data.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/aio.h>
  16. #include <linux/writeback.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include "f2fs.h"
  22. #include "node.h"
  23. #include "segment.h"
  24. #include <trace/events/f2fs.h>
  25. static void f2fs_read_end_io(struct bio *bio, int err)
  26. {
  27. struct bio_vec *bvec;
  28. int i;
  29. bio_for_each_segment_all(bvec, bio, i) {
  30. struct page *page = bvec->bv_page;
  31. if (!err) {
  32. SetPageUptodate(page);
  33. } else {
  34. ClearPageUptodate(page);
  35. SetPageError(page);
  36. }
  37. unlock_page(page);
  38. }
  39. bio_put(bio);
  40. }
  41. static void f2fs_write_end_io(struct bio *bio, int err)
  42. {
  43. struct f2fs_sb_info *sbi = bio->bi_private;
  44. struct bio_vec *bvec;
  45. int i;
  46. bio_for_each_segment_all(bvec, bio, i) {
  47. struct page *page = bvec->bv_page;
  48. if (unlikely(err)) {
  49. SetPageError(page);
  50. set_bit(AS_EIO, &page->mapping->flags);
  51. f2fs_stop_checkpoint(sbi);
  52. }
  53. end_page_writeback(page);
  54. dec_page_count(sbi, F2FS_WRITEBACK);
  55. }
  56. if (sbi->wait_io) {
  57. complete(sbi->wait_io);
  58. sbi->wait_io = NULL;
  59. }
  60. if (!get_pages(sbi, F2FS_WRITEBACK) &&
  61. !list_empty(&sbi->cp_wait.task_list))
  62. wake_up(&sbi->cp_wait);
  63. bio_put(bio);
  64. }
  65. /*
  66. * Low-level block read/write IO operations.
  67. */
  68. static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
  69. int npages, bool is_read)
  70. {
  71. struct bio *bio;
  72. /* No failure on bio allocation */
  73. bio = bio_alloc(GFP_NOIO, npages);
  74. bio->bi_bdev = sbi->sb->s_bdev;
  75. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  76. bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
  77. bio->bi_private = sbi;
  78. return bio;
  79. }
  80. static void __submit_merged_bio(struct f2fs_bio_info *io)
  81. {
  82. struct f2fs_io_info *fio = &io->fio;
  83. int rw;
  84. if (!io->bio)
  85. return;
  86. rw = fio->rw;
  87. if (is_read_io(rw)) {
  88. trace_f2fs_submit_read_bio(io->sbi->sb, rw,
  89. fio->type, io->bio);
  90. submit_bio(rw, io->bio);
  91. } else {
  92. trace_f2fs_submit_write_bio(io->sbi->sb, rw,
  93. fio->type, io->bio);
  94. /*
  95. * META_FLUSH is only from the checkpoint procedure, and we
  96. * should wait this metadata bio for FS consistency.
  97. */
  98. if (fio->type == META_FLUSH) {
  99. DECLARE_COMPLETION_ONSTACK(wait);
  100. io->sbi->wait_io = &wait;
  101. submit_bio(rw, io->bio);
  102. wait_for_completion(&wait);
  103. } else {
  104. submit_bio(rw, io->bio);
  105. }
  106. }
  107. io->bio = NULL;
  108. }
  109. void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
  110. enum page_type type, int rw)
  111. {
  112. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  113. struct f2fs_bio_info *io;
  114. io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
  115. down_write(&io->io_rwsem);
  116. /* change META to META_FLUSH in the checkpoint procedure */
  117. if (type >= META_FLUSH) {
  118. io->fio.type = META_FLUSH;
  119. io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
  120. }
  121. __submit_merged_bio(io);
  122. up_write(&io->io_rwsem);
  123. }
  124. /*
  125. * Fill the locked page with data located in the block address.
  126. * Return unlocked page.
