node.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include <trace/events/f2fs.h>
  22. #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  23. static struct kmem_cache *nat_entry_slab;
  24. static struct kmem_cache *free_nid_slab;
  25. static inline bool available_free_memory(struct f2fs_nm_info *nm_i, int type)
  26. {
  27. struct sysinfo val;
  28. unsigned long mem_size = 0;
  29. si_meminfo(&val);
  30. if (type == FREE_NIDS)
  31. mem_size = nm_i->fcnt * sizeof(struct free_nid);
  32. else if (type == NAT_ENTRIES)
  33. mem_size += nm_i->nat_cnt * sizeof(struct nat_entry);
  34. mem_size >>= 12;
  35. /* give 50:50 memory for free nids and nat caches respectively */
  36. return (mem_size < ((val.totalram * nm_i->ram_thresh) >> 11));
  37. }
  38. static void clear_node_page_dirty(struct page *page)
  39. {
  40. struct address_space *mapping = page->mapping;
  41. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  42. unsigned int long flags;
  43. if (PageDirty(page)) {
  44. spin_lock_irqsave(&mapping->tree_lock, flags);
  45. radix_tree_tag_clear(&mapping->page_tree,
  46. page_index(page),
  47. PAGECACHE_TAG_DIRTY);
  48. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  49. clear_page_dirty_for_io(page);
  50. dec_page_count(sbi, F2FS_DIRTY_NODES);
  51. }
  52. ClearPageUptodate(page);
  53. }
  54. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  55. {
  56. pgoff_t index = current_nat_addr(sbi, nid);
  57. return get_meta_page(sbi, index);
  58. }
  59. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  60. {
  61. struct page *src_page;
  62. struct page *dst_page;
  63. pgoff_t src_off;
  64. pgoff_t dst_off;
  65. void *src_addr;
  66. void *dst_addr;
  67. struct f2fs_nm_info *nm_i = NM_I(sbi);
  68. src_off = current_nat_addr(sbi, nid);
  69. dst_off = next_nat_addr(sbi, src_off);
  70. /* get current nat block page with lock */
  71. src_page = get_meta_page(sbi, src_off);
  72. /* Dirty src_page means that it is already the new target NAT page. */
  73. if (PageDirty(src_page))
  74. return src_page;
  75. dst_page = grab_meta_page(sbi, dst_off);
  76. src_addr = page_address(src_page);
  77. dst_addr = page_address(dst_page);
  78. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  79. set_page_dirty(dst_page);
  80. f2fs_put_page(src_page, 1);
  81. set_to_next_nat(nm_i, nid);
  82. return dst_page;
  83. }
  84. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  85. {
  86. return radix_tree_lookup(&nm_i->nat_root, n);
  87. }
  88. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  89. nid_t start, unsigned int nr, struct nat_entry **ep)
  90. {
  91. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  92. }
  93. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  94. {
  95. list_del(&e->list);
  96. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  97. nm_i->nat_cnt--;
  98. kmem_cache_free(nat_entry_slab, e);
  99. }
  100. int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  101. {
  102. struct f2fs_nm_info *nm_i = NM_I(sbi);
  103. struct nat_entry *e;
  104. int is_cp = 1;
  105. read_lock(&nm_i->nat_tree_lock);
  106. e = __lookup_nat_cache(nm_i, nid);
  107. if (e && !e->checkpointed)
  108. is_cp = 0;
  109. read_unlock(&nm_i->nat_tree_lock);
  110. return is_cp;
  111. }
  112. bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
  113. {
  114. struct f2fs_nm_info *nm_i = NM_I(sbi);
  115. struct nat_entry *e;
  116. bool fsync_done = false;
  117. read_lock(&nm_i->nat_tree_lock);
  118. e = __lookup_nat_cache(nm_i, nid);
  119. if (e)
  120. fsync_done = e->fsync_done;
  121. read_unlock(&nm_i->nat_tree_lock);
  122. return fsync_done;
  123. }
  124. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  125. {
  126. struct nat_entry *new;
  127. new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  128. if (!new)
  129. return NULL;
  130. if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
  131. kmem_cache_free(nat_entry_slab, new);
  132. return NULL;
  133. }
  134. memset(new, 0, sizeof(struct nat_entry));
  135. nat_set_nid(new, nid);
  136. new->checkpointed = true;
  137. list_add_tail(&new->list, &nm_i->nat_entries);
  138. nm_i->nat_cnt++;
  139. return new;
  140. }
  141. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  142. struct f2fs_nat_entry *ne)
  143. {
  144. struct nat_entry *e;
  145. retry:
  146. write_lock(&nm_i->nat_tree_lock);
  147. e = __lookup_nat_cache(nm_i, nid);
  148. if (!e) {
  149. e = grab_nat_entry(nm_i, nid);
  150. if (!e) {
  151. write_unlock(&nm_i->nat_tree_lock);
  152. goto retry;
  153. }
  154. nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
  155. nat_set_ino(e, le32_to_cpu(ne->ino));
  156. nat_set_version(e, ne->version);
  157. }
  158. write_unlock(&nm_i->nat_tree_lock);
  159. }
  160. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  161. block_t new_blkaddr, bool fsync_done)
  162. {
  163. struct f2fs_nm_info *nm_i = NM_I(sbi);
  164. struct nat_entry *e;
  165. retry:
  166. write_lock(&nm_i->nat_tree_lock);
  167. e = __lookup_nat_cache(nm_i, ni->nid);
  168. if (!e) {
  169. e = grab_nat_entry(nm_i, ni->nid);
  170. if (!e) {
  171. write_unlock(&nm_i->nat_tree_lock);
  172. goto retry;
  173. }
  174. e->ni = *ni;
  175. f2fs_bug_on(ni->blk_addr == NEW_ADDR);
  176. } else if (new_blkaddr == NEW_ADDR) {
  177. /*
  178. * when nid is reallocated,
  179. * previous nat entry can be remained in nat cache.
  180. * So, reinitialize it with new information.
