dp83640.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441
  1. /*
  2. * Driver for the National Semiconductor DP83640 PHYTER
  3. *
  4. * Copyright (C) 2010 OMICRON electronics GmbH
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21. #include <linux/ethtool.h>
  22. #include <linux/kernel.h>
  23. #include <linux/list.h>
  24. #include <linux/mii.h>
  25. #include <linux/module.h>
  26. #include <linux/net_tstamp.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/if_vlan.h>
  29. #include <linux/phy.h>
  30. #include <linux/ptp_classify.h>
  31. #include <linux/ptp_clock_kernel.h>
  32. #include "dp83640_reg.h"
  33. #define DP83640_PHY_ID 0x20005ce1
  34. #define PAGESEL 0x13
  35. #define LAYER4 0x02
  36. #define LAYER2 0x01
  37. #define MAX_RXTS 64
  38. #define N_EXT_TS 6
  39. #define PSF_PTPVER 2
  40. #define PSF_EVNT 0x4000
  41. #define PSF_RX 0x2000
  42. #define PSF_TX 0x1000
  43. #define EXT_EVENT 1
  44. #define CAL_EVENT 7
  45. #define CAL_TRIGGER 7
  46. #define PER_TRIGGER 6
  47. #define DP83640_N_PINS 12
  48. #define MII_DP83640_MICR 0x11
  49. #define MII_DP83640_MISR 0x12
  50. #define MII_DP83640_MICR_OE 0x1
  51. #define MII_DP83640_MICR_IE 0x2
  52. #define MII_DP83640_MISR_RHF_INT_EN 0x01
  53. #define MII_DP83640_MISR_FHF_INT_EN 0x02
  54. #define MII_DP83640_MISR_ANC_INT_EN 0x04
  55. #define MII_DP83640_MISR_DUP_INT_EN 0x08
  56. #define MII_DP83640_MISR_SPD_INT_EN 0x10
  57. #define MII_DP83640_MISR_LINK_INT_EN 0x20
  58. #define MII_DP83640_MISR_ED_INT_EN 0x40
  59. #define MII_DP83640_MISR_LQ_INT_EN 0x80
  60. /* phyter seems to miss the mark by 16 ns */
  61. #define ADJTIME_FIX 16
  62. #if defined(__BIG_ENDIAN)
  63. #define ENDIAN_FLAG 0
  64. #elif defined(__LITTLE_ENDIAN)
  65. #define ENDIAN_FLAG PSF_ENDIAN
  66. #endif
  67. #define SKB_PTP_TYPE(__skb) (*(unsigned int *)((__skb)->cb))
  68. struct phy_rxts {
  69. u16 ns_lo; /* ns[15:0] */
  70. u16 ns_hi; /* overflow[1:0], ns[29:16] */
  71. u16 sec_lo; /* sec[15:0] */
  72. u16 sec_hi; /* sec[31:16] */
  73. u16 seqid; /* sequenceId[15:0] */
  74. u16 msgtype; /* messageType[3:0], hash[11:0] */
  75. };
  76. struct phy_txts {
  77. u16 ns_lo; /* ns[15:0] */
  78. u16 ns_hi; /* overflow[1:0], ns[29:16] */
  79. u16 sec_lo; /* sec[15:0] */
  80. u16 sec_hi; /* sec[31:16] */
  81. };
  82. struct rxts {
  83. struct list_head list;
  84. unsigned long tmo;
  85. u64 ns;
  86. u16 seqid;
  87. u8 msgtype;
  88. u16 hash;
  89. };
  90. struct dp83640_clock;
  91. struct dp83640_private {
  92. struct list_head list;
  93. struct dp83640_clock *clock;
  94. struct phy_device *phydev;
  95. struct work_struct ts_work;
  96. int hwts_tx_en;
  97. int hwts_rx_en;
  98. int layer;
  99. int version;
  100. /* remember state of cfg0 during calibration */
  101. int cfg0;
  102. /* remember the last event time stamp */
  103. struct phy_txts edata;
  104. /* list of rx timestamps */
  105. struct list_head rxts;
  106. struct list_head rxpool;
  107. struct rxts rx_pool_data[MAX_RXTS];
  108. /* protects above three fields from concurrent access */
  109. spinlock_t rx_lock;
  110. /* queues of incoming and outgoing packets */
  111. struct sk_buff_head rx_queue;
  112. struct sk_buff_head tx_queue;
  113. };
  114. struct dp83640_clock {
  115. /* keeps the instance in the 'phyter_clocks' list */
  116. struct list_head list;
  117. /* we create one clock instance per MII bus */
  118. struct mii_bus *bus;
  119. /* protects extended registers from concurrent access */
  120. struct mutex extreg_lock;
  121. /* remembers which page was last selected */
  122. int page;
  123. /* our advertised capabilities */
  124. struct ptp_clock_info caps;
  125. /* protects the three fields below from concurrent access */
  126. struct mutex clock_lock;
  127. /* the one phyter from which we shall read */
  128. struct dp83640_private *chosen;
  129. /* list of the other attached phyters, not chosen */
  130. struct list_head phylist;
  131. /* reference to our PTP hardware clock */
  132. struct ptp_clock *ptp_clock;
  133. };
  134. /* globals */
  135. enum {
  136. CALIBRATE_GPIO,
  137. PEROUT_GPIO,
  138. EXTTS0_GPIO,
  139. EXTTS1_GPIO,
  140. EXTTS2_GPIO,
  141. EXTTS3_GPIO,
  142. EXTTS4_GPIO,
  143. EXTTS5_GPIO,
  144. GPIO_TABLE_SIZE
  145. };
  146. static int chosen_phy = -1;
  147. static ushort gpio_tab[GPIO_TABLE_SIZE] = {
  148. 1, 2, 3, 4, 8, 9, 10, 11
  149. };
  150. module_param(chosen_phy, int, 0444);
  151. module_param_array(gpio_tab, ushort, NULL, 0444);
  152. MODULE_PARM_DESC(chosen_phy, \
  153. "The address of the PHY to use for the ancillary clock features");
  154. MODULE_PARM_DESC(gpio_tab, \
  155. "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
  156. static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
  157. {
  158. int i, index;
  159. for (i = 0; i < DP83640_N_PINS; i++) {
  160. snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
  161. pd[i].index = i;
  162. }
  163. for (i = 0; i < GPIO_TABLE_SIZE; i++) {
  164. if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
  165. pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
  166. return;
  167. }
  168. }
  169. index = gpio_tab[CALIBRATE_GPIO] - 1;
  170. pd[index].func = PTP_PF_PHYSYNC;
  171. pd[index].chan = 0;
  172. index = gpio_tab[PEROUT_GPIO] - 1;
  173. pd[index].func = PTP_PF_PEROUT;
  174. pd[index].chan = 0;
  175. for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
