recovery.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. static struct kmem_cache *fsync_entry_slab;
  17. bool space_for_roll_forward(struct f2fs_sb_info *sbi)
  18. {
  19. if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
  20. > sbi->user_block_count)
  21. return false;
  22. return true;
  23. }
  24. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  25. nid_t ino)
  26. {
  27. struct fsync_inode_entry *entry;
  28. list_for_each_entry(entry, head, list)
  29. if (entry->inode->i_ino == ino)
  30. return entry;
  31. return NULL;
  32. }
  33. static int recover_dentry(struct page *ipage, struct inode *inode)
  34. {
  35. struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
  36. nid_t pino = le32_to_cpu(raw_inode->i_pino);
  37. struct f2fs_dir_entry *de;
  38. struct qstr name;
  39. struct page *page;
  40. struct inode *dir, *einode;
  41. int err = 0;
  42. dir = check_dirty_dir_inode(F2FS_SB(inode->i_sb), pino);
  43. if (!dir) {
  44. dir = f2fs_iget(inode->i_sb, pino);
  45. if (IS_ERR(dir)) {
  46. err = PTR_ERR(dir);
  47. goto out;
  48. }
  49. set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
  50. add_dirty_dir_inode(dir);
  51. }
  52. name.len = le32_to_cpu(raw_inode->i_namelen);
  53. name.name = raw_inode->i_name;
  54. if (unlikely(name.len > F2FS_NAME_LEN)) {
  55. WARN_ON(1);
  56. err = -ENAMETOOLONG;
  57. goto out;
  58. }
  59. retry:
  60. de = f2fs_find_entry(dir, &name, &page);
  61. if (de && inode->i_ino == le32_to_cpu(de->ino))
  62. goto out_unmap_put;
  63. if (de) {
  64. einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
  65. if (IS_ERR(einode)) {
  66. WARN_ON(1);
  67. if (PTR_ERR(einode) == -ENOENT)
  68. err = -EEXIST;
  69. goto out_unmap_put;
  70. }
  71. err = acquire_orphan_inode(F2FS_SB(inode->i_sb));
  72. if (err) {
  73. iput(einode);
  74. goto out_unmap_put;
  75. }
  76. f2fs_delete_entry(de, page, einode);
  77. iput(einode);
  78. goto retry;
  79. }
  80. err = __f2fs_add_link(dir, &name, inode);
  81. goto out;
  82. out_unmap_put:
  83. kunmap(page);
  84. f2fs_put_page(page, 0);
  85. out:
  86. f2fs_msg(inode->i_sb, KERN_NOTICE,
  87. "%s: ino = %x, name = %s, dir = %lx, err = %d",
  88. __func__, ino_of_node(ipage), raw_inode->i_name,
  89. IS_ERR(dir) ? 0 : dir->i_ino, err);
  90. return err;
  91. }
  92. static int recover_inode(struct inode *inode, struct page *node_page)
  93. {
  94. struct f2fs_inode *raw_inode = F2FS_INODE(node_page);
  95. if (!IS_INODE(node_page))
  96. return 0;
  97. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  98. i_size_write(inode, le64_to_cpu(raw_inode->i_size));
  99. inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  100. inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
  101. inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  102. inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  103. inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
  104. inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  105. if (is_dent_dnode(node_page))
  106. return recover_dentry(node_page, inode);
  107. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
  108. ino_of_node(node_page), raw_inode->i_name);
  109. return 0;
  110. }
  111. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
  112. {
  113. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  114. struct curseg_info *curseg;
  115. struct page *page;
  116. block_t blkaddr;
  117. int err = 0;
  118. /* get node pages in the current segment */
  119. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  120. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  121. /* read node page */
  122. page = alloc_page(GFP_F2FS_ZERO);
  123. if (!page)
  124. return -ENOMEM;
  125. lock_page(page);
  126. while (1) {
  127. struct fsync_inode_entry *entry;
  128. err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
  129. if (err)
  130. return err;
  131. lock_page(page);
  132. if (cp_ver != cpver_of_node(page))
  133. break;
  134. if (!is_fsync_dnode(page))
  135. goto next;
  136. entry = get_fsync_inode(head, ino_of_node(page));
  137. if (entry) {