  181. */
  182. e->ni = *ni;
  183. f2fs_bug_on(ni->blk_addr != NULL_ADDR);
  184. }
  185. /* sanity check */
  186. f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
  187. f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
  188. new_blkaddr == NULL_ADDR);
  189. f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
  190. new_blkaddr == NEW_ADDR);
  191. f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
  192. nat_get_blkaddr(e) != NULL_ADDR &&
  193. new_blkaddr == NEW_ADDR);
  194. /* increament version no as node is removed */
  195. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  196. unsigned char version = nat_get_version(e);
  197. nat_set_version(e, inc_node_version(version));
  198. }
  199. /* change address */
  200. nat_set_blkaddr(e, new_blkaddr);
  201. __set_nat_cache_dirty(nm_i, e);
  202. /* update fsync_mark if its inode nat entry is still alive */
  203. e = __lookup_nat_cache(nm_i, ni->ino);
  204. if (e)
  205. e->fsync_done = fsync_done;
  206. write_unlock(&nm_i->nat_tree_lock);
  207. }
  208. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  209. {
  210. struct f2fs_nm_info *nm_i = NM_I(sbi);
  211. if (available_free_memory(nm_i, NAT_ENTRIES))
  212. return 0;
  213. write_lock(&nm_i->nat_tree_lock);
  214. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  215. struct nat_entry *ne;
  216. ne = list_first_entry(&nm_i->nat_entries,
  217. struct nat_entry, list);
  218. __del_from_nat_cache(nm_i, ne);
  219. nr_shrink--;
  220. }
  221. write_unlock(&nm_i->nat_tree_lock);
  222. return nr_shrink;
  223. }
  224. /*
  225. * This function returns always success
  226. */
  227. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  228. {
  229. struct f2fs_nm_info *nm_i = NM_I(sbi);
  230. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  231. struct f2fs_summary_block *sum = curseg->sum_blk;
  232. nid_t start_nid = START_NID(nid);
  233. struct f2fs_nat_block *nat_blk;
  234. struct page *page = NULL;
  235. struct f2fs_nat_entry ne;
  236. struct nat_entry *e;
  237. int i;
  238. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  239. ni->nid = nid;
  240. /* Check nat cache */
  241. read_lock(&nm_i->nat_tree_lock);
  242. e = __lookup_nat_cache(nm_i, nid);
  243. if (e) {
  244. ni->ino = nat_get_ino(e);
  245. ni->blk_addr = nat_get_blkaddr(e);
  246. ni->version = nat_get_version(e);
  247. }
  248. read_unlock(&nm_i->nat_tree_lock);
  249. if (e)
  250. return;
  251. /* Check current segment summary */
  252. mutex_lock(&curseg->curseg_mutex);
  253. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  254. if (i >= 0) {
  255. ne = nat_in_journal(sum, i);
  256. node_info_from_raw_nat(ni, &ne);
  257. }
  258. mutex_unlock(&curseg->curseg_mutex);
  259. if (i >= 0)
  260. goto cache;
  261. /* Fill node_info from nat page */
  262. page = get_current_nat_page(sbi, start_nid);
  263. nat_blk = (struct f2fs_nat_block *)page_address(page);
  264. ne = nat_blk->entries[nid - start_nid];
  265. node_info_from_raw_nat(ni, &ne);
  266. f2fs_put_page(page, 1);
  267. cache:
  268. /* cache nat entry */
  269. cache_nat_entry(NM_I(sbi), nid, &ne);
  270. }
  271. /*
  272. * The maximum depth is four.
  273. * Offset[0] will have raw inode offset.
  274. */
  275. static int get_node_path(struct f2fs_inode_info *fi, long block,
  276. int offset[4], unsigned int noffset[4])
  277. {
  278. const long direct_index = ADDRS_PER_INODE(fi);
  279. const long direct_blks = ADDRS_PER_BLOCK;
  280. const long dptrs_per_blk = NIDS_PER_BLOCK;
  281. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  282. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  283. int n = 0;
  284. int level = 0;
  285. noffset[0] = 0;
  286. if (block < direct_index) {
  287. offset[n] = block;
  288. goto got;
  289. }
  290. block -= direct_index;
  291. if (block < direct_blks) {
  292. offset[n++] = NODE_DIR1_BLOCK;
  293. noffset[n] = 1;
  294. offset[n] = block;
  295. level = 1;
  296. goto got;
  297. }
  298. block -= direct_blks;
  299. if (block < direct_blks) {
  300. offset[n++] = NODE_DIR2_BLOCK;
  301. noffset[n] = 2;
  302. offset[n] = block;
  303. level = 1;
  304. goto got;
  305. }
  306. block -= direct_blks;
  307. if (block < indirect_blks) {
  308. offset[n++] = NODE_IND1_BLOCK;
  309. noffset[n] = 3;
  310. offset[n++] = block / direct_blks;
  311. noffset[n] = 4 + offset[n - 1];
  312. offset[n] = block % direct_blks;
  313. level = 2;
  314. goto got;
  315. }
  316. block -= indirect_blks;
  317. if (block < indirect_blks) {
  318. offset[n++] = NODE_IND2_BLOCK;
  319. noffset[n] = 4 + dptrs_per_blk;
  320. offset[n++] = block / direct_blks;
  321. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  322. offset[n] = block % direct_blks;
  323. level = 2;
  324. goto got;
  325. }
  326. block -= indirect_blks;
  327. if (block < dindirect_blks) {
  328. offset[n++] = NODE_DIND_BLOCK;
  329. noffset[n] = 5 + (dptrs_per_blk * 2);
  330. offset[n++] = block / indirect_blks;
  331. noffset[n] = 6 + (dptrs_per_blk * 2) +
  332. offset[n - 1] * (dptrs_per_blk + 1);
  333. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  334. noffset[n] = 7 + (dptrs_per_blk * 2) +
  335. offset[n - 2] * (dptrs_per_blk + 1) +
  336. offset[n - 1];
  337. offset[n] = block % direct_blks;
  338. level = 3;
  339. goto got;
  340. } else {
  341. BUG();
  342. }
  343. got:
  344. return level;
  345. }
  346. /*
  347. * Caller should call f2fs_put_dnode(dn).
  348. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  349. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  350. * In the case of RDONLY_NODE, we don't need to care about mutex.
  351. */
  352. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  353. {
  354. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  355. struct page *npage[4];
  356. struct page *parent;
  357. int offset[4];
  358. unsigned int noffset[4];
  359. nid_t nids[4];
  360. int level, i;
  361. int err = 0;
  362. level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
  363. nids[0] = dn->inode->i_ino;
  364. npage[0] = dn->inode_page;
  365. if (!npage[0]) {
  366. npage[0] = get_node_page(sbi, nids[0]);
  367. if (IS_ERR(npage[0]))
  368. return PTR_ERR(npage[0]);
  369. }
  370. parent = npage[0];
  371. if (level != 0)
  372. nids[1] = get_nid(parent, offset[0], true);
  373. dn->inode_page = npage[0];
  374. dn->inode_page_locked = true;
  375. /* get indirect or direct nodes */
  376. for (i = 1; i <= level; i++) {
  377. bool done = false;
  378. if (!nids[i] && mode == ALLOC_NODE) {
  379. /* alloc new node */
  380. if (!alloc_nid(sbi, &(nids[i]))) {
  381. err = -ENOSPC;
  382. goto release_pages;
  383. }
  384. dn->nid = nids[i];
  385. npage[i] = new_node_page(dn, noffset[i], NULL);
  386. if (IS_ERR(npage[i])) {
  387. alloc_nid_failed(sbi, nids[i]);
  388. err = PTR_ERR(npage[i]);
  389. goto release_pages;
  390. }
  391. set_nid(parent, offset[i - 1], nids[i], i == 1);
  392. alloc_nid_done(sbi, nids[i]);
  393. done = true;
  394. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  395. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  396. if (IS_ERR(npage[i])) {
  397. err = PTR_ERR(npage[i]);
  398. goto release_pages;
  399. }
  400. done = true;
  401. }
  402. if (i == 1) {
  403. dn->inode_page_locked = false;
  404. unlock_page(parent);
  405. } else {
  406. f2fs_put_page(parent, 1);
  407. }
  408. if (!done) {
  409. npage[i] = get_node_page(sbi, nids[i]);
  410. if (IS_ERR(npage[i])) {
  411. err = PTR_ERR(npage[i]);
  412. f2fs_put_page(npage[0], 0);
  413. goto release_out;
  414. }
  415. }
  416. if (i < level) {
  417. parent = npage[i];
  418. nids[i + 1] = get_nid(parent, offset[i], false);
  419. }
  420. }
  421. dn->nid = nids[level];
  422. dn->ofs_in_node = offset[level];
  423. dn->node_page = npage[level];
  424. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  425. return 0;
  426. release_pages:
  427. f2fs_put_page(parent, 1);
  428. if (i > 1)
  429. f2fs_put_page(npage[0], 0);
  430. release_out:
  431. dn->inode_page = NULL;
  432. dn->node_page = NULL;
  433. return err;
  434. }
  435. static void truncate_node(struct dnode_of_data *dn)
  436. {
  437. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  438. struct node_info ni;
  439. get_node_info(sbi, dn->nid, &ni);
