fork;
  2886. task_rq_unlock(rq, p, &flags);
  2887. return 0;
  2888. }
  2889. change:
  2890. if (user) {
  2891. #ifdef CONFIG_RT_GROUP_SCHED
  2892. /*
  2893. * Do not allow realtime tasks into groups that have no runtime
  2894. * assigned.
  2895. */
  2896. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2897. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2898. !task_group_is_autogroup(task_group(p))) {
  2899. task_rq_unlock(rq, p, &flags);
  2900. return -EPERM;
  2901. }
  2902. #endif
  2903. #ifdef CONFIG_SMP
  2904. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  2905. cpumask_t *span = rq->rd->span;
  2906. /*
  2907. * Don't allow tasks with an affinity mask smaller than
  2908. * the entire root_domain to become SCHED_DEADLINE. We
  2909. * will also fail if there's no bandwidth available.
  2910. */
  2911. if (!cpumask_subset(span, &p->cpus_allowed) ||
  2912. rq->rd->dl_bw.bw == 0) {
  2913. task_rq_unlock(rq, p, &flags);
  2914. return -EPERM;
  2915. }
  2916. }
  2917. #endif
  2918. }
  2919. /* recheck policy now with rq lock held */
  2920. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2921. policy = oldpolicy = -1;
  2922. task_rq_unlock(rq, p, &flags);
  2923. goto recheck;
  2924. }
  2925. /*
  2926. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  2927. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  2928. * is available.
  2929. */
  2930. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  2931. task_rq_unlock(rq, p, &flags);
  2932. return -EBUSY;
  2933. }
  2934. p->sched_reset_on_fork = reset_on_fork;
  2935. oldprio = p->prio;
  2936. /*
  2937. * Special case for priority boosted tasks.
  2938. *
  2939. * If the new priority is lower or equal (user space view)
  2940. * than the current (boosted) priority, we just store the new
  2941. * normal parameters and do not touch the scheduler class and
  2942. * the runqueue. This will be done when the task deboost
  2943. * itself.
  2944. */
  2945. if (rt_mutex_check_prio(p, newprio)) {
  2946. __setscheduler_params(p, attr);
  2947. task_rq_unlock(rq, p, &flags);
  2948. return 0;
  2949. }
  2950. on_rq = p->on_rq;
  2951. running = task_current(rq, p);
  2952. if (on_rq)
  2953. dequeue_task(rq, p, 0);
  2954. if (running)
  2955. p->sched_class->put_prev_task(rq, p);
  2956. prev_class = p->sched_class;
  2957. __setscheduler(rq, p, attr);
  2958. if (running)
  2959. p->sched_class->set_curr_task(rq);
  2960. if (on_rq) {
  2961. /*
  2962. * We enqueue to tail when the priority of a task is
  2963. * increased (user space view).
  2964. */
  2965. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  2966. }
  2967. check_class_changed(rq, p, prev_class, oldprio);
  2968. task_rq_unlock(rq, p, &flags);
  2969. rt_mutex_adjust_pi(p);
  2970. return 0;
  2971. }
  2972. static int _sched_setscheduler(struct task_struct *p, int policy,
  2973. const struct sched_param *param, bool check)
  2974. {
  2975. struct sched_attr attr = {
  2976. .sched_policy = policy,
  2977. .sched_priority = param->sched_priority,
  2978. .sched_nice = PRIO_TO_NICE(p->static_prio),
  2979. };
  2980. /*
  2981. * Fixup the legacy SCHED_RESET_ON_FORK hack
  2982. */
  2983. if (policy & SCHED_RESET_ON_FORK) {
  2984. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  2985. policy &= ~SCHED_RESET_ON_FORK;
  2986. attr.sched_policy = policy;
  2987. }
  2988. return __sched_setscheduler(p, &attr, check);
  2989. }
  2990. /**
  2991. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  2992. * @p: the task in question.
  2993. * @policy: new policy.
  2994. * @param: structure containing the new RT priority.
  2995. *
  2996. * Return: 0 on success. An error code otherwise.
  2997. *
  2998. * NOTE that the task may be already dead.
  2999. */
  3000. int sched_setscheduler(struct task_struct *p, int policy,
  3001. const struct sched_param *param)
  3002. {
  3003. return _sched_setscheduler(p, policy, param, true);
  3004. }
  3005. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3006. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3007. {
  3008. return __sched_setscheduler(p, attr, true);
  3009. }
  3010. EXPORT_SYMBOL_GPL(sched_setattr);
  3011. /**
  3012. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3013. * @p: the task in question.
  3014. * @policy: new policy.
  3015. * @param: structure containing the new RT priority.
  3016. *
  3017. * Just like sched_setscheduler, only don't bother checking if the
  3018. * current context has permission. For example, this is needed in
  3019. * stop_machine(): we create temporary high priority worker threads,
  3020. * but our caller might not have that capability.
  3021. *
  3022. * Return: 0 on success. An error code otherwise.
  3023. */
  3024. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3025. const struct sched_param *param)
  3026. {
  3027. return _sched_setscheduler(p, policy, param, false);
  3028. }
  3029. static int
  3030. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3031. {
  3032. struct sched_param lparam;
  3033. struct task_struct *p;
  3034. int retval;
  3035. if (!param || pid < 0)
  3036. return -EINVAL;
  3037. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3038. return -EFAULT;
  3039. rcu_read_lock();
  3040. retval = -ESRCH;
  3041. p = find_process_by_pid(pid);
  3042. if (p != NULL)
  3043. retval = sched_setscheduler(p, policy, &lparam);
  3044. rcu_read_unlock();
  3045. return retval;
  3046. }
  3047. /*
  3048. * Mimics kernel/events/core.c perf_copy_attr().
  3049. */
  3050. static int sched_copy_attr(struct sched_attr __user *uattr,
  3051. struct sched_attr *attr)
  3052. {
  3053. u32 size;
  3054. int ret;
  3055. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3056. return -EFAULT;
  3057. /*
  3058. * zero the full structure, so that a short copy will be nice.
  3059. */
  3060. memset(attr, 0, sizeof(*attr));
  3061. ret = get_user(size, &uattr->size);
  3062. if (ret)
  3063. return ret;
  3064. if (size > PAGE_SIZE) /* silly large */
  3065. goto err_size;
  3066. if (!size) /* abi compat */
  3067. size = SCHED_ATTR_SIZE_VER0;
  3068. if (size < SCHED_ATTR_SIZE_VER0)
  3069. goto err_size;
  3070. /*
  3071. * If we're handed a bigger struct than we know of,
  3072. * ensure all the unknown bits are 0 - i.e. new
  3073. * user-space does not rely on any kernel feature
  3074. * extensions we dont know about yet.
  3075. */
  3076. if (size > sizeof(*attr)) {
  3077. unsigned char __user *addr;
  3078. unsigned char __user *end;
  3079. unsigned char val;
  3080. addr = (void __user *)uattr + sizeof(*attr);
  3081. end = (void __user *)uattr + size;
  3082. for (; addr < end; addr++) {
  3083. ret = get_user(val, addr);
  3084. if (ret)
  3085. return ret;
  3086. if (val)
  3087. goto err_size;
  3088. }
  3089. size = sizeof(*attr);
  3090. }
  3091. ret = copy_from_user(attr, uattr, size);
  3092. if (ret)
  3093. return -EFAULT;
  3094. /*
  3095. * XXX: do we want to be lenient like existing syscalls; or do we want
  3096. * to be strict and return an error on out-of-bounds values?
  3097. */
  3098. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3099. out:
  3100. return ret;
  3101. err_size:
  3102. put_user(sizeof(*attr), &uattr->size);
  3103. ret = -E2BIG;
  3104. goto out;
  3105. }
  3106. /**
  3107. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3108. * @pid: the pid in question.
  3109. * @policy: new policy.
  3110. * @param: structure containing the new RT priority.
  3111. *
  3112. * Return: 0 on success. An error code otherwise.
  3113. */
  3114. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3115. struct sched_param __user *, param)
  3116. {
  3117. /* negative values for policy are not valid */
  3118. if (policy < 0)
  3119. return -EINVAL;
  3120. return do_sched_setscheduler(pid, policy, param);
  3121. }
  3122. /**
  3123. * sys_sched_setparam - set/change the RT priority of a thread
  3124. * @pid: the pid in question.
  3125. * @param: structure containing the new RT priority.
  3126. *
  3127. * Return: 0 on success. An error code otherwise.
  3128. */
  3129. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3130. {
  3131. return do_sched_setscheduler(pid, -1, param);
  3132. }
  3133. /**
  3134. * sys_sched_setattr - same as above, but with extended sched_attr
  3135. * @pid: the pid in question.
  3136. * @uattr: structure containing the extended parameters.
  3137. * @flags: for future extension.
  3138. */
  3139. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3140. unsigned int, flags)
  3141. {
  3142. struct sched_attr attr;
  3143. struct task_struct *p;
  3144. int retval;
  3145. if (!uattr || pid < 0 || flags)
  3146. return -EINVAL;
  3147. retval = sched_copy_attr(uattr, &attr);
  3148. if (retval)
  3149. return retval;
  3150. if (attr.sched_policy < 0)
  3151. return -EINVAL;
  3152. rcu_read_lock();
  3153. retval = -ESRCH;
  3154. p = find_process_by_pid(pid);
  3155. if (p != NULL)
  3156. retval = sched_setattr(p, &attr);
  3157. rcu_read_unlock();
  3158. return retval;
  3159. }
  3160. /**
  3161. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3162. * @pid: the pid in question.
  3163. *
  3164. * Return: On success, the policy of the thread. Otherwise, a negative error
  3165. * code.
  3166. */
  3167. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3168. {
  3169. struct task_struct *p;
  3170. int retval;
  3171. if (pid < 0)
  3172. return -EINVAL;
  3173. retval = -ESRCH;
  3174. rcu_read_lock();
  3175. p = find_process_by_pid(pid);
  3176. if (p) {
  3177. retval = security_task_getscheduler(p);
  3178. if (!retval)
  3179. retval = p->policy
  3180. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3181. }
  3182. rcu_read_unlock();
  3183. return retval;
  3184. }
  3185. /**
  3186. * sys_sched_getparam - get the RT priority of a thread
  3187. * @pid: the pid in question.
  3188. * @param: structure containing the RT priority.
  3189. *
  3190. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3191. * code.
  3192. */
  3193. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3194. {
  3195. struct sched_param lp = { .sched_priority = 0 };
  3196. struct task_struct *p;
  3197. int retval;
  3198. if (!param || pid < 0)
  3199. return -EINVAL;
  3200. rcu_read_lock();
  3201. p = find_process_by_pid(pid);
  3202. retval = -ESRCH;
  3203. if (!p)
  3204. goto out_unlock;
  3205. retval = security_task_getscheduler(p);
  3206. if (retval)
  3207. goto out_unlock;
  3208. if (task_has_rt_policy(p))
  3209. lp.sched_priority = p->rt_priority;
  3210. rcu_read_unlock();
  3211. /*
  3212. * This one might sleep, we cannot do it with a spinlock held ...
  3213. */
  3214. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3215. return retval;
  3216. out_unlock:
  3217. rcu_read_unlock();
  3218. return retval;
  3219. }
  3220. static int sched_read_attr(struct sched_attr __user *uattr,
  3221. struct sched_attr *attr,
  3222. unsigned int usize)
  3223. {
  3224. int ret;
  3225. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3226. return -EFAULT;
  3227. /*
  3228. * If we're handed a smaller struct than we know of,
  3229. * ensure all the unknown bits are 0 - i.e. old
  3230. * user-space does not get uncomplete information.
  3231. */
  3232. if (usize < sizeof(*attr)) {
  3233. unsigned char *addr;
  3234. unsigned char *end;
  3235. addr = (void *)attr + usize;
  3236. end = (void *)attr + sizeof(*attr);
  3237. for (; addr < end; addr++) {
  3238. if (*addr)
  3239. goto err_size;
  3240. }
  3241. attr->size = usize;
  3242. }
  3243. ret = copy_to_user(uattr, attr, attr->size);
  3244. if (ret)
  3245. return -EFAULT;
  3246. out:
  3247. return ret;
  3248. err_size:
  3249. ret = -E2BIG;
  3250. goto out;
  3251. }
  3252. /**
  3253. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3254. * @pid: the pid in question.
  3255. * @uattr: structure containing the extended parameters.
  3256. * @size: sizeof(attr) for fwd/bwd comp.
  3257. * @flags: for future extension.
  3258. */
  3259. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3260. unsigned int, size, unsigned int, flags)
  3261. {
  3262. struct sched_attr attr = {
  3263. .size = sizeof(struct sched_attr),
  3264. };
  3265. struct task_struct *p;
  3266. int retval;
  3267. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3268. size < SCHED_ATTR_SIZE_VER0 || flags)
  3269. return -EINVAL;
  3270. rcu_read_lock();
  3271. p = find_process_by_pid(pid);
  3272. retval = -ESRCH;
  3273. if (!p)
  3274. goto out_unlock;
  3275. retval = security_task_getscheduler(p);
  3276. if (retval)
  3277. goto out_unlock;
  3278. attr.sched_policy = p->policy;
  3279. if (p->sched_reset_on_fork)
  3280. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3281. if (task_has_dl_policy(p))
  3282. __getparam_dl(p, &attr);
  3283. else if (task_has_rt_policy(p))
  3284. attr.sched_priority = p->rt_priority;
  3285. else
  3286. attr.sched_nice = task_nice(p);
  3287. rcu_read_unlock();
  3288. retval = sched_read_attr(uattr, &attr, size);
  3289. return retval;
  3290. out_unlock:
  3291. rcu_read_unlock();
  3292. return retval;
  3293. }
  3294. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3295. {
  3296. cpumask_var_t cpus_allowed, new_mask;
  3297. struct task_struct *p;
  3298. int retval;
  3299. rcu_read_lock();
  3300. p = find_process_by_pid(pid);
  3301. if (!p) {
  3302. rcu_read_unlock();
  3303. return -ESRCH;
  3304. }
  3305. /* Prevent p going away */
  3306. get_task_struct(p);
  3307. rcu_read_unlock();
  3308. if (p->flags & PF_NO_SETAFFINITY) {
  3309. retval = -EINVAL;
  3310. goto out_put_task;
  3311. }
  3312. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3313. retval = -ENOMEM;
  3314. goto out_put_task;
  3315. }
  3316. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3317. retval = -ENOMEM;
  3318. goto out_free_cpus_allowed;
  3319. }
  3320. retval = -EPERM;
  3321. if (!check_same_owner(p)) {
  3322. rcu_read_lock();
  3323. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3324. rcu_read_unlock();
  3325. goto out_unlock;
  3326. }
  3327. rcu_read_unlock();
  3328. }
  3329. retval = security_task_setscheduler(p);
  3330. if (retval)
  3331. goto out_unlock;
  3332. cpuset_cpus_allowed(p, cpus_allowed);
  3333. cpumask_and(new_mask, in_mask, cpus_allowed);
  3334. /*
  3335. * Since bandwidth control happens on root_domain basis,
  3336. * if admission test is enabled, we only admit -deadline
  3337. * tasks allowed to run on all the CPUs in the task's
  3338. * root_domain.
  3339. */
  3340. #ifdef CONFIG_SMP
  3341. if (task_has_dl_policy(p)) {
  3342. const struct cpumask *span = task_rq(p)->rd->span;
  3343. if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
  3344. retval = -EBUSY;
  3345. goto out_unlock;
  3346. }
  3347. }
  3348. #endif
  3349. again:
  3350. retval = set_cpus_allowed_ptr(p, new_mask);
  3351. if (!retval) {
  3352. cpuset_cpus_allowed(p, cpus_allowed);
  3353. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3354. /*
  3355. * We must have raced with a concurrent cpuset
  3356. * update. Just reset the cpus_allowed to the
  3357. * cpuset's cpus_allowed
  3358. */
  3359. cpumask_copy(new_mask, cpus_allowed);
  3360. goto again;
  3361. }
  3362. }
  3363. out_unlock:
  3364. free_cpumask_var(new_mask);
  3365. out_free_cpus_allowed:
  3366. free_cpumask_var(cpus_allowed);
  3367. out_put_task:
  3368. put_task_struct(p);
  3369. return retval;
  3370. }
  3371. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3372. struct cpumask *new_mask)
  3373. {
  3374. if (len < cpumask_size())
  3375. cpumask_clear(new_mask);
  3376. else if (len > cpumask_size())
  3377. len = cpumask_size();
  3378. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3379. }
  3380. /**
  3381. * sys_sched_setaffinity - set the cpu affinity of a process
  3382. * @pid: pid of the process
  3383. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3384. * @user_mask_ptr: user-space pointer to the new cpu mask
  3385. *
  3386. * Return: 0 on success. An error code otherwise.