  138. if (IS_INODE(page) && is_dent_dnode(page))
  139. set_inode_flag(F2FS_I(entry->inode),
  140. FI_INC_LINK);
  141. } else {
  142. if (IS_INODE(page) && is_dent_dnode(page)) {
  143. err = recover_inode_page(sbi, page);
  144. if (err)
  145. break;
  146. }
  147. /* add this fsync inode to the list */
  148. entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
  149. if (!entry) {
  150. err = -ENOMEM;
  151. break;
  152. }
  153. entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
  154. if (IS_ERR(entry->inode)) {
  155. err = PTR_ERR(entry->inode);
  156. kmem_cache_free(fsync_entry_slab, entry);
  157. break;
  158. }
  159. list_add_tail(&entry->list, head);
  160. }
  161. entry->blkaddr = blkaddr;
  162. err = recover_inode(entry->inode, page);
  163. if (err && err != -ENOENT)
  164. break;
  165. next:
  166. /* check next segment */
  167. blkaddr = next_blkaddr_of_node(page);
  168. }
  169. unlock_page(page);
  170. __free_pages(page, 0);
  171. return err;
  172. }
  173. static void destroy_fsync_dnodes(struct list_head *head)
  174. {
  175. struct fsync_inode_entry *entry, *tmp;
  176. list_for_each_entry_safe(entry, tmp, head, list) {
  177. iput(entry->inode);
  178. list_del(&entry->list);
  179. kmem_cache_free(fsync_entry_slab, entry);
  180. }
  181. }
  182. static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  183. block_t blkaddr, struct dnode_of_data *dn)
  184. {
  185. struct seg_entry *sentry;
  186. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  187. unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  188. struct f2fs_summary_block *sum_node;
  189. struct f2fs_summary sum;
  190. struct page *sum_page, *node_page;
  191. nid_t ino, nid;
  192. struct inode *inode;
  193. unsigned int offset;
  194. block_t bidx;
  195. int i;
  196. sentry = get_seg_entry(sbi, segno);
  197. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  198. return 0;
  199. /* Get the previous summary */
  200. for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
  201. struct curseg_info *curseg = CURSEG_I(sbi, i);
  202. if (curseg->segno == segno) {
  203. sum = curseg->sum_blk->entries[blkoff];
  204. goto got_it;
  205. }
  206. }
  207. sum_page = get_sum_page(sbi, segno);
  208. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  209. sum = sum_node->entries[blkoff];
  210. f2fs_put_page(sum_page, 1);
  211. got_it:
  212. /* Use the locked dnode page and inode */
  213. nid = le32_to_cpu(sum.nid);
  214. if (dn->inode->i_ino == nid) {
  215. struct dnode_of_data tdn = *dn;
  216. tdn.nid = nid;
  217. tdn.node_page = dn->inode_page;
  218. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  219. truncate_data_blocks_range(&tdn, 1);
  220. return 0;
  221. } else if (dn->nid == nid) {
  222. struct dnode_of_data tdn = *dn;
  223. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  224. truncate_data_blocks_range(&tdn, 1);
  225. return 0;
  226. }
  227. /* Get the node page */
  228. node_page = get_node_page(sbi, nid);
  229. if (IS_ERR(node_page))
  230. return PTR_ERR(node_page);
  231. offset = ofs_of_node(node_page);
  232. ino = ino_of_node(node_page);
  233. f2fs_put_page(node_page, 1);
  234. /* Deallocate previous index in the node page */
  235. inode = f2fs_iget(sbi->sb, ino);
  236. if (IS_ERR(inode))
  237. return PTR_ERR(inode);
  238. bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
  239. le16_to_cpu(sum.ofs_in_node);
  240. truncate_hole(inode, bidx, bidx + 1);
  241. iput(inode);
  242. return 0;
  243. }
  244. static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  245. struct page *page, block_t blkaddr)
  246. {
  247. struct f2fs_inode_info *fi = F2FS_I(inode);
  248. unsigned int start, end;
  249. struct dnode_of_data dn;
  250. struct f2fs_summary sum;
  251. struct node_info ni;
  252. int err = 0, recovered = 0;
  253. if (recover_inline_data(inode, page))
  254. goto out;
  255. if (recover_xattr_data(inode, page, blkaddr))
  256. goto out;
  257. start = start_bidx_of_node(ofs_of_node(page), fi);
  258. if (IS_INODE(page))
  259. end = start + ADDRS_PER_INODE(fi);
  260. else
  261. end = start + ADDRS_PER_BLOCK;