  440. if (dn->inode->i_blocks == 0) {
  441. f2fs_bug_on(ni.blk_addr != NULL_ADDR);
  442. goto invalidate;
  443. }
  444. f2fs_bug_on(ni.blk_addr == NULL_ADDR);
  445. /* Deallocate node address */
  446. invalidate_blocks(sbi, ni.blk_addr);
  447. dec_valid_node_count(sbi, dn->inode);
  448. set_node_addr(sbi, &ni, NULL_ADDR, false);
  449. if (dn->nid == dn->inode->i_ino) {
  450. remove_orphan_inode(sbi, dn->nid);
  451. dec_valid_inode_count(sbi);
  452. } else {
  453. sync_inode_page(dn);
  454. }
  455. invalidate:
  456. clear_node_page_dirty(dn->node_page);
  457. F2FS_SET_SB_DIRT(sbi);
  458. f2fs_put_page(dn->node_page, 1);
  459. invalidate_mapping_pages(NODE_MAPPING(sbi),
  460. dn->node_page->index, dn->node_page->index);
  461. dn->node_page = NULL;
  462. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  463. }
  464. static int truncate_dnode(struct dnode_of_data *dn)
  465. {
  466. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  467. struct page *page;
  468. if (dn->nid == 0)
  469. return 1;
  470. /* get direct node */
  471. page = get_node_page(sbi, dn->nid);
  472. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  473. return 1;
  474. else if (IS_ERR(page))
  475. return PTR_ERR(page);
  476. /* Make dnode_of_data for parameter */
  477. dn->node_page = page;
  478. dn->ofs_in_node = 0;
  479. truncate_data_blocks(dn);
  480. truncate_node(dn);
  481. return 1;
  482. }
  483. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  484. int ofs, int depth)
  485. {
  486. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  487. struct dnode_of_data rdn = *dn;
  488. struct page *page;
  489. struct f2fs_node *rn;
  490. nid_t child_nid;
  491. unsigned int child_nofs;
  492. int freed = 0;
  493. int i, ret;
  494. if (dn->nid == 0)
  495. return NIDS_PER_BLOCK + 1;
  496. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  497. page = get_node_page(sbi, dn->nid);
  498. if (IS_ERR(page)) {
  499. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  500. return PTR_ERR(page);
  501. }
  502. rn = F2FS_NODE(page);
  503. if (depth < 3) {
  504. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  505. child_nid = le32_to_cpu(rn->in.nid[i]);
  506. if (child_nid == 0)
  507. continue;
  508. rdn.nid = child_nid;
  509. ret = truncate_dnode(&rdn);
  510. if (ret < 0)
  511. goto out_err;
  512. set_nid(page, i, 0, false);
  513. }
  514. } else {
  515. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  516. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  517. child_nid = le32_to_cpu(rn->in.nid[i]);
  518. if (child_nid == 0) {
  519. child_nofs += NIDS_PER_BLOCK + 1;
  520. continue;
  521. }
  522. rdn.nid = child_nid;
  523. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  524. if (ret == (NIDS_PER_BLOCK + 1)) {
  525. set_nid(page, i, 0, false);
  526. child_nofs += ret;
  527. } else if (ret < 0 && ret != -ENOENT) {
  528. goto out_err;
  529. }
  530. }
  531. freed = child_nofs;
  532. }
  533. if (!ofs) {
  534. /* remove current indirect node */
  535. dn->node_page = page;
  536. truncate_node(dn);
  537. freed++;
  538. } else {
  539. f2fs_put_page(page, 1);
  540. }
  541. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  542. return freed;
  543. out_err:
  544. f2fs_put_page(page, 1);
  545. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  546. return ret;
  547. }
  548. static int truncate_partial_nodes(struct dnode_of_data *dn,
  549. struct f2fs_inode *ri, int *offset, int depth)
  550. {
  551. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  552. struct page *pages[2];
  553. nid_t nid[3];
  554. nid_t child_nid;
  555. int err = 0;
  556. int i;
  557. int idx = depth - 2;
  558. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  559. if (!nid[0])
  560. return 0;
  561. /* get indirect nodes in the path */
  562. for (i = 0; i < idx + 1; i++) {
  563. /* refernece count'll be increased */
  564. pages[i] = get_node_page(sbi, nid[i]);
  565. if (IS_ERR(pages[i])) {
  566. err = PTR_ERR(pages[i]);
  567. idx = i - 1;
  568. goto fail;
  569. }
  570. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  571. }
  572. /* free direct nodes linked to a partial indirect node */
  573. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  574. child_nid = get_nid(pages[idx], i, false);
  575. if (!child_nid)
  576. continue;
  577. dn->nid = child_nid;
  578. err = truncate_dnode(dn);
  579. if (err < 0)
  580. goto fail;
  581. set_nid(pages[idx], i, 0, false);
  582. }
  583. if (offset[idx + 1] == 0) {
  584. dn->node_page = pages[idx];
  585. dn->nid = nid[idx];
  586. truncate_node(dn);
  587. } else {
  588. f2fs_put_page(pages[idx], 1);
  589. }
  590. offset[idx]++;
  591. offset[idx + 1] = 0;
  592. idx--;
  593. fail:
  594. for (i = idx; i >= 0; i--)
  595. f2fs_put_page(pages[i], 1);
  596. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  597. return err;
  598. }
  599. /*
  600. * All the block addresses of data and nodes should be nullified.
  601. */
  602. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  603. {
  604. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  605. int err = 0, cont = 1;
  606. int level, offset[4], noffset[4];
  607. unsigned int nofs = 0;
  608. struct f2fs_inode *ri;
  609. struct dnode_of_data dn;
  610. struct page *page;
  611. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  612. level = get_node_path(F2FS_I(inode), from, offset, noffset);
  613. restart:
  614. page = get_node_page(sbi, inode->i_ino);
  615. if (IS_ERR(page)) {
  616. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  617. return PTR_ERR(page);
  618. }
  619. set_new_dnode(&dn, inode, page, NULL, 0);
  620. unlock_page(page);
  621. ri = F2FS_INODE(page);
  622. switch (level) {
  623. case 0:
  624. case 1:
  625. nofs = noffset[1];
  626. break;
  627. case 2:
  628. nofs = noffset[1];
  629. if (!offset[level - 1])
  630. goto skip_partial;
  631. err = truncate_partial_nodes(&dn, ri, offset, level);
  632. if (err < 0 && err != -ENOENT)
  633. goto fail;
  634. nofs += 1 + NIDS_PER_BLOCK;
  635. break;
  636. case 3:
  637. nofs = 5 + 2 * NIDS_PER_BLOCK;
  638. if (!offset[level - 1])
  639. goto skip_partial;
  640. err = truncate_partial_nodes(&dn, ri, offset, level);
  641. if (err < 0 && err != -ENOENT)
  642. goto fail;
  643. break;
  644. default:
  645. BUG();
  646. }
  647. skip_partial:
  648. while (cont) {
  649. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  650. switch (offset[0]) {
  651. case NODE_DIR1_BLOCK:
  652. case NODE_DIR2_BLOCK:
  653. err = truncate_dnode(&dn);
  654. break;
  655. case NODE_IND1_BLOCK:
  656. case NODE_IND2_BLOCK:
  657. err = truncate_nodes(&dn, nofs, offset[1], 2);
  658. break;
  659. case NODE_DIND_BLOCK:
  660. err = truncate_nodes(&dn, nofs, offset[1], 3);
  661. cont = 0;
  662. break;
  663. default:
  664. BUG();
  665. }
  666. if (err < 0 && err != -ENOENT)
  667. goto fail;
  668. if (offset[1] == 0 &&
  669. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  670. lock_page(page);
  671. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  672. f2fs_put_page(page, 1);
  673. goto restart;
  674. }
  675. f2fs_wait_on_page_writeback(page, NODE);
  676. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  677. set_page_dirty(page);
  678. unlock_page(page);
  679. }
  680. offset[1] = 0;
  681. offset[0]++;
  682. nofs += err;
  683. }
  684. fail:
  685. f2fs_put_page(page, 0);
  686. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  687. return err > 0 ? 0 : err;
  688. }
  689. int truncate_xattr_node(struct inode *inode, struct page *page)
  690. {
  691. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  692. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  693. struct dnode_of_data dn;
  694. struct page *npage;
  695. if (!nid)
  696. return 0;
  697. npage = get_node_page(sbi, nid);
  698. if (IS_ERR(npage))
  699. return PTR_ERR(npage);
  700. F2FS_I(inode)->i_xattr_nid = 0;
  701. /* need to do checkpoint during fsync */
  702. F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
  703. set_new_dnode(&dn, inode, page, npage, nid);
  704. if (page)
  705. dn.inode_page_locked = true;
  706. truncate_node(&dn);
  707. return 0;
  708. }
  709. /*
  710. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  711. * f2fs_unlock_op().