  127. */
  128. int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
  129. block_t blk_addr, int rw)
  130. {
  131. struct bio *bio;
  132. trace_f2fs_submit_page_bio(page, blk_addr, rw);
  133. /* Allocate a new bio */
  134. bio = __bio_alloc(sbi, blk_addr, 1, is_read_io(rw));
  135. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  136. bio_put(bio);
  137. f2fs_put_page(page, 1);
  138. return -EFAULT;
  139. }
  140. submit_bio(rw, bio);
  141. return 0;
  142. }
  143. void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
  144. block_t blk_addr, struct f2fs_io_info *fio)
  145. {
  146. enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
  147. struct f2fs_bio_info *io;
  148. bool is_read = is_read_io(fio->rw);
  149. io = is_read ? &sbi->read_io : &sbi->write_io[btype];
  150. verify_block_addr(sbi, blk_addr);
  151. down_write(&io->io_rwsem);
  152. if (!is_read)
  153. inc_page_count(sbi, F2FS_WRITEBACK);
  154. if (io->bio && (io->last_block_in_bio != blk_addr - 1 ||
  155. io->fio.rw != fio->rw))
  156. __submit_merged_bio(io);
  157. alloc_new:
  158. if (io->bio == NULL) {
  159. int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
  160. io->bio = __bio_alloc(sbi, blk_addr, bio_blocks, is_read);
  161. io->fio = *fio;
  162. }
  163. if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
  164. PAGE_CACHE_SIZE) {
  165. __submit_merged_bio(io);
  166. goto alloc_new;
  167. }
  168. io->last_block_in_bio = blk_addr;
  169. up_write(&io->io_rwsem);
  170. trace_f2fs_submit_page_mbio(page, fio->rw, fio->type, blk_addr);
  171. }
  172. /*
  173. * Lock ordering for the change of data block address:
  174. * ->data_page
  175. * ->node_page
  176. * update block addresses in the node page
  177. */
  178. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  179. {
  180. struct f2fs_node *rn;
  181. __le32 *addr_array;
  182. struct page *node_page = dn->node_page;
  183. unsigned int ofs_in_node = dn->ofs_in_node;
  184. f2fs_wait_on_page_writeback(node_page, NODE);
  185. rn = F2FS_NODE(node_page);
  186. /* Get physical address of data block */
  187. addr_array = blkaddr_in_node(rn);
  188. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  189. set_page_dirty(node_page);
  190. }
  191. int reserve_new_block(struct dnode_of_data *dn)
  192. {
  193. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  194. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  195. return -EPERM;
  196. if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
  197. return -ENOSPC;
  198. trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
  199. __set_data_blkaddr(dn, NEW_ADDR);
  200. dn->data_blkaddr = NEW_ADDR;
  201. mark_inode_dirty(dn->inode);
  202. sync_inode_page(dn);
  203. return 0;
  204. }
  205. int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
  206. {
  207. bool need_put = dn->inode_page ? false : true;
  208. int err;
  209. /* if inode_page exists, index should be zero */
  210. f2fs_bug_on(!need_put && index);
  211. err = get_dnode_of_data(dn, index, ALLOC_NODE);
  212. if (err)
  213. return err;
  214. if (dn->data_blkaddr == NULL_ADDR)
  215. err = reserve_new_block(dn);
  216. if (err || need_put)
  217. f2fs_put_dnode(dn);
  218. return err;
  219. }
  220. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  221. struct buffer_head *bh_result)
  222. {
  223. struct f2fs_inode_info *fi = F2FS_I(inode);
  224. pgoff_t start_fofs, end_fofs;
  225. block_t start_blkaddr;
  226. if (is_inode_flag_set(fi, FI_NO_EXTENT))
  227. return 0;
  228. read_lock(&fi->ext.ext_lock);
  229. if (fi->ext.len == 0) {
  230. read_unlock(&fi->ext.ext_lock);
  231. return 0;
  232. }
  233. stat_inc_total_hit(inode->i_sb);
  234. start_fofs = fi->ext.fofs;
  235. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  236. start_blkaddr = fi->ext.blk_addr;
  237. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  238. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  239. size_t count;
  240. clear_buffer_new(bh_result);
  241. map_bh(bh_result, inode->i_sb,
