hw.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../efuse.h"
  31. #include "../base.h"
  32. #include "../regd.h"
  33. #include "../cam.h"
  34. #include "../ps.h"
  35. #include "../pci.h"
  36. #include "reg.h"
  37. #include "def.h"
  38. #include "phy.h"
  39. #include "../rtl8192c/fw_common.h"
  40. #include "dm.h"
  41. #include "led.h"
  42. #include "hw.h"
  43. #define LLT_CONFIG 5
  44. static void _rtl92ce_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  45. u8 set_bits, u8 clear_bits)
  46. {
  47. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  48. struct rtl_priv *rtlpriv = rtl_priv(hw);
  49. rtlpci->reg_bcn_ctrl_val |= set_bits;
  50. rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
  51. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
  52. }
  53. static void _rtl92ce_stop_tx_beacon(struct ieee80211_hw *hw)
  54. {
  55. struct rtl_priv *rtlpriv = rtl_priv(hw);
  56. u8 tmp1byte;
  57. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  58. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
  59. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  60. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  61. tmp1byte &= ~(BIT(0));
  62. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  63. }
  64. static void _rtl92ce_resume_tx_beacon(struct ieee80211_hw *hw)
  65. {
  66. struct rtl_priv *rtlpriv = rtl_priv(hw);
  67. u8 tmp1byte;
  68. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  69. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
  70. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  71. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  72. tmp1byte |= BIT(0);
  73. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  74. }
  75. static void _rtl92ce_enable_bcn_sub_func(struct ieee80211_hw *hw)
  76. {
  77. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(1));
  78. }
  79. static void _rtl92ce_disable_bcn_sub_func(struct ieee80211_hw *hw)
  80. {
  81. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(1), 0);
  82. }
  83. void rtl92ce_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  84. {
  85. struct rtl_priv *rtlpriv = rtl_priv(hw);
  86. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  87. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  88. switch (variable) {
  89. case HW_VAR_RCR:
  90. *((u32 *) (val)) = rtlpci->receive_config;
  91. break;
  92. case HW_VAR_RF_STATE:
  93. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  94. break;
  95. case HW_VAR_FWLPS_RF_ON:{
  96. enum rf_pwrstate rfState;
  97. u32 val_rcr;
  98. rtlpriv->cfg->ops->get_hw_reg(hw,
  99. HW_VAR_RF_STATE,
  100. (u8 *) (&rfState));
  101. if (rfState == ERFOFF) {
  102. *((bool *) (val)) = true;
  103. } else {
  104. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  105. val_rcr &= 0x00070000;
  106. if (val_rcr)
  107. *((bool *) (val)) = false;
  108. else
  109. *((bool *) (val)) = true;
  110. }
  111. break;
  112. }
  113. case HW_VAR_FW_PSMODE_STATUS:
  114. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  115. break;
  116. case HW_VAR_CORRECT_TSF:{
  117. u64 tsf;
  118. u32 *ptsf_low = (u32 *)&tsf;
  119. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  120. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  121. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  122. *((u64 *) (val)) = tsf;
  123. break;
  124. }
  125. default:
  126. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  127. "switch case not processed\n");
  128. break;
  129. }
  130. }
  131. void rtl92ce_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  132. {
  133. struct rtl_priv *rtlpriv = rtl_priv(hw);
  134. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  135. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  136. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  137. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  138. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  139. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  140. u8 idx;
  141. switch (variable) {
  142. case HW_VAR_ETHER_ADDR:{
  143. for (idx = 0; idx < ETH_ALEN; idx++) {
  144. rtl_write_byte(rtlpriv, (REG_MACID + idx),
  145. val[idx]);
  146. }
  147. break;
  148. }
  149. case HW_VAR_BASIC_RATE:{
  150. u16 rate_cfg = ((u16 *) val)[0];
  151. u8 rate_index = 0;
  152. rate_cfg &= 0x15f;
  153. rate_cfg |= 0x01;
  154. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  155. rtl_write_byte(rtlpriv, REG_RRSR + 1,
  156. (rate_cfg >> 8) & 0xff);
  157. while (rate_cfg > 0x1) {
  158. rate_cfg = (rate_cfg >> 1);
  159. rate_index++;
  160. }
  161. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
  162. rate_index);
  163. break;
  164. }
  165. case HW_VAR_BSSID:{
  166. for (idx = 0; idx < ETH_ALEN; idx++) {
  167. rtl_write_byte(rtlpriv, (REG_BSSID + idx),
  168. val[idx]);
  169. }
  170. break;
  171. }
  172. case HW_VAR_SIFS:{
  173. rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
  174. rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
  175. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  176. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  177. if (!mac->ht_enable)
  178. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  179. 0x0e0e);
  180. else
  181. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  182. *((u16 *) val));
  183. break;
  184. }
  185. case HW_VAR_SLOT_TIME:{
  186. u8 e_aci;
  187. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  188. "HW_VAR_SLOT_TIME %x\n", val[0]);
  189. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  190. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  191. rtlpriv->cfg->ops->set_hw_reg(hw,
  192. HW_VAR_AC_PARAM,
  193. &e_aci);
  194. }
  195. break;
  196. }
  197. case HW_VAR_ACK_PREAMBLE:{
  198. u8 reg_tmp;
  199. u8 short_preamble = (bool)*val;
  200. reg_tmp = (mac->cur_40_prime_sc) << 5;
  201. if (short_preamble)
  202. reg_tmp |= 0x80;
  203. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
  204. break;
  205. }
  206. case HW_VAR_AMPDU_MIN_SPACE:{
  207. u8 min_spacing_to_set;
  208. u8 sec_min_space;
  209. min_spacing_to_set = *val;
  210. if (min_spacing_to_set <= 7) {
  211. sec_min_space = 0;
  212. if (min_spacing_to_set < sec_min_space)
  213. min_spacing_to_set = sec_min_space;
  214. mac->min_space_cfg = ((mac->min_space_cfg &
  215. 0xf8) |
  216. min_spacing_to_set);
  217. *val = min_spacing_to_set;
  218. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  219. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  220. mac->min_space_cfg);
  221. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  222. mac->min_space_cfg);
  223. }
  224. break;
  225. }
  226. case HW_VAR_SHORTGI_DENSITY:{
  227. u8 density_to_set;
  228. density_to_set = *val;
  229. mac->min_space_cfg |= (density_to_set << 3);
  230. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  231. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  232. mac->min_space_cfg);
  233. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  234. mac->min_space_cfg);
  235. break;
  236. }
  237. case HW_VAR_AMPDU_FACTOR:{
  238. u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
  239. u8 regtoset_bt[4] = {0x31, 0x74, 0x42, 0x97};
  240. u8 factor_toset;
  241. u8 *p_regtoset = NULL;
  242. u8 index = 0;
  243. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  244. (rtlpcipriv->bt_coexist.bt_coexist_type ==
  245. BT_CSR_BC4))
  246. p_regtoset = regtoset_bt;
  247. else
  248. p_regtoset = regtoset_normal;
  249. factor_toset = *(val);
  250. if (factor_toset <= 3) {
  251. factor_toset = (1 << (factor_toset + 2));
  252. if (factor_toset > 0xf)
  253. factor_toset = 0xf;
  254. for (index = 0; index < 4; index++) {
  255. if ((p_regtoset[index] & 0xf0) >
  256. (factor_toset << 4))
  257. p_regtoset[index] =
  258. (p_regtoset[index] & 0x0f) |
  259. (factor_toset << 4);
  260. if ((p_regtoset[index] & 0x0f) >
  261. factor_toset)
  262. p_regtoset[index] =
  263. (p_regtoset[index] & 0xf0) |
  264. (factor_toset);
  265. rtl_write_byte(rtlpriv,
  266. (REG_AGGLEN_LMT + index),
  267. p_regtoset[index]);
  268. }
  269. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  270. "Set HW_VAR_AMPDU_FACTOR: %#x\n",
  271. factor_toset);
  272. }
  273. break;
  274. }
  275. case HW_VAR_AC_PARAM:{
  276. u8 e_aci = *(val);
  277. rtl92c_dm_init_edca_turbo(hw);
  278. if (rtlpci->acm_method != EACMWAY2_SW)
  279. rtlpriv->cfg->ops->set_hw_reg(hw,
  280. HW_VAR_ACM_CTRL,
  281. (&e_aci));
  282. break;
  283. }
  284. case HW_VAR_ACM_CTRL:{
  285. u8 e_aci = *(val);
  286. union aci_aifsn *p_aci_aifsn =
  287. (union aci_aifsn *)(&(mac->ac[0].aifs));
  288. u8 acm = p_aci_aifsn->f.acm;
  289. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  290. acm_ctrl =
  291. acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
  292. if (acm) {
  293. switch (e_aci) {
  294. case AC0_BE:
  295. acm_ctrl |= AcmHw_BeqEn;
  296. break;
  297. case AC2_VI:
  298. acm_ctrl |= AcmHw_ViqEn;
  299. break;
  300. case AC3_VO:
  301. acm_ctrl |= AcmHw_VoqEn;
  302. break;
  303. default:
  304. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  305. "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
  306. acm);
  307. break;
  308. }
  309. } else {
  310. switch (e_aci) {
  311. case AC0_BE:
  312. acm_ctrl &= (~AcmHw_BeqEn);