  712. */
  713. void remove_inode_page(struct inode *inode)
  714. {
  715. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  716. struct page *page;
  717. nid_t ino = inode->i_ino;
  718. struct dnode_of_data dn;
  719. page = get_node_page(sbi, ino);
  720. if (IS_ERR(page))
  721. return;
  722. if (truncate_xattr_node(inode, page)) {
  723. f2fs_put_page(page, 1);
  724. return;
  725. }
  726. /* 0 is possible, after f2fs_new_inode() is failed */
  727. f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
  728. set_new_dnode(&dn, inode, page, page, ino);
  729. truncate_node(&dn);
  730. }
  731. struct page *new_inode_page(struct inode *inode, const struct qstr *name)
  732. {
  733. struct dnode_of_data dn;
  734. /* allocate inode page for new inode */
  735. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  736. /* caller should f2fs_put_page(page, 1); */
  737. return new_node_page(&dn, 0, NULL);
  738. }
  739. struct page *new_node_page(struct dnode_of_data *dn,
  740. unsigned int ofs, struct page *ipage)
  741. {
  742. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  743. struct node_info old_ni, new_ni;
  744. struct page *page;
  745. int err;
  746. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  747. return ERR_PTR(-EPERM);
  748. page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
  749. dn->nid, AOP_FLAG_NOFS);
  750. if (!page)
  751. return ERR_PTR(-ENOMEM);
  752. if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
  753. err = -ENOSPC;
  754. goto fail;
  755. }
  756. get_node_info(sbi, dn->nid, &old_ni);
  757. /* Reinitialize old_ni with new node page */
  758. f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
  759. new_ni = old_ni;
  760. new_ni.ino = dn->inode->i_ino;
  761. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  762. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  763. set_cold_node(dn->inode, page);
  764. SetPageUptodate(page);
  765. set_page_dirty(page);
  766. if (f2fs_has_xattr_block(ofs))
  767. F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
  768. dn->node_page = page;
  769. if (ipage)
  770. update_inode(dn->inode, ipage);
  771. else
  772. sync_inode_page(dn);
  773. if (ofs == 0)
  774. inc_valid_inode_count(sbi);
  775. return page;
  776. fail:
  777. clear_node_page_dirty(page);
  778. f2fs_put_page(page, 1);
  779. return ERR_PTR(err);
  780. }
  781. /*
  782. * Caller should do after getting the following values.
  783. * 0: f2fs_put_page(page, 0)
  784. * LOCKED_PAGE: f2fs_put_page(page, 1)
  785. * error: nothing
  786. */
  787. static int read_node_page(struct page *page, int rw)
  788. {
  789. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  790. struct node_info ni;
  791. get_node_info(sbi, page->index, &ni);
  792. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  793. f2fs_put_page(page, 1);
  794. return -ENOENT;
  795. }
  796. if (PageUptodate(page))
  797. return LOCKED_PAGE;
  798. return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
  799. }
  800. /*
  801. * Readahead a node page
  802. */
  803. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  804. {
  805. struct page *apage;
  806. int err;
  807. apage = find_get_page(NODE_MAPPING(sbi), nid);
  808. if (apage && PageUptodate(apage)) {
  809. f2fs_put_page(apage, 0);
  810. return;
  811. }
  812. f2fs_put_page(apage, 0);
  813. apage = grab_cache_page(NODE_MAPPING(sbi), nid);
  814. if (!apage)
  815. return;
  816. err = read_node_page(apage, READA);
  817. if (err == 0)
  818. f2fs_put_page(apage, 0);
  819. else if (err == LOCKED_PAGE)
  820. f2fs_put_page(apage, 1);
  821. }
  822. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  823. {
  824. struct page *page;
  825. int err;
  826. repeat:
  827. page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
  828. nid, AOP_FLAG_NOFS);
  829. if (!page)
  830. return ERR_PTR(-ENOMEM);
  831. err = read_node_page(page, READ_SYNC);
  832. if (err < 0)
  833. return ERR_PTR(err);
  834. else if (err == LOCKED_PAGE)
  835. goto got_it;
  836. lock_page(page);
  837. if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
  838. f2fs_put_page(page, 1);
  839. return ERR_PTR(-EIO);
  840. }
  841. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  842. f2fs_put_page(page, 1);
  843. goto repeat;
  844. }
  845. got_it:
  846. mark_page_accessed(page);
  847. return page;
  848. }
  849. /*
  850. * Return a locked page for the desired node page.
  851. * And, readahead MAX_RA_NODE number of node pages.