  242. start_blkaddr + pgofs - start_fofs);
  243. count = end_fofs - pgofs + 1;
  244. if (count < (UINT_MAX >> blkbits))
  245. bh_result->b_size = (count << blkbits);
  246. else
  247. bh_result->b_size = UINT_MAX;
  248. stat_inc_read_hit(inode->i_sb);
  249. read_unlock(&fi->ext.ext_lock);
  250. return 1;
  251. }
  252. read_unlock(&fi->ext.ext_lock);
  253. return 0;
  254. }
  255. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  256. {
  257. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  258. pgoff_t fofs, start_fofs, end_fofs;
  259. block_t start_blkaddr, end_blkaddr;
  260. int need_update = true;
  261. f2fs_bug_on(blk_addr == NEW_ADDR);
  262. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
  263. dn->ofs_in_node;
  264. /* Update the page address in the parent node */
  265. __set_data_blkaddr(dn, blk_addr);
  266. if (is_inode_flag_set(fi, FI_NO_EXTENT))
  267. return;
  268. write_lock(&fi->ext.ext_lock);
  269. start_fofs = fi->ext.fofs;
  270. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  271. start_blkaddr = fi->ext.blk_addr;
  272. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  273. /* Drop and initialize the matched extent */
  274. if (fi->ext.len == 1 && fofs == start_fofs)
  275. fi->ext.len = 0;
  276. /* Initial extent */
  277. if (fi->ext.len == 0) {
  278. if (blk_addr != NULL_ADDR) {
  279. fi->ext.fofs = fofs;
  280. fi->ext.blk_addr = blk_addr;
  281. fi->ext.len = 1;
  282. }
  283. goto end_update;
  284. }
  285. /* Front merge */
  286. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  287. fi->ext.fofs--;
  288. fi->ext.blk_addr--;
  289. fi->ext.len++;
  290. goto end_update;
  291. }
  292. /* Back merge */
  293. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  294. fi->ext.len++;
  295. goto end_update;
  296. }
  297. /* Split the existing extent */
  298. if (fi->ext.len > 1 &&
  299. fofs >= start_fofs && fofs <= end_fofs) {
  300. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  301. fi->ext.len = fofs - start_fofs;
  302. } else {
  303. fi->ext.fofs = fofs + 1;
  304. fi->ext.blk_addr = start_blkaddr +
  305. fofs - start_fofs + 1;
  306. fi->ext.len -= fofs - start_fofs + 1;
  307. }
  308. } else {
  309. need_update = false;
  310. }
  311. /* Finally, if the extent is very fragmented, let's drop the cache. */
  312. if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
  313. fi->ext.len = 0;
  314. set_inode_flag(fi, FI_NO_EXTENT);
  315. need_update = true;
  316. }
  317. end_update:
  318. write_unlock(&fi->ext.ext_lock);
  319. if (need_update)
  320. sync_inode_page(dn);
  321. return;
  322. }
  323. struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
  324. {
  325. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  326. struct address_space *mapping = inode->i_mapping;
  327. struct dnode_of_data dn;
  328. struct page *page;
  329. int err;
  330. page = find_get_page(mapping, index);
  331. if (page && PageUptodate(page))
  332. return page;
  333. f2fs_put_page(page, 0);
  334. set_new_dnode(&dn, inode, NULL, NULL, 0);
  335. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  336. if (err)
  337. return ERR_PTR(err);
  338. f2fs_put_dnode(&dn);
  339. if (dn.data_blkaddr == NULL_ADDR)
  340. return ERR_PTR(-ENOENT);
  341. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  342. if (unlikely(dn.data_blkaddr == NEW_ADDR))
  343. return ERR_PTR(-EINVAL);
  344. page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
  345. if (!page)
  346. return ERR_PTR(-ENOMEM);
  347. if (PageUptodate(page)) {
  348. unlock_page(page);
  349. return page;
  350. }
  351. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
  352. sync ? READ_SYNC : READA);
  353. if (err)
  354. return ERR_PTR(err);
  355. if (sync) {
  356. wait_on_page_locked(page);
  357. if (unlikely(!PageUptodate(page))) {
  358. f2fs_put_page(page, 0);
  359. return ERR_PTR(-EIO);
  360. }
  361. }
  362. return page;
  363. }
  364. /*
  365. * If it tries to access a hole, return an error.