  313. break;
  314. case AC2_VI:
  315. acm_ctrl &= (~AcmHw_ViqEn);
  316. break;
  317. case AC3_VO:
  318. acm_ctrl &= (~AcmHw_BeqEn);
  319. break;
  320. default:
  321. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  322. "switch case not processed\n");
  323. break;
  324. }
  325. }
  326. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  327. "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
  328. acm_ctrl);
  329. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  330. break;
  331. }
  332. case HW_VAR_RCR:{
  333. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
  334. rtlpci->receive_config = ((u32 *) (val))[0];
  335. break;
  336. }
  337. case HW_VAR_RETRY_LIMIT:{
  338. u8 retry_limit = val[0];
  339. rtl_write_word(rtlpriv, REG_RL,
  340. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  341. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  342. break;
  343. }
  344. case HW_VAR_DUAL_TSF_RST:
  345. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  346. break;
  347. case HW_VAR_EFUSE_BYTES:
  348. rtlefuse->efuse_usedbytes = *((u16 *) val);
  349. break;
  350. case HW_VAR_EFUSE_USAGE:
  351. rtlefuse->efuse_usedpercentage = *val;
  352. break;
  353. case HW_VAR_IO_CMD:
  354. rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val));
  355. break;
  356. case HW_VAR_WPA_CONFIG:
  357. rtl_write_byte(rtlpriv, REG_SECCFG, *val);
  358. break;
  359. case HW_VAR_SET_RPWM:{
  360. u8 rpwm_val;
  361. rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
  362. udelay(1);
  363. if (rpwm_val & BIT(7)) {
  364. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val);
  365. } else {
  366. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
  367. *val | BIT(7));
  368. }
  369. break;
  370. }
  371. case HW_VAR_H2C_FW_PWRMODE:{
  372. u8 psmode = *val;
  373. if ((psmode != FW_PS_ACTIVE_MODE) &&
  374. (!IS_92C_SERIAL(rtlhal->version))) {
  375. rtl92c_dm_rf_saving(hw, true);
  376. }
  377. rtl92c_set_fw_pwrmode_cmd(hw, *val);
  378. break;
  379. }
  380. case HW_VAR_FW_PSMODE_STATUS:
  381. ppsc->fw_current_inpsmode = *((bool *) val);
  382. break;
  383. case HW_VAR_H2C_FW_JOINBSSRPT:{
  384. u8 mstatus = *val;
  385. u8 tmp_regcr, tmp_reg422;
  386. bool recover = false;
  387. if (mstatus == RT_MEDIA_CONNECT) {
  388. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID,
  389. NULL);
  390. tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
  391. rtl_write_byte(rtlpriv, REG_CR + 1,
  392. (tmp_regcr | BIT(0)));
  393. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3));
  394. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0);
  395. tmp_reg422 =
  396. rtl_read_byte(rtlpriv,
  397. REG_FWHW_TXQ_CTRL + 2);
  398. if (tmp_reg422 & BIT(6))
  399. recover = true;
  400. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  401. tmp_reg422 & (~BIT(6)));
  402. rtl92c_set_fw_rsvdpagepkt(hw, 0);
  403. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0);
  404. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4));
  405. if (recover) {
  406. rtl_write_byte(rtlpriv,
  407. REG_FWHW_TXQ_CTRL + 2,
  408. tmp_reg422);
  409. }
  410. rtl_write_byte(rtlpriv, REG_CR + 1,
  411. (tmp_regcr & ~(BIT(0))));
  412. }
  413. rtl92c_set_fw_joinbss_report_cmd(hw, *val);
  414. break;
  415. }
  416. case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
  417. rtl92c_set_p2p_ps_offload_cmd(hw, *val);
  418. break;
  419. case HW_VAR_AID:{
  420. u16 u2btmp;
  421. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  422. u2btmp &= 0xC000;
  423. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
  424. mac->assoc_id));
  425. break;
  426. }
  427. case HW_VAR_CORRECT_TSF:{
  428. u8 btype_ibss = val[0];
  429. if (btype_ibss)
  430. _rtl92ce_stop_tx_beacon(hw);
  431. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3));
  432. rtl_write_dword(rtlpriv, REG_TSFTR,
  433. (u32) (mac->tsf & 0xffffffff));
  434. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  435. (u32) ((mac->tsf >> 32) & 0xffffffff));
  436. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0);
  437. if (btype_ibss)
  438. _rtl92ce_resume_tx_beacon(hw);
  439. break;
  440. }
  441. case HW_VAR_FW_LPS_ACTION: {
  442. bool enter_fwlps = *((bool *)val);
  443. u8 rpwm_val, fw_pwrmode;
  444. bool fw_current_inps;
  445. if (enter_fwlps) {
  446. rpwm_val = 0x02; /* RF off */
  447. fw_current_inps = true;
  448. rtlpriv->cfg->ops->set_hw_reg(hw,
  449. HW_VAR_FW_PSMODE_STATUS,
  450. (u8 *)(&fw_current_inps));
  451. rtlpriv->cfg->ops->set_hw_reg(hw,
  452. HW_VAR_H2C_FW_PWRMODE,
  453. &ppsc->fwctrl_psmode);
  454. rtlpriv->cfg->ops->set_hw_reg(hw,
  455. HW_VAR_SET_RPWM,
  456. &rpwm_val);
  457. } else {
  458. rpwm_val = 0x0C; /* RF on */
  459. fw_pwrmode = FW_PS_ACTIVE_MODE;
  460. fw_current_inps = false;
  461. rtlpriv->cfg->ops->set_hw_reg(hw,
  462. HW_VAR_SET_RPWM,
  463. &rpwm_val);
  464. rtlpriv->cfg->ops->set_hw_reg(hw,
  465. HW_VAR_H2C_FW_PWRMODE,
  466. &fw_pwrmode);
  467. rtlpriv->cfg->ops->set_hw_reg(hw,
  468. HW_VAR_FW_PSMODE_STATUS,
  469. (u8 *)(&fw_current_inps));
  470. }
  471. break; }
  472. case HW_VAR_KEEP_ALIVE:
  473. break;
  474. default:
  475. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  476. "switch case %d not processed\n", variable);
  477. break;
  478. }
  479. }
  480. static bool _rtl92ce_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
  481. {
  482. struct rtl_priv *rtlpriv = rtl_priv(hw);
  483. bool status = true;
  484. long count = 0;
  485. u32 value = _LLT_INIT_ADDR(address) |
  486. _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
  487. rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
  488. do {
  489. value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
  490. if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
  491. break;
  492. if (count > POLLING_LLT_THRESHOLD) {
  493. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  494. "Failed to polling write LLT done at address %d!\n",
  495. address);
  496. status = false;
  497. break;
  498. }
  499. } while (++count);
  500. return status;
  501. }
  502. static bool _rtl92ce_llt_table_init(struct ieee80211_hw *hw)
  503. {
  504. struct rtl_priv *rtlpriv = rtl_priv(hw);
  505. unsigned short i;
  506. u8 txpktbuf_bndy;
  507. u8 maxPage;
  508. bool status;
  509. #if LLT_CONFIG == 1
  510. maxPage = 255;
  511. txpktbuf_bndy = 252;
  512. #elif LLT_CONFIG == 2
  513. maxPage = 127;
  514. txpktbuf_bndy = 124;
  515. #elif LLT_CONFIG == 3
  516. maxPage = 255;
  517. txpktbuf_bndy = 174;
  518. #elif LLT_CONFIG == 4
  519. maxPage = 255;
  520. txpktbuf_bndy = 246;
  521. #elif LLT_CONFIG == 5
  522. maxPage = 255;
  523. txpktbuf_bndy = 246;
  524. #endif
  525. #if LLT_CONFIG == 1
  526. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x1c);
  527. rtl_write_dword(rtlpriv, REG_RQPN, 0x80a71c1c);
  528. #elif LLT_CONFIG == 2
  529. rtl_write_dword(rtlpriv, REG_RQPN, 0x845B1010);
  530. #elif LLT_CONFIG == 3
  531. rtl_write_dword(rtlpriv, REG_RQPN, 0x84838484);
  532. #elif LLT_CONFIG == 4
  533. rtl_write_dword(rtlpriv, REG_RQPN, 0x80bd1c1c);
  534. #elif LLT_CONFIG == 5
  535. rtl_write_word(rtlpriv, REG_RQPN_NPQ, 0x0000);
  536. rtl_write_dword(rtlpriv, REG_RQPN, 0x80b01c29);
  537. #endif
  538. rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x27FF0000 | txpktbuf_bndy));
  539. rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
  540. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  541. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  542. rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
  543. rtl_write_byte(rtlpriv, REG_PBP, 0x11);
  544. rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
  545. for (i = 0; i < (txpktbuf_bndy - 1); i++) {
  546. status = _rtl92ce_llt_write(hw, i, i + 1);
  547. if (true != status)
  548. return status;
  549. }
  550. status = _rtl92ce_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
  551. if (true != status)
  552. return status;
  553. for (i = txpktbuf_bndy; i < maxPage; i++) {
  554. status = _rtl92ce_llt_write(hw, i, (i + 1));
  555. if (true != status)
  556. return status;
  557. }
  558. status = _rtl92ce_llt_write(hw, maxPage, txpktbuf_bndy);
  559. if (true != status)
  560. return status;
  561. return true;
  562. }
  563. static void _rtl92ce_gen_refresh_led_state(struct ieee80211_hw *hw)
  564. {
  565. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  566. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  567. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  568. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  569. if (rtlpci->up_first_time)
  570. return;
  571. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  572. rtl92ce_sw_led_on(hw, pLed0);
  573. else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
  574. rtl92ce_sw_led_on(hw, pLed0);
  575. else
  576. rtl92ce_sw_led_off(hw, pLed0);
  577. }
  578. static bool _rtl92ce_init_mac(struct ieee80211_hw *hw)
  579. {
  580. struct rtl_priv *rtlpriv = rtl_priv(hw);
  581. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  582. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  583. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  584. unsigned char bytetmp;
  585. unsigned short wordtmp;
  586. u16 retry;
  587. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