  852. */
  853. struct page *get_node_page_ra(struct page *parent, int start)
  854. {
  855. struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
  856. struct blk_plug plug;
  857. struct page *page;
  858. int err, i, end;
  859. nid_t nid;
  860. /* First, try getting the desired direct node. */
  861. nid = get_nid(parent, start, false);
  862. if (!nid)
  863. return ERR_PTR(-ENOENT);
  864. repeat:
  865. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  866. if (!page)
  867. return ERR_PTR(-ENOMEM);
  868. err = read_node_page(page, READ_SYNC);
  869. if (err < 0)
  870. return ERR_PTR(err);
  871. else if (err == LOCKED_PAGE)
  872. goto page_hit;
  873. blk_start_plug(&plug);
  874. /* Then, try readahead for siblings of the desired node */
  875. end = start + MAX_RA_NODE;
  876. end = min(end, NIDS_PER_BLOCK);
  877. for (i = start + 1; i < end; i++) {
  878. nid = get_nid(parent, i, false);
  879. if (!nid)
  880. continue;
  881. ra_node_page(sbi, nid);
  882. }
  883. blk_finish_plug(&plug);
  884. lock_page(page);
  885. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  886. f2fs_put_page(page, 1);
  887. goto repeat;
  888. }
  889. page_hit:
  890. if (unlikely(!PageUptodate(page))) {
  891. f2fs_put_page(page, 1);
  892. return ERR_PTR(-EIO);
  893. }
  894. mark_page_accessed(page);
  895. return page;
  896. }
  897. void sync_inode_page(struct dnode_of_data *dn)
  898. {
  899. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  900. update_inode(dn->inode, dn->node_page);
  901. } else if (dn->inode_page) {
  902. if (!dn->inode_page_locked)
  903. lock_page(dn->inode_page);
  904. update_inode(dn->inode, dn->inode_page);
  905. if (!dn->inode_page_locked)
  906. unlock_page(dn->inode_page);
  907. } else {
  908. update_inode_page(dn->inode);
  909. }
  910. }
  911. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  912. struct writeback_control *wbc)
  913. {
  914. pgoff_t index, end;
  915. struct pagevec pvec;
  916. int step = ino ? 2 : 0;
  917. int nwritten = 0, wrote = 0;
  918. pagevec_init(&pvec, 0);
  919. next_step:
  920. index = 0;
  921. end = LONG_MAX;
  922. while (index <= end) {
  923. int i, nr_pages;
  924. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  925. PAGECACHE_TAG_DIRTY,
  926. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  927. if (nr_pages == 0)
  928. break;
  929. for (i = 0; i < nr_pages; i++) {
  930. struct page *page = pvec.pages[i];
  931. /*
  932. * flushing sequence with step:
  933. * 0. indirect nodes
  934. * 1. dentry dnodes
  935. * 2. file dnodes
  936. */
  937. if (step == 0 && IS_DNODE(page))
  938. continue;
  939. if (step == 1 && (!IS_DNODE(page) ||
  940. is_cold_node(page)))
  941. continue;
  942. if (step == 2 && (!IS_DNODE(page) ||
  943. !is_cold_node(page)))
  944. continue;
  945. /*
  946. * If an fsync mode,
  947. * we should not skip writing node pages.
  948. */
  949. if (ino && ino_of_node(page) == ino)
  950. lock_page(page);
  951. else if (!trylock_page(page))
  952. continue;
  953. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  954. continue_unlock:
  955. unlock_page(page);
  956. continue;
  957. }
  958. if (ino && ino_of_node(page) != ino)
  959. goto continue_unlock;
  960. if (!PageDirty(page)) {
  961. /* someone wrote it for us */
  962. goto continue_unlock;
  963. }
  964. if (!clear_page_dirty_for_io(page))
  965. goto continue_unlock;
  966. /* called by fsync() */
  967. if (ino && IS_DNODE(page)) {
  968. int mark = !is_checkpointed_node(sbi, ino);
  969. set_fsync_mark(page, 1);
  970. if (IS_INODE(page))
  971. set_dentry_mark(page, mark);
  972. nwritten++;
  973. } else {
  974. set_fsync_mark(page, 0);
  975. set_dentry_mark(page, 0);
  976. }
  977. NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
  978. wrote++;
  979. if (--wbc->nr_to_write == 0)
  980. break;
  981. }
  982. pagevec_release(&pvec);
  983. cond_resched();
  984. if (wbc->nr_to_write == 0) {
  985. step = 2;
  986. break;
  987. }
  988. }
  989. if (step < 2) {
  990. step++;
  991. goto next_step;
  992. }
  993. if (wrote)
  994. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  995. return nwritten;
  996. }
  997. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  998. {
  999. pgoff_t index = 0, end = LONG_MAX;
  1000. struct pagevec pvec;
  1001. int ret2 = 0, ret = 0;
  1002. pagevec_init(&pvec, 0);
  1003. while (index <= end) {
  1004. int i, nr_pages;
  1005. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1006. PAGECACHE_TAG_WRITEBACK,
  1007. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1008. if (nr_pages == 0)
  1009. break;
  1010. for (i = 0; i < nr_pages; i++) {
  1011. struct page *page = pvec.pages[i];
  1012. /* until radix tree lookup accepts end_index */
  1013. if (unlikely(page->index > end))
  1014. continue;
  1015. if (ino && ino_of_node(page) == ino) {
  1016. f2fs_wait_on_page_writeback(page, NODE);
  1017. if (TestClearPageError(page))
  1018. ret = -EIO;
  1019. }
  1020. }
  1021. pagevec_release(&pvec);
  1022. cond_resched();
  1023. }
  1024. if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
  1025. ret2 = -ENOSPC;
  1026. if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
  1027. ret2 = -EIO;
  1028. if (!ret)
  1029. ret = ret2;
  1030. return ret;
  1031. }
  1032. static int f2fs_write_node_page(struct page *page,
  1033. struct writeback_control *wbc)
  1034. {
  1035. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  1036. nid_t nid;
  1037. block_t new_addr;
  1038. struct node_info ni;
  1039. struct f2fs_io_info fio = {
  1040. .type = NODE,
  1041. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  1042. };
  1043. if (unlikely(sbi->por_doing))
  1044. goto redirty_out;
  1045. f2fs_wait_on_page_writeback(page, NODE);
  1046. /* get old block addr of this node page */
  1047. nid = nid_of_node(page);
  1048. f2fs_bug_on(page->index != nid);
  1049. get_node_info(sbi, nid, &ni);
  1050. /* This page is already truncated */
  1051. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1052. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1053. unlock_page(page);
  1054. return 0;
  1055. }
  1056. if (wbc->for_reclaim)
  1057. goto redirty_out;
  1058. mutex_lock(&sbi->node_write);
  1059. set_page_writeback(page);
  1060. write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
  1061. set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
  1062. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1063. mutex_unlock(&sbi->node_write);
  1064. unlock_page(page);
  1065. return 0;
  1066. redirty_out:
  1067. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1068. wbc->pages_skipped++;
  1069. account_page_redirty(page);
  1070. set_page_dirty(page);
  1071. return AOP_WRITEPAGE_ACTIVATE;
  1072. }
  1073. static int f2fs_write_node_pages(struct address_space *mapping,
  1074. struct writeback_control *wbc)
  1075. {
  1076. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1077. long diff;
  1078. /* balancing f2fs's metadata in background */
  1079. f2fs_balance_fs_bg(sbi);
  1080. /* collect a number of dirty node pages and write together */
  1081. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1082. goto skip_write;
  1083. diff = nr_pages_to_write(sbi, NODE, wbc);
  1084. wbc->sync_mode = WB_SYNC_NONE;
  1085. sync_node_pages(sbi, 0, wbc);