  366. * Because, the callers, functions in dir.c and GC, should be able to know
  367. * whether this page exists or not.
  368. */
  369. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  370. {
  371. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  372. struct address_space *mapping = inode->i_mapping;
  373. struct dnode_of_data dn;
  374. struct page *page;
  375. int err;
  376. repeat:
  377. page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
  378. if (!page)
  379. return ERR_PTR(-ENOMEM);
  380. set_new_dnode(&dn, inode, NULL, NULL, 0);
  381. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  382. if (err) {
  383. f2fs_put_page(page, 1);
  384. return ERR_PTR(err);
  385. }
  386. f2fs_put_dnode(&dn);
  387. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  388. f2fs_put_page(page, 1);
  389. return ERR_PTR(-ENOENT);
  390. }
  391. if (PageUptodate(page))
  392. return page;
  393. /*
  394. * A new dentry page is allocated but not able to be written, since its
  395. * new inode page couldn't be allocated due to -ENOSPC.
  396. * In such the case, its blkaddr can be remained as NEW_ADDR.
  397. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
  398. */
  399. if (dn.data_blkaddr == NEW_ADDR) {
  400. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  401. SetPageUptodate(page);
  402. return page;
  403. }
  404. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr, READ_SYNC);
  405. if (err)
  406. return ERR_PTR(err);
  407. lock_page(page);
  408. if (unlikely(!PageUptodate(page))) {
  409. f2fs_put_page(page, 1);
  410. return ERR_PTR(-EIO);
  411. }
  412. if (unlikely(page->mapping != mapping)) {
  413. f2fs_put_page(page, 1);
  414. goto repeat;
  415. }
  416. return page;
  417. }
  418. /*
  419. * Caller ensures that this data page is never allocated.
  420. * A new zero-filled data page is allocated in the page cache.
  421. *
  422. * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
  423. * f2fs_unlock_op().
  424. * Note that, ipage is set only by make_empty_dir.
  425. */
  426. struct page *get_new_data_page(struct inode *inode,
  427. struct page *ipage, pgoff_t index, bool new_i_size)
  428. {
  429. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  430. struct address_space *mapping = inode->i_mapping;
  431. struct page *page;
  432. struct dnode_of_data dn;
  433. int err;
  434. set_new_dnode(&dn, inode, ipage, NULL, 0);
  435. err = f2fs_reserve_block(&dn, index);
  436. if (err)
  437. return ERR_PTR(err);
  438. repeat:
  439. page = grab_cache_page(mapping, index);
  440. if (!page) {
  441. err = -ENOMEM;
  442. goto put_err;
  443. }
  444. if (PageUptodate(page))
  445. return page;
  446. if (dn.data_blkaddr == NEW_ADDR) {
  447. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  448. SetPageUptodate(page);
  449. } else {
  450. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
  451. READ_SYNC);
  452. if (err)
  453. goto put_err;
  454. lock_page(page);
  455. if (unlikely(!PageUptodate(page))) {
  456. f2fs_put_page(page, 1);
  457. err = -EIO;
  458. goto put_err;
  459. }
  460. if (unlikely(page->mapping != mapping)) {
  461. f2fs_put_page(page, 1);
  462. goto repeat;
  463. }
  464. }
  465. if (new_i_size &&
  466. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  467. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  468. /* Only the directory inode sets new_i_size */
  469. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  470. }