  588. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  589. u32 value32;
  590. value32 = rtl_read_dword(rtlpriv, REG_APS_FSMCO);
  591. value32 |= (SOP_ABG | SOP_AMB | XOP_BTCK);
  592. rtl_write_dword(rtlpriv, REG_APS_FSMCO, value32);
  593. }
  594. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  595. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
  596. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  597. u32 u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL);
  598. u4b_tmp &= (~0x00024800);
  599. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp);
  600. }
  601. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
  602. udelay(2);
  603. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
  604. udelay(2);
  605. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  606. udelay(2);
  607. retry = 0;
  608. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n",
  609. rtl_read_dword(rtlpriv, 0xEC), bytetmp);
  610. while ((bytetmp & BIT(0)) && retry < 1000) {
  611. retry++;
  612. udelay(50);
  613. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  614. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n",
  615. rtl_read_dword(rtlpriv, 0xEC), bytetmp);
  616. udelay(50);
  617. }
  618. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
  619. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
  620. udelay(2);
  621. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  622. bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL+2) & 0xfd;
  623. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL+2, bytetmp);
  624. }
  625. rtl_write_word(rtlpriv, REG_CR, 0x2ff);
  626. if (!_rtl92ce_llt_table_init(hw))
  627. return false;
  628. rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
  629. rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
  630. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x27ff);
  631. wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
  632. wordtmp &= 0xf;
  633. wordtmp |= 0xF771;
  634. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
  635. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
  636. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  637. rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
  638. rtl_write_byte(rtlpriv, 0x4d0, 0x0);
  639. rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
  640. ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
  641. DMA_BIT_MASK(32));
  642. rtl_write_dword(rtlpriv, REG_MGQ_DESA,
  643. (u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
  644. DMA_BIT_MASK(32));
  645. rtl_write_dword(rtlpriv, REG_VOQ_DESA,
  646. (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
  647. rtl_write_dword(rtlpriv, REG_VIQ_DESA,
  648. (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
  649. rtl_write_dword(rtlpriv, REG_BEQ_DESA,
  650. (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
  651. rtl_write_dword(rtlpriv, REG_BKQ_DESA,
  652. (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
  653. rtl_write_dword(rtlpriv, REG_HQ_DESA,
  654. (u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
  655. DMA_BIT_MASK(32));
  656. rtl_write_dword(rtlpriv, REG_RX_DESA,
  657. (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
  658. DMA_BIT_MASK(32));
  659. if (IS_92C_SERIAL(rtlhal->version))
  660. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x77);
  661. else
  662. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x22);
  663. rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
  664. bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
  665. rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
  666. do {
  667. retry++;
  668. bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
  669. } while ((retry < 200) && (bytetmp & BIT(7)));
  670. _rtl92ce_gen_refresh_led_state(hw);
  671. rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
  672. return true;
  673. }
  674. static void _rtl92ce_hw_configure(struct ieee80211_hw *hw)
  675. {
  676. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  677. struct rtl_priv *rtlpriv = rtl_priv(hw);
  678. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  679. u8 reg_bw_opmode;
  680. u32 reg_prsr;
  681. reg_bw_opmode = BW_OPMODE_20MHZ;
  682. reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  683. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
  684. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  685. rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
  686. rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
  687. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
  688. rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
  689. rtl_write_word(rtlpriv, REG_RL, 0x0707);
  690. rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
  691. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  692. rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
  693. rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
  694. rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
  695. rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
  696. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  697. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4))
  698. rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x97427431);
  699. else
  700. rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
  701. rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
  702. rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
  703. rtlpci->reg_bcn_ctrl_val = 0x1f;
  704. rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
  705. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  706. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  707. rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
  708. rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
  709. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  710. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4)) {
  711. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  712. rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x0402);
  713. } else {
  714. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  715. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  716. }
  717. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  718. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4))
  719. rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666);
  720. else
  721. rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x086666);
  722. rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
  723. rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
  724. rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
  725. rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
  726. rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
  727. rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
  728. rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
  729. }
  730. static void _rtl92ce_enable_aspm_back_door(struct ieee80211_hw *hw)
  731. {
  732. struct rtl_priv *rtlpriv = rtl_priv(hw);
  733. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  734. rtl_write_byte(rtlpriv, 0x34b, 0x93);
  735. rtl_write_word(rtlpriv, 0x350, 0x870c);
  736. rtl_write_byte(rtlpriv, 0x352, 0x1);
  737. if (ppsc->support_backdoor)
  738. rtl_write_byte(rtlpriv, 0x349, 0x1b);
  739. else
  740. rtl_write_byte(rtlpriv, 0x349, 0x03);
  741. rtl_write_word(rtlpriv, 0x350, 0x2718);
  742. rtl_write_byte(rtlpriv, 0x352, 0x1);
  743. }
  744. void rtl92ce_enable_hw_security_config(struct ieee80211_hw *hw)
  745. {
  746. struct rtl_priv *rtlpriv = rtl_priv(hw);
  747. u8 sec_reg_value;
  748. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  749. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  750. rtlpriv->sec.pairwise_enc_algorithm,
  751. rtlpriv->sec.group_enc_algorithm);
  752. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  753. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  754. "not open hw encryption\n");
  755. return;
  756. }
  757. sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable;
  758. if (rtlpriv->sec.use_defaultkey) {
  759. sec_reg_value |= SCR_TxUseDK;
  760. sec_reg_value |= SCR_RxUseDK;
  761. }
  762. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  763. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  764. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  765. "The SECR-value %x\n", sec_reg_value);
  766. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  767. }
  768. int rtl92ce_hw_init(struct ieee80211_hw *hw)
  769. {
  770. struct rtl_priv *rtlpriv = rtl_priv(hw);
  771. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  772. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  773. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  774. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  775. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  776. bool rtstatus = true;
  777. bool is92c;
  778. int err;
  779. u8 tmp_u1b;
  780. unsigned long flags;
  781. rtlpci->being_init_adapter = true;
  782. /* Since this function can take a very long time (up to 350 ms)
  783. * and can be called with irqs disabled, reenable the irqs
  784. * to let the other devices continue being serviced.
  785. *
  786. * It is safe doing so since our own interrupts will only be enabled
  787. * in a subsequent step.