  176. index = gpio_tab[i] - 1;
  177. pd[index].func = PTP_PF_EXTTS;
  178. pd[index].chan = i - EXTTS0_GPIO;
  179. }
  180. }
  181. /* a list of clocks and a mutex to protect it */
  182. static LIST_HEAD(phyter_clocks);
  183. static DEFINE_MUTEX(phyter_clocks_lock);
  184. static void rx_timestamp_work(struct work_struct *work);
  185. /* extended register access functions */
  186. #define BROADCAST_ADDR 31
  187. static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val)
  188. {
  189. return mdiobus_write(bus, BROADCAST_ADDR, regnum, val);
  190. }
  191. /* Caller must hold extreg_lock. */
  192. static int ext_read(struct phy_device *phydev, int page, u32 regnum)
  193. {
  194. struct dp83640_private *dp83640 = phydev->priv;
  195. int val;
  196. if (dp83640->clock->page != page) {
  197. broadcast_write(phydev->bus, PAGESEL, page);
  198. dp83640->clock->page = page;
  199. }
  200. val = phy_read(phydev, regnum);
  201. return val;
  202. }
  203. /* Caller must hold extreg_lock. */
  204. static void ext_write(int broadcast, struct phy_device *phydev,
  205. int page, u32 regnum, u16 val)
  206. {
  207. struct dp83640_private *dp83640 = phydev->priv;
  208. if (dp83640->clock->page != page) {
  209. broadcast_write(phydev->bus, PAGESEL, page);
  210. dp83640->clock->page = page;
  211. }
  212. if (broadcast)
  213. broadcast_write(phydev->bus, regnum, val);
  214. else
  215. phy_write(phydev, regnum, val);
  216. }
  217. /* Caller must hold extreg_lock. */
  218. static int tdr_write(int bc, struct phy_device *dev,
  219. const struct timespec *ts, u16 cmd)
  220. {
  221. ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */
  222. ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */
  223. ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
  224. ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/
  225. ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
  226. return 0;
  227. }
  228. /* convert phy timestamps into driver timestamps */
  229. static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
  230. {
  231. u32 sec;
  232. sec = p->sec_lo;
  233. sec |= p->sec_hi << 16;
  234. rxts->ns = p->ns_lo;
  235. rxts->ns |= (p->ns_hi & 0x3fff) << 16;
  236. rxts->ns += ((u64)sec) * 1000000000ULL;
  237. rxts->seqid = p->seqid;
  238. rxts->msgtype = (p->msgtype >> 12) & 0xf;
  239. rxts->hash = p->msgtype & 0x0fff;
  240. rxts->tmo = jiffies + 2;
  241. }
  242. static u64 phy2txts(struct phy_txts *p)
  243. {
  244. u64 ns;
  245. u32 sec;
  246. sec = p->sec_lo;
  247. sec |= p->sec_hi << 16;
  248. ns = p->ns_lo;
  249. ns |= (p->ns_hi & 0x3fff) << 16;
  250. ns += ((u64)sec) * 1000000000ULL;
  251. return ns;
  252. }
  253. static int periodic_output(struct dp83640_clock *clock,
  254. struct ptp_clock_request *clkreq, bool on)
  255. {
  256. struct dp83640_private *dp83640 = clock->chosen;
  257. struct phy_device *phydev = dp83640->phydev;
  258. u32 sec, nsec, pwidth;
  259. u16 gpio, ptp_trig, trigger, val;
  260. if (on) {
  261. gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT, 0);
  262. if (gpio < 1)
  263. return -EINVAL;
  264. } else {
  265. gpio = 0;
  266. }
  267. trigger = PER_TRIGGER;
  268. ptp_trig = TRIG_WR |
  269. (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
  270. (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
  271. TRIG_PER |
  272. TRIG_PULSE;
  273. val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
  274. if (!on) {
  275. val |= TRIG_DIS;
  276. mutex_lock(&clock->extreg_lock);
  277. ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
  278. ext_write(0, phydev, PAGE4, PTP_CTL, val);
  279. mutex_unlock(&clock->extreg_lock);
  280. return 0;
  281. }
  282. sec = clkreq->perout.start.sec;
  283. nsec = clkreq->perout.start.nsec;
  284. pwidth = clkreq->perout.period.sec * 1000000000UL;
  285. pwidth += clkreq->perout.period.nsec;
  286. pwidth /= 2;
  287. mutex_lock(&clock->extreg_lock);
  288. ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
  289. /*load trigger*/
  290. val |= TRIG_LOAD;
  291. ext_write(0, phydev, PAGE4, PTP_CTL, val);
  292. ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */
  293. ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */
  294. ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */
  295. ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */
  296. ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
  297. ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */
  298. /*enable trigger*/
  299. val &= ~TRIG_LOAD;
  300. val |= TRIG_EN;
  301. ext_write(0, phydev, PAGE4, PTP_CTL, val);
  302. mutex_unlock(&clock->extreg_lock);
  303. return 0;
  304. }
  305. /* ptp clock methods */
  306. static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
  307. {
  308. struct dp83640_clock *clock =
  309. container_of(ptp, struct dp83640_clock, caps);
  310. struct phy_device *phydev = clock->chosen->phydev;
  311. u64 rate;
  312. int neg_adj = 0;
  313. u16 hi, lo;
  314. if (ppb < 0) {
  315. neg_adj = 1;
  316. ppb = -ppb;
  317. }
  318. rate = ppb;
  319. rate <<= 26;
  320. rate = div_u64(rate, 1953125);
  321. hi = (rate >> 16) & PTP_RATE_HI_MASK;
  322. if (neg_adj)
  323. hi |= PTP_RATE_DIR;
  324. lo = rate & 0xffff;
  325. mutex_lock(&clock->extreg_lock);
  326. ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
  327. ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
  328. mutex_unlock(&clock->extreg_lock);