  471. return page;
  472. put_err:
  473. f2fs_put_dnode(&dn);
  474. return ERR_PTR(err);
  475. }
  476. static int __allocate_data_block(struct dnode_of_data *dn)
  477. {
  478. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  479. struct f2fs_summary sum;
  480. block_t new_blkaddr;
  481. struct node_info ni;
  482. int type;
  483. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  484. return -EPERM;
  485. if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
  486. return -ENOSPC;
  487. __set_data_blkaddr(dn, NEW_ADDR);
  488. dn->data_blkaddr = NEW_ADDR;
  489. get_node_info(sbi, dn->nid, &ni);
  490. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  491. type = CURSEG_WARM_DATA;
  492. allocate_data_block(sbi, NULL, NULL_ADDR, &new_blkaddr, &sum, type);
  493. /* direct IO doesn't use extent cache to maximize the performance */
  494. set_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
  495. update_extent_cache(new_blkaddr, dn);
  496. clear_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
  497. dn->data_blkaddr = new_blkaddr;
  498. return 0;
  499. }
  500. /*
  501. * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
  502. * If original data blocks are allocated, then give them to blockdev.
  503. * Otherwise,
  504. * a. preallocate requested block addresses
  505. * b. do not use extent cache for better performance
  506. * c. give the block addresses to blockdev
  507. */
  508. static int get_data_block(struct inode *inode, sector_t iblock,
  509. struct buffer_head *bh_result, int create)
  510. {
  511. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  512. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  513. unsigned maxblocks = bh_result->b_size >> blkbits;
  514. struct dnode_of_data dn;
  515. int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
  516. pgoff_t pgofs, end_offset;
  517. int err = 0, ofs = 1;
  518. bool allocated = false;
  519. /* Get the page offset from the block offset(iblock) */
  520. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  521. if (check_extent_cache(inode, pgofs, bh_result))
  522. goto out;
  523. if (create)
  524. f2fs_lock_op(sbi);
  525. /* When reading holes, we need its node page */
  526. set_new_dnode(&dn, inode, NULL, NULL, 0);
  527. err = get_dnode_of_data(&dn, pgofs, mode);
  528. if (err) {
  529. if (err == -ENOENT)
  530. err = 0;
  531. goto unlock_out;
  532. }
  533. if (dn.data_blkaddr == NEW_ADDR)
  534. goto put_out;
  535. if (dn.data_blkaddr != NULL_ADDR) {
  536. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  537. } else if (create) {
  538. err = __allocate_data_block(&dn);
  539. if (err)
  540. goto put_out;
  541. allocated = true;
  542. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  543. } else {
  544. goto put_out;
  545. }
  546. end_offset = IS_INODE(dn.node_page) ?
  547. ADDRS_PER_INODE(F2FS_I(inode)) : ADDRS_PER_BLOCK;
  548. bh_result->b_size = (((size_t)1) << blkbits);
  549. dn.ofs_in_node++;
  550. pgofs++;
  551. get_next:
  552. if (dn.ofs_in_node >= end_offset) {
  553. if (allocated)
  554. sync_inode_page(&dn);
  555. allocated = false;
  556. f2fs_put_dnode(&dn);
  557. set_new_dnode(&dn, inode, NULL, NULL, 0);
  558. err = get_dnode_of_data(&dn, pgofs, mode);
  559. if (err) {
  560. if (err == -ENOENT)
  561. err = 0;
  562. goto unlock_out;
  563. }
  564. if (dn.data_blkaddr == NEW_ADDR)
  565. goto put_out;
  566. end_offset = IS_INODE(dn.node_page) ?