  788. */
  789. local_save_flags(flags);
  790. local_irq_enable();
  791. rtlpriv->intf_ops->disable_aspm(hw);
  792. rtstatus = _rtl92ce_init_mac(hw);
  793. if (!rtstatus) {
  794. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
  795. err = 1;
  796. goto exit;
  797. }
  798. err = rtl92c_download_fw(hw);
  799. if (err) {
  800. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  801. "Failed to download FW. Init HW without FW now..\n");
  802. err = 1;
  803. goto exit;
  804. }
  805. rtlhal->last_hmeboxnum = 0;
  806. rtl92c_phy_mac_config(hw);
  807. /* because last function modify RCR, so we update
  808. * rcr var here, or TP will unstable for receive_config
  809. * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
  810. * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
  811. rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
  812. rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
  813. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  814. rtl92c_phy_bb_config(hw);
  815. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  816. rtl92c_phy_rf_config(hw);
  817. if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
  818. !IS_92C_SERIAL(rtlhal->version)) {
  819. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
  820. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
  821. } else if (IS_81xxC_VENDOR_UMC_B_CUT(rtlhal->version)) {
  822. rtl_set_rfreg(hw, RF90_PATH_A, 0x0C, MASKDWORD, 0x894AE);
  823. rtl_set_rfreg(hw, RF90_PATH_A, 0x0A, MASKDWORD, 0x1AF31);
  824. rtl_set_rfreg(hw, RF90_PATH_A, RF_IPA, MASKDWORD, 0x8F425);
  825. rtl_set_rfreg(hw, RF90_PATH_A, RF_SYN_G2, MASKDWORD, 0x4F200);
  826. rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK1, MASKDWORD, 0x44053);
  827. rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK2, MASKDWORD, 0x80201);
  828. }
  829. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  830. RF_CHNLBW, RFREG_OFFSET_MASK);
  831. rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
  832. RF_CHNLBW, RFREG_OFFSET_MASK);
  833. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  834. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  835. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);
  836. _rtl92ce_hw_configure(hw);
  837. rtl_cam_reset_all_entry(hw);
  838. rtl92ce_enable_hw_security_config(hw);
  839. ppsc->rfpwr_state = ERFON;
  840. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  841. _rtl92ce_enable_aspm_back_door(hw);
  842. rtlpriv->intf_ops->enable_aspm(hw);
  843. rtl8192ce_bt_hw_init(hw);
  844. if (ppsc->rfpwr_state == ERFON) {
  845. rtl92c_phy_set_rfpath_switch(hw, 1);
  846. if (rtlphy->iqk_initialized) {
  847. rtl92c_phy_iq_calibrate(hw, true);
  848. } else {
  849. rtl92c_phy_iq_calibrate(hw, false);
  850. rtlphy->iqk_initialized = true;
  851. }
  852. rtl92c_dm_check_txpower_tracking(hw);
  853. rtl92c_phy_lc_calibrate(hw);
  854. }
  855. is92c = IS_92C_SERIAL(rtlhal->version);
  856. tmp_u1b = efuse_read_1byte(hw, 0x1FA);
  857. if (!(tmp_u1b & BIT(0))) {
  858. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
  859. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path A\n");
  860. }
  861. if (!(tmp_u1b & BIT(1)) && is92c) {
  862. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0F, 0x05);
  863. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path B\n");
  864. }
  865. if (!(tmp_u1b & BIT(4))) {
  866. tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
  867. tmp_u1b &= 0x0F;
  868. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
  869. udelay(10);
  870. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
  871. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "under 1.5V\n");
  872. }
  873. rtl92c_dm_init(hw);
  874. exit:
  875. local_irq_restore(flags);
  876. rtlpci->being_init_adapter = false;
  877. return err;
  878. }
  879. static enum version_8192c _rtl92ce_read_chip_version(struct ieee80211_hw *hw)
  880. {
  881. struct rtl_priv *rtlpriv = rtl_priv(hw);
  882. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  883. enum version_8192c version = VERSION_UNKNOWN;
  884. u32 value32;
  885. const char *versionid;
  886. value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
  887. if (value32 & TRP_VAUX_EN) {
  888. version = (value32 & TYPE_ID) ? VERSION_A_CHIP_92C :
  889. VERSION_A_CHIP_88C;
  890. } else {
  891. version = (enum version_8192c) (CHIP_VER_B |
  892. ((value32 & TYPE_ID) ? CHIP_92C_BITMASK : 0) |
  893. ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0));
  894. if ((!IS_CHIP_VENDOR_UMC(version)) && (value32 &
  895. CHIP_VER_RTL_MASK)) {
  896. version = (enum version_8192c)(version |
  897. ((((value32 & CHIP_VER_RTL_MASK) == BIT(12))
  898. ? CHIP_VENDOR_UMC_B_CUT : CHIP_UNKNOWN) |
  899. CHIP_VENDOR_UMC));
  900. }
  901. if (IS_92C_SERIAL(version)) {
  902. value32 = rtl_read_dword(rtlpriv, REG_HPON_FSM);
  903. version = (enum version_8192c)(version |
  904. ((CHIP_BONDING_IDENTIFIER(value32)
  905. == CHIP_BONDING_92C_1T2R) ?
  906. RF_TYPE_1T2R : 0));
  907. }
  908. }
  909. switch (version) {
  910. case VERSION_B_CHIP_92C:
  911. versionid = "B_CHIP_92C";
  912. break;
  913. case VERSION_B_CHIP_88C:
  914. versionid = "B_CHIP_88C";
  915. break;
  916. case VERSION_A_CHIP_92C:
  917. versionid = "A_CHIP_92C";
  918. break;
  919. case VERSION_A_CHIP_88C:
  920. versionid = "A_CHIP_88C";
  921. break;
  922. case VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT:
  923. versionid = "A_CUT_92C_1T2R";
  924. break;
  925. case VERSION_NORMAL_UMC_CHIP_92C_A_CUT:
  926. versionid = "A_CUT_92C";
  927. break;
  928. case VERSION_NORMAL_UMC_CHIP_88C_A_CUT:
  929. versionid = "A_CUT_88C";
  930. break;
  931. case VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT:
  932. versionid = "B_CUT_92C_1T2R";
  933. break;
  934. case VERSION_NORMAL_UMC_CHIP_92C_B_CUT:
  935. versionid = "B_CUT_92C";
  936. break;
  937. case VERSION_NORMAL_UMC_CHIP_88C_B_CUT:
  938. versionid = "B_CUT_88C";
  939. break;
  940. default:
  941. versionid = "Unknown. Bug?";
  942. break;
  943. }
  944. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  945. "Chip Version ID: %s\n", versionid);
  946. switch (version & 0x3) {
  947. case CHIP_88C:
  948. rtlphy->rf_type = RF_1T1R;
  949. break;
  950. case CHIP_92C:
  951. rtlphy->rf_type = RF_2T2R;
  952. break;
  953. case CHIP_92C_1T2R:
  954. rtlphy->rf_type = RF_1T2R;
  955. break;
  956. default:
  957. rtlphy->rf_type = RF_1T1R;
  958. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  959. "ERROR RF_Type is set!!\n");
  960. break;
  961. }
  962. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n",
  963. rtlphy->rf_type == RF_2T2R ? "RF_2T2R" : "RF_1T1R");
  964. return version;
  965. }
  966. static int _rtl92ce_set_media_status(struct ieee80211_hw *hw,
  967. enum nl80211_iftype type)
  968. {
  969. struct rtl_priv *rtlpriv = rtl_priv(hw);
  970. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  971. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  972. bt_msr &= 0xfc;
  973. if (type == NL80211_IFTYPE_UNSPECIFIED ||
  974. type == NL80211_IFTYPE_STATION) {
  975. _rtl92ce_stop_tx_beacon(hw);
  976. _rtl92ce_enable_bcn_sub_func(hw);
  977. } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP ||
  978. type == NL80211_IFTYPE_MESH_POINT) {
  979. _rtl92ce_resume_tx_beacon(hw);
  980. _rtl92ce_disable_bcn_sub_func(hw);
  981. } else {
  982. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  983. "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
  984. type);
  985. }
  986. switch (type) {
  987. case NL80211_IFTYPE_UNSPECIFIED:
  988. bt_msr |= MSR_NOLINK;
  989. ledaction = LED_CTL_LINK;
  990. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  991. "Set Network type to NO LINK!\n");
  992. break;
  993. case NL80211_IFTYPE_ADHOC:
  994. bt_msr |= MSR_ADHOC;
  995. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  996. "Set Network type to Ad Hoc!\n");
  997. break;
  998. case NL80211_IFTYPE_STATION:
  999. bt_msr |= MSR_INFRA;
  1000. ledaction = LED_CTL_LINK;
  1001. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1002. "Set Network type to STA!\n");
  1003. break;
  1004. case NL80211_IFTYPE_AP:
  1005. bt_msr |= MSR_AP;
  1006. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1007. "Set Network type to AP!\n");
  1008. break;
  1009. case NL80211_IFTYPE_MESH_POINT:
  1010. bt_msr |= MSR_ADHOC;
  1011. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1012. "Set Network type to Mesh Point!\n");
  1013. break;
  1014. default:
  1015. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1016. "Network type %d not supported!\n", type);
  1017. return 1;
  1018. break;
  1019. }
  1020. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  1021. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1022. if ((bt_msr & 0xfc) == MSR_AP)
  1023. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1024. else
  1025. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1026. return 0;
  1027. }
  1028. void rtl92ce_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1029. {
  1030. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1031. u32 reg_rcr;
  1032. if (rtlpriv->psc.rfpwr_state != ERFON)
  1033. return;
  1034. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  1035. if (check_bssid) {
  1036. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1037. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1038. (u8 *) (&reg_rcr));
  1039. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1040. } else if (!check_bssid) {
  1041. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1042. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1043. rtlpriv->cfg->ops->set_hw_reg(hw,
  1044. HW_VAR_RCR, (u8 *) (&reg_rcr));
  1045. }
  1046. }
  1047. int rtl92ce_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1048. {
  1049. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1050. if (_rtl92ce_set_media_status(hw, type))
  1051. return -EOPNOTSUPP;
  1052. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  1053. if (type != NL80211_IFTYPE_AP &&
  1054. type != NL80211_IFTYPE_MESH_POINT)
  1055. rtl92ce_set_check_bssid(hw, true);
  1056. } else {