  329. return 0;
  330. }
  331. static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
  332. {
  333. struct dp83640_clock *clock =
  334. container_of(ptp, struct dp83640_clock, caps);
  335. struct phy_device *phydev = clock->chosen->phydev;
  336. struct timespec ts;
  337. int err;
  338. delta += ADJTIME_FIX;
  339. ts = ns_to_timespec(delta);
  340. mutex_lock(&clock->extreg_lock);
  341. err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
  342. mutex_unlock(&clock->extreg_lock);
  343. return err;
  344. }
  345. static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
  346. {
  347. struct dp83640_clock *clock =
  348. container_of(ptp, struct dp83640_clock, caps);
  349. struct phy_device *phydev = clock->chosen->phydev;
  350. unsigned int val[4];
  351. mutex_lock(&clock->extreg_lock);
  352. ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
  353. val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
  354. val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
  355. val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
  356. val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
  357. mutex_unlock(&clock->extreg_lock);
  358. ts->tv_nsec = val[0] | (val[1] << 16);
  359. ts->tv_sec = val[2] | (val[3] << 16);
  360. return 0;
  361. }
  362. static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
  363. const struct timespec *ts)
  364. {
  365. struct dp83640_clock *clock =
  366. container_of(ptp, struct dp83640_clock, caps);
  367. struct phy_device *phydev = clock->chosen->phydev;
  368. int err;
  369. mutex_lock(&clock->extreg_lock);
  370. err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
  371. mutex_unlock(&clock->extreg_lock);
  372. return err;
  373. }
  374. static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
  375. struct ptp_clock_request *rq, int on)
  376. {
  377. struct dp83640_clock *clock =
  378. container_of(ptp, struct dp83640_clock, caps);
  379. struct phy_device *phydev = clock->chosen->phydev;
  380. unsigned int index;
  381. u16 evnt, event_num, gpio_num;
  382. switch (rq->type) {
  383. case PTP_CLK_REQ_EXTTS:
  384. index = rq->extts.index;
  385. if (index >= N_EXT_TS)
  386. return -EINVAL;
  387. event_num = EXT_EVENT + index;
  388. evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
  389. if (on) {
  390. gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
  391. PTP_PF_EXTTS, index);
  392. if (gpio_num < 1)
  393. return -EINVAL;
  394. evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
  395. if (rq->extts.flags & PTP_FALLING_EDGE)
  396. evnt |= EVNT_FALL;
  397. else
  398. evnt |= EVNT_RISE;
  399. }
  400. ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
  401. return 0;
  402. case PTP_CLK_REQ_PEROUT:
  403. if (rq->perout.index != 0)
  404. return -EINVAL;
  405. return periodic_output(clock, rq, on);
  406. default:
  407. break;
  408. }
  409. return -EOPNOTSUPP;
  410. }
  411. static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
  412. enum ptp_pin_function func, unsigned int chan)
  413. {
  414. return 0;
  415. }
  416. static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
  417. static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
  418. static void enable_status_frames(struct phy_device *phydev, bool on)
  419. {
  420. u16 cfg0 = 0, ver;
  421. if (on)
  422. cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
  423. ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
  424. ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
  425. ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
  426. if (!phydev->attached_dev) {
  427. pr_warn("expected to find an attached netdevice\n");
  428. return;
  429. }
  430. if (on) {
  431. if (dev_mc_add(phydev->attached_dev, status_frame_dst))
  432. pr_warn("failed to add mc address\n");
  433. } else {
  434. if (dev_mc_del(phydev->attached_dev, status_frame_dst))
  435. pr_warn("failed to delete mc address\n");
  436. }
  437. }
  438. static bool is_status_frame(struct sk_buff *skb, int type)
  439. {
  440. struct ethhdr *h = eth_hdr(skb);
  441. if (PTP_CLASS_V2_L2 == type &&
  442. !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
  443. return true;
  444. else
  445. return false;
  446. }
  447. static int expired(struct rxts *rxts)
  448. {
  449. return time_after(jiffies, rxts->tmo);
  450. }
  451. /* Caller must hold rx_lock. */
  452. static void prune_rx_ts(struct dp83640_private *dp83640)
  453. {
  454. struct list_head *this, *next;
  455. struct rxts *rxts;
  456. list_for_each_safe(this, next, &dp83640->rxts) {
  457. rxts = list_entry(this, struct rxts, list);
  458. if (expired(rxts)) {
  459. list_del_init(&rxts->list);
  460. list_add(&rxts->list, &dp83640->rxpool);
  461. }
  462. }
  463. }
  464. /* synchronize the phyters so they act as one clock */
  465. static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
  466. {
  467. int val;
  468. phy_write(phydev, PAGESEL, 0);
  469. val = phy_read(phydev, PHYCR2);
  470. if (on)
  471. val |= BC_WRITE;
  472. else
  473. val &= ~BC_WRITE;
  474. phy_write(phydev, PHYCR2, val);
  475. phy_write(phydev, PAGESEL, init_page);
  476. }
  477. static void recalibrate(struct dp83640_clock *clock)
  478. {
  479. s64 now, diff;
  480. struct phy_txts event_ts;
  481. struct timespec ts;
  482. struct list_head *this;
  483. struct dp83640_private *tmp;
  484. struct phy_device *master = clock->chosen->phydev;