  567. ADDRS_PER_INODE(F2FS_I(inode)) : ADDRS_PER_BLOCK;
  568. }
  569. if (maxblocks > (bh_result->b_size >> blkbits)) {
  570. block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  571. if (blkaddr == NULL_ADDR && create) {
  572. err = __allocate_data_block(&dn);
  573. if (err)
  574. goto sync_out;
  575. allocated = true;
  576. blkaddr = dn.data_blkaddr;
  577. }
  578. /* Give more consecutive addresses for the read ahead */
  579. if (blkaddr == (bh_result->b_blocknr + ofs)) {
  580. ofs++;
  581. dn.ofs_in_node++;
  582. pgofs++;
  583. bh_result->b_size += (((size_t)1) << blkbits);
  584. goto get_next;
  585. }
  586. }
  587. sync_out:
  588. if (allocated)
  589. sync_inode_page(&dn);
  590. put_out:
  591. f2fs_put_dnode(&dn);
  592. unlock_out:
  593. if (create)
  594. f2fs_unlock_op(sbi);
  595. out:
  596. trace_f2fs_get_data_block(inode, iblock, bh_result, err);
  597. return err;
  598. }
  599. static int f2fs_read_data_page(struct file *file, struct page *page)
  600. {
  601. struct inode *inode = page->mapping->host;
  602. int ret;
  603. /* If the file has inline data, try to read it directlly */
  604. if (f2fs_has_inline_data(inode))
  605. ret = f2fs_read_inline_data(inode, page);
  606. else
  607. ret = mpage_readpage(page, get_data_block);
  608. return ret;
  609. }
  610. static int f2fs_read_data_pages(struct file *file,
  611. struct address_space *mapping,
  612. struct list_head *pages, unsigned nr_pages)
  613. {
  614. struct inode *inode = file->f_mapping->host;
  615. /* If the file has inline data, skip readpages */
  616. if (f2fs_has_inline_data(inode))
  617. return 0;
  618. return mpage_readpages(mapping, pages, nr_pages, get_data_block);
  619. }
  620. int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
  621. {
  622. struct inode *inode = page->mapping->host;
  623. block_t old_blkaddr, new_blkaddr;
  624. struct dnode_of_data dn;
  625. int err = 0;
  626. set_new_dnode(&dn, inode, NULL, NULL, 0);
  627. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  628. if (err)
  629. return err;
  630. old_blkaddr = dn.data_blkaddr;
  631. /* This page is already truncated */
  632. if (old_blkaddr == NULL_ADDR)
  633. goto out_writepage;
  634. set_page_writeback(page);
  635. /*
  636. * If current allocation needs SSR,
  637. * it had better in-place writes for updated data.
  638. */
  639. if (unlikely(old_blkaddr != NEW_ADDR &&
  640. !is_cold_data(page) &&
  641. need_inplace_update(inode))) {
  642. rewrite_data_page(page, old_blkaddr, fio);
  643. } else {
  644. write_data_page(page, &dn, &new_blkaddr, fio);
  645. update_extent_cache(new_blkaddr, &dn);
  646. }
  647. out_writepage:
  648. f2fs_put_dnode(&dn);
  649. return err;
  650. }
  651. static int f2fs_write_data_page(struct page *page,
  652. struct writeback_control *wbc)
  653. {
  654. struct inode *inode = page->mapping->host;
  655. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  656. loff_t i_size = i_size_read(inode);
  657. const pgoff_t end_index = ((unsigned long long) i_size)
  658. >> PAGE_CACHE_SHIFT;
  659. unsigned offset = 0;
  660. bool need_balance_fs = false;
  661. int err = 0;
  662. struct f2fs_io_info fio = {
  663. .type = DATA,
  664. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  665. };
  666. if (page->index < end_index)
  667. goto write;
  668. /*
  669. * If the offset is out-of-range of file size,
  670. * this page does not have to be written to disk.