  1057. rtl92ce_set_check_bssid(hw, false);
  1058. }
  1059. return 0;
  1060. }
  1061. /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
  1062. void rtl92ce_set_qos(struct ieee80211_hw *hw, int aci)
  1063. {
  1064. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1065. rtl92c_dm_init_edca_turbo(hw);
  1066. switch (aci) {
  1067. case AC1_BK:
  1068. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
  1069. break;
  1070. case AC0_BE:
  1071. /* rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, u4b_ac_param); */
  1072. break;
  1073. case AC2_VI:
  1074. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
  1075. break;
  1076. case AC3_VO:
  1077. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
  1078. break;
  1079. default:
  1080. RT_ASSERT(false, "invalid aci: %d !\n", aci);
  1081. break;
  1082. }
  1083. }
  1084. void rtl92ce_enable_interrupt(struct ieee80211_hw *hw)
  1085. {
  1086. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1087. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1088. rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
  1089. rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
  1090. }
  1091. void rtl92ce_disable_interrupt(struct ieee80211_hw *hw)
  1092. {
  1093. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1094. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1095. rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
  1096. rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
  1097. synchronize_irq(rtlpci->pdev->irq);
  1098. }
  1099. static void _rtl92ce_poweroff_adapter(struct ieee80211_hw *hw)
  1100. {
  1101. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1102. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1103. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1104. u8 u1b_tmp;
  1105. u32 u4b_tmp;
  1106. rtlpriv->intf_ops->enable_aspm(hw);
  1107. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1108. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
  1109. rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
  1110. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  1111. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  1112. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
  1113. if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7))
  1114. rtl92c_firmware_selfreset(hw);
  1115. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
  1116. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
  1117. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
  1118. u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
  1119. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  1120. ((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) ||
  1121. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8))) {
  1122. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00F30000 |
  1123. (u1b_tmp << 8));
  1124. } else {
  1125. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00FF0000 |
  1126. (u1b_tmp << 8));
  1127. }
  1128. rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
  1129. rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
  1130. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
  1131. if (!IS_81xxC_VENDOR_UMC_B_CUT(rtlhal->version))
  1132. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
  1133. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  1134. u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL);
  1135. u4b_tmp |= 0x03824800;
  1136. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp);
  1137. } else {
  1138. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
  1139. }
  1140. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
  1141. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
  1142. }
  1143. void rtl92ce_card_disable(struct ieee80211_hw *hw)
  1144. {
  1145. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1146. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1147. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1148. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1149. enum nl80211_iftype opmode;
  1150. mac->link_state = MAC80211_NOLINK;
  1151. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1152. _rtl92ce_set_media_status(hw, opmode);
  1153. if (rtlpci->driver_is_goingto_unload ||
  1154. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1155. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1156. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1157. _rtl92ce_poweroff_adapter(hw);
  1158. /* after power off we should do iqk again */
  1159. rtlpriv->phy.iqk_initialized = false;
  1160. }
  1161. void rtl92ce_interrupt_recognized(struct ieee80211_hw *hw,
  1162. u32 *p_inta, u32 *p_intb)
  1163. {
  1164. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1165. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1166. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1167. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1168. /*
  1169. * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
  1170. * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
  1171. */
  1172. }
  1173. void rtl92ce_set_beacon_related_registers(struct ieee80211_hw *hw)
  1174. {
  1175. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1176. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1177. u16 bcn_interval, atim_window;
  1178. bcn_interval = mac->beacon_interval;
  1179. atim_window = 2; /*FIX MERGE */
  1180. rtl92ce_disable_interrupt(hw);
  1181. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1182. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1183. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
  1184. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
  1185. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
  1186. rtl_write_byte(rtlpriv, 0x606, 0x30);
  1187. rtl92ce_enable_interrupt(hw);
  1188. }
  1189. void rtl92ce_set_beacon_interval(struct ieee80211_hw *hw)
  1190. {
  1191. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1192. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1193. u16 bcn_interval = mac->beacon_interval;
  1194. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
  1195. "beacon_interval:%d\n", bcn_interval);
  1196. rtl92ce_disable_interrupt(hw);
  1197. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1198. rtl92ce_enable_interrupt(hw);
  1199. }
  1200. void rtl92ce_update_interrupt_mask(struct ieee80211_hw *hw,
  1201. u32 add_msr, u32 rm_msr)
  1202. {
  1203. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1204. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1205. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
  1206. add_msr, rm_msr);
  1207. if (add_msr)
  1208. rtlpci->irq_mask[0] |= add_msr;
  1209. if (rm_msr)
  1210. rtlpci->irq_mask[0] &= (~rm_msr);
  1211. rtl92ce_disable_interrupt(hw);
  1212. rtl92ce_enable_interrupt(hw);
  1213. }
  1214. static void _rtl92ce_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  1215. bool autoload_fail,
  1216. u8 *hwinfo)
  1217. {
  1218. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1219. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1220. u8 rf_path, index, tempval;
  1221. u16 i;
  1222. for (rf_path = 0; rf_path < 2; rf_path++) {
  1223. for (i = 0; i < 3; i++) {
  1224. if (!autoload_fail) {
  1225. rtlefuse->
  1226. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1227. hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
  1228. rtlefuse->
  1229. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1230. hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 +
  1231. i];
  1232. } else {
  1233. rtlefuse->
  1234. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1235. EEPROM_DEFAULT_TXPOWERLEVEL;
  1236. rtlefuse->
  1237. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1238. EEPROM_DEFAULT_TXPOWERLEVEL;
  1239. }
  1240. }
  1241. }
  1242. for (i = 0; i < 3; i++) {
  1243. if (!autoload_fail)
  1244. tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
  1245. else
  1246. tempval = EEPROM_DEFAULT_HT40_2SDIFF;
  1247. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_A][i] =
  1248. (tempval & 0xf);
  1249. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_B][i] =
  1250. ((tempval & 0xf0) >> 4);
  1251. }
  1252. for (rf_path = 0; rf_path < 2; rf_path++)
  1253. for (i = 0; i < 3; i++)
  1254. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1255. "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
  1256. rf_path, i,
  1257. rtlefuse->
  1258. eeprom_chnlarea_txpwr_cck[rf_path][i]);
  1259. for (rf_path = 0; rf_path < 2; rf_path++)
  1260. for (i = 0; i < 3; i++)
  1261. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1262. "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  1263. rf_path, i,
  1264. rtlefuse->
  1265. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]);
  1266. for (rf_path = 0; rf_path < 2; rf_path++)
  1267. for (i = 0; i < 3; i++)
  1268. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1269. "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  1270. rf_path, i,
  1271. rtlefuse->
  1272. eprom_chnl_txpwr_ht40_2sdf[rf_path][i]);
  1273. for (rf_path = 0; rf_path < 2; rf_path++) {
  1274. for (i = 0; i < 14; i++) {
  1275. index = _rtl92c_get_chnl_group((u8) i);
  1276. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1277. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index];
  1278. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1279. rtlefuse->
  1280. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index];
  1281. if ((rtlefuse->
  1282. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] -
  1283. rtlefuse->
  1284. eprom_chnl_txpwr_ht40_2sdf[rf_path][index])
  1285. > 0) {
  1286. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  1287. rtlefuse->
  1288. eeprom_chnlarea_txpwr_ht40_1s[rf_path]
  1289. [index] -
  1290. rtlefuse->
  1291. eprom_chnl_txpwr_ht40_2sdf[rf_path]
  1292. [index];
  1293. } else {
  1294. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
  1295. }
  1296. }
  1297. for (i = 0; i < 14; i++) {
  1298. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1299. "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
  1300. rf_path, i,