  485. u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
  486. trigger = CAL_TRIGGER;
  487. cal_gpio = gpio_tab[CALIBRATE_GPIO];
  488. mutex_lock(&clock->extreg_lock);
  489. /*
  490. * enable broadcast, disable status frames, enable ptp clock
  491. */
  492. list_for_each(this, &clock->phylist) {
  493. tmp = list_entry(this, struct dp83640_private, list);
  494. enable_broadcast(tmp->phydev, clock->page, 1);
  495. tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
  496. ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
  497. ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
  498. }
  499. enable_broadcast(master, clock->page, 1);
  500. cfg0 = ext_read(master, PAGE5, PSF_CFG0);
  501. ext_write(0, master, PAGE5, PSF_CFG0, 0);
  502. ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
  503. /*
  504. * enable an event timestamp
  505. */
  506. evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
  507. evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
  508. evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
  509. list_for_each(this, &clock->phylist) {
  510. tmp = list_entry(this, struct dp83640_private, list);
  511. ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
  512. }
  513. ext_write(0, master, PAGE5, PTP_EVNT, evnt);
  514. /*
  515. * configure a trigger
  516. */
  517. ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
  518. ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
  519. ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
  520. ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
  521. /* load trigger */
  522. val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
  523. val |= TRIG_LOAD;
  524. ext_write(0, master, PAGE4, PTP_CTL, val);
  525. /* enable trigger */
  526. val &= ~TRIG_LOAD;
  527. val |= TRIG_EN;
  528. ext_write(0, master, PAGE4, PTP_CTL, val);
  529. /* disable trigger */
  530. val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
  531. val |= TRIG_DIS;
  532. ext_write(0, master, PAGE4, PTP_CTL, val);
  533. /*
  534. * read out and correct offsets
  535. */
  536. val = ext_read(master, PAGE4, PTP_STS);
  537. pr_info("master PTP_STS 0x%04hx\n", val);
  538. val = ext_read(master, PAGE4, PTP_ESTS);
  539. pr_info("master PTP_ESTS 0x%04hx\n", val);
  540. event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA);
  541. event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA);
  542. event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
  543. event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
  544. now = phy2txts(&event_ts);
  545. list_for_each(this, &clock->phylist) {
  546. tmp = list_entry(this, struct dp83640_private, list);
  547. val = ext_read(tmp->phydev, PAGE4, PTP_STS);
  548. pr_info("slave PTP_STS 0x%04hx\n", val);
  549. val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
  550. pr_info("slave PTP_ESTS 0x%04hx\n", val);
  551. event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
  552. event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
  553. event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
  554. event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
  555. diff = now - (s64) phy2txts(&event_ts);
  556. pr_info("slave offset %lld nanoseconds\n", diff);
  557. diff += ADJTIME_FIX;
  558. ts = ns_to_timespec(diff);
  559. tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
  560. }
  561. /*
  562. * restore status frames
  563. */
  564. list_for_each(this, &clock->phylist) {
  565. tmp = list_entry(this, struct dp83640_private, list);
  566. ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
  567. }
  568. ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
  569. mutex_unlock(&clock->extreg_lock);
  570. }
  571. /* time stamping methods */
  572. static inline u16 exts_chan_to_edata(int ch)
  573. {
  574. return 1 << ((ch + EXT_EVENT) * 2);
  575. }
  576. static int decode_evnt(struct dp83640_private *dp83640,
  577. void *data, u16 ests)
  578. {
  579. struct phy_txts *phy_txts;
  580. struct ptp_clock_event event;
  581. int i, parsed;
  582. int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
  583. u16 ext_status = 0;
  584. if (ests & MULT_EVNT) {
  585. ext_status = *(u16 *) data;
  586. data += sizeof(ext_status);
  587. }
  588. phy_txts = data;
  589. switch (words) { /* fall through in every case */
  590. case 3:
  591. dp83640->edata.sec_hi = phy_txts->sec_hi;
  592. case 2:
  593. dp83640->edata.sec_lo = phy_txts->sec_lo;
  594. case 1:
  595. dp83640->edata.ns_hi = phy_txts->ns_hi;
  596. case 0:
  597. dp83640->edata.ns_lo = phy_txts->ns_lo;
  598. }
  599. if (ext_status) {
  600. parsed = words + 2;
  601. } else {
  602. parsed = words + 1;
  603. i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
  604. ext_status = exts_chan_to_edata(i);
  605. }
  606. event.type = PTP_CLOCK_EXTTS;
  607. event.timestamp = phy2txts(&dp83640->edata);
  608. for (i = 0; i < N_EXT_TS; i++) {
  609. if (ext_status & exts_chan_to_edata(i)) {
  610. event.index = i;
  611. ptp_clock_event(dp83640->clock->ptp_clock, &event);
  612. }
  613. }
  614. return parsed * sizeof(u16);
  615. }
  616. static void decode_rxts(struct dp83640_private *dp83640,
  617. struct phy_rxts *phy_rxts)
  618. {
  619. struct rxts *rxts;
  620. unsigned long flags;
  621. spin_lock_irqsave(&dp83640->rx_lock, flags);
  622. prune_rx_ts(dp83640);
  623. if (list_empty(&dp83640->rxpool)) {