  262. f2fs_lock_op(sbi);
  263. set_new_dnode(&dn, inode, NULL, NULL, 0);
  264. err = get_dnode_of_data(&dn, start, ALLOC_NODE);
  265. if (err) {
  266. f2fs_unlock_op(sbi);
  267. goto out;
  268. }
  269. f2fs_wait_on_page_writeback(dn.node_page, NODE);
  270. get_node_info(sbi, dn.nid, &ni);
  271. f2fs_bug_on(ni.ino != ino_of_node(page));
  272. f2fs_bug_on(ofs_of_node(dn.node_page) != ofs_of_node(page));
  273. for (; start < end; start++) {
  274. block_t src, dest;
  275. src = datablock_addr(dn.node_page, dn.ofs_in_node);
  276. dest = datablock_addr(page, dn.ofs_in_node);
  277. if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
  278. if (src == NULL_ADDR) {
  279. err = reserve_new_block(&dn);
  280. /* We should not get -ENOSPC */
  281. f2fs_bug_on(err);
  282. }
  283. /* Check the previous node page having this index */
  284. err = check_index_in_prev_nodes(sbi, dest, &dn);
  285. if (err)
  286. goto err;
  287. set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
  288. /* write dummy data page */
  289. recover_data_page(sbi, NULL, &sum, src, dest);
  290. update_extent_cache(dest, &dn);
  291. recovered++;
  292. }
  293. dn.ofs_in_node++;
  294. }
  295. /* write node page in place */
  296. set_summary(&sum, dn.nid, 0, 0);
  297. if (IS_INODE(dn.node_page))
  298. sync_inode_page(&dn);
  299. copy_node_footer(dn.node_page, page);
  300. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  301. ofs_of_node(page), false);
  302. set_page_dirty(dn.node_page);
  303. recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
  304. err:
  305. f2fs_put_dnode(&dn);
  306. f2fs_unlock_op(sbi);
  307. out:
  308. f2fs_msg(sbi->sb, KERN_NOTICE,
  309. "recover_data: ino = %lx, recovered = %d blocks, err = %d",
  310. inode->i_ino, recovered, err);
  311. return err;
  312. }
  313. static int recover_data(struct f2fs_sb_info *sbi,
  314. struct list_head *head, int type)
  315. {
  316. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  317. struct curseg_info *curseg;
  318. struct page *page;
  319. int err = 0;
  320. block_t blkaddr;
  321. /* get node pages in the current segment */
  322. curseg = CURSEG_I(sbi, type);
  323. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  324. /* read node page */
  325. page = alloc_page(GFP_F2FS_ZERO);
  326. if (!page)
  327. return -ENOMEM;
  328. lock_page(page);
  329. while (1) {
  330. struct fsync_inode_entry *entry;
  331. err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
  332. if (err)
  333. return err;
  334. lock_page(page);
  335. if (cp_ver != cpver_of_node(page))
  336. break;
  337. entry = get_fsync_inode(head, ino_of_node(page));
  338. if (!entry)
  339. goto next;
  340. err = do_recover_data(sbi, entry->inode, page, blkaddr);
  341. if (err)
  342. break;
  343. if (entry->blkaddr == blkaddr) {
  344. iput(entry->inode);
  345. list_del(&entry->list);
  346. kmem_cache_free(fsync_entry_slab, entry);
  347. }
  348. next:
  349. /* check next segment */
  350. blkaddr = next_blkaddr_of_node(page);
  351. }
  352. unlock_page(page);
  353. __free_pages(page, 0);
  354. if (!err)
  355. allocate_new_segments(sbi);
  356. return err;
  357. }
  358. int recover_fsync_data(struct f2fs_sb_info *sbi)
  359. {
  360. struct list_head inode_list;
  361. int err;
  362. bool need_writecp = false;
  363. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  364. sizeof(struct fsync_inode_entry));
  365. if (!fsync_entry_slab)
  366. return -ENOMEM;
  367. INIT_LIST_HEAD(&inode_list);
  368. /* step #1: find fsynced inode numbers */
  369. sbi->por_doing = true;
  370. err = find_fsync_dnodes(sbi, &inode_list);
  371. if (err)
  372. goto out;
  373. if (list_empty(&inode_list))
  374. goto out;
  375. need_writecp = true;
  376. /* step #2: recover data */
  377. err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
  378. f2fs_bug_on(!list_empty(&inode_list));
  379. out:
  380. destroy_fsync_dnodes(&inode_list);
  381. kmem_cache_destroy(fsync_entry_slab);
  382. sbi->por_doing = false;
  383. if (!err && need_writecp)
  384. write_checkpoint(sbi, false);
  385. return err;
  386. }