  3387. */
  3388. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3389. unsigned long __user *, user_mask_ptr)
  3390. {
  3391. cpumask_var_t new_mask;
  3392. int retval;
  3393. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3394. return -ENOMEM;
  3395. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3396. if (retval == 0)
  3397. retval = sched_setaffinity(pid, new_mask);
  3398. free_cpumask_var(new_mask);
  3399. return retval;
  3400. }
  3401. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3402. {
  3403. struct task_struct *p;
  3404. unsigned long flags;
  3405. int retval;
  3406. rcu_read_lock();
  3407. retval = -ESRCH;
  3408. p = find_process_by_pid(pid);
  3409. if (!p)
  3410. goto out_unlock;
  3411. retval = security_task_getscheduler(p);
  3412. if (retval)
  3413. goto out_unlock;
  3414. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3415. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3416. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3417. out_unlock:
  3418. rcu_read_unlock();
  3419. return retval;
  3420. }
  3421. /**
  3422. * sys_sched_getaffinity - get the cpu affinity of a process
  3423. * @pid: pid of the process
  3424. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3425. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3426. *
  3427. * Return: 0 on success. An error code otherwise.
  3428. */
  3429. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3430. unsigned long __user *, user_mask_ptr)
  3431. {
  3432. int ret;
  3433. cpumask_var_t mask;
  3434. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3435. return -EINVAL;
  3436. if (len & (sizeof(unsigned long)-1))
  3437. return -EINVAL;
  3438. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3439. return -ENOMEM;
  3440. ret = sched_getaffinity(pid, mask);
  3441. if (ret == 0) {
  3442. size_t retlen = min_t(size_t, len, cpumask_size());
  3443. if (copy_to_user(user_mask_ptr, mask, retlen))
  3444. ret = -EFAULT;
  3445. else
  3446. ret = retlen;
  3447. }
  3448. free_cpumask_var(mask);
  3449. return ret;
  3450. }
  3451. /**
  3452. * sys_sched_yield - yield the current processor to other threads.
  3453. *
  3454. * This function yields the current CPU to other tasks. If there are no
  3455. * other threads running on this CPU then this function will return.
  3456. *
  3457. * Return: 0.
  3458. */
  3459. SYSCALL_DEFINE0(sched_yield)
  3460. {
  3461. struct rq *rq = this_rq_lock();
  3462. schedstat_inc(rq, yld_count);
  3463. current->sched_class->yield_task(rq);
  3464. /*
  3465. * Since we are going to call schedule() anyway, there's
  3466. * no need to preempt or enable interrupts:
  3467. */
  3468. __release(rq->lock);
  3469. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3470. do_raw_spin_unlock(&rq->lock);
  3471. sched_preempt_enable_no_resched();
  3472. schedule();
  3473. return 0;
  3474. }
  3475. static void __cond_resched(void)
  3476. {
  3477. __preempt_count_add(PREEMPT_ACTIVE);
  3478. __schedule();
  3479. __preempt_count_sub(PREEMPT_ACTIVE);
  3480. }
  3481. int __sched _cond_resched(void)
  3482. {
  3483. if (should_resched()) {
  3484. __cond_resched();
  3485. return 1;
  3486. }
  3487. return 0;
  3488. }
  3489. EXPORT_SYMBOL(_cond_resched);
  3490. /*
  3491. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3492. * call schedule, and on return reacquire the lock.
  3493. *
  3494. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3495. * operations here to prevent schedule() from being called twice (once via
  3496. * spin_unlock(), once by hand).
  3497. */
  3498. int __cond_resched_lock(spinlock_t *lock)
  3499. {
  3500. int resched = should_resched();
  3501. int ret = 0;
  3502. lockdep_assert_held(lock);
  3503. if (spin_needbreak(lock) || resched) {
  3504. spin_unlock(lock);
  3505. if (resched)
  3506. __cond_resched();
  3507. else
  3508. cpu_relax();
  3509. ret = 1;
  3510. spin_lock(lock);
  3511. }
  3512. return ret;
  3513. }
  3514. EXPORT_SYMBOL(__cond_resched_lock);
  3515. int __sched __cond_resched_softirq(void)
  3516. {
  3517. BUG_ON(!in_softirq());
  3518. if (should_resched()) {
  3519. local_bh_enable();
  3520. __cond_resched();
  3521. local_bh_disable();
  3522. return 1;
  3523. }
  3524. return 0;
  3525. }
  3526. EXPORT_SYMBOL(__cond_resched_softirq);
  3527. /**
  3528. * yield - yield the current processor to other threads.
  3529. *
  3530. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3531. *
  3532. * The scheduler is at all times free to pick the calling task as the most
  3533. * eligible task to run, if removing the yield() call from your code breaks
  3534. * it, its already broken.
  3535. *
  3536. * Typical broken usage is:
  3537. *
  3538. * while (!event)
  3539. * yield();
  3540. *
  3541. * where one assumes that yield() will let 'the other' process run that will
  3542. * make event true. If the current task is a SCHED_FIFO task that will never
  3543. * happen. Never use yield() as a progress guarantee!!
  3544. *
  3545. * If you want to use yield() to wait for something, use wait_event().
  3546. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3547. * If you still want to use yield(), do not!
  3548. */
  3549. void __sched yield(void)
  3550. {
  3551. set_current_state(TASK_RUNNING);
  3552. sys_sched_yield();
  3553. }
  3554. EXPORT_SYMBOL(yield);
  3555. /**
  3556. * yield_to - yield the current processor to another thread in
  3557. * your thread group, or accelerate that thread toward the
  3558. * processor it's on.
  3559. * @p: target task
  3560. * @preempt: whether task preemption is allowed or not
  3561. *
  3562. * It's the caller's job to ensure that the target task struct
  3563. * can't go away on us before we can do any checks.
  3564. *
  3565. * Return:
  3566. * true (>0) if we indeed boosted the target task.
  3567. * false (0) if we failed to boost the target.
  3568. * -ESRCH if there's no task to yield to.
  3569. */
  3570. bool __sched yield_to(struct task_struct *p, bool preempt)
  3571. {
  3572. struct task_struct *curr = current;
  3573. struct rq *rq, *p_rq;
  3574. unsigned long flags;
  3575. int yielded = 0;
  3576. local_irq_save(flags);
  3577. rq = this_rq();
  3578. again:
  3579. p_rq = task_rq(p);
  3580. /*
  3581. * If we're the only runnable task on the rq and target rq also
  3582. * has only one task, there's absolutely no point in yielding.
  3583. */
  3584. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3585. yielded = -ESRCH;
  3586. goto out_irq;
  3587. }
  3588. double_rq_lock(rq, p_rq);
  3589. if (task_rq(p) != p_rq) {
  3590. double_rq_unlock(rq, p_rq);
  3591. goto again;
  3592. }
  3593. if (!curr->sched_class->yield_to_task)
  3594. goto out_unlock;
  3595. if (curr->sched_class != p->sched_class)
  3596. goto out_unlock;
  3597. if (task_running(p_rq, p) || p->state)
  3598. goto out_unlock;
  3599. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3600. if (yielded) {
  3601. schedstat_inc(rq, yld_count);
  3602. /*
  3603. * Make p's CPU reschedule; pick_next_entity takes care of
  3604. * fairness.
  3605. */
  3606. if (preempt && rq != p_rq)
  3607. resched_task(p_rq->curr);
  3608. }
  3609. out_unlock:
  3610. double_rq_unlock(rq, p_rq);
  3611. out_irq:
  3612. local_irq_restore(flags);
  3613. if (yielded > 0)
  3614. schedule();
  3615. return yielded;
  3616. }
  3617. EXPORT_SYMBOL_GPL(yield_to);
  3618. /*
  3619. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3620. * that process accounting knows that this is a task in IO wait state.
  3621. */
  3622. void __sched io_schedule(void)
  3623. {
  3624. struct rq *rq = raw_rq();
  3625. delayacct_blkio_start();
  3626. atomic_inc(&rq->nr_iowait);
  3627. blk_flush_plug(current);
  3628. current->in_iowait = 1;
  3629. schedule();
  3630. current->in_iowait = 0;
  3631. atomic_dec(&rq->nr_iowait);
  3632. delayacct_blkio_end();
  3633. }
  3634. EXPORT_SYMBOL(io_schedule);
  3635. long __sched io_schedule_timeout(long timeout)
  3636. {
  3637. struct rq *rq = raw_rq();
  3638. long ret;
  3639. delayacct_blkio_start();
  3640. atomic_inc(&rq->nr_iowait);
  3641. blk_flush_plug(current);
  3642. current->in_iowait = 1;
  3643. ret = schedule_timeout(timeout);
  3644. current->in_iowait = 0;
  3645. atomic_dec(&rq->nr_iowait);
  3646. delayacct_blkio_end();
  3647. return ret;
  3648. }
  3649. /**
  3650. * sys_sched_get_priority_max - return maximum RT priority.
  3651. * @policy: scheduling class.
  3652. *
  3653. * Return: On success, this syscall returns the maximum
  3654. * rt_priority that can be used by a given scheduling class.
  3655. * On failure, a negative error code is returned.
  3656. */
  3657. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3658. {
  3659. int ret = -EINVAL;
  3660. switch (policy) {
  3661. case SCHED_FIFO:
  3662. case SCHED_RR:
  3663. ret = MAX_USER_RT_PRIO-1;
  3664. break;
  3665. case SCHED_DEADLINE:
  3666. case SCHED_NORMAL:
  3667. case SCHED_BATCH:
  3668. case SCHED_IDLE:
  3669. ret = 0;
  3670. break;
  3671. }
  3672. return ret;
  3673. }
  3674. /**
  3675. * sys_sched_get_priority_min - return minimum RT priority.
  3676. * @policy: scheduling class.
  3677. *
  3678. * Return: On success, this syscall returns the minimum
  3679. * rt_priority that can be used by a given scheduling class.
  3680. * On failure, a negative error code is returned.
  3681. */
  3682. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3683. {
  3684. int ret = -EINVAL;
  3685. switch (policy) {
  3686. case SCHED_FIFO:
  3687. case SCHED_RR:
  3688. ret = 1;
  3689. break;
  3690. case SCHED_DEADLINE:
  3691. case SCHED_NORMAL:
  3692. case SCHED_BATCH:
  3693. case SCHED_IDLE:
  3694. ret = 0;
  3695. }
  3696. return ret;
  3697. }
  3698. /**
  3699. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3700. * @pid: pid of the process.
  3701. * @interval: userspace pointer to the timeslice value.
  3702. *
  3703. * this syscall writes the default timeslice value of a given process
  3704. * into the user-space timespec buffer. A value of '0' means infinity.
  3705. *
  3706. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3707. * an error code.
  3708. */
  3709. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3710. struct timespec __user *, interval)
  3711. {
  3712. struct task_struct *p;
  3713. unsigned int time_slice;
  3714. unsigned long flags;
  3715. struct rq *rq;
  3716. int retval;
  3717. struct timespec t;
  3718. if (pid < 0)
  3719. return -EINVAL;
  3720. retval = -ESRCH;
  3721. rcu_read_lock();
  3722. p = find_process_by_pid(pid);
  3723. if (!p)
  3724. goto out_unlock;
  3725. retval = security_task_getscheduler(p);
  3726. if (retval)
  3727. goto out_unlock;
  3728. rq = task_rq_lock(p, &flags);
  3729. time_slice = 0;
  3730. if (p->sched_class->get_rr_interval)
  3731. time_slice = p->sched_class->get_rr_interval(rq, p);
  3732. task_rq_unlock(rq, p, &flags);
  3733. rcu_read_unlock();
  3734. jiffies_to_timespec(time_slice, &t);
  3735. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3736. return retval;
  3737. out_unlock:
  3738. rcu_read_unlock();
  3739. return retval;
  3740. }
  3741. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3742. void sched_show_task(struct task_struct *p)
  3743. {
  3744. unsigned long free = 0;
  3745. int ppid;
  3746. unsigned state;
  3747. state = p->state ? __ffs(p->state) + 1 : 0;
  3748. printk(KERN_INFO "%-15.15s %c", p->comm,
  3749. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3750. #if BITS_PER_LONG == 32
  3751. if (state == TASK_RUNNING)
  3752. printk(KERN_CONT " running ");
  3753. else
  3754. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3755. #else
  3756. if (state == TASK_RUNNING)
  3757. printk(KERN_CONT " running task ");
  3758. else
  3759. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3760. #endif
  3761. #ifdef CONFIG_DEBUG_STACK_USAGE
  3762. free = stack_not_used(p);
  3763. #endif
  3764. rcu_read_lock();
  3765. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3766. rcu_read_unlock();
  3767. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3768. task_pid_nr(p), ppid,
  3769. (unsigned long)task_thread_info(p)->flags);
  3770. print_worker_info(KERN_INFO, p);
  3771. show_stack(p, NULL);
  3772. }
  3773. void show_state_filter(unsigned long state_filter)
  3774. {
  3775. struct task_struct *g, *p;
  3776. #if BITS_PER_LONG == 32
  3777. printk(KERN_INFO
  3778. " task PC stack pid father\n");
  3779. #else
  3780. printk(KERN_INFO
  3781. " task PC stack pid father\n");
  3782. #endif
  3783. rcu_read_lock();
  3784. do_each_thread(g, p) {
  3785. /*
  3786. * reset the NMI-timeout, listing all files on a slow
  3787. * console might take a lot of time:
  3788. */
  3789. touch_nmi_watchdog();
  3790. if (!state_filter || (p->state & state_filter))
  3791. sched_show_task(p);
  3792. } while_each_thread(g, p);
  3793. touch_all_softlockup_watchdogs();
  3794. #ifdef CONFIG_SCHED_DEBUG
  3795. sysrq_sched_debug_show();
  3796. #endif
  3797. rcu_read_unlock();
  3798. /*
  3799. * Only show locks if all tasks are dumped:
  3800. */
  3801. if (!state_filter)
  3802. debug_show_all_locks();
  3803. }
  3804. void init_idle_bootup_task(struct task_struct *idle)
  3805. {
  3806. idle->sched_class = &idle_sched_class;
  3807. }
  3808. /**
  3809. * init_idle - set up an idle thread for a given CPU
  3810. * @idle: task in question
  3811. * @cpu: cpu the idle task belongs to
  3812. *
  3813. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3814. * flag, to make booting more robust.
  3815. */
  3816. void init_idle(struct task_struct *idle, int cpu)
  3817. {
  3818. struct rq *rq = cpu_rq(cpu);
  3819. unsigned long flags;
  3820. raw_spin_lock_irqsave(&rq->lock, flags);
  3821. __sched_fork(0, idle);
  3822. idle->state = TASK_RUNNING;
  3823. idle->se.exec_start = sched_clock();
  3824. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3825. /*
  3826. * We're having a chicken and egg problem, even though we are
  3827. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3828. * lockdep check in task_group() will fail.
  3829. *
  3830. * Similar case to sched_fork(). / Alternatively we could
  3831. * use task_rq_lock() here and obtain the other rq->lock.
  3832. *
  3833. * Silence PROVE_RCU
  3834. */
  3835. rcu_read_lock();
  3836. __set_task_cpu(idle, cpu);
  3837. rcu_read_unlock();
  3838. rq->curr = rq->idle = idle;
  3839. idle->on_rq = 1;
  3840. #if defined(CONFIG_SMP)
  3841. idle->on_cpu = 1;
  3842. #endif
  3843. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3844. /* Set the preempt count _outside_ the spinlocks! */
  3845. init_idle_preempt_count(idle, cpu);
  3846. /*
  3847. * The idle tasks have their own, simple scheduling class:
  3848. */
  3849. idle->sched_class = &idle_sched_class;
  3850. ftrace_graph_init_idle_task(idle, cpu);
  3851. vtime_init_idle(idle, cpu);
  3852. #if defined(CONFIG_SMP)
  3853. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3854. #endif
  3855. }
  3856. #ifdef CONFIG_SMP
  3857. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3858. {
  3859. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3860. p->sched_class->set_cpus_allowed(p, new_mask);
  3861. cpumask_copy(&p->cpus_allowed, new_mask);
  3862. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3863. }
  3864. /*
  3865. * This is how migration works:
  3866. *
  3867. * 1) we invoke migration_cpu_stop() on the target CPU using
  3868. * stop_one_cpu().
  3869. * 2) stopper starts to run (implicitly forcing the migrated thread
  3870. * off the CPU)
  3871. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3872. * 4) if it's in the wrong runqueue then the migration thread removes
  3873. * it and puts it into the right queue.
  3874. * 5) stopper completes and stop_one_cpu() returns and the migration
  3875. * is done.
  3876. */
  3877. /*
  3878. * Change a given task's CPU affinity. Migrate the thread to a
  3879. * proper CPU and schedule it away if the CPU it's executing on
  3880. * is removed from the allowed bitmask.
  3881. *
  3882. * NOTE: the caller must have a valid reference to the task, the
  3883. * task must not exit() & deallocate itself prematurely. The
  3884. * call is not atomic; no spinlocks may be held.