  1086. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1087. return 0;
  1088. skip_write:
  1089. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1090. return 0;
  1091. }
  1092. static int f2fs_set_node_page_dirty(struct page *page)
  1093. {
  1094. struct address_space *mapping = page->mapping;
  1095. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1096. trace_f2fs_set_page_dirty(page, NODE);
  1097. SetPageUptodate(page);
  1098. if (!PageDirty(page)) {
  1099. __set_page_dirty_nobuffers(page);
  1100. inc_page_count(sbi, F2FS_DIRTY_NODES);
  1101. SetPagePrivate(page);
  1102. return 1;
  1103. }
  1104. return 0;
  1105. }
  1106. static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
  1107. unsigned int length)
  1108. {
  1109. struct inode *inode = page->mapping->host;
  1110. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1111. if (PageDirty(page))
  1112. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1113. ClearPagePrivate(page);
  1114. }
  1115. static int f2fs_release_node_page(struct page *page, gfp_t wait)
  1116. {
  1117. ClearPagePrivate(page);
  1118. return 1;
  1119. }
  1120. /*
  1121. * Structure of the f2fs node operations
  1122. */
  1123. const struct address_space_operations f2fs_node_aops = {
  1124. .writepage = f2fs_write_node_page,
  1125. .writepages = f2fs_write_node_pages,
  1126. .set_page_dirty = f2fs_set_node_page_dirty,
  1127. .invalidatepage = f2fs_invalidate_node_page,
  1128. .releasepage = f2fs_release_node_page,
  1129. };
  1130. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1131. nid_t n)
  1132. {
  1133. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1134. }
  1135. static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
  1136. struct free_nid *i)
  1137. {
  1138. list_del(&i->list);
  1139. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1140. }
  1141. static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
  1142. {
  1143. struct free_nid *i;
  1144. struct nat_entry *ne;
  1145. bool allocated = false;
  1146. if (!available_free_memory(nm_i, FREE_NIDS))
  1147. return -1;
  1148. /* 0 nid should not be used */
  1149. if (unlikely(nid == 0))
  1150. return 0;
  1151. if (build) {
  1152. /* do not add allocated nids */
  1153. read_lock(&nm_i->nat_tree_lock);
  1154. ne = __lookup_nat_cache(nm_i, nid);
  1155. if (ne &&
  1156. (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
  1157. allocated = true;
  1158. read_unlock(&nm_i->nat_tree_lock);
  1159. if (allocated)
  1160. return 0;
  1161. }
  1162. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1163. i->nid = nid;
  1164. i->state = NID_NEW;
  1165. spin_lock(&nm_i->free_nid_list_lock);
  1166. if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
  1167. spin_unlock(&nm_i->free_nid_list_lock);
  1168. kmem_cache_free(free_nid_slab, i);
  1169. return 0;
  1170. }
  1171. list_add_tail(&i->list, &nm_i->free_nid_list);
  1172. nm_i->fcnt++;
  1173. spin_unlock(&nm_i->free_nid_list_lock);
  1174. return 1;
  1175. }
  1176. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1177. {
  1178. struct free_nid *i;
  1179. bool need_free = false;
  1180. spin_lock(&nm_i->free_nid_list_lock);
  1181. i = __lookup_free_nid_list(nm_i, nid);
  1182. if (i && i->state == NID_NEW) {
  1183. __del_from_free_nid_list(nm_i, i);
  1184. nm_i->fcnt--;
  1185. need_free = true;
  1186. }
  1187. spin_unlock(&nm_i->free_nid_list_lock);
  1188. if (need_free)
  1189. kmem_cache_free(free_nid_slab, i);
  1190. }
  1191. static void scan_nat_page(struct f2fs_nm_info *nm_i,
  1192. struct page *nat_page, nid_t start_nid)
  1193. {
  1194. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1195. block_t blk_addr;
  1196. int i;
  1197. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1198. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1199. if (unlikely(start_nid >= nm_i->max_nid))
  1200. break;
  1201. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1202. f2fs_bug_on(blk_addr == NEW_ADDR);
  1203. if (blk_addr == NULL_ADDR) {
  1204. if (add_free_nid(nm_i, start_nid, true) < 0)
  1205. break;
  1206. }
  1207. }
  1208. }
  1209. static void build_free_nids(struct f2fs_sb_info *sbi)
  1210. {
  1211. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1212. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1213. struct f2fs_summary_block *sum = curseg->sum_blk;
  1214. int i = 0;
  1215. nid_t nid = nm_i->next_scan_nid;
  1216. /* Enough entries */
  1217. if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
  1218. return;
  1219. /* readahead nat pages to be scanned */
  1220. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
  1221. while (1) {
  1222. struct page *page = get_current_nat_page(sbi, nid);
  1223. scan_nat_page(nm_i, page, nid);
  1224. f2fs_put_page(page, 1);
  1225. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1226. if (unlikely(nid >= nm_i->max_nid))
  1227. nid = 0;
  1228. if (i++ == FREE_NID_PAGES)
  1229. break;
  1230. }
  1231. /* go to the next free nat pages to find free nids abundantly */
  1232. nm_i->next_scan_nid = nid;
  1233. /* find free nids from current sum_pages */
  1234. mutex_lock(&curseg->curseg_mutex);
  1235. for (i = 0; i < nats_in_cursum(sum); i++) {
  1236. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1237. nid = le32_to_cpu(nid_in_journal(sum, i));
  1238. if (addr == NULL_ADDR)
  1239. add_free_nid(nm_i, nid, true);
  1240. else
  1241. remove_free_nid(nm_i, nid);
  1242. }
  1243. mutex_unlock(&curseg->curseg_mutex);
  1244. }
  1245. /*
  1246. * If this function returns success, caller can obtain a new nid
  1247. * from second parameter of this function.
  1248. * The returned nid could be used ino as well as nid when inode is created.
  1249. */
  1250. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1251. {
  1252. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1253. struct free_nid *i = NULL;
  1254. retry:
  1255. if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid))
  1256. return false;
  1257. spin_lock(&nm_i->free_nid_list_lock);
  1258. /* We should not use stale free nids created by build_free_nids */
  1259. if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
  1260. f2fs_bug_on(list_empty(&nm_i->free_nid_list));
  1261. list_for_each_entry(i, &nm_i->free_nid_list, list)
  1262. if (i->state == NID_NEW)
  1263. break;
  1264. f2fs_bug_on(i->state != NID_NEW);
  1265. *nid = i->nid;
  1266. i->state = NID_ALLOC;
  1267. nm_i->fcnt--;
  1268. spin_unlock(&nm_i->free_nid_list_lock);
  1269. return true;
  1270. }
  1271. spin_unlock(&nm_i->free_nid_list_lock);
  1272. /* Let's scan nat pages and its caches to get free nids */
  1273. mutex_lock(&nm_i->build_lock);
  1274. build_free_nids(sbi);
  1275. mutex_unlock(&nm_i->build_lock);
  1276. goto retry;
  1277. }
  1278. /*
  1279. * alloc_nid() should be called prior to this function.
  1280. */
  1281. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1282. {
  1283. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1284. struct free_nid *i;
  1285. spin_lock(&nm_i->free_nid_list_lock);
  1286. i = __lookup_free_nid_list(nm_i, nid);
  1287. f2fs_bug_on(!i || i->state != NID_ALLOC);
  1288. __del_from_free_nid_list(nm_i, i);
  1289. spin_unlock(&nm_i->free_nid_list_lock);
  1290. kmem_cache_free(free_nid_slab, i);
  1291. }
  1292. /*
  1293. * alloc_nid() should be called prior to this function.