  1301. rtlefuse->txpwrlevel_cck[rf_path][i],
  1302. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  1303. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
  1304. }
  1305. }
  1306. for (i = 0; i < 3; i++) {
  1307. if (!autoload_fail) {
  1308. rtlefuse->eeprom_pwrlimit_ht40[i] =
  1309. hwinfo[EEPROM_TXPWR_GROUP + i];
  1310. rtlefuse->eeprom_pwrlimit_ht20[i] =
  1311. hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
  1312. } else {
  1313. rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
  1314. rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
  1315. }
  1316. }
  1317. for (rf_path = 0; rf_path < 2; rf_path++) {
  1318. for (i = 0; i < 14; i++) {
  1319. index = _rtl92c_get_chnl_group((u8) i);
  1320. if (rf_path == RF90_PATH_A) {
  1321. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1322. (rtlefuse->eeprom_pwrlimit_ht20[index]
  1323. & 0xf);
  1324. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1325. (rtlefuse->eeprom_pwrlimit_ht40[index]
  1326. & 0xf);
  1327. } else if (rf_path == RF90_PATH_B) {
  1328. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1329. ((rtlefuse->eeprom_pwrlimit_ht20[index]
  1330. & 0xf0) >> 4);
  1331. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1332. ((rtlefuse->eeprom_pwrlimit_ht40[index]
  1333. & 0xf0) >> 4);
  1334. }
  1335. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1336. "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  1337. rf_path, i,
  1338. rtlefuse->pwrgroup_ht20[rf_path][i]);
  1339. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1340. "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  1341. rf_path, i,
  1342. rtlefuse->pwrgroup_ht40[rf_path][i]);
  1343. }
  1344. }
  1345. for (i = 0; i < 14; i++) {
  1346. index = _rtl92c_get_chnl_group((u8) i);
  1347. if (!autoload_fail)
  1348. tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
  1349. else
  1350. tempval = EEPROM_DEFAULT_HT20_DIFF;
  1351. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  1352. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  1353. ((tempval >> 4) & 0xF);
  1354. if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
  1355. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
  1356. if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
  1357. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
  1358. index = _rtl92c_get_chnl_group((u8) i);
  1359. if (!autoload_fail)
  1360. tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
  1361. else
  1362. tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
  1363. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
  1364. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  1365. ((tempval >> 4) & 0xF);
  1366. }
  1367. rtlefuse->legacy_ht_txpowerdiff =
  1368. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
  1369. for (i = 0; i < 14; i++)
  1370. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1371. "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
  1372. i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
  1373. for (i = 0; i < 14; i++)
  1374. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1375. "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
  1376. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
  1377. for (i = 0; i < 14; i++)
  1378. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1379. "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
  1380. i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
  1381. for (i = 0; i < 14; i++)
  1382. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1383. "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
  1384. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
  1385. if (!autoload_fail)
  1386. rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
  1387. else
  1388. rtlefuse->eeprom_regulatory = 0;
  1389. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1390. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  1391. if (!autoload_fail) {
  1392. rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
  1393. rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B];
  1394. } else {
  1395. rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
  1396. rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI;
  1397. }
  1398. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  1399. rtlefuse->eeprom_tssi[RF90_PATH_A],
  1400. rtlefuse->eeprom_tssi[RF90_PATH_B]);
  1401. if (!autoload_fail)
  1402. tempval = hwinfo[EEPROM_THERMAL_METER];
  1403. else
  1404. tempval = EEPROM_DEFAULT_THERMALMETER;
  1405. rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
  1406. if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
  1407. rtlefuse->apk_thermalmeterignore = true;
  1408. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  1409. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1410. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  1411. }
  1412. static void _rtl92ce_read_adapter_info(struct ieee80211_hw *hw)
  1413. {
  1414. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1415. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1416. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1417. u16 i, usvalue;
  1418. u8 hwinfo[HWSET_MAX_SIZE];
  1419. u16 eeprom_id;
  1420. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  1421. rtl_efuse_shadow_map_update(hw);
  1422. memcpy((void *)hwinfo,
  1423. (void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  1424. HWSET_MAX_SIZE);
  1425. } else if (rtlefuse->epromtype == EEPROM_93C46) {
  1426. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1427. "RTL819X Not boot from eeprom, check it !!");
  1428. }
  1429. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
  1430. hwinfo, HWSET_MAX_SIZE);
  1431. eeprom_id = *((u16 *)&hwinfo[0]);
  1432. if (eeprom_id != RTL8190_EEPROM_ID) {
  1433. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1434. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  1435. rtlefuse->autoload_failflag = true;
  1436. } else {
  1437. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1438. rtlefuse->autoload_failflag = false;
  1439. }
  1440. if (rtlefuse->autoload_failflag)
  1441. return;
  1442. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  1443. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  1444. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
  1445. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
  1446. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1447. "EEPROMId = 0x%4x\n", eeprom_id);
  1448. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1449. "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
  1450. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1451. "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
  1452. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1453. "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
  1454. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1455. "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
  1456. for (i = 0; i < 6; i += 2) {
  1457. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  1458. *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
  1459. }
  1460. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
  1461. _rtl92ce_read_txpower_info_from_hwpg(hw,
  1462. rtlefuse->autoload_failflag,
  1463. hwinfo);
  1464. rtl8192ce_read_bt_coexist_info_from_hwpg(hw,
  1465. rtlefuse->autoload_failflag,
  1466. hwinfo);
  1467. rtlefuse->eeprom_channelplan = *&hwinfo[EEPROM_CHANNELPLAN];
  1468. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  1469. rtlefuse->txpwr_fromeprom = true;
  1470. rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMER_ID];
  1471. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1472. "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
  1473. /* set channel paln to world wide 13 */
  1474. rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
  1475. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  1476. switch (rtlefuse->eeprom_oemid) {
  1477. case EEPROM_CID_DEFAULT:
  1478. if (rtlefuse->eeprom_did == 0x8176) {
  1479. if ((rtlefuse->eeprom_svid == 0x103C &&
  1480. rtlefuse->eeprom_smid == 0x1629))
  1481. rtlhal->oem_id = RT_CID_819X_HP;
  1482. else
  1483. rtlhal->oem_id = RT_CID_DEFAULT;
  1484. } else {
  1485. rtlhal->oem_id = RT_CID_DEFAULT;
  1486. }
  1487. break;
  1488. case EEPROM_CID_TOSHIBA:
  1489. rtlhal->oem_id = RT_CID_TOSHIBA;
  1490. break;
  1491. case EEPROM_CID_QMI:
  1492. rtlhal->oem_id = RT_CID_819X_QMI;
  1493. break;
  1494. case EEPROM_CID_WHQL:
  1495. default:
  1496. rtlhal->oem_id = RT_CID_DEFAULT;
  1497. break;
  1498. }
  1499. }
  1500. }
  1501. static void _rtl92ce_hal_customized_behavior(struct ieee80211_hw *hw)
  1502. {
  1503. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1504. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1505. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1506. switch (rtlhal->oem_id) {
  1507. case RT_CID_819X_HP:
  1508. pcipriv->ledctl.led_opendrain = true;
  1509. break;
  1510. case RT_CID_819X_LENOVO:
  1511. case RT_CID_DEFAULT:
  1512. case RT_CID_TOSHIBA:
  1513. case RT_CID_CCX:
  1514. case RT_CID_819X_ACER:
  1515. case RT_CID_WHQL:
  1516. default:
  1517. break;
  1518. }
  1519. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1520. "RT Customized ID: 0x%02X\n", rtlhal->oem_id);
  1521. }
  1522. void rtl92ce_read_eeprom_info(struct ieee80211_hw *hw)
  1523. {
  1524. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1525. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1526. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1527. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1528. u8 tmp_u1b;
  1529. rtlhal->version = _rtl92ce_read_chip_version(hw);
  1530. if (get_rf_type(rtlphy) == RF_1T1R)
  1531. rtlpriv->dm.rfpath_rxenable[0] = true;
  1532. else
  1533. rtlpriv->dm.rfpath_rxenable[0] =
  1534. rtlpriv->dm.rfpath_rxenable[1] = true;
  1535. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
  1536. rtlhal->version);
  1537. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  1538. if (tmp_u1b & BIT(4)) {
  1539. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
  1540. rtlefuse->epromtype = EEPROM_93C46;