  624. pr_debug("rx timestamp pool is empty\n");
  625. goto out;
  626. }
  627. rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
  628. list_del_init(&rxts->list);
  629. phy2rxts(phy_rxts, rxts);
  630. list_add_tail(&rxts->list, &dp83640->rxts);
  631. out:
  632. spin_unlock_irqrestore(&dp83640->rx_lock, flags);
  633. }
  634. static void decode_txts(struct dp83640_private *dp83640,
  635. struct phy_txts *phy_txts)
  636. {
  637. struct skb_shared_hwtstamps shhwtstamps;
  638. struct sk_buff *skb;
  639. u64 ns;
  640. /* We must already have the skb that triggered this. */
  641. skb = skb_dequeue(&dp83640->tx_queue);
  642. if (!skb) {
  643. pr_debug("have timestamp but tx_queue empty\n");
  644. return;
  645. }
  646. ns = phy2txts(phy_txts);
  647. memset(&shhwtstamps, 0, sizeof(shhwtstamps));
  648. shhwtstamps.hwtstamp = ns_to_ktime(ns);
  649. skb_complete_tx_timestamp(skb, &shhwtstamps);
  650. }
  651. static void decode_status_frame(struct dp83640_private *dp83640,
  652. struct sk_buff *skb)
  653. {
  654. struct phy_rxts *phy_rxts;
  655. struct phy_txts *phy_txts;
  656. u8 *ptr;
  657. int len, size;
  658. u16 ests, type;
  659. ptr = skb->data + 2;
  660. for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
  661. type = *(u16 *)ptr;
  662. ests = type & 0x0fff;
  663. type = type & 0xf000;
  664. len -= sizeof(type);
  665. ptr += sizeof(type);
  666. if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
  667. phy_rxts = (struct phy_rxts *) ptr;
  668. decode_rxts(dp83640, phy_rxts);
  669. size = sizeof(*phy_rxts);
  670. } else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
  671. phy_txts = (struct phy_txts *) ptr;
  672. decode_txts(dp83640, phy_txts);
  673. size = sizeof(*phy_txts);
  674. } else if (PSF_EVNT == type && len >= sizeof(*phy_txts)) {
  675. size = decode_evnt(dp83640, ptr, ests);
  676. } else {
  677. size = 0;
  678. break;
  679. }
  680. ptr += size;
  681. }
  682. }
  683. static int is_sync(struct sk_buff *skb, int type)
  684. {
  685. u8 *data = skb->data, *msgtype;
  686. unsigned int offset = 0;
  687. switch (type) {
  688. case PTP_CLASS_V1_IPV4:
  689. case PTP_CLASS_V2_IPV4:
  690. offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
  691. break;
  692. case PTP_CLASS_V1_IPV6:
  693. case PTP_CLASS_V2_IPV6:
  694. offset = OFF_PTP6;
  695. break;
  696. case PTP_CLASS_V2_L2:
  697. offset = ETH_HLEN;
  698. break;
  699. case PTP_CLASS_V2_VLAN:
  700. offset = ETH_HLEN + VLAN_HLEN;
  701. break;
  702. default:
  703. return 0;
  704. }
  705. if (type & PTP_CLASS_V1)
  706. offset += OFF_PTP_CONTROL;
  707. if (skb->len < offset + 1)
  708. return 0;
  709. msgtype = data + offset;
  710. return (*msgtype & 0xf) == 0;
  711. }
  712. static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
  713. {
  714. u16 *seqid;
  715. unsigned int offset;
  716. u8 *msgtype, *data = skb_mac_header(skb);
  717. /* check sequenceID, messageType, 12 bit hash of offset 20-29 */
  718. switch (type) {
  719. case PTP_CLASS_V1_IPV4:
  720. case PTP_CLASS_V2_IPV4:
  721. offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
  722. break;
  723. case PTP_CLASS_V1_IPV6:
  724. case PTP_CLASS_V2_IPV6:
  725. offset = OFF_PTP6;
  726. break;
  727. case PTP_CLASS_V2_L2:
  728. offset = ETH_HLEN;
  729. break;
  730. case PTP_CLASS_V2_VLAN:
  731. offset = ETH_HLEN + VLAN_HLEN;
  732. break;
  733. default:
  734. return 0;
  735. }
  736. if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
  737. return 0;
  738. if (unlikely(type & PTP_CLASS_V1))
  739. msgtype = data + offset + OFF_PTP_CONTROL;
  740. else
  741. msgtype = data + offset;
  742. seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
  743. return rxts->msgtype == (*msgtype & 0xf) &&
  744. rxts->seqid == ntohs(*seqid);
  745. }
  746. static void dp83640_free_clocks(void)
  747. {
  748. struct dp83640_clock *clock;
  749. struct list_head *this, *next;
  750. mutex_lock(&phyter_clocks_lock);
  751. list_for_each_safe(this, next, &phyter_clocks) {
  752. clock = list_entry(this, struct dp83640_clock, list);
  753. if (!list_empty(&clock->phylist)) {
  754. pr_warn("phy list non-empty while unloading\n");
  755. BUG();
  756. }
  757. list_del(&clock->list);
  758. mutex_destroy(&clock->extreg_lock);
  759. mutex_destroy(&clock->clock_lock);
  760. put_device(&clock->bus->dev);
  761. kfree(clock->caps.pin_config);
  762. kfree(clock);
  763. }
  764. mutex_unlock(&phyter_clocks_lock);
  765. }
  766. static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
  767. {
  768. INIT_LIST_HEAD(&clock->list);
  769. clock->bus = bus;
  770. mutex_init(&clock->extreg_lock);
  771. mutex_init(&clock->clock_lock);
  772. INIT_LIST_HEAD(&clock->phylist);
  773. clock->caps.owner = THIS_MODULE;
  774. sprintf(clock->caps.name, "dp83640 timer");
  775. clock->caps.max_adj = 1953124;
  776. clock->caps.n_alarm = 0;
  777. clock->caps.n_ext_ts = N_EXT_TS;
  778. clock->caps.n_per_out = 1;
  779. clock->caps.n_pins = DP83640_N_PINS;
  780. clock->caps.pps = 0;
  781. clock->caps.adjfreq = ptp_dp83640_adjfreq;
  782. clock->caps.adjtime = ptp_dp83640_adjtime;
  783. clock->caps.gettime = ptp_dp83640_gettime;
  784. clock->caps.settime = ptp_dp83640_settime;
  785. clock->caps.enable = ptp_dp83640_enable;
  786. clock->caps.verify = ptp_dp83640_verify;
  787. /*
  788. * Convert the module param defaults into a dynamic pin configuration.