  1294. */
  1295. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1296. {
  1297. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1298. struct free_nid *i;
  1299. bool need_free = false;
  1300. if (!nid)
  1301. return;
  1302. spin_lock(&nm_i->free_nid_list_lock);
  1303. i = __lookup_free_nid_list(nm_i, nid);
  1304. f2fs_bug_on(!i || i->state != NID_ALLOC);
  1305. if (!available_free_memory(nm_i, FREE_NIDS)) {
  1306. __del_from_free_nid_list(nm_i, i);
  1307. need_free = true;
  1308. } else {
  1309. i->state = NID_NEW;
  1310. nm_i->fcnt++;
  1311. }
  1312. spin_unlock(&nm_i->free_nid_list_lock);
  1313. if (need_free)
  1314. kmem_cache_free(free_nid_slab, i);
  1315. }
  1316. void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
  1317. struct f2fs_summary *sum, struct node_info *ni,
  1318. block_t new_blkaddr)
  1319. {
  1320. rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
  1321. set_node_addr(sbi, ni, new_blkaddr, false);
  1322. clear_node_page_dirty(page);
  1323. }
  1324. void recover_inline_xattr(struct inode *inode, struct page *page)
  1325. {
  1326. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1327. void *src_addr, *dst_addr;
  1328. size_t inline_size;
  1329. struct page *ipage;
  1330. struct f2fs_inode *ri;
  1331. if (!f2fs_has_inline_xattr(inode))
  1332. return;
  1333. if (!IS_INODE(page))
  1334. return;
  1335. ri = F2FS_INODE(page);
  1336. if (!(ri->i_inline & F2FS_INLINE_XATTR))
  1337. return;
  1338. ipage = get_node_page(sbi, inode->i_ino);
  1339. f2fs_bug_on(IS_ERR(ipage));
  1340. dst_addr = inline_xattr_addr(ipage);
  1341. src_addr = inline_xattr_addr(page);
  1342. inline_size = inline_xattr_size(inode);
  1343. memcpy(dst_addr, src_addr, inline_size);
  1344. update_inode(inode, ipage);
  1345. f2fs_put_page(ipage, 1);
  1346. }
  1347. bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
  1348. {
  1349. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1350. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1351. nid_t new_xnid = nid_of_node(page);
  1352. struct node_info ni;
  1353. recover_inline_xattr(inode, page);
  1354. if (!f2fs_has_xattr_block(ofs_of_node(page)))
  1355. return false;
  1356. /* 1: invalidate the previous xattr nid */
  1357. if (!prev_xnid)
  1358. goto recover_xnid;
  1359. /* Deallocate node address */
  1360. get_node_info(sbi, prev_xnid, &ni);
  1361. f2fs_bug_on(ni.blk_addr == NULL_ADDR);
  1362. invalidate_blocks(sbi, ni.blk_addr);
  1363. dec_valid_node_count(sbi, inode);
  1364. set_node_addr(sbi, &ni, NULL_ADDR, false);
  1365. recover_xnid:
  1366. /* 2: allocate new xattr nid */
  1367. if (unlikely(!inc_valid_node_count(sbi, inode)))
  1368. f2fs_bug_on(1);
  1369. remove_free_nid(NM_I(sbi), new_xnid);
  1370. get_node_info(sbi, new_xnid, &ni);
  1371. ni.ino = inode->i_ino;
  1372. set_node_addr(sbi, &ni, NEW_ADDR, false);
  1373. F2FS_I(inode)->i_xattr_nid = new_xnid;
  1374. /* 3: update xattr blkaddr */
  1375. refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
  1376. set_node_addr(sbi, &ni, blkaddr, false);
  1377. update_inode_page(inode);
  1378. return true;
  1379. }
  1380. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1381. {
  1382. struct f2fs_inode *src, *dst;
  1383. nid_t ino = ino_of_node(page);
  1384. struct node_info old_ni, new_ni;
  1385. struct page *ipage;
  1386. ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
  1387. if (!ipage)
  1388. return -ENOMEM;
  1389. /* Should not use this inode from free nid list */
  1390. remove_free_nid(NM_I(sbi), ino);
  1391. get_node_info(sbi, ino, &old_ni);
  1392. SetPageUptodate(ipage);
  1393. fill_node_footer(ipage, ino, ino, 0, true);
  1394. src = F2FS_INODE(page);
  1395. dst = F2FS_INODE(ipage);
  1396. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1397. dst->i_size = 0;
  1398. dst->i_blocks = cpu_to_le64(1);
  1399. dst->i_links = cpu_to_le32(1);
  1400. dst->i_xattr_nid = 0;
  1401. new_ni = old_ni;
  1402. new_ni.ino = ino;
  1403. if (unlikely(!inc_valid_node_count(sbi, NULL)))
  1404. WARN_ON(1);
  1405. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1406. inc_valid_inode_count(sbi);
  1407. f2fs_put_page(ipage, 1);
  1408. return 0;
  1409. }
  1410. /*
  1411. * ra_sum_pages() merge contiguous pages into one bio and submit.
  1412. * these pre-readed pages are linked in pages list.
  1413. */
  1414. static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages,
  1415. int start, int nrpages)
  1416. {
  1417. struct page *page;
  1418. int page_idx = start;
  1419. struct f2fs_io_info fio = {
  1420. .type = META,
  1421. .rw = READ_SYNC | REQ_META | REQ_PRIO
  1422. };
  1423. for (; page_idx < start + nrpages; page_idx++) {
  1424. /* alloc temporal page for read node summary info*/
  1425. page = alloc_page(GFP_F2FS_ZERO);
  1426. if (!page)
  1427. break;
  1428. lock_page(page);
  1429. page->index = page_idx;
  1430. list_add_tail(&page->lru, pages);
  1431. }
  1432. list_for_each_entry(page, pages, lru)
  1433. f2fs_submit_page_mbio(sbi, page, page->index, &fio);
  1434. f2fs_submit_merged_bio(sbi, META, READ);
  1435. return page_idx - start;
  1436. }
  1437. int restore_node_summary(struct f2fs_sb_info *sbi,
  1438. unsigned int segno, struct f2fs_summary_block *sum)
  1439. {
  1440. struct f2fs_node *rn;
  1441. struct f2fs_summary *sum_entry;
  1442. struct page *page, *tmp;
  1443. block_t addr;
  1444. int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
  1445. int i, last_offset, nrpages, err = 0;
  1446. LIST_HEAD(page_list);
  1447. /* scan the node segment */
  1448. last_offset = sbi->blocks_per_seg;
  1449. addr = START_BLOCK(sbi, segno);
  1450. sum_entry = &sum->entries[0];
  1451. for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
  1452. nrpages = min(last_offset - i, bio_blocks);
  1453. /* read ahead node pages */
  1454. nrpages = ra_sum_pages(sbi, &page_list, addr, nrpages);
  1455. if (!nrpages)
  1456. return -ENOMEM;
  1457. list_for_each_entry_safe(page, tmp, &page_list, lru) {
  1458. if (err)
  1459. goto skip;
  1460. lock_page(page);
  1461. if (unlikely(!PageUptodate(page))) {
  1462. err = -EIO;
  1463. } else {
  1464. rn = F2FS_NODE(page);
  1465. sum_entry->nid = rn->footer.nid;
  1466. sum_entry->version = 0;
  1467. sum_entry->ofs_in_node = 0;
  1468. sum_entry++;
  1469. }
  1470. unlock_page(page);
  1471. skip:
  1472. list_del(&page->lru);
  1473. __free_pages(page, 0);
  1474. }
  1475. }
  1476. return err;
  1477. }
  1478. static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
  1479. {
  1480. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1481. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1482. struct f2fs_summary_block *sum = curseg->sum_blk;
  1483. int i;
  1484. mutex_lock(&curseg->curseg_mutex);
  1485. if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
  1486. mutex_unlock(&curseg->curseg_mutex);
  1487. return false;
  1488. }
  1489. for (i = 0; i < nats_in_cursum(sum); i++) {
  1490. struct nat_entry *ne;
  1491. struct f2fs_nat_entry raw_ne;
  1492. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1493. raw_ne = nat_in_journal(sum, i);
  1494. retry:
  1495. write_lock(&nm_i->nat_tree_lock);
  1496. ne = __lookup_nat_cache(nm_i, nid);
  1497. if (ne) {
  1498. __set_nat_cache_dirty(nm_i, ne);
  1499. write_unlock(&nm_i->nat_tree_lock);
  1500. continue;
  1501. }
  1502. ne = grab_nat_entry(nm_i, nid);
  1503. if (!ne) {
  1504. write_unlock(&nm_i->nat_tree_lock);
  1505. goto retry;
  1506. }
  1507. nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
  1508. nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
  1509. nat_set_version(ne, raw_ne.version);
  1510. __set_nat_cache_dirty(nm_i, ne);
  1511. write_unlock(&nm_i->nat_tree_lock);
  1512. }
  1513. update_nats_in_cursum(sum, -i);
  1514. mutex_unlock(&curseg->curseg_mutex);
  1515. return true;
  1516. }
  1517. /*
  1518. * This function is called during the checkpointing process.