  1541. } else {
  1542. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
  1543. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1544. }
  1545. if (tmp_u1b & BIT(5)) {
  1546. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1547. rtlefuse->autoload_failflag = false;
  1548. _rtl92ce_read_adapter_info(hw);
  1549. } else {
  1550. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
  1551. }
  1552. _rtl92ce_hal_customized_behavior(hw);
  1553. }
  1554. static void rtl92ce_update_hal_rate_table(struct ieee80211_hw *hw,
  1555. struct ieee80211_sta *sta)
  1556. {
  1557. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1558. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1559. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1560. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1561. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1562. u32 ratr_value;
  1563. u8 ratr_index = 0;
  1564. u8 nmode = mac->ht_enable;
  1565. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1566. u16 shortgi_rate;
  1567. u32 tmp_ratr_value;
  1568. u8 curtxbw_40mhz = mac->bw_40;
  1569. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1570. 1 : 0;
  1571. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1572. 1 : 0;
  1573. enum wireless_mode wirelessmode = mac->mode;
  1574. if (rtlhal->current_bandtype == BAND_ON_5G)
  1575. ratr_value = sta->supp_rates[1] << 4;
  1576. else
  1577. ratr_value = sta->supp_rates[0];
  1578. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1579. ratr_value = 0xfff;
  1580. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1581. sta->ht_cap.mcs.rx_mask[0] << 12);
  1582. switch (wirelessmode) {
  1583. case WIRELESS_MODE_B:
  1584. if (ratr_value & 0x0000000c)
  1585. ratr_value &= 0x0000000d;
  1586. else
  1587. ratr_value &= 0x0000000f;
  1588. break;
  1589. case WIRELESS_MODE_G:
  1590. ratr_value &= 0x00000FF5;
  1591. break;
  1592. case WIRELESS_MODE_N_24G:
  1593. case WIRELESS_MODE_N_5G:
  1594. nmode = 1;
  1595. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1596. ratr_value &= 0x0007F005;
  1597. } else {
  1598. u32 ratr_mask;
  1599. if (get_rf_type(rtlphy) == RF_1T2R ||
  1600. get_rf_type(rtlphy) == RF_1T1R)
  1601. ratr_mask = 0x000ff005;
  1602. else
  1603. ratr_mask = 0x0f0ff005;
  1604. ratr_value &= ratr_mask;
  1605. }
  1606. break;
  1607. default:
  1608. if (rtlphy->rf_type == RF_1T2R)
  1609. ratr_value &= 0x000ff0ff;
  1610. else
  1611. ratr_value &= 0x0f0ff0ff;
  1612. break;
  1613. }
  1614. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  1615. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) &&
  1616. (rtlpcipriv->bt_coexist.bt_cur_state) &&
  1617. (rtlpcipriv->bt_coexist.bt_ant_isolation) &&
  1618. ((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ||
  1619. (rtlpcipriv->bt_coexist.bt_service == BT_BUSY)))
  1620. ratr_value &= 0x0fffcfc0;
  1621. else
  1622. ratr_value &= 0x0FFFFFFF;
  1623. if (nmode && ((curtxbw_40mhz &&
  1624. curshortgi_40mhz) || (!curtxbw_40mhz &&
  1625. curshortgi_20mhz))) {
  1626. ratr_value |= 0x10000000;
  1627. tmp_ratr_value = (ratr_value >> 12);
  1628. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1629. if ((1 << shortgi_rate) & tmp_ratr_value)
  1630. break;
  1631. }
  1632. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1633. (shortgi_rate << 4) | (shortgi_rate);
  1634. }
  1635. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  1636. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
  1637. rtl_read_dword(rtlpriv, REG_ARFR0));
  1638. }
  1639. static void rtl92ce_update_hal_rate_mask(struct ieee80211_hw *hw,
  1640. struct ieee80211_sta *sta, u8 rssi_level)
  1641. {
  1642. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1643. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1644. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1645. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1646. struct rtl_sta_info *sta_entry = NULL;
  1647. u32 ratr_bitmap;
  1648. u8 ratr_index;
  1649. u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
  1650. u8 curshortgi_40mhz = curtxbw_40mhz &&
  1651. (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1652. 1 : 0;
  1653. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1654. 1 : 0;
  1655. enum wireless_mode wirelessmode = 0;
  1656. bool shortgi = false;
  1657. u8 rate_mask[5];
  1658. u8 macid = 0;
  1659. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1660. sta_entry = (struct rtl_sta_info *) sta->drv_priv;
  1661. wirelessmode = sta_entry->wireless_mode;
  1662. if (mac->opmode == NL80211_IFTYPE_STATION ||
  1663. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1664. curtxbw_40mhz = mac->bw_40;
  1665. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1666. mac->opmode == NL80211_IFTYPE_ADHOC)
  1667. macid = sta->aid + 1;
  1668. if (rtlhal->current_bandtype == BAND_ON_5G)
  1669. ratr_bitmap = sta->supp_rates[1] << 4;
  1670. else
  1671. ratr_bitmap = sta->supp_rates[0];
  1672. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1673. ratr_bitmap = 0xfff;
  1674. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1675. sta->ht_cap.mcs.rx_mask[0] << 12);
  1676. switch (wirelessmode) {
  1677. case WIRELESS_MODE_B:
  1678. ratr_index = RATR_INX_WIRELESS_B;
  1679. if (ratr_bitmap & 0x0000000c)
  1680. ratr_bitmap &= 0x0000000d;
  1681. else
  1682. ratr_bitmap &= 0x0000000f;
  1683. break;
  1684. case WIRELESS_MODE_G:
  1685. ratr_index = RATR_INX_WIRELESS_GB;
  1686. if (rssi_level == 1)
  1687. ratr_bitmap &= 0x00000f00;
  1688. else if (rssi_level == 2)
  1689. ratr_bitmap &= 0x00000ff0;
  1690. else
  1691. ratr_bitmap &= 0x00000ff5;
  1692. break;
  1693. case WIRELESS_MODE_A:
  1694. ratr_index = RATR_INX_WIRELESS_A;
  1695. ratr_bitmap &= 0x00000ff0;
  1696. break;
  1697. case WIRELESS_MODE_N_24G:
  1698. case WIRELESS_MODE_N_5G:
  1699. ratr_index = RATR_INX_WIRELESS_NGB;
  1700. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1701. if (rssi_level == 1)
  1702. ratr_bitmap &= 0x00070000;
  1703. else if (rssi_level == 2)
  1704. ratr_bitmap &= 0x0007f000;
  1705. else
  1706. ratr_bitmap &= 0x0007f005;
  1707. } else {
  1708. if (rtlphy->rf_type == RF_1T2R ||
  1709. rtlphy->rf_type == RF_1T1R) {
  1710. if (curtxbw_40mhz) {
  1711. if (rssi_level == 1)
  1712. ratr_bitmap &= 0x000f0000;
  1713. else if (rssi_level == 2)
  1714. ratr_bitmap &= 0x000ff000;
  1715. else
  1716. ratr_bitmap &= 0x000ff015;
  1717. } else {
  1718. if (rssi_level == 1)
  1719. ratr_bitmap &= 0x000f0000;
  1720. else if (rssi_level == 2)
  1721. ratr_bitmap &= 0x000ff000;
  1722. else
  1723. ratr_bitmap &= 0x000ff005;
  1724. }
  1725. } else {
  1726. if (curtxbw_40mhz) {
  1727. if (rssi_level == 1)
  1728. ratr_bitmap &= 0x0f0f0000;
  1729. else if (rssi_level == 2)
  1730. ratr_bitmap &= 0x0f0ff000;
  1731. else
  1732. ratr_bitmap &= 0x0f0ff015;
  1733. } else {
  1734. if (rssi_level == 1)
  1735. ratr_bitmap &= 0x0f0f0000;
  1736. else if (rssi_level == 2)
  1737. ratr_bitmap &= 0x0f0ff000;
  1738. else
  1739. ratr_bitmap &= 0x0f0ff005;
  1740. }
  1741. }
  1742. }
  1743. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  1744. (!curtxbw_40mhz && curshortgi_20mhz)) {
  1745. if (macid == 0)
  1746. shortgi = true;
  1747. else if (macid == 1)
  1748. shortgi = false;
  1749. }
  1750. break;
  1751. default:
  1752. ratr_index = RATR_INX_WIRELESS_NGB;
  1753. if (rtlphy->rf_type == RF_1T2R)
  1754. ratr_bitmap &= 0x000ff0ff;
  1755. else
  1756. ratr_bitmap &= 0x0f0ff0ff;
  1757. break;
  1758. }
  1759. sta_entry->ratr_index = ratr_index;
  1760. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1761. "ratr_bitmap :%x\n", ratr_bitmap);
  1762. *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
  1763. (ratr_index << 28);
  1764. rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
  1765. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1766. "Rate_index:%x, ratr_val:%x, %5phC\n",
  1767. ratr_index, ratr_bitmap, rate_mask);
  1768. rtl92c_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask);
  1769. if (macid != 0)
  1770. sta_entry->ratr_index = ratr_index;
  1771. }
  1772. void rtl92ce_update_hal_rate_tbl(struct ieee80211_hw *hw,
  1773. struct ieee80211_sta *sta, u8 rssi_level)
  1774. {
  1775. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1776. if (rtlpriv->dm.useramask)
  1777. rtl92ce_update_hal_rate_mask(hw, sta, rssi_level);
  1778. else
  1779. rtl92ce_update_hal_rate_table(hw, sta);
  1780. }
  1781. void rtl92ce_update_channel_access_setting(struct ieee80211_hw *hw)
  1782. {
  1783. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1784. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1785. u16 sifs_timer;
  1786. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  1787. &mac->slot_time);
  1788. if (!mac->ht_enable)
  1789. sifs_timer = 0x0a0a;
  1790. else
  1791. sifs_timer = 0x1010;
  1792. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  1793. }
  1794. bool rtl92ce_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  1795. {
  1796. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1797. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1798. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1799. enum rf_pwrstate e_rfpowerstate_toset;
  1800. u8 u1tmp;
  1801. bool actuallyset = false;
  1802. unsigned long flag;
  1803. if (rtlpci->being_init_adapter)
  1804. return false;
  1805. if (ppsc->swrf_processing)
  1806. return false;
  1807. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1808. if (ppsc->rfchange_inprogress) {
  1809. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1810. return false;
  1811. } else {
  1812. ppsc->rfchange_inprogress = true;
  1813. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1814. }
  1815. rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
  1816. REG_MAC_PINMUX_CFG)&~(BIT(3)));
  1817. u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
  1818. e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
  1819. if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
  1820. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1821. "GPIOChangeRF - HW Radio ON, RF ON\n");