  671. */
  672. offset = i_size & (PAGE_CACHE_SIZE - 1);
  673. if ((page->index >= end_index + 1) || !offset) {
  674. inode_dec_dirty_dents(inode);
  675. goto out;
  676. }
  677. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  678. write:
  679. if (unlikely(sbi->por_doing))
  680. goto redirty_out;
  681. /* Dentry blocks are controlled by checkpoint */
  682. if (S_ISDIR(inode->i_mode)) {
  683. inode_dec_dirty_dents(inode);
  684. err = do_write_data_page(page, &fio);
  685. goto done;
  686. }
  687. if (!wbc->for_reclaim)
  688. need_balance_fs = true;
  689. else if (has_not_enough_free_secs(sbi, 0))
  690. goto redirty_out;
  691. f2fs_lock_op(sbi);
  692. if (f2fs_has_inline_data(inode) || f2fs_may_inline(inode))
  693. err = f2fs_write_inline_data(inode, page, offset);
  694. else
  695. err = do_write_data_page(page, &fio);
  696. f2fs_unlock_op(sbi);
  697. done:
  698. if (err && err != -ENOENT)
  699. goto redirty_out;
  700. clear_cold_data(page);
  701. out:
  702. unlock_page(page);
  703. if (need_balance_fs)
  704. f2fs_balance_fs(sbi);
  705. return 0;
  706. redirty_out:
  707. wbc->pages_skipped++;
  708. account_page_redirty(page);
  709. set_page_dirty(page);
  710. return AOP_WRITEPAGE_ACTIVATE;
  711. }
  712. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  713. void *data)
  714. {
  715. struct address_space *mapping = data;
  716. int ret = mapping->a_ops->writepage(page, wbc);
  717. mapping_set_error(mapping, ret);
  718. return ret;
  719. }
  720. static int f2fs_write_data_pages(struct address_space *mapping,
  721. struct writeback_control *wbc)
  722. {
  723. struct inode *inode = mapping->host;
  724. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  725. bool locked = false;
  726. int ret;
  727. long diff;
  728. /* deal with chardevs and other special file */
  729. if (!mapping->a_ops->writepage)
  730. return 0;
  731. if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
  732. get_dirty_dents(inode) < nr_pages_to_skip(sbi, DATA))
  733. goto skip_write;
  734. diff = nr_pages_to_write(sbi, DATA, wbc);
  735. if (!S_ISDIR(inode->i_mode)) {
  736. mutex_lock(&sbi->writepages);
  737. locked = true;
  738. }
  739. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  740. if (locked)
  741. mutex_unlock(&sbi->writepages);
  742. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  743. remove_dirty_dir_inode(inode);
  744. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  745. return ret;
  746. skip_write:
  747. wbc->pages_skipped += get_dirty_dents(inode);
  748. return 0;
  749. }
  750. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  751. loff_t pos, unsigned len, unsigned flags,
  752. struct page **pagep, void **fsdata)
  753. {
  754. struct inode *inode = mapping->host;
  755. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  756. struct page *page;
  757. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  758. struct dnode_of_data dn;
  759. int err = 0;
  760. f2fs_balance_fs(sbi);
  761. repeat:
  762. err = f2fs_convert_inline_data(inode, pos + len);
  763. if (err)
  764. return err;
  765. page = grab_cache_page_write_begin(mapping, index, flags);
  766. if (!page)
  767. return -ENOMEM;
  768. *pagep = page;
  769. if (f2fs_has_inline_data(inode) && (pos + len) <= MAX_INLINE_DATA)
  770. goto inline_data;
  771. f2fs_lock_op(sbi);
  772. set_new_dnode(&dn, inode, NULL, NULL, 0);
  773. err = f2fs_reserve_block(&dn, index);
  774. f2fs_unlock_op(sbi);
  775. if (err) {
  776. f2fs_put_page(page, 1);
  777. return err;
  778. }
  779. inline_data:
  780. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  781. return 0;
  782. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  783. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  784. unsigned end = start + len;