  3885. */
  3886. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3887. {
  3888. unsigned long flags;
  3889. struct rq *rq;
  3890. unsigned int dest_cpu;
  3891. int ret = 0;
  3892. rq = task_rq_lock(p, &flags);
  3893. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3894. goto out;
  3895. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3896. ret = -EINVAL;
  3897. goto out;
  3898. }
  3899. do_set_cpus_allowed(p, new_mask);
  3900. /* Can the task run on the task's current CPU? If so, we're done */
  3901. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3902. goto out;
  3903. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3904. if (p->on_rq) {
  3905. struct migration_arg arg = { p, dest_cpu };
  3906. /* Need help from migration thread: drop lock and wait. */
  3907. task_rq_unlock(rq, p, &flags);
  3908. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3909. tlb_migrate_finish(p->mm);
  3910. return 0;
  3911. }
  3912. out:
  3913. task_rq_unlock(rq, p, &flags);
  3914. return ret;
  3915. }
  3916. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3917. /*
  3918. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3919. * this because either it can't run here any more (set_cpus_allowed()
  3920. * away from this CPU, or CPU going down), or because we're
  3921. * attempting to rebalance this task on exec (sched_exec).
  3922. *
  3923. * So we race with normal scheduler movements, but that's OK, as long
  3924. * as the task is no longer on this CPU.
  3925. *
  3926. * Returns non-zero if task was successfully migrated.
  3927. */
  3928. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3929. {
  3930. struct rq *rq_dest, *rq_src;
  3931. int ret = 0;
  3932. if (unlikely(!cpu_active(dest_cpu)))
  3933. return ret;
  3934. rq_src = cpu_rq(src_cpu);
  3935. rq_dest = cpu_rq(dest_cpu);
  3936. raw_spin_lock(&p->pi_lock);
  3937. double_rq_lock(rq_src, rq_dest);
  3938. /* Already moved. */
  3939. if (task_cpu(p) != src_cpu)
  3940. goto done;
  3941. /* Affinity changed (again). */
  3942. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3943. goto fail;
  3944. /*
  3945. * If we're not on a rq, the next wake-up will ensure we're
  3946. * placed properly.
  3947. */
  3948. if (p->on_rq) {
  3949. dequeue_task(rq_src, p, 0);
  3950. set_task_cpu(p, dest_cpu);
  3951. enqueue_task(rq_dest, p, 0);
  3952. check_preempt_curr(rq_dest, p, 0);
  3953. }
  3954. done:
  3955. ret = 1;
  3956. fail:
  3957. double_rq_unlock(rq_src, rq_dest);
  3958. raw_spin_unlock(&p->pi_lock);
  3959. return ret;
  3960. }
  3961. #ifdef CONFIG_NUMA_BALANCING
  3962. /* Migrate current task p to target_cpu */
  3963. int migrate_task_to(struct task_struct *p, int target_cpu)
  3964. {
  3965. struct migration_arg arg = { p, target_cpu };
  3966. int curr_cpu = task_cpu(p);
  3967. if (curr_cpu == target_cpu)
  3968. return 0;
  3969. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  3970. return -EINVAL;
  3971. /* TODO: This is not properly updating schedstats */
  3972. trace_sched_move_numa(p, curr_cpu, target_cpu);
  3973. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  3974. }
  3975. /*
  3976. * Requeue a task on a given node and accurately track the number of NUMA
  3977. * tasks on the runqueues
  3978. */
  3979. void sched_setnuma(struct task_struct *p, int nid)
  3980. {
  3981. struct rq *rq;
  3982. unsigned long flags;
  3983. bool on_rq, running;
  3984. rq = task_rq_lock(p, &flags);
  3985. on_rq = p->on_rq;
  3986. running = task_current(rq, p);
  3987. if (on_rq)
  3988. dequeue_task(rq, p, 0);
  3989. if (running)
  3990. p->sched_class->put_prev_task(rq, p);
  3991. p->numa_preferred_nid = nid;
  3992. if (running)
  3993. p->sched_class->set_curr_task(rq);
  3994. if (on_rq)
  3995. enqueue_task(rq, p, 0);
  3996. task_rq_unlock(rq, p, &flags);
  3997. }
  3998. #endif
  3999. /*
  4000. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4001. * and performs thread migration by bumping thread off CPU then
  4002. * 'pushing' onto another runqueue.
  4003. */
  4004. static int migration_cpu_stop(void *data)
  4005. {
  4006. struct migration_arg *arg = data;
  4007. /*
  4008. * The original target cpu might have gone down and we might
  4009. * be on another cpu but it doesn't matter.
  4010. */
  4011. local_irq_disable();
  4012. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4013. local_irq_enable();
  4014. return 0;
  4015. }
  4016. #ifdef CONFIG_HOTPLUG_CPU
  4017. /*
  4018. * Ensures that the idle task is using init_mm right before its cpu goes
  4019. * offline.
  4020. */
  4021. void idle_task_exit(void)
  4022. {
  4023. struct mm_struct *mm = current->active_mm;
  4024. BUG_ON(cpu_online(smp_processor_id()));
  4025. if (mm != &init_mm) {
  4026. switch_mm(mm, &init_mm, current);
  4027. finish_arch_post_lock_switch();
  4028. }
  4029. mmdrop(mm);
  4030. }
  4031. /*
  4032. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4033. * we might have. Assumes we're called after migrate_tasks() so that the
  4034. * nr_active count is stable.
  4035. *
  4036. * Also see the comment "Global load-average calculations".
  4037. */
  4038. static void calc_load_migrate(struct rq *rq)
  4039. {
  4040. long delta = calc_load_fold_active(rq);
  4041. if (delta)
  4042. atomic_long_add(delta, &calc_load_tasks);
  4043. }
  4044. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4045. {
  4046. }
  4047. static const struct sched_class fake_sched_class = {
  4048. .put_prev_task = put_prev_task_fake,
  4049. };
  4050. static struct task_struct fake_task = {
  4051. /*
  4052. * Avoid pull_{rt,dl}_task()
  4053. */
  4054. .prio = MAX_PRIO + 1,
  4055. .sched_class = &fake_sched_class,
  4056. };
  4057. /*
  4058. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4059. * try_to_wake_up()->select_task_rq().
  4060. *
  4061. * Called with rq->lock held even though we'er in stop_machine() and
  4062. * there's no concurrency possible, we hold the required locks anyway
  4063. * because of lock validation efforts.
  4064. */
  4065. static void migrate_tasks(unsigned int dead_cpu)
  4066. {
  4067. struct rq *rq = cpu_rq(dead_cpu);
  4068. struct task_struct *next, *stop = rq->stop;
  4069. int dest_cpu;
  4070. /*
  4071. * Fudge the rq selection such that the below task selection loop
  4072. * doesn't get stuck on the currently eligible stop task.
  4073. *
  4074. * We're currently inside stop_machine() and the rq is either stuck
  4075. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4076. * either way we should never end up calling schedule() until we're
  4077. * done here.
  4078. */
  4079. rq->stop = NULL;
  4080. /*
  4081. * put_prev_task() and pick_next_task() sched
  4082. * class method both need to have an up-to-date
  4083. * value of rq->clock[_task]
  4084. */
  4085. update_rq_clock(rq);
  4086. for ( ; ; ) {
  4087. /*
  4088. * There's this thread running, bail when that's the only
  4089. * remaining thread.
  4090. */
  4091. if (rq->nr_running == 1)
  4092. break;
  4093. next = pick_next_task(rq, &fake_task);
  4094. BUG_ON(!next);
  4095. next->sched_class->put_prev_task(rq, next);
  4096. /* Find suitable destination for @next, with force if needed. */
  4097. dest_cpu = select_fallback_rq(dead_cpu, next);
  4098. raw_spin_unlock(&rq->lock);
  4099. __migrate_task(next, dead_cpu, dest_cpu);
  4100. raw_spin_lock(&rq->lock);
  4101. }
  4102. rq->stop = stop;
  4103. }
  4104. #endif /* CONFIG_HOTPLUG_CPU */
  4105. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4106. static struct ctl_table sd_ctl_dir[] = {
  4107. {
  4108. .procname = "sched_domain",
  4109. .mode = 0555,
  4110. },
  4111. {}
  4112. };
  4113. static struct ctl_table sd_ctl_root[] = {
  4114. {
  4115. .procname = "kernel",
  4116. .mode = 0555,
  4117. .child = sd_ctl_dir,
  4118. },
  4119. {}
  4120. };
  4121. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4122. {
  4123. struct ctl_table *entry =
  4124. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4125. return entry;
  4126. }
  4127. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4128. {
  4129. struct ctl_table *entry;
  4130. /*
  4131. * In the intermediate directories, both the child directory and
  4132. * procname are dynamically allocated and could fail but the mode
  4133. * will always be set. In the lowest directory the names are
  4134. * static strings and all have proc handlers.
  4135. */
  4136. for (entry = *tablep; entry->mode; entry++) {
  4137. if (entry->child)
  4138. sd_free_ctl_entry(&entry->child);
  4139. if (entry->proc_handler == NULL)
  4140. kfree(entry->procname);
  4141. }
  4142. kfree(*tablep);
  4143. *tablep = NULL;
  4144. }
  4145. static int min_load_idx = 0;
  4146. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4147. static void
  4148. set_table_entry(struct ctl_table *entry,
  4149. const char *procname, void *data, int maxlen,
  4150. umode_t mode, proc_handler *proc_handler,
  4151. bool load_idx)
  4152. {
  4153. entry->procname = procname;
  4154. entry->data = data;
  4155. entry->maxlen = maxlen;
  4156. entry->mode = mode;
  4157. entry->proc_handler = proc_handler;
  4158. if (load_idx) {
  4159. entry->extra1 = &min_load_idx;
  4160. entry->extra2 = &max_load_idx;
  4161. }
  4162. }
  4163. static struct ctl_table *
  4164. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4165. {
  4166. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4167. if (table == NULL)
  4168. return NULL;
  4169. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4170. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4171. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4172. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4173. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4174. sizeof(int), 0644, proc_dointvec_minmax, true);
  4175. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4176. sizeof(int), 0644, proc_dointvec_minmax, true);
  4177. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4178. sizeof(int), 0644, proc_dointvec_minmax, true);
  4179. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4180. sizeof(int), 0644, proc_dointvec_minmax, true);
  4181. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4182. sizeof(int), 0644, proc_dointvec_minmax, true);
  4183. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4184. sizeof(int), 0644, proc_dointvec_minmax, false);
  4185. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4186. sizeof(int), 0644, proc_dointvec_minmax, false);
  4187. set_table_entry(&table[9], "cache_nice_tries",
  4188. &sd->cache_nice_tries,
  4189. sizeof(int), 0644, proc_dointvec_minmax, false);
  4190. set_table_entry(&table[10], "flags", &sd->flags,
  4191. sizeof(int), 0644, proc_dointvec_minmax, false);
  4192. set_table_entry(&table[11], "max_newidle_lb_cost",
  4193. &sd->max_newidle_lb_cost,
  4194. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4195. set_table_entry(&table[12], "name", sd->name,
  4196. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4197. /* &table[13] is terminator */
  4198. return table;
  4199. }
  4200. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4201. {
  4202. struct ctl_table *entry, *table;
  4203. struct sched_domain *sd;
  4204. int domain_num = 0, i;
  4205. char buf[32];
  4206. for_each_domain(cpu, sd)
  4207. domain_num++;
  4208. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4209. if (table == NULL)
  4210. return NULL;
  4211. i = 0;
  4212. for_each_domain(cpu, sd) {
  4213. snprintf(buf, 32, "domain%d", i);
  4214. entry->procname = kstrdup(buf, GFP_KERNEL);
  4215. entry->mode = 0555;
  4216. entry->child = sd_alloc_ctl_domain_table(sd);
  4217. entry++;
  4218. i++;
  4219. }
  4220. return table;
  4221. }
  4222. static struct ctl_table_header *sd_sysctl_header;
  4223. static void register_sched_domain_sysctl(void)
  4224. {
  4225. int i, cpu_num = num_possible_cpus();
  4226. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4227. char buf[32];
  4228. WARN_ON(sd_ctl_dir[0].child);
  4229. sd_ctl_dir[0].child = entry;
  4230. if (entry == NULL)
  4231. return;
  4232. for_each_possible_cpu(i) {
  4233. snprintf(buf, 32, "cpu%d", i);
  4234. entry->procname = kstrdup(buf, GFP_KERNEL);
  4235. entry->mode = 0555;
  4236. entry->child = sd_alloc_ctl_cpu_table(i);
  4237. entry++;
  4238. }
  4239. WARN_ON(sd_sysctl_header);
  4240. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4241. }
  4242. /* may be called multiple times per register */
  4243. static void unregister_sched_domain_sysctl(void)
  4244. {
  4245. if (sd_sysctl_header)
  4246. unregister_sysctl_table(sd_sysctl_header);
  4247. sd_sysctl_header = NULL;
  4248. if (sd_ctl_dir[0].child)
  4249. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4250. }
  4251. #else
  4252. static void register_sched_domain_sysctl(void)
  4253. {
  4254. }
  4255. static void unregister_sched_domain_sysctl(void)
  4256. {
  4257. }
  4258. #endif
  4259. static void set_rq_online(struct rq *rq)
  4260. {
  4261. if (!rq->online) {
  4262. const struct sched_class *class;
  4263. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4264. rq->online = 1;
  4265. for_each_class(class) {
  4266. if (class->rq_online)
  4267. class->rq_online(rq);
  4268. }
  4269. }
  4270. }
  4271. static void set_rq_offline(struct rq *rq)
  4272. {
  4273. if (rq->online) {
  4274. const struct sched_class *class;
  4275. for_each_class(class) {
  4276. if (class->rq_offline)
  4277. class->rq_offline(rq);
  4278. }
  4279. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4280. rq->online = 0;
  4281. }
  4282. }
  4283. /*
  4284. * migration_call - callback that gets triggered when a CPU is added.
  4285. * Here we can start up the necessary migration thread for the new CPU.
  4286. */
  4287. static int
  4288. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4289. {
  4290. int cpu = (long)hcpu;
  4291. unsigned long flags;
  4292. struct rq *rq = cpu_rq(cpu);
  4293. switch (action & ~CPU_TASKS_FROZEN) {
  4294. case CPU_UP_PREPARE:
  4295. rq->calc_load_update = calc_load_update;
  4296. break;
  4297. case CPU_ONLINE:
  4298. /* Update our root-domain */
  4299. raw_spin_lock_irqsave(&rq->lock, flags);
  4300. if (rq->rd) {
  4301. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4302. set_rq_online(rq);
  4303. }
  4304. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4305. break;
  4306. #ifdef CONFIG_HOTPLUG_CPU
  4307. case CPU_DYING:
  4308. sched_ttwu_pending();
  4309. /* Update our root-domain */
  4310. raw_spin_lock_irqsave(&rq->lock, flags);
  4311. if (rq->rd) {
  4312. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4313. set_rq_offline(rq);
  4314. }
  4315. migrate_tasks(cpu);
  4316. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4317. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4318. break;
  4319. case CPU_DEAD:
  4320. calc_load_migrate(rq);
  4321. break;
  4322. #endif
  4323. }
  4324. update_max_interval();
  4325. return NOTIFY_OK;
  4326. }
  4327. /*
  4328. * Register at high priority so that task migration (migrate_all_tasks)
  4329. * happens before everything else. This has to be lower priority than
  4330. * the notifier in the perf_event subsystem, though.