  1822. e_rfpowerstate_toset = ERFON;
  1823. ppsc->hwradiooff = false;
  1824. actuallyset = true;
  1825. } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
  1826. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1827. "GPIOChangeRF - HW Radio OFF, RF OFF\n");
  1828. e_rfpowerstate_toset = ERFOFF;
  1829. ppsc->hwradiooff = true;
  1830. actuallyset = true;
  1831. }
  1832. if (actuallyset) {
  1833. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1834. ppsc->rfchange_inprogress = false;
  1835. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1836. } else {
  1837. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
  1838. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1839. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1840. ppsc->rfchange_inprogress = false;
  1841. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1842. }
  1843. *valid = 1;
  1844. return !ppsc->hwradiooff;
  1845. }
  1846. void rtl92ce_set_key(struct ieee80211_hw *hw, u32 key_index,
  1847. u8 *p_macaddr, bool is_group, u8 enc_algo,
  1848. bool is_wepkey, bool clear_all)
  1849. {
  1850. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1851. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1852. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1853. u8 *macaddr = p_macaddr;
  1854. u32 entry_id = 0;
  1855. bool is_pairwise = false;
  1856. static u8 cam_const_addr[4][6] = {
  1857. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  1858. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  1859. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  1860. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  1861. };
  1862. static u8 cam_const_broad[] = {
  1863. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  1864. };
  1865. if (clear_all) {
  1866. u8 idx = 0;
  1867. u8 cam_offset = 0;
  1868. u8 clear_number = 5;
  1869. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
  1870. for (idx = 0; idx < clear_number; idx++) {
  1871. rtl_cam_mark_invalid(hw, cam_offset + idx);
  1872. rtl_cam_empty_entry(hw, cam_offset + idx);
  1873. if (idx < 5) {
  1874. memset(rtlpriv->sec.key_buf[idx], 0,
  1875. MAX_KEY_LEN);
  1876. rtlpriv->sec.key_len[idx] = 0;
  1877. }
  1878. }
  1879. } else {
  1880. switch (enc_algo) {
  1881. case WEP40_ENCRYPTION:
  1882. enc_algo = CAM_WEP40;
  1883. break;
  1884. case WEP104_ENCRYPTION:
  1885. enc_algo = CAM_WEP104;
  1886. break;
  1887. case TKIP_ENCRYPTION:
  1888. enc_algo = CAM_TKIP;
  1889. break;
  1890. case AESCCMP_ENCRYPTION:
  1891. enc_algo = CAM_AES;
  1892. break;
  1893. default:
  1894. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1895. "switch case not processed\n");
  1896. enc_algo = CAM_TKIP;
  1897. break;
  1898. }
  1899. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  1900. macaddr = cam_const_addr[key_index];
  1901. entry_id = key_index;
  1902. } else {
  1903. if (is_group) {
  1904. macaddr = cam_const_broad;
  1905. entry_id = key_index;
  1906. } else {
  1907. if (mac->opmode == NL80211_IFTYPE_AP ||
  1908. mac->opmode == NL80211_IFTYPE_MESH_POINT) {
  1909. entry_id = rtl_cam_get_free_entry(hw,
  1910. p_macaddr);
  1911. if (entry_id >= TOTAL_CAM_ENTRY) {
  1912. RT_TRACE(rtlpriv, COMP_SEC,
  1913. DBG_EMERG,
  1914. "Can not find free hw security cam entry\n");
  1915. return;
  1916. }
  1917. } else {
  1918. entry_id = CAM_PAIRWISE_KEY_POSITION;
  1919. }
  1920. key_index = PAIRWISE_KEYIDX;
  1921. is_pairwise = true;
  1922. }
  1923. }
  1924. if (rtlpriv->sec.key_len[key_index] == 0) {
  1925. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1926. "delete one entry, entry_id is %d\n",
  1927. entry_id);
  1928. if (mac->opmode == NL80211_IFTYPE_AP ||
  1929. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1930. rtl_cam_del_entry(hw, p_macaddr);
  1931. rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
  1932. } else {
  1933. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1934. "The insert KEY length is %d\n",
  1935. rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
  1936. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1937. "The insert KEY is %x %x\n",
  1938. rtlpriv->sec.key_buf[0][0],
  1939. rtlpriv->sec.key_buf[0][1]);
  1940. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1941. "add one entry\n");
  1942. if (is_pairwise) {
  1943. RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
  1944. "Pairwise Key content",
  1945. rtlpriv->sec.pairwise_key,
  1946. rtlpriv->sec.
  1947. key_len[PAIRWISE_KEYIDX]);
  1948. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1949. "set Pairwise key\n");
  1950. rtl_cam_add_one_entry(hw, macaddr, key_index,
  1951. entry_id, enc_algo,
  1952. CAM_CONFIG_NO_USEDK,
  1953. rtlpriv->sec.
  1954. key_buf[key_index]);
  1955. } else {
  1956. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1957. "set group key\n");
  1958. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  1959. rtl_cam_add_one_entry(hw,
  1960. rtlefuse->dev_addr,
  1961. PAIRWISE_KEYIDX,
  1962. CAM_PAIRWISE_KEY_POSITION,
  1963. enc_algo,
  1964. CAM_CONFIG_NO_USEDK,
  1965. rtlpriv->sec.key_buf
  1966. [entry_id]);
  1967. }
  1968. rtl_cam_add_one_entry(hw, macaddr, key_index,
  1969. entry_id, enc_algo,
  1970. CAM_CONFIG_NO_USEDK,
  1971. rtlpriv->sec.key_buf[entry_id]);
  1972. }
  1973. }
  1974. }
  1975. }
  1976. static void rtl8192ce_bt_var_init(struct ieee80211_hw *hw)
  1977. {
  1978. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1979. rtlpcipriv->bt_coexist.bt_coexistence =
  1980. rtlpcipriv->bt_coexist.eeprom_bt_coexist;
  1981. rtlpcipriv->bt_coexist.bt_ant_num =
  1982. rtlpcipriv->bt_coexist.eeprom_bt_ant_num;
  1983. rtlpcipriv->bt_coexist.bt_coexist_type =
  1984. rtlpcipriv->bt_coexist.eeprom_bt_type;
  1985. if (rtlpcipriv->bt_coexist.reg_bt_iso == 2)
  1986. rtlpcipriv->bt_coexist.bt_ant_isolation =
  1987. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol;
  1988. else
  1989. rtlpcipriv->bt_coexist.bt_ant_isolation =
  1990. rtlpcipriv->bt_coexist.reg_bt_iso;
  1991. rtlpcipriv->bt_coexist.bt_radio_shared_type =
  1992. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared;
  1993. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  1994. if (rtlpcipriv->bt_coexist.reg_bt_sco == 1)
  1995. rtlpcipriv->bt_coexist.bt_service = BT_OTHER_ACTION;
  1996. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 2)
  1997. rtlpcipriv->bt_coexist.bt_service = BT_SCO;
  1998. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 4)
  1999. rtlpcipriv->bt_coexist.bt_service = BT_BUSY;
  2000. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 5)
  2001. rtlpcipriv->bt_coexist.bt_service = BT_OTHERBUSY;
  2002. else
  2003. rtlpcipriv->bt_coexist.bt_service = BT_IDLE;
  2004. rtlpcipriv->bt_coexist.bt_edca_ul = 0;
  2005. rtlpcipriv->bt_coexist.bt_edca_dl = 0;
  2006. rtlpcipriv->bt_coexist.bt_rssi_state = 0xff;
  2007. }
  2008. }
  2009. void rtl8192ce_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
  2010. bool auto_load_fail, u8 *hwinfo)
  2011. {
  2012. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  2013. u8 val;
  2014. if (!auto_load_fail) {
  2015. rtlpcipriv->bt_coexist.eeprom_bt_coexist =
  2016. ((hwinfo[RF_OPTION1] & 0xe0) >> 5);
  2017. val = hwinfo[RF_OPTION4];
  2018. rtlpcipriv->bt_coexist.eeprom_bt_type = ((val & 0xe) >> 1);
  2019. rtlpcipriv->bt_coexist.eeprom_bt_ant_num = (val & 0x1);
  2020. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = ((val & 0x10) >> 4);
  2021. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared =
  2022. ((val & 0x20) >> 5);
  2023. } else {
  2024. rtlpcipriv->bt_coexist.eeprom_bt_coexist = 0;
  2025. rtlpcipriv->bt_coexist.eeprom_bt_type = BT_2WIRE;
  2026. rtlpcipriv->bt_coexist.eeprom_bt_ant_num = ANT_X2;
  2027. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = 0;
  2028. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared = BT_RADIO_SHARED;
  2029. }
  2030. rtl8192ce_bt_var_init(hw);
  2031. }
  2032. void rtl8192ce_bt_reg_init(struct ieee80211_hw *hw)
  2033. {
  2034. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  2035. /* 0:Low, 1:High, 2:From Efuse. */
  2036. rtlpcipriv->bt_coexist.reg_bt_iso = 2;
  2037. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
  2038. rtlpcipriv->bt_coexist.reg_bt_sco = 3;
  2039. /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
  2040. rtlpcipriv->bt_coexist.reg_bt_sco = 0;
  2041. }
  2042. void rtl8192ce_bt_hw_init(struct ieee80211_hw *hw)
  2043. {
  2044. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2045. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2046. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  2047. u8 u1_tmp;
  2048. if (rtlpcipriv->bt_coexist.bt_coexistence &&
  2049. ((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) ||
  2050. rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8)) {
  2051. if (rtlpcipriv->bt_coexist.bt_ant_isolation)
  2052. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0);
  2053. u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) &
  2054. BIT_OFFSET_LEN_MASK_32(0, 1);
  2055. u1_tmp = u1_tmp |
  2056. ((rtlpcipriv->bt_coexist.bt_ant_isolation == 1) ?
  2057. 0 : BIT_OFFSET_LEN_MASK_32(1, 1)) |
  2058. ((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ?
  2059. 0 : BIT_OFFSET_LEN_MASK_32(2, 1));
  2060. rtl_write_byte(rtlpriv, 0x4fd, u1_tmp);
  2061. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa);
  2062. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040);
  2063. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010);
  2064. /* Config to 1T1R. */
  2065. if (rtlphy->rf_type == RF_1T1R) {
  2066. u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE);
  2067. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2068. rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp);
  2069. u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE);
  2070. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2071. rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp);
  2072. }
  2073. }
  2074. }
  2075. void rtl92ce_suspend(struct ieee80211_hw *hw)
  2076. {
  2077. }
  2078. void rtl92ce_resume(struct ieee80211_hw *hw)
  2079. {
  2080. }