  1519. */
  1520. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1521. {
  1522. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1523. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1524. struct f2fs_summary_block *sum = curseg->sum_blk;
  1525. struct nat_entry *ne, *cur;
  1526. struct page *page = NULL;
  1527. struct f2fs_nat_block *nat_blk = NULL;
  1528. nid_t start_nid = 0, end_nid = 0;
  1529. bool flushed;
  1530. flushed = flush_nats_in_journal(sbi);
  1531. if (!flushed)
  1532. mutex_lock(&curseg->curseg_mutex);
  1533. /* 1) flush dirty nat caches */
  1534. list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
  1535. nid_t nid;
  1536. struct f2fs_nat_entry raw_ne;
  1537. int offset = -1;
  1538. block_t new_blkaddr;
  1539. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1540. continue;
  1541. nid = nat_get_nid(ne);
  1542. if (flushed)
  1543. goto to_nat_page;
  1544. /* if there is room for nat enries in curseg->sumpage */
  1545. offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
  1546. if (offset >= 0) {
  1547. raw_ne = nat_in_journal(sum, offset);
  1548. goto flush_now;
  1549. }
  1550. to_nat_page:
  1551. if (!page || (start_nid > nid || nid > end_nid)) {
  1552. if (page) {
  1553. f2fs_put_page(page, 1);
  1554. page = NULL;
  1555. }
  1556. start_nid = START_NID(nid);
  1557. end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
  1558. /*
  1559. * get nat block with dirty flag, increased reference
  1560. * count, mapped and lock
  1561. */
  1562. page = get_next_nat_page(sbi, start_nid);
  1563. nat_blk = page_address(page);
  1564. }
  1565. f2fs_bug_on(!nat_blk);
  1566. raw_ne = nat_blk->entries[nid - start_nid];
  1567. flush_now:
  1568. new_blkaddr = nat_get_blkaddr(ne);
  1569. raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
  1570. raw_ne.block_addr = cpu_to_le32(new_blkaddr);
  1571. raw_ne.version = nat_get_version(ne);
  1572. if (offset < 0) {
  1573. nat_blk->entries[nid - start_nid] = raw_ne;
  1574. } else {
  1575. nat_in_journal(sum, offset) = raw_ne;
  1576. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1577. }
  1578. if (nat_get_blkaddr(ne) == NULL_ADDR &&
  1579. add_free_nid(NM_I(sbi), nid, false) <= 0) {
  1580. write_lock(&nm_i->nat_tree_lock);
  1581. __del_from_nat_cache(nm_i, ne);
  1582. write_unlock(&nm_i->nat_tree_lock);
  1583. } else {
  1584. write_lock(&nm_i->nat_tree_lock);
  1585. __clear_nat_cache_dirty(nm_i, ne);
  1586. write_unlock(&nm_i->nat_tree_lock);
  1587. }
  1588. }
  1589. if (!flushed)
  1590. mutex_unlock(&curseg->curseg_mutex);
  1591. f2fs_put_page(page, 1);
  1592. }
  1593. static int init_node_manager(struct f2fs_sb_info *sbi)
  1594. {
  1595. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1596. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1597. unsigned char *version_bitmap;
  1598. unsigned int nat_segs, nat_blocks;
  1599. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1600. /* segment_count_nat includes pair segment so divide to 2. */
  1601. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1602. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1603. /* not used nids: 0, node, meta, (and root counted as valid node) */
  1604. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks - 3;
  1605. nm_i->fcnt = 0;
  1606. nm_i->nat_cnt = 0;
  1607. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  1608. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  1609. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1610. INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
  1611. INIT_LIST_HEAD(&nm_i->nat_entries);
  1612. INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
  1613. mutex_init(&nm_i->build_lock);
  1614. spin_lock_init(&nm_i->free_nid_list_lock);
  1615. rwlock_init(&nm_i->nat_tree_lock);
  1616. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1617. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1618. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1619. if (!version_bitmap)
  1620. return -EFAULT;
  1621. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1622. GFP_KERNEL);
  1623. if (!nm_i->nat_bitmap)
  1624. return -ENOMEM;
  1625. return 0;
  1626. }
  1627. int build_node_manager(struct f2fs_sb_info *sbi)
  1628. {
  1629. int err;
  1630. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1631. if (!sbi->nm_info)
  1632. return -ENOMEM;
  1633. err = init_node_manager(sbi);
  1634. if (err)
  1635. return err;
  1636. build_free_nids(sbi);
  1637. return 0;
  1638. }
  1639. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1640. {
  1641. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1642. struct free_nid *i, *next_i;
  1643. struct nat_entry *natvec[NATVEC_SIZE];
  1644. nid_t nid = 0;
  1645. unsigned int found;
  1646. if (!nm_i)
  1647. return;
  1648. /* destroy free nid list */
  1649. spin_lock(&nm_i->free_nid_list_lock);
  1650. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1651. f2fs_bug_on(i->state == NID_ALLOC);
  1652. __del_from_free_nid_list(nm_i, i);
  1653. nm_i->fcnt--;
  1654. spin_unlock(&nm_i->free_nid_list_lock);
  1655. kmem_cache_free(free_nid_slab, i);
  1656. spin_lock(&nm_i->free_nid_list_lock);
  1657. }
  1658. f2fs_bug_on(nm_i->fcnt);
  1659. spin_unlock(&nm_i->free_nid_list_lock);
  1660. /* destroy nat cache */
  1661. write_lock(&nm_i->nat_tree_lock);
  1662. while ((found = __gang_lookup_nat_cache(nm_i,
  1663. nid, NATVEC_SIZE, natvec))) {
  1664. unsigned idx;
  1665. nid = nat_get_nid(natvec[found - 1]) + 1;
  1666. for (idx = 0; idx < found; idx++)
  1667. __del_from_nat_cache(nm_i, natvec[idx]);
  1668. }
  1669. f2fs_bug_on(nm_i->nat_cnt);
  1670. write_unlock(&nm_i->nat_tree_lock);
  1671. kfree(nm_i->nat_bitmap);
  1672. sbi->nm_info = NULL;
  1673. kfree(nm_i);
  1674. }
  1675. int __init create_node_manager_caches(void)
  1676. {
  1677. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1678. sizeof(struct nat_entry));
  1679. if (!nat_entry_slab)
  1680. return -ENOMEM;
  1681. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1682. sizeof(struct free_nid));
  1683. if (!free_nid_slab) {
  1684. kmem_cache_destroy(nat_entry_slab);
  1685. return -ENOMEM;
  1686. }
  1687. return 0;
  1688. }
  1689. void destroy_node_manager_caches(void)
  1690. {
  1691. kmem_cache_destroy(free_nid_slab);
  1692. kmem_cache_destroy(nat_entry_slab);
  1693. }