  4331. */
  4332. static struct notifier_block migration_notifier = {
  4333. .notifier_call = migration_call,
  4334. .priority = CPU_PRI_MIGRATION,
  4335. };
  4336. static int sched_cpu_active(struct notifier_block *nfb,
  4337. unsigned long action, void *hcpu)
  4338. {
  4339. switch (action & ~CPU_TASKS_FROZEN) {
  4340. case CPU_DOWN_FAILED:
  4341. set_cpu_active((long)hcpu, true);
  4342. return NOTIFY_OK;
  4343. default:
  4344. return NOTIFY_DONE;
  4345. }
  4346. }
  4347. static int sched_cpu_inactive(struct notifier_block *nfb,
  4348. unsigned long action, void *hcpu)
  4349. {
  4350. unsigned long flags;
  4351. long cpu = (long)hcpu;
  4352. switch (action & ~CPU_TASKS_FROZEN) {
  4353. case CPU_DOWN_PREPARE:
  4354. set_cpu_active(cpu, false);
  4355. /* explicitly allow suspend */
  4356. if (!(action & CPU_TASKS_FROZEN)) {
  4357. struct dl_bw *dl_b = dl_bw_of(cpu);
  4358. bool overflow;
  4359. int cpus;
  4360. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4361. cpus = dl_bw_cpus(cpu);
  4362. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4363. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4364. if (overflow)
  4365. return notifier_from_errno(-EBUSY);
  4366. }
  4367. return NOTIFY_OK;
  4368. }
  4369. return NOTIFY_DONE;
  4370. }
  4371. static int __init migration_init(void)
  4372. {
  4373. void *cpu = (void *)(long)smp_processor_id();
  4374. int err;
  4375. /* Initialize migration for the boot CPU */
  4376. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4377. BUG_ON(err == NOTIFY_BAD);
  4378. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4379. register_cpu_notifier(&migration_notifier);
  4380. /* Register cpu active notifiers */
  4381. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4382. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4383. return 0;
  4384. }
  4385. early_initcall(migration_init);
  4386. #endif
  4387. #ifdef CONFIG_SMP
  4388. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4389. #ifdef CONFIG_SCHED_DEBUG
  4390. static __read_mostly int sched_debug_enabled;
  4391. static int __init sched_debug_setup(char *str)
  4392. {
  4393. sched_debug_enabled = 1;
  4394. return 0;
  4395. }
  4396. early_param("sched_debug", sched_debug_setup);
  4397. static inline bool sched_debug(void)
  4398. {
  4399. return sched_debug_enabled;
  4400. }
  4401. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4402. struct cpumask *groupmask)
  4403. {
  4404. struct sched_group *group = sd->groups;
  4405. char str[256];
  4406. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4407. cpumask_clear(groupmask);
  4408. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4409. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4410. printk("does not load-balance\n");
  4411. if (sd->parent)
  4412. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4413. " has parent");
  4414. return -1;
  4415. }
  4416. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4417. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4418. printk(KERN_ERR "ERROR: domain->span does not contain "
  4419. "CPU%d\n", cpu);
  4420. }
  4421. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4422. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4423. " CPU%d\n", cpu);
  4424. }
  4425. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4426. do {
  4427. if (!group) {
  4428. printk("\n");
  4429. printk(KERN_ERR "ERROR: group is NULL\n");
  4430. break;
  4431. }
  4432. /*
  4433. * Even though we initialize ->power to something semi-sane,
  4434. * we leave power_orig unset. This allows us to detect if
  4435. * domain iteration is still funny without causing /0 traps.
  4436. */
  4437. if (!group->sgp->power_orig) {
  4438. printk(KERN_CONT "\n");
  4439. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4440. "set\n");
  4441. break;
  4442. }
  4443. if (!cpumask_weight(sched_group_cpus(group))) {
  4444. printk(KERN_CONT "\n");
  4445. printk(KERN_ERR "ERROR: empty group\n");
  4446. break;
  4447. }
  4448. if (!(sd->flags & SD_OVERLAP) &&
  4449. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4450. printk(KERN_CONT "\n");
  4451. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4452. break;
  4453. }
  4454. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4455. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4456. printk(KERN_CONT " %s", str);
  4457. if (group->sgp->power != SCHED_POWER_SCALE) {
  4458. printk(KERN_CONT " (cpu_power = %d)",
  4459. group->sgp->power);
  4460. }
  4461. group = group->next;
  4462. } while (group != sd->groups);
  4463. printk(KERN_CONT "\n");
  4464. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4465. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4466. if (sd->parent &&
  4467. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4468. printk(KERN_ERR "ERROR: parent span is not a superset "
  4469. "of domain->span\n");
  4470. return 0;
  4471. }
  4472. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4473. {
  4474. int level = 0;
  4475. if (!sched_debug_enabled)
  4476. return;
  4477. if (!sd) {
  4478. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4479. return;
  4480. }
  4481. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4482. for (;;) {
  4483. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4484. break;
  4485. level++;
  4486. sd = sd->parent;
  4487. if (!sd)
  4488. break;
  4489. }
  4490. }
  4491. #else /* !CONFIG_SCHED_DEBUG */
  4492. # define sched_domain_debug(sd, cpu) do { } while (0)
  4493. static inline bool sched_debug(void)
  4494. {
  4495. return false;
  4496. }
  4497. #endif /* CONFIG_SCHED_DEBUG */
  4498. static int sd_degenerate(struct sched_domain *sd)
  4499. {
  4500. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4501. return 1;
  4502. /* Following flags need at least 2 groups */
  4503. if (sd->flags & (SD_LOAD_BALANCE |
  4504. SD_BALANCE_NEWIDLE |
  4505. SD_BALANCE_FORK |
  4506. SD_BALANCE_EXEC |
  4507. SD_SHARE_CPUPOWER |
  4508. SD_SHARE_PKG_RESOURCES)) {
  4509. if (sd->groups != sd->groups->next)
  4510. return 0;
  4511. }
  4512. /* Following flags don't use groups */
  4513. if (sd->flags & (SD_WAKE_AFFINE))
  4514. return 0;
  4515. return 1;
  4516. }
  4517. static int
  4518. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4519. {
  4520. unsigned long cflags = sd->flags, pflags = parent->flags;
  4521. if (sd_degenerate(parent))
  4522. return 1;
  4523. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4524. return 0;
  4525. /* Flags needing groups don't count if only 1 group in parent */
  4526. if (parent->groups == parent->groups->next) {
  4527. pflags &= ~(SD_LOAD_BALANCE |
  4528. SD_BALANCE_NEWIDLE |
  4529. SD_BALANCE_FORK |
  4530. SD_BALANCE_EXEC |
  4531. SD_SHARE_CPUPOWER |
  4532. SD_SHARE_PKG_RESOURCES |
  4533. SD_PREFER_SIBLING);
  4534. if (nr_node_ids == 1)
  4535. pflags &= ~SD_SERIALIZE;
  4536. }
  4537. if (~cflags & pflags)
  4538. return 0;
  4539. return 1;
  4540. }
  4541. static void free_rootdomain(struct rcu_head *rcu)
  4542. {
  4543. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4544. cpupri_cleanup(&rd->cpupri);
  4545. cpudl_cleanup(&rd->cpudl);
  4546. free_cpumask_var(rd->dlo_mask);
  4547. free_cpumask_var(rd->rto_mask);
  4548. free_cpumask_var(rd->online);
  4549. free_cpumask_var(rd->span);
  4550. kfree(rd);
  4551. }
  4552. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4553. {
  4554. struct root_domain *old_rd = NULL;
  4555. unsigned long flags;
  4556. raw_spin_lock_irqsave(&rq->lock, flags);
  4557. if (rq->rd) {
  4558. old_rd = rq->rd;
  4559. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4560. set_rq_offline(rq);
  4561. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4562. /*
  4563. * If we dont want to free the old_rd yet then
  4564. * set old_rd to NULL to skip the freeing later
  4565. * in this function:
  4566. */
  4567. if (!atomic_dec_and_test(&old_rd->refcount))
  4568. old_rd = NULL;
  4569. }
  4570. atomic_inc(&rd->refcount);
  4571. rq->rd = rd;
  4572. cpumask_set_cpu(rq->cpu, rd->span);
  4573. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4574. set_rq_online(rq);
  4575. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4576. if (old_rd)
  4577. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4578. }
  4579. static int init_rootdomain(struct root_domain *rd)
  4580. {
  4581. memset(rd, 0, sizeof(*rd));
  4582. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4583. goto out;
  4584. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4585. goto free_span;
  4586. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4587. goto free_online;
  4588. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4589. goto free_dlo_mask;
  4590. init_dl_bw(&rd->dl_bw);
  4591. if (cpudl_init(&rd->cpudl) != 0)
  4592. goto free_dlo_mask;
  4593. if (cpupri_init(&rd->cpupri) != 0)
  4594. goto free_rto_mask;
  4595. return 0;
  4596. free_rto_mask:
  4597. free_cpumask_var(rd->rto_mask);
  4598. free_dlo_mask:
  4599. free_cpumask_var(rd->dlo_mask);
  4600. free_online:
  4601. free_cpumask_var(rd->online);
  4602. free_span:
  4603. free_cpumask_var(rd->span);
  4604. out:
  4605. return -ENOMEM;
  4606. }
  4607. /*
  4608. * By default the system creates a single root-domain with all cpus as
  4609. * members (mimicking the global state we have today).
  4610. */
  4611. struct root_domain def_root_domain;
  4612. static void init_defrootdomain(void)
  4613. {
  4614. init_rootdomain(&def_root_domain);
  4615. atomic_set(&def_root_domain.refcount, 1);
  4616. }
  4617. static struct root_domain *alloc_rootdomain(void)
  4618. {
  4619. struct root_domain *rd;
  4620. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4621. if (!rd)
  4622. return NULL;
  4623. if (init_rootdomain(rd) != 0) {
  4624. kfree(rd);
  4625. return NULL;
  4626. }
  4627. return rd;
  4628. }
  4629. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4630. {
  4631. struct sched_group *tmp, *first;
  4632. if (!sg)
  4633. return;
  4634. first = sg;
  4635. do {
  4636. tmp = sg->next;
  4637. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4638. kfree(sg->sgp);
  4639. kfree(sg);
  4640. sg = tmp;
  4641. } while (sg != first);
  4642. }
  4643. static void free_sched_domain(struct rcu_head *rcu)
  4644. {
  4645. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4646. /*
  4647. * If its an overlapping domain it has private groups, iterate and
  4648. * nuke them all.
  4649. */
  4650. if (sd->flags & SD_OVERLAP) {
  4651. free_sched_groups(sd->groups, 1);
  4652. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4653. kfree(sd->groups->sgp);
  4654. kfree(sd->groups);
  4655. }
  4656. kfree(sd);
  4657. }
  4658. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4659. {
  4660. call_rcu(&sd->rcu, free_sched_domain);
  4661. }
  4662. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4663. {
  4664. for (; sd; sd = sd->parent)
  4665. destroy_sched_domain(sd, cpu);
  4666. }
  4667. /*
  4668. * Keep a special pointer to the highest sched_domain that has
  4669. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4670. * allows us to avoid some pointer chasing select_idle_sibling().
  4671. *
  4672. * Also keep a unique ID per domain (we use the first cpu number in
  4673. * the cpumask of the domain), this allows us to quickly tell if
  4674. * two cpus are in the same cache domain, see cpus_share_cache().
  4675. */
  4676. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4677. DEFINE_PER_CPU(int, sd_llc_size);
  4678. DEFINE_PER_CPU(int, sd_llc_id);
  4679. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4680. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4681. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4682. static void update_top_cache_domain(int cpu)
  4683. {
  4684. struct sched_domain *sd;
  4685. struct sched_domain *busy_sd = NULL;
  4686. int id = cpu;
  4687. int size = 1;
  4688. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4689. if (sd) {
  4690. id = cpumask_first(sched_domain_span(sd));
  4691. size = cpumask_weight(sched_domain_span(sd));
  4692. busy_sd = sd->parent; /* sd_busy */
  4693. }
  4694. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4695. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4696. per_cpu(sd_llc_size, cpu) = size;
  4697. per_cpu(sd_llc_id, cpu) = id;
  4698. sd = lowest_flag_domain(cpu, SD_NUMA);
  4699. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4700. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4701. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4702. }
  4703. /*
  4704. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4705. * hold the hotplug lock.
  4706. */
  4707. static void
  4708. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4709. {
  4710. struct rq *rq = cpu_rq(cpu);
  4711. struct sched_domain *tmp;
  4712. /* Remove the sched domains which do not contribute to scheduling. */
  4713. for (tmp = sd; tmp; ) {
  4714. struct sched_domain *parent = tmp->parent;
  4715. if (!parent)
  4716. break;
  4717. if (sd_parent_degenerate(tmp, parent)) {
  4718. tmp->parent = parent->parent;
  4719. if (parent->parent)
  4720. parent->parent->child = tmp;
  4721. /*
  4722. * Transfer SD_PREFER_SIBLING down in case of a
  4723. * degenerate parent; the spans match for this
  4724. * so the property transfers.
  4725. */
  4726. if (parent->flags & SD_PREFER_SIBLING)
  4727. tmp->flags |= SD_PREFER_SIBLING;
  4728. destroy_sched_domain(parent, cpu);
  4729. } else
  4730. tmp = tmp->parent;
  4731. }
  4732. if (sd && sd_degenerate(sd)) {
  4733. tmp = sd;
  4734. sd = sd->parent;
  4735. destroy_sched_domain(tmp, cpu);
  4736. if (sd)
  4737. sd->child = NULL;
  4738. }
  4739. sched_domain_debug(sd, cpu);
  4740. rq_attach_root(rq, rd);
  4741. tmp = rq->sd;
  4742. rcu_assign_pointer(rq->sd, sd);
  4743. destroy_sched_domains(tmp, cpu);
  4744. update_top_cache_domain(cpu);
  4745. }
  4746. /* cpus with isolated domains */
  4747. static cpumask_var_t cpu_isolated_map;
  4748. /* Setup the mask of cpus configured for isolated domains */
  4749. static int __init isolated_cpu_setup(char *str)
  4750. {
  4751. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4752. cpulist_parse(str, cpu_isolated_map);
  4753. return 1;
  4754. }
  4755. __setup("isolcpus=", isolated_cpu_setup);
  4756. static const struct cpumask *cpu_cpu_mask(int cpu)
  4757. {
  4758. return cpumask_of_node(cpu_to_node(cpu));
  4759. }
  4760. struct sd_data {
  4761. struct sched_domain **__percpu sd;
  4762. struct sched_group **__percpu sg;
  4763. struct sched_group_power **__percpu sgp;
  4764. };
  4765. struct s_data {
  4766. struct sched_domain ** __percpu sd;
  4767. struct root_domain *rd;
  4768. };
  4769. enum s_alloc {
  4770. sa_rootdomain,
  4771. sa_sd,
  4772. sa_sd_storage,
  4773. sa_none,
  4774. };
  4775. struct sched_domain_topology_level;
  4776. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4777. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4778. #define SDTL_OVERLAP 0x01
  4779. struct sched_domain_topology_level {
  4780. sched_domain_init_f init;
  4781. sched_domain_mask_f mask;
  4782. int flags;
  4783. int numa_level;
  4784. struct sd_data data;
  4785. };
  4786. /*
  4787. * Build an iteration mask that can exclude certain CPUs from the upwards
  4788. * domain traversal.
  4789. *
  4790. * Asymmetric node setups can result in situations where the domain tree is of
  4791. * unequal depth, make sure to skip domains that already cover the entire
  4792. * range.
  4793. *
  4794. * In that case build_sched_domains() will have terminated the iteration early
  4795. * and our sibling sd spans will be empty. Domains should always include the
  4796. * cpu they're built on, so check that.
  4797. *
  4798. */
  4799. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4800. {
  4801. const struct cpumask *span = sched_domain_span(sd);
  4802. struct sd_data *sdd = sd->private;
  4803. struct sched_domain *sibling;
  4804. int i;
  4805. for_each_cpu(i, span) {
  4806. sibling = *per_cpu_ptr(sdd->sd, i);
  4807. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4808. continue;
  4809. cpumask_set_cpu(i, sched_group_mask(sg));
  4810. }
  4811. }
  4812. /*
  4813. * Return the canonical balance cpu for this group, this is the first cpu
  4814. * of this group that's also in the iteration mask.
  4815. */
  4816. int group_balance_cpu(struct sched_group *sg)
  4817. {
  4818. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4819. }
  4820. static int
  4821. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4822. {
  4823. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4824. const struct cpumask *span = sched_domain_span(sd);
  4825. struct cpumask *covered = sched_domains_tmpmask;
  4826. struct sd_data *sdd = sd->private;
  4827. struct sched_domain *child;
  4828. int i;
  4829. cpumask_clear(covered);
  4830. for_each_cpu(i, span) {
  4831. struct cpumask *sg_span;
  4832. if (cpumask_test_cpu(i, covered))
  4833. continue;
  4834. child = *per_cpu_ptr(sdd->sd, i);
  4835. /* See the comment near build_group_mask(). */
  4836. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4837. continue;
  4838. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4839. GFP_KERNEL, cpu_to_node(cpu));
  4840. if (!sg)
  4841. goto fail;
  4842. sg_span = sched_group_cpus(sg);
  4843. if (child->child) {
  4844. child = child->child;
  4845. cpumask_copy(sg_span, sched_domain_span(child));
  4846. } else
  4847. cpumask_set_cpu(i, sg_span);
  4848. cpumask_or(covered, covered, sg_span);
  4849. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4850. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4851. build_group_mask(sd, sg);
  4852. /*
  4853. * Initialize sgp->power such that even if we mess up the
  4854. * domains and no possible iteration will get us here, we won't
  4855. * die on a /0 trap.
  4856. */
  4857. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4858. sg->sgp->power_orig = sg->sgp->power;
  4859. /*
  4860. * Make sure the first group of this domain contains the
  4861. * canonical balance cpu. Otherwise the sched_domain iteration
  4862. * breaks. See update_sg_lb_stats().