  789. */
  790. dp83640_gpio_defaults(clock->caps.pin_config);
  791. /*
  792. * Get a reference to this bus instance.
  793. */
  794. get_device(&bus->dev);
  795. }
  796. static int choose_this_phy(struct dp83640_clock *clock,
  797. struct phy_device *phydev)
  798. {
  799. if (chosen_phy == -1 && !clock->chosen)
  800. return 1;
  801. if (chosen_phy == phydev->addr)
  802. return 1;
  803. return 0;
  804. }
  805. static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
  806. {
  807. if (clock)
  808. mutex_lock(&clock->clock_lock);
  809. return clock;
  810. }
  811. /*
  812. * Look up and lock a clock by bus instance.
  813. * If there is no clock for this bus, then create it first.
  814. */
  815. static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
  816. {
  817. struct dp83640_clock *clock = NULL, *tmp;
  818. struct list_head *this;
  819. mutex_lock(&phyter_clocks_lock);
  820. list_for_each(this, &phyter_clocks) {
  821. tmp = list_entry(this, struct dp83640_clock, list);
  822. if (tmp->bus == bus) {
  823. clock = tmp;
  824. break;
  825. }
  826. }
  827. if (clock)
  828. goto out;
  829. clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
  830. if (!clock)
  831. goto out;
  832. clock->caps.pin_config = kzalloc(sizeof(struct ptp_pin_desc) *
  833. DP83640_N_PINS, GFP_KERNEL);
  834. if (!clock->caps.pin_config) {
  835. kfree(clock);
  836. clock = NULL;
  837. goto out;
  838. }
  839. dp83640_clock_init(clock, bus);
  840. list_add_tail(&phyter_clocks, &clock->list);
  841. out:
  842. mutex_unlock(&phyter_clocks_lock);
  843. return dp83640_clock_get(clock);
  844. }
  845. static void dp83640_clock_put(struct dp83640_clock *clock)
  846. {
  847. mutex_unlock(&clock->clock_lock);
  848. }
  849. static int dp83640_probe(struct phy_device *phydev)
  850. {
  851. struct dp83640_clock *clock;
  852. struct dp83640_private *dp83640;
  853. int err = -ENOMEM, i;
  854. if (phydev->addr == BROADCAST_ADDR)
  855. return 0;
  856. clock = dp83640_clock_get_bus(phydev->bus);
  857. if (!clock)
  858. goto no_clock;
  859. dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
  860. if (!dp83640)
  861. goto no_memory;
  862. dp83640->phydev = phydev;
  863. INIT_WORK(&dp83640->ts_work, rx_timestamp_work);
  864. INIT_LIST_HEAD(&dp83640->rxts);
  865. INIT_LIST_HEAD(&dp83640->rxpool);
  866. for (i = 0; i < MAX_RXTS; i++)
  867. list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
  868. phydev->priv = dp83640;
  869. spin_lock_init(&dp83640->rx_lock);
  870. skb_queue_head_init(&dp83640->rx_queue);
  871. skb_queue_head_init(&dp83640->tx_queue);
  872. dp83640->clock = clock;
  873. if (choose_this_phy(clock, phydev)) {
  874. clock->chosen = dp83640;
  875. clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev);
  876. if (IS_ERR(clock->ptp_clock)) {
  877. err = PTR_ERR(clock->ptp_clock);
  878. goto no_register;
  879. }
  880. } else
  881. list_add_tail(&dp83640->list, &clock->phylist);
  882. dp83640_clock_put(clock);
  883. return 0;
  884. no_register:
  885. clock->chosen = NULL;
  886. kfree(dp83640);
  887. no_memory:
  888. dp83640_clock_put(clock);
  889. no_clock:
  890. return err;
  891. }
  892. static void dp83640_remove(struct phy_device *phydev)
  893. {
  894. struct dp83640_clock *clock;
  895. struct list_head *this, *next;
  896. struct dp83640_private *tmp, *dp83640 = phydev->priv;
  897. struct sk_buff *skb;
  898. if (phydev->addr == BROADCAST_ADDR)
  899. return;
  900. enable_status_frames(phydev, false);
  901. cancel_work_sync(&dp83640->ts_work);
  902. while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL)
  903. kfree_skb(skb);
  904. while ((skb = skb_dequeue(&dp83640->tx_queue)) != NULL)
  905. skb_complete_tx_timestamp(skb, NULL);
  906. clock = dp83640_clock_get(dp83640->clock);
  907. if (dp83640 == clock->chosen) {
  908. ptp_clock_unregister(clock->ptp_clock);
  909. clock->chosen = NULL;
  910. } else {
  911. list_for_each_safe(this, next, &clock->phylist) {
  912. tmp = list_entry(this, struct dp83640_private, list);
  913. if (tmp == dp83640) {
  914. list_del_init(&tmp->list);
  915. break;
  916. }
  917. }
  918. }
  919. dp83640_clock_put(clock);
  920. kfree(dp83640);
  921. }
  922. static int dp83640_config_init(struct phy_device *phydev)
  923. {
  924. struct dp83640_private *dp83640 = phydev->priv;
  925. struct dp83640_clock *clock = dp83640->clock;
  926. if (clock->chosen && !list_empty(&clock->phylist))
  927. recalibrate(clock);
  928. else
  929. enable_broadcast(phydev, clock->page, 1);
  930. enable_status_frames(phydev, true);
  931. ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
  932. return 0;
  933. }
  934. static int dp83640_ack_interrupt(struct phy_device *phydev)