  785. /* Reading beyond i_size is simple: memset to zero */
  786. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  787. goto out;
  788. }
  789. if (dn.data_blkaddr == NEW_ADDR) {
  790. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  791. } else {
  792. if (f2fs_has_inline_data(inode)) {
  793. err = f2fs_read_inline_data(inode, page);
  794. if (err) {
  795. page_cache_release(page);
  796. return err;
  797. }
  798. } else {
  799. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
  800. READ_SYNC);
  801. if (err)
  802. return err;
  803. }
  804. lock_page(page);
  805. if (unlikely(!PageUptodate(page))) {
  806. f2fs_put_page(page, 1);
  807. return -EIO;
  808. }
  809. if (unlikely(page->mapping != mapping)) {
  810. f2fs_put_page(page, 1);
  811. goto repeat;
  812. }
  813. }
  814. out:
  815. SetPageUptodate(page);
  816. clear_cold_data(page);
  817. return 0;
  818. }
  819. static int f2fs_write_end(struct file *file,
  820. struct address_space *mapping,
  821. loff_t pos, unsigned len, unsigned copied,
  822. struct page *page, void *fsdata)
  823. {
  824. struct inode *inode = page->mapping->host;
  825. SetPageUptodate(page);
  826. set_page_dirty(page);
  827. if (pos + copied > i_size_read(inode)) {
  828. i_size_write(inode, pos + copied);
  829. mark_inode_dirty(inode);
  830. update_inode_page(inode);
  831. }
  832. f2fs_put_page(page, 1);
  833. return copied;
  834. }
  835. static int check_direct_IO(struct inode *inode, int rw,
  836. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  837. {
  838. unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
  839. int i;
  840. if (rw == READ)
  841. return 0;
  842. if (offset & blocksize_mask)
  843. return -EINVAL;
  844. for (i = 0; i < nr_segs; i++)
  845. if (iov[i].iov_len & blocksize_mask)
  846. return -EINVAL;
  847. return 0;
  848. }
  849. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  850. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  851. {
  852. struct file *file = iocb->ki_filp;
  853. struct inode *inode = file->f_mapping->host;
  854. /* Let buffer I/O handle the inline data case. */
  855. if (f2fs_has_inline_data(inode))
  856. return 0;
  857. if (check_direct_IO(inode, rw, iov, offset, nr_segs))
  858. return 0;
  859. return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  860. get_data_block);
  861. }
  862. static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
  863. unsigned int length)
  864. {
  865. struct inode *inode = page->mapping->host;
  866. if (PageDirty(page))
  867. inode_dec_dirty_dents(inode);
  868. ClearPagePrivate(page);
  869. }
  870. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  871. {
  872. ClearPagePrivate(page);
  873. return 1;
  874. }
  875. static int f2fs_set_data_page_dirty(struct page *page)
  876. {
  877. struct address_space *mapping = page->mapping;
  878. struct inode *inode = mapping->host;
  879. trace_f2fs_set_page_dirty(page, DATA);
  880. SetPageUptodate(page);
  881. mark_inode_dirty(inode);
  882. if (!PageDirty(page)) {
  883. __set_page_dirty_nobuffers(page);
  884. set_dirty_dir_page(inode, page);
  885. return 1;
  886. }
  887. return 0;
  888. }
  889. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  890. {
  891. return generic_block_bmap(mapping, block, get_data_block);
  892. }
  893. const struct address_space_operations f2fs_dblock_aops = {
  894. .readpage = f2fs_read_data_page,
  895. .readpages = f2fs_read_data_pages,
  896. .writepage = f2fs_write_data_page,
  897. .writepages = f2fs_write_data_pages,
  898. .write_begin = f2fs_write_begin,
  899. .write_end = f2fs_write_end,
  900. .set_page_dirty = f2fs_set_data_page_dirty,
  901. .invalidatepage = f2fs_invalidate_data_page,
  902. .releasepage = f2fs_release_data_page,
  903. .direct_IO = f2fs_direct_IO,
  904. .bmap = f2fs_bmap,
  905. };