  4863. */
  4864. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4865. group_balance_cpu(sg) == cpu)
  4866. groups = sg;
  4867. if (!first)
  4868. first = sg;
  4869. if (last)
  4870. last->next = sg;
  4871. last = sg;
  4872. last->next = first;
  4873. }
  4874. sd->groups = groups;
  4875. return 0;
  4876. fail:
  4877. free_sched_groups(first, 0);
  4878. return -ENOMEM;
  4879. }
  4880. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4881. {
  4882. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4883. struct sched_domain *child = sd->child;
  4884. if (child)
  4885. cpu = cpumask_first(sched_domain_span(child));
  4886. if (sg) {
  4887. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4888. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4889. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4890. }
  4891. return cpu;
  4892. }
  4893. /*
  4894. * build_sched_groups will build a circular linked list of the groups
  4895. * covered by the given span, and will set each group's ->cpumask correctly,
  4896. * and ->cpu_power to 0.
  4897. *
  4898. * Assumes the sched_domain tree is fully constructed
  4899. */
  4900. static int
  4901. build_sched_groups(struct sched_domain *sd, int cpu)
  4902. {
  4903. struct sched_group *first = NULL, *last = NULL;
  4904. struct sd_data *sdd = sd->private;
  4905. const struct cpumask *span = sched_domain_span(sd);
  4906. struct cpumask *covered;
  4907. int i;
  4908. get_group(cpu, sdd, &sd->groups);
  4909. atomic_inc(&sd->groups->ref);
  4910. if (cpu != cpumask_first(span))
  4911. return 0;
  4912. lockdep_assert_held(&sched_domains_mutex);
  4913. covered = sched_domains_tmpmask;
  4914. cpumask_clear(covered);
  4915. for_each_cpu(i, span) {
  4916. struct sched_group *sg;
  4917. int group, j;
  4918. if (cpumask_test_cpu(i, covered))
  4919. continue;
  4920. group = get_group(i, sdd, &sg);
  4921. cpumask_clear(sched_group_cpus(sg));
  4922. sg->sgp->power = 0;
  4923. cpumask_setall(sched_group_mask(sg));
  4924. for_each_cpu(j, span) {
  4925. if (get_group(j, sdd, NULL) != group)
  4926. continue;
  4927. cpumask_set_cpu(j, covered);
  4928. cpumask_set_cpu(j, sched_group_cpus(sg));
  4929. }
  4930. if (!first)
  4931. first = sg;
  4932. if (last)
  4933. last->next = sg;
  4934. last = sg;
  4935. }
  4936. last->next = first;
  4937. return 0;
  4938. }
  4939. /*
  4940. * Initialize sched groups cpu_power.
  4941. *
  4942. * cpu_power indicates the capacity of sched group, which is used while
  4943. * distributing the load between different sched groups in a sched domain.
  4944. * Typically cpu_power for all the groups in a sched domain will be same unless
  4945. * there are asymmetries in the topology. If there are asymmetries, group
  4946. * having more cpu_power will pickup more load compared to the group having
  4947. * less cpu_power.
  4948. */
  4949. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4950. {
  4951. struct sched_group *sg = sd->groups;
  4952. WARN_ON(!sg);
  4953. do {
  4954. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4955. sg = sg->next;
  4956. } while (sg != sd->groups);
  4957. if (cpu != group_balance_cpu(sg))
  4958. return;
  4959. update_group_power(sd, cpu);
  4960. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4961. }
  4962. int __weak arch_sd_sibling_asym_packing(void)
  4963. {
  4964. return 0*SD_ASYM_PACKING;
  4965. }
  4966. /*
  4967. * Initializers for schedule domains
  4968. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4969. */
  4970. #ifdef CONFIG_SCHED_DEBUG
  4971. # define SD_INIT_NAME(sd, type) sd->name = #type
  4972. #else
  4973. # define SD_INIT_NAME(sd, type) do { } while (0)
  4974. #endif
  4975. #define SD_INIT_FUNC(type) \
  4976. static noinline struct sched_domain * \
  4977. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4978. { \
  4979. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4980. *sd = SD_##type##_INIT; \
  4981. SD_INIT_NAME(sd, type); \
  4982. sd->private = &tl->data; \
  4983. return sd; \
  4984. }
  4985. SD_INIT_FUNC(CPU)
  4986. #ifdef CONFIG_SCHED_SMT
  4987. SD_INIT_FUNC(SIBLING)
  4988. #endif
  4989. #ifdef CONFIG_SCHED_MC
  4990. SD_INIT_FUNC(MC)
  4991. #endif
  4992. #ifdef CONFIG_SCHED_BOOK
  4993. SD_INIT_FUNC(BOOK)
  4994. #endif
  4995. static int default_relax_domain_level = -1;
  4996. int sched_domain_level_max;
  4997. static int __init setup_relax_domain_level(char *str)
  4998. {
  4999. if (kstrtoint(str, 0, &default_relax_domain_level))
  5000. pr_warn("Unable to set relax_domain_level\n");
  5001. return 1;
  5002. }
  5003. __setup("relax_domain_level=", setup_relax_domain_level);
  5004. static void set_domain_attribute(struct sched_domain *sd,
  5005. struct sched_domain_attr *attr)
  5006. {
  5007. int request;
  5008. if (!attr || attr->relax_domain_level < 0) {
  5009. if (default_relax_domain_level < 0)
  5010. return;
  5011. else
  5012. request = default_relax_domain_level;
  5013. } else
  5014. request = attr->relax_domain_level;
  5015. if (request < sd->level) {
  5016. /* turn off idle balance on this domain */
  5017. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5018. } else {
  5019. /* turn on idle balance on this domain */
  5020. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5021. }
  5022. }
  5023. static void __sdt_free(const struct cpumask *cpu_map);
  5024. static int __sdt_alloc(const struct cpumask *cpu_map);
  5025. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5026. const struct cpumask *cpu_map)
  5027. {
  5028. switch (what) {
  5029. case sa_rootdomain:
  5030. if (!atomic_read(&d->rd->refcount))
  5031. free_rootdomain(&d->rd->rcu); /* fall through */
  5032. case sa_sd:
  5033. free_percpu(d->sd); /* fall through */
  5034. case sa_sd_storage:
  5035. __sdt_free(cpu_map); /* fall through */
  5036. case sa_none:
  5037. break;
  5038. }
  5039. }
  5040. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5041. const struct cpumask *cpu_map)
  5042. {
  5043. memset(d, 0, sizeof(*d));
  5044. if (__sdt_alloc(cpu_map))
  5045. return sa_sd_storage;
  5046. d->sd = alloc_percpu(struct sched_domain *);
  5047. if (!d->sd)
  5048. return sa_sd_storage;
  5049. d->rd = alloc_rootdomain();
  5050. if (!d->rd)
  5051. return sa_sd;
  5052. return sa_rootdomain;
  5053. }
  5054. /*
  5055. * NULL the sd_data elements we've used to build the sched_domain and
  5056. * sched_group structure so that the subsequent __free_domain_allocs()
  5057. * will not free the data we're using.
  5058. */
  5059. static void claim_allocations(int cpu, struct sched_domain *sd)
  5060. {
  5061. struct sd_data *sdd = sd->private;
  5062. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5063. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5064. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5065. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5066. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5067. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5068. }
  5069. #ifdef CONFIG_SCHED_SMT
  5070. static const struct cpumask *cpu_smt_mask(int cpu)
  5071. {
  5072. return topology_thread_cpumask(cpu);
  5073. }
  5074. #endif
  5075. /*
  5076. * Topology list, bottom-up.
  5077. */
  5078. static struct sched_domain_topology_level default_topology[] = {
  5079. #ifdef CONFIG_SCHED_SMT
  5080. { sd_init_SIBLING, cpu_smt_mask, },
  5081. #endif
  5082. #ifdef CONFIG_SCHED_MC
  5083. { sd_init_MC, cpu_coregroup_mask, },
  5084. #endif
  5085. #ifdef CONFIG_SCHED_BOOK
  5086. { sd_init_BOOK, cpu_book_mask, },
  5087. #endif
  5088. { sd_init_CPU, cpu_cpu_mask, },
  5089. { NULL, },
  5090. };
  5091. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5092. #define for_each_sd_topology(tl) \
  5093. for (tl = sched_domain_topology; tl->init; tl++)
  5094. #ifdef CONFIG_NUMA
  5095. static int sched_domains_numa_levels;
  5096. static int *sched_domains_numa_distance;
  5097. static struct cpumask ***sched_domains_numa_masks;
  5098. static int sched_domains_curr_level;
  5099. static inline int sd_local_flags(int level)
  5100. {
  5101. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5102. return 0;
  5103. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5104. }
  5105. static struct sched_domain *
  5106. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5107. {
  5108. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5109. int level = tl->numa_level;
  5110. int sd_weight = cpumask_weight(
  5111. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5112. *sd = (struct sched_domain){
  5113. .min_interval = sd_weight,
  5114. .max_interval = 2*sd_weight,
  5115. .busy_factor = 32,
  5116. .imbalance_pct = 125,
  5117. .cache_nice_tries = 2,
  5118. .busy_idx = 3,
  5119. .idle_idx = 2,
  5120. .newidle_idx = 0,
  5121. .wake_idx = 0,
  5122. .forkexec_idx = 0,
  5123. .flags = 1*SD_LOAD_BALANCE
  5124. | 1*SD_BALANCE_NEWIDLE
  5125. | 0*SD_BALANCE_EXEC
  5126. | 0*SD_BALANCE_FORK
  5127. | 0*SD_BALANCE_WAKE
  5128. | 0*SD_WAKE_AFFINE
  5129. | 0*SD_SHARE_CPUPOWER
  5130. | 0*SD_SHARE_PKG_RESOURCES
  5131. | 1*SD_SERIALIZE
  5132. | 0*SD_PREFER_SIBLING
  5133. | 1*SD_NUMA
  5134. | sd_local_flags(level)
  5135. ,
  5136. .last_balance = jiffies,
  5137. .balance_interval = sd_weight,
  5138. .max_newidle_lb_cost = 0,
  5139. .next_decay_max_lb_cost = jiffies,
  5140. };
  5141. SD_INIT_NAME(sd, NUMA);
  5142. sd->private = &tl->data;
  5143. /*
  5144. * Ugly hack to pass state to sd_numa_mask()...
  5145. */
  5146. sched_domains_curr_level = tl->numa_level;
  5147. return sd;
  5148. }
  5149. static const struct cpumask *sd_numa_mask(int cpu)
  5150. {
  5151. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5152. }
  5153. static void sched_numa_warn(const char *str)
  5154. {
  5155. static int done = false;
  5156. int i,j;
  5157. if (done)
  5158. return;
  5159. done = true;
  5160. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5161. for (i = 0; i < nr_node_ids; i++) {
  5162. printk(KERN_WARNING " ");
  5163. for (j = 0; j < nr_node_ids; j++)
  5164. printk(KERN_CONT "%02d ", node_distance(i,j));
  5165. printk(KERN_CONT "\n");
  5166. }
  5167. printk(KERN_WARNING "\n");
  5168. }
  5169. static bool find_numa_distance(int distance)
  5170. {
  5171. int i;
  5172. if (distance == node_distance(0, 0))
  5173. return true;
  5174. for (i = 0; i < sched_domains_numa_levels; i++) {
  5175. if (sched_domains_numa_distance[i] == distance)
  5176. return true;
  5177. }
  5178. return false;
  5179. }
  5180. static void sched_init_numa(void)
  5181. {
  5182. int next_distance, curr_distance = node_distance(0, 0);
  5183. struct sched_domain_topology_level *tl;
  5184. int level = 0;
  5185. int i, j, k;
  5186. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5187. if (!sched_domains_numa_distance)
  5188. return;
  5189. /*
  5190. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5191. * unique distances in the node_distance() table.
  5192. *
  5193. * Assumes node_distance(0,j) includes all distances in
  5194. * node_distance(i,j) in order to avoid cubic time.
  5195. */
  5196. next_distance = curr_distance;
  5197. for (i = 0; i < nr_node_ids; i++) {
  5198. for (j = 0; j < nr_node_ids; j++) {
  5199. for (k = 0; k < nr_node_ids; k++) {
  5200. int distance = node_distance(i, k);
  5201. if (distance > curr_distance &&
  5202. (distance < next_distance ||
  5203. next_distance == curr_distance))
  5204. next_distance = distance;
  5205. /*
  5206. * While not a strong assumption it would be nice to know
  5207. * about cases where if node A is connected to B, B is not
  5208. * equally connected to A.
  5209. */
  5210. if (sched_debug() && node_distance(k, i) != distance)
  5211. sched_numa_warn("Node-distance not symmetric");
  5212. if (sched_debug() && i && !find_numa_distance(distance))
  5213. sched_numa_warn("Node-0 not representative");
  5214. }
  5215. if (next_distance != curr_distance) {
  5216. sched_domains_numa_distance[level++] = next_distance;
  5217. sched_domains_numa_levels = level;
  5218. curr_distance = next_distance;
  5219. } else break;
  5220. }
  5221. /*
  5222. * In case of sched_debug() we verify the above assumption.
  5223. */
  5224. if (!sched_debug())
  5225. break;
  5226. }
  5227. /*
  5228. * 'level' contains the number of unique distances, excluding the
  5229. * identity distance node_distance(i,i).
  5230. *
  5231. * The sched_domains_numa_distance[] array includes the actual distance
  5232. * numbers.
  5233. */
  5234. /*
  5235. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5236. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5237. * the array will contain less then 'level' members. This could be
  5238. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5239. * in other functions.
  5240. *
  5241. * We reset it to 'level' at the end of this function.
  5242. */
  5243. sched_domains_numa_levels = 0;
  5244. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5245. if (!sched_domains_numa_masks)
  5246. return;
  5247. /*
  5248. * Now for each level, construct a mask per node which contains all
  5249. * cpus of nodes that are that many hops away from us.
  5250. */
  5251. for (i = 0; i < level; i++) {
  5252. sched_domains_numa_masks[i] =
  5253. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5254. if (!sched_domains_numa_masks[i])
  5255. return;
  5256. for (j = 0; j < nr_node_ids; j++) {
  5257. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5258. if (!mask)
  5259. return;
  5260. sched_domains_numa_masks[i][j] = mask;
  5261. for (k = 0; k < nr_node_ids; k++) {
  5262. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5263. continue;
  5264. cpumask_or(mask, mask, cpumask_of_node(k));
  5265. }
  5266. }
  5267. }
  5268. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5269. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5270. if (!tl)
  5271. return;
  5272. /*
  5273. * Copy the default topology bits..
  5274. */
  5275. for (i = 0; default_topology[i].init; i++)
  5276. tl[i] = default_topology[i];
  5277. /*
  5278. * .. and append 'j' levels of NUMA goodness.
  5279. */
  5280. for (j = 0; j < level; i++, j++) {
  5281. tl[i] = (struct sched_domain_topology_level){
  5282. .init = sd_numa_init,
  5283. .mask = sd_numa_mask,
  5284. .flags = SDTL_OVERLAP,
  5285. .numa_level = j,
  5286. };
  5287. }
  5288. sched_domain_topology = tl;
  5289. sched_domains_numa_levels = level;
  5290. }
  5291. static void sched_domains_numa_masks_set(int cpu)
  5292. {
  5293. int i, j;
  5294. int node = cpu_to_node(cpu);
  5295. for (i = 0; i < sched_domains_numa_levels; i++) {
  5296. for (j = 0; j < nr_node_ids; j++) {
  5297. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5298. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5299. }
  5300. }
  5301. }
  5302. static void sched_domains_numa_masks_clear(int cpu)
  5303. {
  5304. int i, j;
  5305. for (i = 0; i < sched_domains_numa_levels; i++) {
  5306. for (j = 0; j < nr_node_ids; j++)
  5307. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5308. }
  5309. }
  5310. /*
  5311. * Update sched_domains_numa_masks[level][node] array when new cpus
  5312. * are onlined.