  935. {
  936. int err = phy_read(phydev, MII_DP83640_MISR);
  937. if (err < 0)
  938. return err;
  939. return 0;
  940. }
  941. static int dp83640_config_intr(struct phy_device *phydev)
  942. {
  943. int micr;
  944. int misr;
  945. int err;
  946. if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
  947. misr = phy_read(phydev, MII_DP83640_MISR);
  948. if (misr < 0)
  949. return misr;
  950. misr |=
  951. (MII_DP83640_MISR_ANC_INT_EN |
  952. MII_DP83640_MISR_DUP_INT_EN |
  953. MII_DP83640_MISR_SPD_INT_EN |
  954. MII_DP83640_MISR_LINK_INT_EN);
  955. err = phy_write(phydev, MII_DP83640_MISR, misr);
  956. if (err < 0)
  957. return err;
  958. micr = phy_read(phydev, MII_DP83640_MICR);
  959. if (micr < 0)
  960. return micr;
  961. micr |=
  962. (MII_DP83640_MICR_OE |
  963. MII_DP83640_MICR_IE);
  964. return phy_write(phydev, MII_DP83640_MICR, micr);
  965. } else {
  966. micr = phy_read(phydev, MII_DP83640_MICR);
  967. if (micr < 0)
  968. return micr;
  969. micr &=
  970. ~(MII_DP83640_MICR_OE |
  971. MII_DP83640_MICR_IE);
  972. err = phy_write(phydev, MII_DP83640_MICR, micr);
  973. if (err < 0)
  974. return err;
  975. misr = phy_read(phydev, MII_DP83640_MISR);
  976. if (misr < 0)
  977. return misr;
  978. misr &=
  979. ~(MII_DP83640_MISR_ANC_INT_EN |
  980. MII_DP83640_MISR_DUP_INT_EN |
  981. MII_DP83640_MISR_SPD_INT_EN |
  982. MII_DP83640_MISR_LINK_INT_EN);
  983. return phy_write(phydev, MII_DP83640_MISR, misr);
  984. }
  985. }
  986. static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
  987. {
  988. struct dp83640_private *dp83640 = phydev->priv;
  989. struct hwtstamp_config cfg;
  990. u16 txcfg0, rxcfg0;
  991. if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
  992. return -EFAULT;
  993. if (cfg.flags) /* reserved for future extensions */
  994. return -EINVAL;
  995. if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
  996. return -ERANGE;
  997. dp83640->hwts_tx_en = cfg.tx_type;
  998. switch (cfg.rx_filter) {
  999. case HWTSTAMP_FILTER_NONE:
  1000. dp83640->hwts_rx_en = 0;
  1001. dp83640->layer = 0;
  1002. dp83640->version = 0;
  1003. break;
  1004. case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
  1005. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  1006. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  1007. dp83640->hwts_rx_en = 1;
  1008. dp83640->layer = LAYER4;
  1009. dp83640->version = 1;
  1010. break;
  1011. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  1012. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  1013. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  1014. dp83640->hwts_rx_en = 1;
  1015. dp83640->layer = LAYER4;
  1016. dp83640->version = 2;
  1017. break;
  1018. case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
  1019. case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
  1020. case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
  1021. dp83640->hwts_rx_en = 1;
  1022. dp83640->layer = LAYER2;
  1023. dp83640->version = 2;
  1024. break;
  1025. case HWTSTAMP_FILTER_PTP_V2_EVENT:
  1026. case HWTSTAMP_FILTER_PTP_V2_SYNC:
  1027. case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
  1028. dp83640->hwts_rx_en = 1;
  1029. dp83640->layer = LAYER4|LAYER2;
  1030. dp83640->version = 2;
  1031. break;
  1032. default:
  1033. return -ERANGE;
  1034. }
  1035. txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
  1036. rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
  1037. if (dp83640->layer & LAYER2) {
  1038. txcfg0 |= TX_L2_EN;
  1039. rxcfg0 |= RX_L2_EN;
  1040. }
  1041. if (dp83640->layer & LAYER4) {
  1042. txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
  1043. rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
  1044. }
  1045. if (dp83640->hwts_tx_en)
  1046. txcfg0 |= TX_TS_EN;
  1047. if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
  1048. txcfg0 |= SYNC_1STEP | CHK_1STEP;
  1049. if (dp83640->hwts_rx_en)
  1050. rxcfg0 |= RX_TS_EN;
  1051. mutex_lock(&dp83640->clock->extreg_lock);
  1052. ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
  1053. ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
  1054. mutex_unlock(&dp83640->clock->extreg_lock);
  1055. return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
  1056. }
  1057. static void rx_timestamp_work(struct work_struct *work)
  1058. {
  1059. struct dp83640_private *dp83640 =
  1060. container_of(work, struct dp83640_private, ts_work);
  1061. struct list_head *this, *next;
  1062. struct rxts *rxts;
  1063. struct skb_shared_hwtstamps *shhwtstamps;
  1064. struct sk_buff *skb;
  1065. unsigned int type;
  1066. unsigned long flags;
  1067. /* Deliver each deferred packet, with or without a time stamp. */