  5313. */
  5314. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5315. unsigned long action,
  5316. void *hcpu)
  5317. {
  5318. int cpu = (long)hcpu;
  5319. switch (action & ~CPU_TASKS_FROZEN) {
  5320. case CPU_ONLINE:
  5321. sched_domains_numa_masks_set(cpu);
  5322. break;
  5323. case CPU_DEAD:
  5324. sched_domains_numa_masks_clear(cpu);
  5325. break;
  5326. default:
  5327. return NOTIFY_DONE;
  5328. }
  5329. return NOTIFY_OK;
  5330. }
  5331. #else
  5332. static inline void sched_init_numa(void)
  5333. {
  5334. }
  5335. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5336. unsigned long action,
  5337. void *hcpu)
  5338. {
  5339. return 0;
  5340. }
  5341. #endif /* CONFIG_NUMA */
  5342. static int __sdt_alloc(const struct cpumask *cpu_map)
  5343. {
  5344. struct sched_domain_topology_level *tl;
  5345. int j;
  5346. for_each_sd_topology(tl) {
  5347. struct sd_data *sdd = &tl->data;
  5348. sdd->sd = alloc_percpu(struct sched_domain *);
  5349. if (!sdd->sd)
  5350. return -ENOMEM;
  5351. sdd->sg = alloc_percpu(struct sched_group *);
  5352. if (!sdd->sg)
  5353. return -ENOMEM;
  5354. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5355. if (!sdd->sgp)
  5356. return -ENOMEM;
  5357. for_each_cpu(j, cpu_map) {
  5358. struct sched_domain *sd;
  5359. struct sched_group *sg;
  5360. struct sched_group_power *sgp;
  5361. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5362. GFP_KERNEL, cpu_to_node(j));
  5363. if (!sd)
  5364. return -ENOMEM;
  5365. *per_cpu_ptr(sdd->sd, j) = sd;
  5366. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5367. GFP_KERNEL, cpu_to_node(j));
  5368. if (!sg)
  5369. return -ENOMEM;
  5370. sg->next = sg;
  5371. *per_cpu_ptr(sdd->sg, j) = sg;
  5372. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5373. GFP_KERNEL, cpu_to_node(j));
  5374. if (!sgp)
  5375. return -ENOMEM;
  5376. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5377. }
  5378. }
  5379. return 0;
  5380. }
  5381. static void __sdt_free(const struct cpumask *cpu_map)
  5382. {
  5383. struct sched_domain_topology_level *tl;
  5384. int j;
  5385. for_each_sd_topology(tl) {
  5386. struct sd_data *sdd = &tl->data;
  5387. for_each_cpu(j, cpu_map) {
  5388. struct sched_domain *sd;
  5389. if (sdd->sd) {
  5390. sd = *per_cpu_ptr(sdd->sd, j);
  5391. if (sd && (sd->flags & SD_OVERLAP))
  5392. free_sched_groups(sd->groups, 0);
  5393. kfree(*per_cpu_ptr(sdd->sd, j));
  5394. }
  5395. if (sdd->sg)
  5396. kfree(*per_cpu_ptr(sdd->sg, j));
  5397. if (sdd->sgp)
  5398. kfree(*per_cpu_ptr(sdd->sgp, j));
  5399. }
  5400. free_percpu(sdd->sd);
  5401. sdd->sd = NULL;
  5402. free_percpu(sdd->sg);
  5403. sdd->sg = NULL;
  5404. free_percpu(sdd->sgp);
  5405. sdd->sgp = NULL;
  5406. }
  5407. }
  5408. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5409. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5410. struct sched_domain *child, int cpu)
  5411. {
  5412. struct sched_domain *sd = tl->init(tl, cpu);
  5413. if (!sd)
  5414. return child;
  5415. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5416. if (child) {
  5417. sd->level = child->level + 1;
  5418. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5419. child->parent = sd;
  5420. sd->child = child;
  5421. }
  5422. set_domain_attribute(sd, attr);
  5423. return sd;
  5424. }
  5425. /*
  5426. * Build sched domains for a given set of cpus and attach the sched domains
  5427. * to the individual cpus
  5428. */
  5429. static int build_sched_domains(const struct cpumask *cpu_map,
  5430. struct sched_domain_attr *attr)
  5431. {
  5432. enum s_alloc alloc_state;
  5433. struct sched_domain *sd;
  5434. struct s_data d;
  5435. int i, ret = -ENOMEM;
  5436. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5437. if (alloc_state != sa_rootdomain)
  5438. goto error;
  5439. /* Set up domains for cpus specified by the cpu_map. */
  5440. for_each_cpu(i, cpu_map) {
  5441. struct sched_domain_topology_level *tl;
  5442. sd = NULL;
  5443. for_each_sd_topology(tl) {
  5444. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5445. if (tl == sched_domain_topology)
  5446. *per_cpu_ptr(d.sd, i) = sd;
  5447. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5448. sd->flags |= SD_OVERLAP;
  5449. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5450. break;
  5451. }
  5452. }
  5453. /* Build the groups for the domains */
  5454. for_each_cpu(i, cpu_map) {
  5455. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5456. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5457. if (sd->flags & SD_OVERLAP) {
  5458. if (build_overlap_sched_groups(sd, i))
  5459. goto error;
  5460. } else {
  5461. if (build_sched_groups(sd, i))
  5462. goto error;
  5463. }
  5464. }
  5465. }
  5466. /* Calculate CPU power for physical packages and nodes */
  5467. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5468. if (!cpumask_test_cpu(i, cpu_map))
  5469. continue;
  5470. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5471. claim_allocations(i, sd);
  5472. init_sched_groups_power(i, sd);
  5473. }
  5474. }
  5475. /* Attach the domains */
  5476. rcu_read_lock();
  5477. for_each_cpu(i, cpu_map) {
  5478. sd = *per_cpu_ptr(d.sd, i);
  5479. cpu_attach_domain(sd, d.rd, i);
  5480. }
  5481. rcu_read_unlock();
  5482. ret = 0;
  5483. error:
  5484. __free_domain_allocs(&d, alloc_state, cpu_map);
  5485. return ret;
  5486. }
  5487. static cpumask_var_t *doms_cur; /* current sched domains */
  5488. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5489. static struct sched_domain_attr *dattr_cur;
  5490. /* attribues of custom domains in 'doms_cur' */
  5491. /*
  5492. * Special case: If a kmalloc of a doms_cur partition (array of
  5493. * cpumask) fails, then fallback to a single sched domain,
  5494. * as determined by the single cpumask fallback_doms.
  5495. */
  5496. static cpumask_var_t fallback_doms;
  5497. /*
  5498. * arch_update_cpu_topology lets virtualized architectures update the
  5499. * cpu core maps. It is supposed to return 1 if the topology changed
  5500. * or 0 if it stayed the same.
  5501. */
  5502. int __weak arch_update_cpu_topology(void)
  5503. {
  5504. return 0;
  5505. }
  5506. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5507. {
  5508. int i;
  5509. cpumask_var_t *doms;
  5510. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5511. if (!doms)
  5512. return NULL;
  5513. for (i = 0; i < ndoms; i++) {
  5514. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5515. free_sched_domains(doms, i);
  5516. return NULL;
  5517. }
  5518. }
  5519. return doms;
  5520. }
  5521. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5522. {
  5523. unsigned int i;
  5524. for (i = 0; i < ndoms; i++)
  5525. free_cpumask_var(doms[i]);
  5526. kfree(doms);
  5527. }
  5528. /*
  5529. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5530. * For now this just excludes isolated cpus, but could be used to
  5531. * exclude other special cases in the future.
  5532. */
  5533. static int init_sched_domains(const struct cpumask *cpu_map)
  5534. {
  5535. int err;
  5536. arch_update_cpu_topology();
  5537. ndoms_cur = 1;
  5538. doms_cur = alloc_sched_domains(ndoms_cur);
  5539. if (!doms_cur)
  5540. doms_cur = &fallback_doms;
  5541. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5542. err = build_sched_domains(doms_cur[0], NULL);
  5543. register_sched_domain_sysctl();
  5544. return err;
  5545. }
  5546. /*
  5547. * Detach sched domains from a group of cpus specified in cpu_map
  5548. * These cpus will now be attached to the NULL domain
  5549. */
  5550. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5551. {
  5552. int i;
  5553. rcu_read_lock();
  5554. for_each_cpu(i, cpu_map)
  5555. cpu_attach_domain(NULL, &def_root_domain, i);
  5556. rcu_read_unlock();
  5557. }
  5558. /* handle null as "default" */
  5559. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5560. struct sched_domain_attr *new, int idx_new)
  5561. {
  5562. struct sched_domain_attr tmp;
  5563. /* fast path */
  5564. if (!new && !cur)
  5565. return 1;
  5566. tmp = SD_ATTR_INIT;
  5567. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5568. new ? (new + idx_new) : &tmp,
  5569. sizeof(struct sched_domain_attr));
  5570. }
  5571. /*
  5572. * Partition sched domains as specified by the 'ndoms_new'
  5573. * cpumasks in the array doms_new[] of cpumasks. This compares
  5574. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5575. * It destroys each deleted domain and builds each new domain.
  5576. *
  5577. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5578. * The masks don't intersect (don't overlap.) We should setup one
  5579. * sched domain for each mask. CPUs not in any of the cpumasks will
  5580. * not be load balanced. If the same cpumask appears both in the
  5581. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5582. * it as it is.
  5583. *
  5584. * The passed in 'doms_new' should be allocated using
  5585. * alloc_sched_domains. This routine takes ownership of it and will
  5586. * free_sched_domains it when done with it. If the caller failed the
  5587. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5588. * and partition_sched_domains() will fallback to the single partition
  5589. * 'fallback_doms', it also forces the domains to be rebuilt.
  5590. *
  5591. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5592. * ndoms_new == 0 is a special case for destroying existing domains,
  5593. * and it will not create the default domain.
  5594. *
  5595. * Call with hotplug lock held
  5596. */
  5597. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5598. struct sched_domain_attr *dattr_new)
  5599. {
  5600. int i, j, n;
  5601. int new_topology;
  5602. mutex_lock(&sched_domains_mutex);
  5603. /* always unregister in case we don't destroy any domains */
  5604. unregister_sched_domain_sysctl();
  5605. /* Let architecture update cpu core mappings. */
  5606. new_topology = arch_update_cpu_topology();
  5607. n = doms_new ? ndoms_new : 0;
  5608. /* Destroy deleted domains */
  5609. for (i = 0; i < ndoms_cur; i++) {
  5610. for (j = 0; j < n && !new_topology; j++) {
  5611. if (cpumask_equal(doms_cur[i], doms_new[j])
  5612. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5613. goto match1;
  5614. }
  5615. /* no match - a current sched domain not in new doms_new[] */
  5616. detach_destroy_domains(doms_cur[i]);
  5617. match1:
  5618. ;
  5619. }
  5620. n = ndoms_cur;
  5621. if (doms_new == NULL) {
  5622. n = 0;
  5623. doms_new = &fallback_doms;
  5624. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5625. WARN_ON_ONCE(dattr_new);
  5626. }
  5627. /* Build new domains */
  5628. for (i = 0; i < ndoms_new; i++) {
  5629. for (j = 0; j < n && !new_topology; j++) {
  5630. if (cpumask_equal(doms_new[i], doms_cur[j])
  5631. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5632. goto match2;
  5633. }
  5634. /* no match - add a new doms_new */
  5635. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5636. match2:
  5637. ;
  5638. }
  5639. /* Remember the new sched domains */
  5640. if (doms_cur != &fallback_doms)
  5641. free_sched_domains(doms_cur, ndoms_cur);
  5642. kfree(dattr_cur); /* kfree(NULL) is safe */
  5643. doms_cur = doms_new;
  5644. dattr_cur = dattr_new;
  5645. ndoms_cur = ndoms_new;
  5646. register_sched_domain_sysctl();
  5647. mutex_unlock(&sched_domains_mutex);
  5648. }
  5649. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5650. /*
  5651. * Update cpusets according to cpu_active mask. If cpusets are
  5652. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5653. * around partition_sched_domains().
  5654. *
  5655. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5656. * want to restore it back to its original state upon resume anyway.
  5657. */
  5658. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5659. void *hcpu)
  5660. {
  5661. switch (action) {
  5662. case CPU_ONLINE_FROZEN:
  5663. case CPU_DOWN_FAILED_FROZEN:
  5664. /*
  5665. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5666. * resume sequence. As long as this is not the last online
  5667. * operation in the resume sequence, just build a single sched
  5668. * domain, ignoring cpusets.
  5669. */
  5670. num_cpus_frozen--;
  5671. if (likely(num_cpus_frozen)) {
  5672. partition_sched_domains(1, NULL, NULL);
  5673. break;
  5674. }
  5675. /*
  5676. * This is the last CPU online operation. So fall through and
  5677. * restore the original sched domains by considering the
  5678. * cpuset configurations.
  5679. */
  5680. case CPU_ONLINE:
  5681. case CPU_DOWN_FAILED:
  5682. cpuset_update_active_cpus(true);
  5683. break;
  5684. default:
  5685. return NOTIFY_DONE;
  5686. }
  5687. return NOTIFY_OK;
  5688. }
  5689. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5690. void *hcpu)
  5691. {
  5692. switch (action) {
  5693. case CPU_DOWN_PREPARE:
  5694. cpuset_update_active_cpus(false);
  5695. break;
  5696. case CPU_DOWN_PREPARE_FROZEN:
  5697. num_cpus_frozen++;
  5698. partition_sched_domains(1, NULL, NULL);
  5699. break;
  5700. default:
  5701. return NOTIFY_DONE;
  5702. }
  5703. return NOTIFY_OK;
  5704. }
  5705. void __init sched_init_smp(void)
  5706. {
  5707. cpumask_var_t non_isolated_cpus;
  5708. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5709. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5710. sched_init_numa();
  5711. /*
  5712. * There's no userspace yet to cause hotplug operations; hence all the
  5713. * cpu masks are stable and all blatant races in the below code cannot
  5714. * happen.
  5715. */
  5716. mutex_lock(&sched_domains_mutex);
  5717. init_sched_domains(cpu_active_mask);
  5718. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5719. if (cpumask_empty(non_isolated_cpus))
  5720. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5721. mutex_unlock(&sched_domains_mutex);
  5722. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5723. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5724. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5725. init_hrtick();
  5726. /* Move init over to a non-isolated CPU */
  5727. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5728. BUG();
  5729. sched_init_granularity();
  5730. free_cpumask_var(non_isolated_cpus);
  5731. init_sched_rt_class();
  5732. init_sched_dl_class();
  5733. }
  5734. #else
  5735. void __init sched_init_smp(void)
  5736. {
  5737. sched_init_granularity();
  5738. }
  5739. #endif /* CONFIG_SMP */
  5740. const_debug unsigned int sysctl_timer_migration = 1;
  5741. int in_sched_functions(unsigned long addr)
  5742. {
  5743. return in_lock_functions(addr) ||
  5744. (addr >= (unsigned long)__sched_text_start
  5745. && addr < (unsigned long)__sched_text_end);
  5746. }
  5747. #ifdef CONFIG_CGROUP_SCHED
  5748. /*
  5749. * Default task group.
  5750. * Every task in system belongs to this group at bootup.
  5751. */
  5752. struct task_group root_task_group;
  5753. LIST_HEAD(task_groups);
  5754. #endif
  5755. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5756. void __init sched_init(void)
  5757. {
  5758. int i, j;
  5759. unsigned long alloc_size = 0, ptr;
  5760. #ifdef CONFIG_FAIR_GROUP_SCHED
  5761. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5762. #endif
  5763. #ifdef CONFIG_RT_GROUP_SCHED
  5764. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5765. #endif
  5766. #ifdef CONFIG_CPUMASK_OFFSTACK
  5767. alloc_size += num_possible_cpus() * cpumask_size();
  5768. #endif
  5769. if (alloc_size) {
  5770. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5771. #ifdef CONFIG_FAIR_GROUP_SCHED
  5772. root_task_group.se = (struct sched_entity **)ptr;
  5773. ptr += nr_cpu_ids * sizeof(void **);
  5774. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5775. ptr += nr_cpu_ids * sizeof(void **);
  5776. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5777. #ifdef CONFIG_RT_GROUP_SCHED
  5778. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5779. ptr += nr_cpu_ids * sizeof(void **);
  5780. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5781. ptr += nr_cpu_ids * sizeof(void **);
  5782. #endif /* CONFIG_RT_GROUP_SCHED */
  5783. #ifdef CONFIG_CPUMASK_OFFSTACK
  5784. for_each_possible_cpu(i) {
  5785. per_cpu(load_balance_mask, i) = (void *)ptr;
  5786. ptr += cpumask_size();
  5787. }
  5788. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5789. }
  5790. init_rt_bandwidth(&def_rt_bandwidth,
  5791. global_rt_period(), global_rt_runtime());
  5792. init_dl_bandwidth(&def_dl_bandwidth,
  5793. global_rt_period(), global_rt_runtime());
  5794. #ifdef CONFIG_SMP
  5795. init_defrootdomain();
  5796. #endif
  5797. #ifdef CONFIG_RT_GROUP_SCHED
  5798. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5799. global_rt_period(), global_rt_runtime());
  5800. #endif /* CONFIG_RT_GROUP_SCHED */
  5801. #ifdef CONFIG_CGROUP_SCHED
  5802. list_add(&root_task_group.list, &task_groups);
  5803. INIT_LIST_HEAD(&root_task_group.children);
  5804. INIT_LIST_HEAD(&root_task_group.siblings);
  5805. autogroup_init(&init_task);
  5806. #endif /* CONFIG_CGROUP_SCHED */
  5807. for_each_possible_cpu(i) {
  5808. struct rq *rq;
  5809. rq = cpu_rq(i);
  5810. raw_spin_lock_init(&rq->lock);
  5811. rq->nr_running = 0;
  5812. rq->calc_load_active = 0;
  5813. rq->calc_load_update = jiffies + LOAD_FREQ;
  5814. init_cfs_rq(&rq->cfs);
  5815. init_rt_rq(&rq->rt, rq);
  5816. init_dl_rq(&rq->dl, rq);
  5817. #ifdef CONFIG_FAIR_GROUP_SCHED
  5818. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5819. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5820. /*
  5821. * How much cpu bandwidth does root_task_group get?
  5822. *
  5823. * In case of task-groups formed thr' the cgroup filesystem, it
  5824. * gets 100% of the cpu resources in the system. This overall
  5825. * system cpu resource is divided among the tasks of
  5826. * root_task_group and its child task-groups in a fair manner,
  5827. * based on each entity's (task or task-group's) weight
  5828. * (se->load.weight).
  5829. *
  5830. * In other words, if root_task_group has 10 tasks of weight
  5831. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5832. * then A0's share of the cpu resource is:
  5833. *
  5834. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5835. *
  5836. * We achieve this by letting root_task_group's tasks sit
  5837. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5838. */
  5839. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5840. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5841. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5842. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5843. #ifdef CONFIG_RT_GROUP_SCHED
  5844. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5845. #endif
  5846. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5847. rq->cpu_load[j] = 0;
  5848. rq->last_load_update_tick = jiffies;
  5849. #ifdef CONFIG_SMP
  5850. rq->sd = NULL;
  5851. rq->rd = NULL;
  5852. rq->cpu_power = SCHED_POWER_SCALE;
  5853. rq->post_schedule = 0;
  5854. rq->active_balance = 0;
  5855. rq->next_balance = jiffies;
  5856. rq->push_cpu = 0;
  5857. rq->cpu = i;
  5858. rq->online = 0;
  5859. rq->idle_stamp = 0;
  5860. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5861. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5862. INIT_LIST_HEAD(&rq->cfs_tasks);
  5863. rq_attach_root(rq, &def_root_domain);
  5864. #ifdef CONFIG_NO_HZ_COMMON
  5865. rq->nohz_flags = 0;
  5866. #endif
  5867. #ifdef CONFIG_NO_HZ_FULL
  5868. rq->last_sched_tick = 0;
  5869. #endif
  5870. #endif
  5871. init_rq_hrtick(rq);
  5872. atomic_set(&rq->nr_iowait, 0);
  5873. }
  5874. set_load_weight(&init_task);
  5875. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5876. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5877. #endif
  5878. /*
  5879. * The boot idle thread does lazy MMU switching as well:
  5880. */
  5881. atomic_inc(&init_mm.mm_count);
  5882. enter_lazy_tlb(&init_mm, current);
  5883. /*
  5884. * Make us the idle thread. Technically, schedule() should not be
  5885. * called from this thread, however somewhere below it might be,
  5886. * but because we are the idle thread, we just pick up running again
  5887. * when this runqueue becomes "idle".
  5888. */
  5889. init_idle(current, smp_processor_id());
  5890. calc_load_update = jiffies + LOAD_FREQ;
  5891. /*
  5892. * During early bootup we pretend to be a normal task:
  5893. */
  5894. current->sched_class = &fair_sched_class;
  5895. #ifdef CONFIG_SMP
  5896. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5897. /* May be allocated at isolcpus cmdline parse time */
  5898. if (cpu_isolated_map == NULL)
  5899. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5900. idle_thread_set_boot_cpu();
  5901. #endif
  5902. init_sched_fair_class();
  5903. scheduler_running = 1;
  5904. }
  5905. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5906. static inline int preempt_count_equals(int preempt_offset)
  5907. {
  5908. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5909. return (nested == preempt_offset);
  5910. }
  5911. void __might_sleep(const char *file, int line, int preempt_offset)
  5912. {
  5913. static unsigned long prev_jiffy; /* ratelimiting */
  5914. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5915. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  5916. !is_idle_task(current)) ||
  5917. system_state != SYSTEM_RUNNING || oops_in_progress)
  5918. return;
  5919. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5920. return;
  5921. prev_jiffy = jiffies;
  5922. printk(KERN_ERR
  5923. "BUG: sleeping function called from invalid context at %s:%d\n",
  5924. file, line);
  5925. printk(KERN_ERR
  5926. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5927. in_atomic(), irqs_disabled(),
  5928. current->pid, current->comm);
  5929. debug_show_held_locks(current);
  5930. if (irqs_disabled())
  5931. print_irqtrace_events(current);
  5932. #ifdef CONFIG_DEBUG_PREEMPT
  5933. if (!preempt_count_equals(preempt_offset)) {
  5934. pr_err("Preemption disabled at:");
  5935. print_ip_sym(current->preempt_disable_ip);
  5936. pr_cont("\n");
  5937. }
  5938. #endif
  5939. dump_stack();
  5940. }
  5941. EXPORT_SYMBOL(__might_sleep);
  5942. #endif
  5943. #ifdef CONFIG_MAGIC_SYSRQ
  5944. static void normalize_task(struct rq *rq, struct task_struct *p)
  5945. {
  5946. const struct sched_class *prev_class = p->sched_class;
  5947. struct sched_attr attr = {
  5948. .sched_policy = SCHED_NORMAL,
  5949. };
  5950. int old_prio = p->prio;
  5951. int on_rq;
  5952. on_rq = p->on_rq;
  5953. if (on_rq)
  5954. dequeue_task(rq, p, 0);
  5955. __setscheduler(rq, p, &attr);
  5956. if (on_rq) {
  5957. enqueue_task(rq, p, 0);
  5958. resched_task(rq->curr);
  5959. }
  5960. check_class_changed(rq, p, prev_class, old_prio);
  5961. }
  5962. void normalize_rt_tasks(void)
  5963. {
  5964. struct task_struct *g, *p;
  5965. unsigned long flags;
  5966. struct rq *rq;
  5967. read_lock_irqsave(&tasklist_lock, flags);
  5968. do_each_thread(g, p) {
  5969. /*
  5970. * Only normalize user tasks:
  5971. */
  5972. if (!p->mm)
  5973. continue;
  5974. p->se.exec_start = 0;
  5975. #ifdef CONFIG_SCHEDSTATS
  5976. p->se.statistics.wait_start = 0;
  5977. p->se.statistics.sleep_start = 0;
  5978. p->se.statistics.block_start = 0;
  5979. #endif
  5980. if (!dl_task(p) && !rt_task(p)) {
  5981. /*
  5982. * Renice negative nice level userspace
  5983. * tasks back to 0:
  5984. */
  5985. if (task_nice(p) < 0 && p->mm)
  5986. set_user_nice(p, 0);
  5987. continue;
  5988. }
  5989. raw_spin_lock(&p->pi_lock);
  5990. rq = __task_rq_lock(p);
  5991. normalize_task(rq, p);
  5992. __task_rq_unlock(rq);
  5993. raw_spin_unlock(&p->pi_lock);
  5994. } while_each_thread(g, p);
  5995. read_unlock_irqrestore(&tasklist_lock, flags);
  5996. }
  5997. #endif /* CONFIG_MAGIC_SYSRQ */
  5998. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5999. /*
  6000. * These functions are only useful for the IA64 MCA handling, or kdb.
  6001. *
  6002. * They can only be called when the whole system has been
  6003. * stopped - every CPU needs to be quiescent, and no scheduling
  6004. * activity can take place. Using them for anything else would
  6005. * be a serious bug, and as a result, they aren't even visible
  6006. * under any other configuration.
  6007. */
  6008. /**
  6009. * curr_task - return the current task for a given cpu.
  6010. * @cpu: the processor in question.
  6011. *
  6012. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6013. *
  6014. * Return: The current task for @cpu.
  6015. */
  6016. struct task_struct *curr_task(int cpu)
  6017. {
  6018. return cpu_curr(cpu);
  6019. }
  6020. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6021. #ifdef CONFIG_IA64
  6022. /**
  6023. * set_curr_task - set the current task for a given cpu.
  6024. * @cpu: the processor in question.
  6025. * @p: the task pointer to set.
  6026. *
  6027. * Description: This function must only be used when non-maskable interrupts
  6028. * are serviced on a separate stack. It allows the architecture to switch the
  6029. * notion of the current task on a cpu in a non-blocking manner. This function
  6030. * must be called with all CPU's synchronized, and interrupts disabled, the
  6031. * and caller must save the original value of the current task (see
  6032. * curr_task() above) and restore that value before reenabling interrupts and
  6033. * re-starting the system.
  6034. *
  6035. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6036. */
  6037. void set_curr_task(int cpu, struct task_struct *p)
  6038. {
  6039. cpu_curr(cpu) = p;
  6040. }
  6041. #endif
  6042. #ifdef CONFIG_CGROUP_SCHED
  6043. /* task_group_lock serializes the addition/removal of task groups */
  6044. static DEFINE_SPINLOCK(task_group_lock);
  6045. static void free_sched_group(struct task_group *tg)
  6046. {
  6047. free_fair_sched_group(tg);
  6048. free_rt_sched_group(tg);
  6049. autogroup_free(tg);
  6050. kfree(tg);
  6051. }
  6052. /* allocate runqueue etc for a new task group */
  6053. struct task_group *sched_create_group(struct task_group *parent)
  6054. {
  6055. struct task_group *tg;
  6056. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6057. if (!tg)
  6058. return ERR_PTR(-ENOMEM);
  6059. if (!alloc_fair_sched_group(tg, parent))
  6060. goto err;
  6061. if (!alloc_rt_sched_group(tg, parent))
  6062. goto err;
  6063. return tg;
  6064. err:
  6065. free_sched_group(tg);
  6066. return ERR_PTR(-ENOMEM);
  6067. }
  6068. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6069. {
  6070. unsigned long flags;
  6071. spin_lock_irqsave(&task_group_lock, flags);
  6072. list_add_rcu(&tg->list, &task_groups);
  6073. WARN_ON(!parent); /* root should already exist */
  6074. tg->parent = parent;
  6075. INIT_LIST_HEAD(&tg->children);
  6076. list_add_rcu(&tg->siblings, &parent->children);
  6077. spin_unlock_irqrestore(&task_group_lock, flags);
  6078. }
  6079. /* rcu callback to free various structures associated with a task group */
  6080. static void free_sched_group_rcu(struct rcu_head *rhp)
  6081. {
  6082. /* now it should be safe to free those cfs_rqs */
  6083. free_sched_group(container_of(rhp, struct task_group, rcu));
  6084. }
  6085. /* Destroy runqueue etc associated with a task group */
  6086. void sched_destroy_group(struct task_group *tg)
  6087. {
  6088. /* wait for possible concurrent references to cfs_rqs complete */
  6089. call_rcu(&tg->rcu, free_sched_group_rcu);
  6090. }
  6091. void sched_offline_group(struct task_group *tg)
  6092. {
  6093. unsigned long flags;
  6094. int i;
  6095. /* end participation in shares distribution */
  6096. for_each_possible_cpu(i)
  6097. unregister_fair_sched_group(tg, i);
  6098. spin_lock_irqsave(&task_group_lock, flags);
  6099. list_del_rcu(&tg->list);
  6100. list_del_rcu(&tg->siblings);
  6101. spin_unlock_irqrestore(&task_group_lock, flags);
  6102. }
  6103. /* change task's runqueue when it moves between groups.
  6104. * The caller of this function should have put the task in its new group
  6105. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6106. * reflect its new group.
  6107. */
  6108. void sched_move_task(struct task_struct *tsk)
  6109. {
  6110. struct task_group *tg;
  6111. int on_rq, running;
  6112. unsigned long flags;
  6113. struct rq *rq;
  6114. rq = task_rq_lock(tsk, &flags);
  6115. running = task_current(rq, tsk);
  6116. on_rq = tsk->on_rq;
  6117. if (on_rq)
  6118. dequeue_task(rq, tsk, 0);
  6119. if (unlikely(running))
  6120. tsk->sched_class->put_prev_task(rq, tsk);
  6121. tg = container_of(task_css_check(tsk, cpu_cgrp_id,
  6122. lockdep_is_held(&tsk->sighand->siglock)),
  6123. struct task_group, css);
  6124. tg = autogroup_task_group(tsk, tg);
  6125. tsk->sched_task_group = tg;
  6126. #ifdef CONFIG_FAIR_GROUP_SCHED
  6127. if (tsk->sched_class->task_move_group)
  6128. tsk->sched_class->task_move_group(tsk, on_rq);
  6129. else
  6130. #endif
  6131. set_task_rq(tsk, task_cpu(tsk));
  6132. if (unlikely(running))
  6133. tsk->sched_class->set_curr_task(rq);
  6134. if (on_rq)
  6135. enqueue_task(rq, tsk, 0);
  6136. task_rq_unlock(rq, tsk, &flags);
  6137. }
  6138. #endif /* CONFIG_CGROUP_SCHED */
  6139. #ifdef CONFIG_RT_GROUP_SCHED
  6140. /*
  6141. * Ensure that the real time constraints are schedulable.
  6142. */
  6143. static DEFINE_MUTEX(rt_constraints_mutex);
  6144. /* Must be called with tasklist_lock held */
  6145. static inline int tg_has_rt_tasks(struct task_group *tg)
  6146. {
  6147. struct task_struct *g, *p;
  6148. do_each_thread(g, p) {
  6149. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6150. return 1;
  6151. } while_each_thread(g, p);
  6152. return 0;
  6153. }
  6154. struct rt_schedulable_data {
  6155. struct task_group *tg;
  6156. u64 rt_period;
  6157. u64 rt_runtime;
  6158. };
  6159. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6160. {
  6161. struct rt_schedulable_data *d = data;
  6162. struct task_group *child;
  6163. unsigned long total, sum = 0;
  6164. u64 period, runtime;
  6165. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6166. runtime = tg->rt_bandwidth.rt_runtime;
  6167. if (tg == d->tg) {
  6168. period = d->rt_period;
  6169. runtime = d->rt_runtime;
  6170. }
  6171. /*
  6172. * Cannot have more runtime than the period.
  6173. */
  6174. if (runtime > period && runtime != RUNTIME_INF)
  6175. return -EINVAL;
  6176. /*
  6177. * Ensure we don't starve existing RT tasks.
  6178. */
  6179. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6180. return -EBUSY;
  6181. total = to_ratio(period, runtime);
  6182. /*
  6183. * Nobody can have more than the global setting allows.
  6184. */
  6185. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6186. return -EINVAL;
  6187. /*
  6188. * The sum of our children's runtime should not exceed our own.
  6189. */
  6190. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6191. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6192. runtime = child->rt_bandwidth.rt_runtime;
  6193. if (child == d->tg) {
  6194. period = d->rt_period;
  6195. runtime = d->rt_runtime;
  6196. }
  6197. sum += to_ratio(period, runtime);
  6198. }
  6199. if (sum > total)
  6200. return -EINVAL;
  6201. return 0;
  6202. }
  6203. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6204. {
  6205. int ret;
  6206. struct rt_schedulable_data data = {
  6207. .tg = tg,
  6208. .rt_period = period,
  6209. .rt_runtime = runtime,
  6210. };
  6211. rcu_read_lock();
  6212. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6213. rcu_read_unlock();
  6214. return ret;
  6215. }
  6216. static int tg_set_rt_bandwidth(struct task_group *tg,
  6217. u64 rt_period, u64 rt_runtime)
  6218. {
  6219. int i, err = 0;
  6220. mutex_lock(&rt_constraints_mutex);
  6221. read_lock(&tasklist_lock);
  6222. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6223. if (err)
  6224. goto unlock;
  6225. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6226. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6227. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6228. for_each_possible_cpu(i) {
  6229. struct rt_rq *rt_rq = tg->rt_rq[i];
  6230. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6231. rt_rq->rt_runtime = rt_runtime;
  6232. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6233. }
  6234. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6235. unlock:
  6236. read_unlock(&tasklist_lock);
  6237. mutex_unlock(&rt_constraints_mutex);
  6238. return err;
  6239. }
  6240. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6241. {
  6242. u64 rt_runtime, rt_period;
  6243. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6244. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6245. if (rt_runtime_us < 0)
  6246. rt_runtime = RUNTIME_INF;
  6247. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6248. }
  6249. static long sched_group_rt_runtime(struct task_group *tg)
  6250. {
  6251. u64 rt_runtime_us;
  6252. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6253. return -1;
  6254. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6255. do_div(rt_runtime_us, NSEC_PER_USEC);
  6256. return rt_runtime_us;
  6257. }
  6258. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6259. {
  6260. u64 rt_runtime, rt_period;
  6261. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6262. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6263. if (rt_period == 0)
  6264. return -EINVAL;
  6265. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6266. }
  6267. static long sched_group_rt_period(struct task_group *tg)
  6268. {
  6269. u64 rt_period_us;
  6270. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6271. do_div(rt_period_us, NSEC_PER_USEC);
  6272. return rt_period_us;
  6273. }
  6274. #endif /* CONFIG_RT_GROUP_SCHED */
  6275. #ifdef CONFIG_RT_GROUP_SCHED
  6276. static int sched_rt_global_constraints(void)
  6277. {
  6278. int ret = 0;
  6279. mutex_lock(&rt_constraints_mutex);
  6280. read_lock(&tasklist_lock);
  6281. ret = __rt_schedulable(NULL, 0, 0);
  6282. read_unlock(&tasklist_lock);
  6283. mutex_unlock(&rt_constraints_mutex);
  6284. return ret;
  6285. }
  6286. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6287. {
  6288. /* Don't accept realtime tasks when there is no way for them to run */
  6289. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6290. return 0;
  6291. return 1;
  6292. }
  6293. #else /* !CONFIG_RT_GROUP_SCHED */
  6294. static int sched_rt_global_constraints(void)
  6295. {
  6296. unsigned long flags;
  6297. int i, ret = 0;
  6298. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6299. for_each_possible_cpu(i) {
  6300. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6301. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6302. rt_rq->rt_runtime = global_rt_runtime();
  6303. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6304. }
  6305. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6306. return ret;
  6307. }
  6308. #endif /* CONFIG_RT_GROUP_SCHED */
  6309. static int sched_dl_global_constraints(void)
  6310. {
  6311. u64 runtime = global_rt_runtime();
  6312. u64 period = global_rt_period();
  6313. u64 new_bw = to_ratio(period, runtime);
  6314. int cpu, ret = 0;
  6315. unsigned long flags;
  6316. /*
  6317. * Here we want to check the bandwidth not being set to some
  6318. * value smaller than the currently allocated bandwidth in
  6319. * any of the root_domains.