  1068. while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL) {
  1069. type = SKB_PTP_TYPE(skb);
  1070. spin_lock_irqsave(&dp83640->rx_lock, flags);
  1071. list_for_each_safe(this, next, &dp83640->rxts) {
  1072. rxts = list_entry(this, struct rxts, list);
  1073. if (match(skb, type, rxts)) {
  1074. shhwtstamps = skb_hwtstamps(skb);
  1075. memset(shhwtstamps, 0, sizeof(*shhwtstamps));
  1076. shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
  1077. list_del_init(&rxts->list);
  1078. list_add(&rxts->list, &dp83640->rxpool);
  1079. break;
  1080. }
  1081. }
  1082. spin_unlock_irqrestore(&dp83640->rx_lock, flags);
  1083. netif_rx_ni(skb);
  1084. }
  1085. /* Clear out expired time stamps. */
  1086. spin_lock_irqsave(&dp83640->rx_lock, flags);
  1087. prune_rx_ts(dp83640);
  1088. spin_unlock_irqrestore(&dp83640->rx_lock, flags);
  1089. }
  1090. static bool dp83640_rxtstamp(struct phy_device *phydev,
  1091. struct sk_buff *skb, int type)
  1092. {
  1093. struct dp83640_private *dp83640 = phydev->priv;
  1094. if (!dp83640->hwts_rx_en)
  1095. return false;
  1096. if (is_status_frame(skb, type)) {
  1097. decode_status_frame(dp83640, skb);
  1098. kfree_skb(skb);
  1099. return true;
  1100. }
  1101. SKB_PTP_TYPE(skb) = type;
  1102. skb_queue_tail(&dp83640->rx_queue, skb);
  1103. schedule_work(&dp83640->ts_work);
  1104. return true;
  1105. }
  1106. static void dp83640_txtstamp(struct phy_device *phydev,
  1107. struct sk_buff *skb, int type)
  1108. {
  1109. struct dp83640_private *dp83640 = phydev->priv;
  1110. switch (dp83640->hwts_tx_en) {
  1111. case HWTSTAMP_TX_ONESTEP_SYNC:
  1112. if (is_sync(skb, type)) {
  1113. skb_complete_tx_timestamp(skb, NULL);
  1114. return;
  1115. }
  1116. /* fall through */
  1117. case HWTSTAMP_TX_ON:
  1118. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  1119. skb_queue_tail(&dp83640->tx_queue, skb);
  1120. schedule_work(&dp83640->ts_work);
  1121. break;
  1122. case HWTSTAMP_TX_OFF:
  1123. default:
  1124. skb_complete_tx_timestamp(skb, NULL);
  1125. break;
  1126. }
  1127. }
  1128. static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
  1129. {
  1130. struct dp83640_private *dp83640 = dev->priv;
  1131. info->so_timestamping =
  1132. SOF_TIMESTAMPING_TX_HARDWARE |
  1133. SOF_TIMESTAMPING_RX_HARDWARE |
  1134. SOF_TIMESTAMPING_RAW_HARDWARE;
  1135. info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
  1136. info->tx_types =
  1137. (1 << HWTSTAMP_TX_OFF) |
  1138. (1 << HWTSTAMP_TX_ON) |
  1139. (1 << HWTSTAMP_TX_ONESTEP_SYNC);
  1140. info->rx_filters =
  1141. (1 << HWTSTAMP_FILTER_NONE) |
  1142. (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
  1143. (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
  1144. (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
  1145. (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
  1146. (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
  1147. (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
  1148. (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
  1149. (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
  1150. (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
  1151. (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
  1152. (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
  1153. (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ);
  1154. return 0;
  1155. }
  1156. static struct phy_driver dp83640_driver = {
  1157. .phy_id = DP83640_PHY_ID,
  1158. .phy_id_mask = 0xfffffff0,
  1159. .name = "NatSemi DP83640",
  1160. .features = PHY_BASIC_FEATURES,
  1161. .flags = PHY_HAS_INTERRUPT,
  1162. .probe = dp83640_probe,
  1163. .remove = dp83640_remove,
  1164. .config_init = dp83640_config_init,
  1165. .config_aneg = genphy_config_aneg,
  1166. .read_status = genphy_read_status,
  1167. .ack_interrupt = dp83640_ack_interrupt,
  1168. .config_intr = dp83640_config_intr,
  1169. .ts_info = dp83640_ts_info,
  1170. .hwtstamp = dp83640_hwtstamp,
  1171. .rxtstamp = dp83640_rxtstamp,
  1172. .txtstamp = dp83640_txtstamp,
  1173. .driver = {.owner = THIS_MODULE,}
  1174. };
  1175. static int __init dp83640_init(void)
  1176. {
  1177. return phy_driver_register(&dp83640_driver);
  1178. }
  1179. static void __exit dp83640_exit(void)
  1180. {
  1181. dp83640_free_clocks();
  1182. phy_driver_unregister(&dp83640_driver);
  1183. }
  1184. MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
  1185. MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
  1186. MODULE_LICENSE("GPL");
  1187. module_init(dp83640_init);
  1188. module_exit(dp83640_exit);
  1189. static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
  1190. { DP83640_PHY_ID, 0xfffffff0 },
  1191. { }
  1192. };
  1193. MODULE_DEVICE_TABLE(mdio, dp83640_tbl);