  6320. *
  6321. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6322. * cycling on root_domains... Discussion on different/better
  6323. * solutions is welcome!
  6324. */
  6325. for_each_possible_cpu(cpu) {
  6326. struct dl_bw *dl_b = dl_bw_of(cpu);
  6327. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6328. if (new_bw < dl_b->total_bw)
  6329. ret = -EBUSY;
  6330. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6331. if (ret)
  6332. break;
  6333. }
  6334. return ret;
  6335. }
  6336. static void sched_dl_do_global(void)
  6337. {
  6338. u64 new_bw = -1;
  6339. int cpu;
  6340. unsigned long flags;
  6341. def_dl_bandwidth.dl_period = global_rt_period();
  6342. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6343. if (global_rt_runtime() != RUNTIME_INF)
  6344. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6345. /*
  6346. * FIXME: As above...
  6347. */
  6348. for_each_possible_cpu(cpu) {
  6349. struct dl_bw *dl_b = dl_bw_of(cpu);
  6350. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6351. dl_b->bw = new_bw;
  6352. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6353. }
  6354. }
  6355. static int sched_rt_global_validate(void)
  6356. {
  6357. if (sysctl_sched_rt_period <= 0)
  6358. return -EINVAL;
  6359. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6360. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6361. return -EINVAL;
  6362. return 0;
  6363. }
  6364. static void sched_rt_do_global(void)
  6365. {
  6366. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6367. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6368. }
  6369. int sched_rt_handler(struct ctl_table *table, int write,
  6370. void __user *buffer, size_t *lenp,
  6371. loff_t *ppos)
  6372. {
  6373. int old_period, old_runtime;
  6374. static DEFINE_MUTEX(mutex);
  6375. int ret;
  6376. mutex_lock(&mutex);
  6377. old_period = sysctl_sched_rt_period;
  6378. old_runtime = sysctl_sched_rt_runtime;
  6379. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6380. if (!ret && write) {
  6381. ret = sched_rt_global_validate();
  6382. if (ret)
  6383. goto undo;
  6384. ret = sched_rt_global_constraints();
  6385. if (ret)
  6386. goto undo;
  6387. ret = sched_dl_global_constraints();
  6388. if (ret)
  6389. goto undo;
  6390. sched_rt_do_global();
  6391. sched_dl_do_global();
  6392. }
  6393. if (0) {
  6394. undo:
  6395. sysctl_sched_rt_period = old_period;
  6396. sysctl_sched_rt_runtime = old_runtime;
  6397. }
  6398. mutex_unlock(&mutex);
  6399. return ret;
  6400. }
  6401. int sched_rr_handler(struct ctl_table *table, int write,
  6402. void __user *buffer, size_t *lenp,
  6403. loff_t *ppos)
  6404. {
  6405. int ret;
  6406. static DEFINE_MUTEX(mutex);
  6407. mutex_lock(&mutex);
  6408. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6409. /* make sure that internally we keep jiffies */
  6410. /* also, writing zero resets timeslice to default */
  6411. if (!ret && write) {
  6412. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6413. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6414. }
  6415. mutex_unlock(&mutex);
  6416. return ret;
  6417. }
  6418. #ifdef CONFIG_CGROUP_SCHED
  6419. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6420. {
  6421. return css ? container_of(css, struct task_group, css) : NULL;
  6422. }
  6423. static struct cgroup_subsys_state *
  6424. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6425. {
  6426. struct task_group *parent = css_tg(parent_css);
  6427. struct task_group *tg;
  6428. if (!parent) {
  6429. /* This is early initialization for the top cgroup */
  6430. return &root_task_group.css;
  6431. }
  6432. tg = sched_create_group(parent);
  6433. if (IS_ERR(tg))
  6434. return ERR_PTR(-ENOMEM);
  6435. return &tg->css;
  6436. }
  6437. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6438. {
  6439. struct task_group *tg = css_tg(css);
  6440. struct task_group *parent = css_tg(css_parent(css));
  6441. if (parent)
  6442. sched_online_group(tg, parent);
  6443. return 0;
  6444. }
  6445. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6446. {
  6447. struct task_group *tg = css_tg(css);
  6448. sched_destroy_group(tg);
  6449. }
  6450. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6451. {
  6452. struct task_group *tg = css_tg(css);
  6453. sched_offline_group(tg);
  6454. }
  6455. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6456. struct cgroup_taskset *tset)
  6457. {
  6458. struct task_struct *task;
  6459. cgroup_taskset_for_each(task, tset) {
  6460. #ifdef CONFIG_RT_GROUP_SCHED
  6461. if (!sched_rt_can_attach(css_tg(css), task))
  6462. return -EINVAL;
  6463. #else
  6464. /* We don't support RT-tasks being in separate groups */
  6465. if (task->sched_class != &fair_sched_class)
  6466. return -EINVAL;
  6467. #endif
  6468. }
  6469. return 0;
  6470. }
  6471. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6472. struct cgroup_taskset *tset)
  6473. {
  6474. struct task_struct *task;
  6475. cgroup_taskset_for_each(task, tset)
  6476. sched_move_task(task);
  6477. }
  6478. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6479. struct cgroup_subsys_state *old_css,
  6480. struct task_struct *task)
  6481. {
  6482. /*
  6483. * cgroup_exit() is called in the copy_process() failure path.
  6484. * Ignore this case since the task hasn't ran yet, this avoids
  6485. * trying to poke a half freed task state from generic code.
  6486. */
  6487. if (!(task->flags & PF_EXITING))
  6488. return;
  6489. sched_move_task(task);
  6490. }
  6491. #ifdef CONFIG_FAIR_GROUP_SCHED
  6492. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6493. struct cftype *cftype, u64 shareval)
  6494. {
  6495. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6496. }
  6497. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6498. struct cftype *cft)
  6499. {
  6500. struct task_group *tg = css_tg(css);
  6501. return (u64) scale_load_down(tg->shares);
  6502. }
  6503. #ifdef CONFIG_CFS_BANDWIDTH
  6504. static DEFINE_MUTEX(cfs_constraints_mutex);
  6505. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6506. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6507. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6508. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6509. {
  6510. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6511. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6512. if (tg == &root_task_group)
  6513. return -EINVAL;
  6514. /*
  6515. * Ensure we have at some amount of bandwidth every period. This is
  6516. * to prevent reaching a state of large arrears when throttled via
  6517. * entity_tick() resulting in prolonged exit starvation.
  6518. */
  6519. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6520. return -EINVAL;
  6521. /*
  6522. * Likewise, bound things on the otherside by preventing insane quota
  6523. * periods. This also allows us to normalize in computing quota
  6524. * feasibility.
  6525. */
  6526. if (period > max_cfs_quota_period)
  6527. return -EINVAL;
  6528. mutex_lock(&cfs_constraints_mutex);
  6529. ret = __cfs_schedulable(tg, period, quota);
  6530. if (ret)
  6531. goto out_unlock;
  6532. runtime_enabled = quota != RUNTIME_INF;
  6533. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6534. /*
  6535. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6536. * before making related changes, and on->off must occur afterwards
  6537. */
  6538. if (runtime_enabled && !runtime_was_enabled)
  6539. cfs_bandwidth_usage_inc();
  6540. raw_spin_lock_irq(&cfs_b->lock);
  6541. cfs_b->period = ns_to_ktime(period);
  6542. cfs_b->quota = quota;
  6543. __refill_cfs_bandwidth_runtime(cfs_b);
  6544. /* restart the period timer (if active) to handle new period expiry */
  6545. if (runtime_enabled && cfs_b->timer_active) {
  6546. /* force a reprogram */
  6547. cfs_b->timer_active = 0;
  6548. __start_cfs_bandwidth(cfs_b);
  6549. }
  6550. raw_spin_unlock_irq(&cfs_b->lock);
  6551. for_each_possible_cpu(i) {
  6552. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6553. struct rq *rq = cfs_rq->rq;
  6554. raw_spin_lock_irq(&rq->lock);
  6555. cfs_rq->runtime_enabled = runtime_enabled;
  6556. cfs_rq->runtime_remaining = 0;
  6557. if (cfs_rq->throttled)
  6558. unthrottle_cfs_rq(cfs_rq);
  6559. raw_spin_unlock_irq(&rq->lock);
  6560. }
  6561. if (runtime_was_enabled && !runtime_enabled)
  6562. cfs_bandwidth_usage_dec();
  6563. out_unlock:
  6564. mutex_unlock(&cfs_constraints_mutex);
  6565. return ret;
  6566. }
  6567. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6568. {
  6569. u64 quota, period;
  6570. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6571. if (cfs_quota_us < 0)
  6572. quota = RUNTIME_INF;
  6573. else
  6574. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6575. return tg_set_cfs_bandwidth(tg, period, quota);
  6576. }
  6577. long tg_get_cfs_quota(struct task_group *tg)
  6578. {
  6579. u64 quota_us;
  6580. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6581. return -1;
  6582. quota_us = tg->cfs_bandwidth.quota;
  6583. do_div(quota_us, NSEC_PER_USEC);
  6584. return quota_us;
  6585. }
  6586. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6587. {
  6588. u64 quota, period;
  6589. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6590. quota = tg->cfs_bandwidth.quota;
  6591. return tg_set_cfs_bandwidth(tg, period, quota);
  6592. }
  6593. long tg_get_cfs_period(struct task_group *tg)
  6594. {
  6595. u64 cfs_period_us;
  6596. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6597. do_div(cfs_period_us, NSEC_PER_USEC);
  6598. return cfs_period_us;
  6599. }
  6600. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6601. struct cftype *cft)
  6602. {
  6603. return tg_get_cfs_quota(css_tg(css));
  6604. }
  6605. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6606. struct cftype *cftype, s64 cfs_quota_us)
  6607. {
  6608. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6609. }
  6610. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6611. struct cftype *cft)
  6612. {
  6613. return tg_get_cfs_period(css_tg(css));
  6614. }
  6615. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6616. struct cftype *cftype, u64 cfs_period_us)
  6617. {
  6618. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6619. }
  6620. struct cfs_schedulable_data {
  6621. struct task_group *tg;
  6622. u64 period, quota;
  6623. };
  6624. /*
  6625. * normalize group quota/period to be quota/max_period
  6626. * note: units are usecs
  6627. */
  6628. static u64 normalize_cfs_quota(struct task_group *tg,
  6629. struct cfs_schedulable_data *d)
  6630. {
  6631. u64 quota, period;
  6632. if (tg == d->tg) {
  6633. period = d->period;
  6634. quota = d->quota;
  6635. } else {
  6636. period = tg_get_cfs_period(tg);
  6637. quota = tg_get_cfs_quota(tg);
  6638. }
  6639. /* note: these should typically be equivalent */
  6640. if (quota == RUNTIME_INF || quota == -1)
  6641. return RUNTIME_INF;
  6642. return to_ratio(period, quota);
  6643. }
  6644. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6645. {
  6646. struct cfs_schedulable_data *d = data;
  6647. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6648. s64 quota = 0, parent_quota = -1;
  6649. if (!tg->parent) {
  6650. quota = RUNTIME_INF;
  6651. } else {
  6652. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6653. quota = normalize_cfs_quota(tg, d);
  6654. parent_quota = parent_b->hierarchal_quota;
  6655. /*
  6656. * ensure max(child_quota) <= parent_quota, inherit when no
  6657. * limit is set
  6658. */
  6659. if (quota == RUNTIME_INF)
  6660. quota = parent_quota;
  6661. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6662. return -EINVAL;
  6663. }
  6664. cfs_b->hierarchal_quota = quota;
  6665. return 0;
  6666. }
  6667. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6668. {
  6669. int ret;
  6670. struct cfs_schedulable_data data = {
  6671. .tg = tg,
  6672. .period = period,
  6673. .quota = quota,
  6674. };
  6675. if (quota != RUNTIME_INF) {
  6676. do_div(data.period, NSEC_PER_USEC);
  6677. do_div(data.quota, NSEC_PER_USEC);
  6678. }
  6679. rcu_read_lock();
  6680. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6681. rcu_read_unlock();
  6682. return ret;
  6683. }
  6684. static int cpu_stats_show(struct seq_file *sf, void *v)
  6685. {
  6686. struct task_group *tg = css_tg(seq_css(sf));
  6687. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6688. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  6689. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  6690. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  6691. return 0;
  6692. }
  6693. #endif /* CONFIG_CFS_BANDWIDTH */
  6694. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6695. #ifdef CONFIG_RT_GROUP_SCHED
  6696. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6697. struct cftype *cft, s64 val)
  6698. {
  6699. return sched_group_set_rt_runtime(css_tg(css), val);
  6700. }
  6701. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6702. struct cftype *cft)
  6703. {
  6704. return sched_group_rt_runtime(css_tg(css));
  6705. }
  6706. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6707. struct cftype *cftype, u64 rt_period_us)
  6708. {
  6709. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6710. }
  6711. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6712. struct cftype *cft)
  6713. {
  6714. return sched_group_rt_period(css_tg(css));
  6715. }
  6716. #endif /* CONFIG_RT_GROUP_SCHED */
  6717. static struct cftype cpu_files[] = {
  6718. #ifdef CONFIG_FAIR_GROUP_SCHED
  6719. {
  6720. .name = "shares",
  6721. .read_u64 = cpu_shares_read_u64,
  6722. .write_u64 = cpu_shares_write_u64,
  6723. },
  6724. #endif
  6725. #ifdef CONFIG_CFS_BANDWIDTH
  6726. {
  6727. .name = "cfs_quota_us",
  6728. .read_s64 = cpu_cfs_quota_read_s64,
  6729. .write_s64 = cpu_cfs_quota_write_s64,
  6730. },
  6731. {
  6732. .name = "cfs_period_us",
  6733. .read_u64 = cpu_cfs_period_read_u64,
  6734. .write_u64 = cpu_cfs_period_write_u64,
  6735. },
  6736. {
  6737. .name = "stat",
  6738. .seq_show = cpu_stats_show,
  6739. },
  6740. #endif
  6741. #ifdef CONFIG_RT_GROUP_SCHED
  6742. {
  6743. .name = "rt_runtime_us",
  6744. .read_s64 = cpu_rt_runtime_read,
  6745. .write_s64 = cpu_rt_runtime_write,
  6746. },
  6747. {
  6748. .name = "rt_period_us",
  6749. .read_u64 = cpu_rt_period_read_uint,
  6750. .write_u64 = cpu_rt_period_write_uint,
  6751. },
  6752. #endif
  6753. { } /* terminate */
  6754. };
  6755. struct cgroup_subsys cpu_cgrp_subsys = {
  6756. .css_alloc = cpu_cgroup_css_alloc,
  6757. .css_free = cpu_cgroup_css_free,
  6758. .css_online = cpu_cgroup_css_online,
  6759. .css_offline = cpu_cgroup_css_offline,
  6760. .can_attach = cpu_cgroup_can_attach,
  6761. .attach = cpu_cgroup_attach,
  6762. .exit = cpu_cgroup_exit,
  6763. .base_cftypes = cpu_files,
  6764. .early_init = 1,
  6765. };
  6766. #endif /* CONFIG_CGROUP_SCHED */
  6767. void dump_cpu_task(int cpu)
  6768. {
  6769. pr_info("Task dump for CPU %d:\n", cpu);
  6770. sched_show_task(cpu_curr(cpu));
  6771. }